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Abstract

The Eilenberg-Zilber (EZ) Theorem is basic in Algebraic Topology. It
connects the chain complex C∗(A×B) of the product of two simplicial sets
to the tensor product C∗(A)⊗ C∗(B), allowing one to compute H∗(A×B)
from H∗(A) and H∗(B). Initially proved in 1953, it is stated and used in
almost every elementary textbook of Algebraic Topology.

Sixty-five years after the initial EZ paper, we present this result via a
totally new proof, based on the relatively recent tool called Discrete Vector
Field (DVF, Robin Forman, 1998). The various available EZ proofs are not
so trivial; the present proof on the contrary is intuitive and gives more infor-
mation. The key point is the notion of s-path, a 2-dimensional description
of every simplex of the standard simplicial decomposition of ∆p×∆q, p and
q arbitrary, which allows us to use the same DVF for the homotopical and
homological EZ theorems.

The right notion of morphism between cellular chain complexes provided
with discrete vector fields is given; its definition is really amazing and is here
an essential tool.

Besides a new understanding of the EZ theorem, we obtain much better
algorithms for the machine implementation of the EZ theorem, automati-
cally avoiding the countless degenerate simplices produced by the Rubio-
Morace formula for the EZ-homotopy. Other striking applications will be
the subject of other papers.

1 Introduction.

The precise origin of the EZ theorem is in the following problem. Let ∆p

and ∆q be the standard simplices of dimension p and q. What about the
product P := ∆p ×∆q? Two possible points of view. We may decide after
all this product also is elementary, more generally we may decide every
product of simplices is elementary. Obvious drawback: the various results
of simplicial combinatorial topology cannot directly be applied.

∗Partially supported by Ministerio de Economı́a, Industria y Competitividad, Spain, project
MTM2017-88804-P.
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It is therefore natural to triangulate the product P := ∆p × ∆q. The
canonical triangulation of this product is in a sense the heart of our subject.
This triangulation is elegant but has a handicap: it is difficult to see and
use in it the underlying product structure.

The EZ-theorem settles the right connection between both viewpoints.
At least for the homological problem. For every pair A and B of simplicial
sets, the EZ-theorem defines chain complex morphisms between C∗(A×B)
and C∗(A) ⊗ C∗(B), these chain complex morphisms being inverse homo-
logical equivalences. The first complex C∗(A × B) is the chain complex
canonically associated to the simplicial set A × B; in other words, every
product σA × σB, σA (resp. σB) being a (non-degenerate) p-simplex of A
(resp. q-simplex of B) is triangulated as ∆p ×∆q, in particular producing(
p+q
p

)
simplices of dimension p + q. The second chain complex has exactly

one generator in dimension p + q for every such pair (σA, σB): the chain
complex C∗(A×B) is much bigger than C∗(A)⊗C∗(B). The second chain
complex is in fact canonically associated to A×B considered as a union of
“bisimplices” σA × σB.

This article gives a new description of the Eilenberg-Zilber environment.
In front of a product A×B, the notion of s-path allows us to define a funny
discrete vector field (Definition 24) on the cellular complex C∗(A×B). This
discrete vector field automatically produces a reduction:

C∗(A×B) C∗(A)⊗ C∗(B)
f

g
hρ = (f, g, h) = (1)

which reduction contains the EZ theorem.
We so find again the classical maps f = AW = Alexander-Whitney,

g = EML = Eilenberg-MacLane. The composition fg = AW EML is the
identity. We find also the less classical Rubio-Morace formula h = RM for
the homotopy between gf and the identity, which map h cannot be avoided
if a constructive result is required. Most often, only the lazy existence of
this map is proved, preventing the EZ theorem from being constructively
used.

The naturality of the Eilenberg-Zilber process is obtained here thanks
to the notion of morphism between cellular chain complexes provided with
discrete vector fields. This definition, to our knowledge so far unknown, is
as surprising as efficient.

We will see that, according to the degeneracies in the faces of the sim-
plices of A and B, many terms of the terrible Rubio-Morace formula (55) in
fact do not contribute. It happens the vector field technology produces the
optimal algorithm with respect to these degeneracies, explaining the strong
time difference between both implementations, the first one using the Rubio-
Morace formula, the second one using the canonical vector field defined in
this text. It is tempting to see an analogy betweeen, on the one hand, the
“efficicency” of the proof of the s-cobordism theorem by Forman [8], and on
the other hand, the concrete efficiency of our computer program using the
same method [14]. Also the vector field method is so simple that it is easily
implemented, the corresponding computer program being simple, readable,
easy to maintain.
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Another point is to be mentioned. Theorem 23, the theorem of the hol-
lowed prism, can seem insubstantial for topologists not used to the problems
of constructive combinatorial topology. It happens it was a crucial point to
make constructive the Bousfield-Kan spectral sequence [16]. The construc-
tive Bousfield-Kan spectral sequence is nothing but the complete connection
between homology groups and homotopy groups, and it is well known that
“in general” homotopy is harder than homology. But understanding the
deep nature of the theorem of the hollowed prism is simple: it is nothing
but the homotopical version of the EZ theorem, whereas the usual EZ the-
orem is the homological version. It is remarkable the same discrete vector
field produces both versions, homological and homotopical, of the EZ the-
orem. The perceptive reader will notice the same difference between both
ways of using our vector field as the difference between the combinatorial
definitions of π1 and H1.

Other papers are planned, using the same method, in fact really the
same discrete vector field, to obtain constructive and efficient versions of the
twisted EZ theorem [1, 2] and the Eilenberg-Moore spectral sequences [5].

The paper is organized as follows.
1. We recall the classical EZ theorem, the notion of (Whitehead) col-

lapse, the quite elementary definition of discrete vector field in the comfort-
able framework of cellular chain complexes.

2. Then the key notion of s-path is described, it is a combinatorial
2-dimensional simple description of an arbitrary simplex of the canonical
triangulation of ∆p ×∆q, p and q being themselves arbitrary.

3. Then the homotopical EZ-theorem is stated and proved, thanks to a
filling sequence, which sequence is nothing but a discrete vector field pro-
vided with an extra order. This vector field, forgetting this order, is our
tool to produce some EZ theorem by a totally new way. There remains to
connect “both” EZ-theorems.

4. The notion of morphism between cellular chain complexes provided
with vector fields is also quite amazing and has a scope much wider than
the subject of the present paper.

5. The long section 12 proves both EZ theorems produce the same
(abstract) results. This section has its own introduction to explain why this
work is justified.

6. Conclusion.

2 The Eilenberg-Zilber Theorem.

The standard notions of simplicial set is assumed known. The most common
reference for the definition of and the basic results about the simplicial sets
is the “little red1 book” [9]. All the necessary formulas are available in
this book, unfortunately without any illustrative examples. So that you
can be helped by the text [20] which on the contrary contains many simple
examples.

1Red because the unique copy of this book at the universitary library of Grenoble has been
so used that a new cover has been necessary, and it happens this new cover is red.
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Theorem 1 (Eilenberg-Zilber Theorem) — Let X and Y be two sim-
plicial sets. Then a canonical reduction ρ is defined:

C∗(X × Y ) C∗(X)⊗ C∗(Y )
f

g
hρ = (f, g, h) = (2)

♣ The initial proof is the article [7]. ♣
All the chain complexes of simplicial sets C∗(· · · ) are assumed normal-

ized, that is, generated by the non-degenerate simplices.
In this text, a reduction is a homology equivalence between two chain

complexes given as a triple ρ = (f, g, h). The maps f and g are chain
complex morphisms. The second one g is an injection of a “small” chain
complex, here C∗(X) ⊗ C∗(Y ), into a “big” one, here C∗(X × Y ); the first
one f is a projection of the big chain complex onto the small one. The
composition fg is the identity of the small chain complex, and h is a homo-
topy operator between gf and the identity of the big chain complex. Also
the compositions fh, hg and hh are null. These data induce a canonical
decomposition of the big chain complex here C∗(X×Y ) = im g ⊕ ker f , the
first component is isomorphic to the small chain complex, and the second
component is acyclic provided with a homological contraction h.

The general idea of a well defined reduction is the following: the big chain
complex is “rich” but a little too complicated, and a “simplified” version is
the small one. The small version is simplified with respect to some point of
view, but must keep the homological nature of the big one.

The simplicial sets X and Y are (simplicially) triangulated, and then
what about the product X × Y ? In fact this product naturally inherits a
simplicial structure, but it happens this structure is in general relatively
complex, generating many simplices. For example, if X = ∆p and Y = ∆q,
both factors are made only of one simplex, yet the canonical simplicial
structure of ∆p × ∆q is made of

(
p+q
p

)
simplices of dimension p + q. If

product objects such that ∆p,q := ∆p ×∆q are allowed in the collection of
“elementary” objects, then ∆p,q, a unique object, is sufficient to describe
the product ∆p ×∆q.

This is the philosophy of the EZ theorem. If you allow the objects ∆p,q,
then the product X × Y is trivially a union of objects of this sort, and the
standard definition of the differential for a tensor product of chain complexes
produces the chain complex C∗(X) ⊗ C∗(Y ) with the right homology for
X ×Y . The Künneth theorem then gives easily the homology groups of the
product. Well, but a priori you do not have a simplicial structure on the
product, which can be an essential difficulty. On the contrary, the standard
simplicial structure of X × Y could be used, but it can generate too many
simplices to be convenient.

The EZ theorem gives a canonical connection between both chain com-
plexes, C∗(X × Y ) and C∗(X) ⊗ C∗(Y ), allowing the topologist to use the
advantages of both presentations, according to some or other concrete prob-
lem. And the EZ reduction allows one to transfer the results obtained on
one side to the other side.
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3 Discrete vector fields.

This section is devoted to the general notion of discrete vector field, and to
its connection with collapses, under a form convenient for our interpretation
of the EZ theorem.

3.1 Collapses.

Definition 2 — An elementary collapse is a pair (X,A) of simplicial com-
plexes, satisfying the following conditions:

1. The component A is a simplicial subset of the simplicial set X.

2. The difference X −A is made of exactly two non-degenerate simplices
τ ∈ Xn and σ ∈ Xn−1, the second one σ being a face of the first one τ .

3. The incidence relation σ = ∂iτ holds2 for a unique index i ∈ 0...n.

For example, X could be made of three triangles and A of two only as
in the next figure.

σ

• • •

• •
τ

A

X
(3)

The condition 3 is required to assert the existence of a topological con-
traction of X onto A. Think for example of the minimal triangulation of
the real projective plane P 2R as a simplicial set X, see the next figure: one
vertex ∗, one edge σ and one triangle τ ; no choice for the faces of σ; the
faces of τ must be ∂0τ = ∂2τ = σ and ∂1τ = η0∗ is the degeneracy of the
base point. The realization of X is homeomorphic to P 2R. If you omit the
condition 3 in the definition of collapse, then (X, ∗) would be a collapse, but
P 2R is not contractible.

σσ
τ

∗ ∗

∗

∗∗∗∗
0 2

1

(4)

Definition 3 — A collapse is a pair (X,A) of simplicial sets satisfying the
following conditions:

1. The component A is a simplicial subset of the simplicial set X.

2. There exists a sequence (Ai)0≤i≤m with:
(a) A0 = A and Am = X.
(b) For every 0 < i ≤ m, the pair (Ai, Ai−1) is an elementary

collapse. ♣

In other words, a collapse is a finite sequence of elementary collapses.
If (X,A) is a collapse, then a topological contraction X → A can be defined.

Another kind of modification when examining a topological object can
be studied. Let us consider the usual triangulation of the square with two
triangles, the square cut by a diagonal. Then it is tempting to modify this

2We denote ∂iσ (resp. ηiσ) the i-th face (resp. degeneracy) of the simplex σ.
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triangulation by pushing the diagonal onto two sides as roughly described
in this figure.

• •

••

• •

••

• •

••
⇒ ⇒ (5)

Why not, but this needs other kinds of cells, here a square with four edges,
while in a simplicial framework, the only objects of dimension 2 that are
provided are the triangles ∆2. Trying to overcome this essential obstacle
leads to two major subjects:

1. The Eilenberg-Zilber theorem, an algebraic translation of this idea,
which consists in algebraically allowing the use of simplex products.

2. The CW-complex theory, where the added cells are attached to the
previously constructed object through arbitrary attaching maps.

This paper systematically reconsiders these essential ideas through the
notion of discrete vector field. The EZ theorem has an essentially homological
nature. Our point of view will naturally lead also to a homotopical EZ
theorem, with a unified approach of both contexts.

3.2 Algebraic discrete vector fields.

The notion of discrete vector field (DVF) is due to Robin Forman [8]; it is
an essential component of the so-called discrete Morse theory.

This notion is usually described and used in combinatorial topology, but
a purely algebraic version can also be given; we prefer this context.

Definition 4 — An algebraic cellular complex (ACC) is a family:

C = (Cp, dp, βp)p∈Z

of free Z-modules and boundary maps. Every Cp is called a chain group and
is provided with a distinguished Z-basis βp; every basis component σ ∈ βp
is a p-cell. The boundary map dp : Cp → Cp−1 is a Z-linear map connecting
two consecutive chain groups. The usual boundary condition dp−1dp = 0 is
satisfied for every p ∈ Z. ♣

Most often we omit the index of the differential, so that the last condition
can be denoted by d2 = 0. The notation is redundant: necessarily, Cp =
Z[βp], but the standard notation Cp for the group of p-chains is convenient.

We consider only here the case of the ground ring Z, the natural one for
our EZ problem. Obvious extensions to more general cases, arbitray ground
rings, in particular fields, may also be given.

The chain complex associated to any sort of topological cellular complex
is an ACC. We are specially interested in the chain complexes associated to
simplicial sets.

Important: we do not assume finite the distinguished bases βp, the chain
groups are not necessarily of finite type. This is not an artificial extension
to the traditional Morse theory: this point will be often essential, but this
extension is obvious.
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Definition 5 — Let C be an ACC. A (p− 1)-cell σ is said to be a face of
a p-cell τ if the coefficient of σ in dτ is non-null. It is a regular face if this
coefficient is +1 or -1. ♣

If ∆p is the standard simplex, every face of every subsimplex is a regular
face of this subsimplex. We gave after Definition 2 an example of triangula-
tion of the real projective plane as a simplicial set; the unique non-degenerate
1-simplex σ is not a regular face of the triangle τ , for dτ = 2σ.

Note also the regular property is relative: σ can be a regular face of τ
but also a non-regular face of another simplex τ ′.

Definition 6 — A discrete vector field V on an algebraic cellular complex
C = (Cp, dp, βp)p∈Z is a collection of pairs V = {(σi, τi)}i∈β satisfying the
conditions:

1. Every σi is some p-cell, in which case the other corresponding compo-
nent τi is a (p + 1)-cell. The degree p depends on i and in general is
not constant.

2. Every component σi is a regular face of the corresponding component
τi.

3. A cell of C appears at most one time in the vector field: if i 6= j, then
{σi, τi} ∩ {σj , τj} = ∅ . ♣

It is not required all the cells of C appear in the vector field V . In
particular the void vector field is allowed. In a sense the remaining cells are
the most important.

Definition 7 — A cell χ which does not appear in a discrete vector field
V = {(σi, τi)}i∈β is called a critical cell. A component (σi, τi) of the vector
field V is a p-vector if σi is a p-cell. Such a cell σi is a source cell, and the
other cell τi is a target cell. ♣

We do not consider in this paper the traditional vector fields of differen-
tial geometry, which allows us to call simply a vector field which should be
called a discrete vector field.

In case of an ACC coming from a topological cellular complex, a vector
field is a recipe to cancel “useless” cells in the underlying space, useless with
respect to the homotopy type. A component (σi, τi) of a vector field can
vaguely be thought of as a “vector” starting from the center of σi, going to
the center of τi. For example ∂∆2 and the circle have the same homotopy
type, which is described by the following scheme:

0

1

2 0

01 12

02

12

•

•

•
⇒

•
(6)

The initial simplicial complex is made of three 0-cells 0, 1 and 2, and three 1-
cells 01, 02 and 12. The drawn vector field is V = {(1, 01), (2, 02)}, and this
vector field defines a homotopy equivalence between ∂∆2 and the minimal
triangulation of the circle as a simplicial set. The last triangulation is made
of the critical cells 0 and 12, attached according to a process which deserves
to be seriously studied in the general case. This paper is devoted to a
systematic use of this idea.
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3.3 V-paths and admissible vector fields.

By the way, what about this vector field in ∂∆2? 0• 2•

1•

No critical cell and yet ∂∆2 does not have the homotopy type of the void
object. We must forbid possible loops. This is not enough. Do not forget
the infinite case must be also covered; but look at this picture:

•
-1

•
0

•
1

•
2

•
3

(7)

representing an infinite vector field on the real line triangulated as an infinite
union of 1-cells connecting successive integers. No critical cell and yet the
real line does not have the homotopy type of the void set. We must also
forbid the possible infinite paths.

The notions of V-paths and admissible vector fields are the appropriate
tools to define the necessary restrictions.

Definition 8 — If V = {(σi, τi)}i∈β is a vector field on an algebraic
cellular complex C = (Cn, dn, βn)n, a V -path of degree p is a sequence
π = ((σik , τik))0≤k<m satisfying:

1. Every pair ((σik , τik)) is a component of the vector field V and the
cell τik is a p-cell.

2. For every 0 < k < m, the component σik is a face of τik−1
, non neces-

sarily regular, but different from σik−1
.

If π = ((σik , τik))0≤k<m is a V -path, and if σ is a face of τim−1 different from
σim−1 , then π connects σi0 and σ through the vector field V . ♣

•
1

•
3

•
5

•
0

•
2

•
4

•
6

A V -path connecting the edges 01 and 56.

(8)

In a V -path π = ((σik , τik))0≤k<m of degree p, a (p−1)-cell σik is a regular
face of τik , for the pair (σik , τik) is a component of the vector field V , but
the same σik is non-necessarily a regular face of τik−1

.

Definition 9 — The length of the path π = ((σik , τik))0≤k<m is m. ♣

If (σ, τ) is a component of a vector field, in general the cell τ has several
faces different from σ, so that the possible paths starting from a cell generate
an oriented graph.

Definition 10 — A discrete vector field V on an algebraic cellular complex
C = (Cn, dn, βn)n∈Z is admissible if for every n ∈ Z, a function λn : βn → N
is provided satisfying the following property: every V -path starting from
σ ∈ βn has a length bounded by λn(σ). ♣
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Excluding infinite paths is almost equivalent. The difference between
both possibilities is measured by Markov’s principle; we prefer our more
constructive statement.

A circular path would generate an infinite path and is therefore excluded.
The next diagram, an oriented bipartite graph, can help to understand

this notion of admissibility for some vector field V . This notion makes sense
degree by degree. Between the degrees p and p − 1, organize the source
(p − 1)-cells (resp. target p-cells) as a lefthand (resp. righthand) column
of cells. Then every vector (σ, τ) ∈ V produces an oriented edge σ � τ .
In the reverse direction, if τ is a target p-cell, the boundary dτ is a finite
linear combination dτ =

∑
αiσi, and some of these σi’s are source cells,

in particular certainly the corresponding V -source cell σ. For every such
source component σi, be careful except for the corresponding source σ, you
install an oriented edge σi � τ .

Then the vector field is admissible between the degrees p − 1 and p if
and only if, starting from every source cell σ, all the (oriented) paths have a
length bounded by some integer λp(σ). In particular, the loops are excluded.
We draw the two simplest examples of vector fields non-admissible. The
lefthand one has an infinite path, the righthand one has a loop, a particular
case of infinite path.

•
•
•

•
•
•

p− 1 p

•
•

•
•

p− 1 p

(9)

Definition 11 — Let V = {(σi, τi)i∈β} be a vector field on an ACC. A
Lyapunov function for V is a function L : β → N satisfying the following
condition: if σj is a face of τi different from σi, then L(j) < L(i). ♣

It is the natural translation in our discrete framework of the traditional
notion of Lyapunov function in differential geometry. It is clear such a Lya-
punov function proves the admissibility of the studied vector field. Obvious
generalizations to ordered sets more general than N are possible.

4 Elementary combinatorial topology.

In this section we present a combinatorial description of the simplices of a
prism by means of the notion of s-path, introduced in [15]. The definitions
and results of this section can also be found in [15], where these ideas are used
to provide a constructive version of the Bousfield-Kan spectral sequence [16].
They are repeated here for the convenience of the reader. Furthermore,
taking account of the symmetry of the definition of a simplicial set, you
may reverse the order of indices of the face and degeneracy operators, several
choices are possible for various formulas, for example two main choices for
the Alexander-Whitney operator. It happens the choices made in [15] are
not the right one to obtain the standard Eilenberg-Zilber formulas, essential
with respect to the subject of this paper, still more important when we
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will study in a next paper the twisted Eilenberg-Zilber theorem through the
same technology.

4.1 Triangulation of a prism.

We have to work in the simplicial complex ∆p,q = ∆p×∆q. A vertex of ∆p

is an integer in p = [0 . . . p], a (non-degenerate) d-simplex of ∆p is a strictly
increasing sequence of integers 0 ≤ v0 < . . . < vd ≤ p. The same for our
second factor ∆q.

The canonical triangulation of ∆p × ∆q is made of (non-degenerate)
simplices ((v0, v

′
0), . . . , (vd, v

′
d)) satisfying the relations:

• 0 ≤ v0 ≤ v1 ≤ · · · ≤ vd ≤ p.
• 0 ≤ v′0 ≤ v′1 ≤ · · · ≤ v′d ≤ q.
• (vi, v

′
i) 6= (vi−1, v

′
i−1) for 1 ≤ i ≤ d.

In other words, the canonical triangulation of ∆p,q = ∆p ×∆q is associated
to the poset p×q endowed with the product order of the factors. For example
the three maximal simplices of ∆2,1 = ∆2 ×∆1 are:

• ((0, 0), (0, 1), (1, 1), (2, 1)).

• ((0, 0), (1, 0), (1, 1), (2, 1)).

• ((0, 0), (1, 0), (2, 0), (2, 1)).

(0,0)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

4.2 Simplex = s-path.

We can see the poset p× q as a lattice where we arrange the first factor p in
the horizontal direction and the second factor q in the vertical direction. The
first figure below is the lattice 2×1 while the other figures are representations
of the maximal simplices of ∆2,1 = ∆2×∆1 as increasing paths in the lattice.

•
•
•
•
•
•↑∆1

→
∆2

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

(10)

Definition 12 — An s-path π of the lattice p× q is a finite sequence π =
((ai, bi))0≤i≤d of elements of p× q satisfying (ai−1, bi−1) < (ai, bi) for every
1 ≤ i ≤ d with respect to the product order. The d-simplex σπ represented
by the path π is the convex hull of the points (ai, bi) in the prism ∆p,q. ♣

The simplices ∆p and ∆q have affine structures which define a product
affine structure on ∆p,q, and the notion of convex hull is well defined on
∆p,q.

“S-path” stands for “path representing a simplex”, more precisely a non-
degenerate simplex. Replacing the strict inequality between two successive
vertices by a non-strict inequality would lead to analogous representations
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for degenerate simplices, but such simplices are not to be considered in this
section.

This representation of a simplex as an s-path running in a lattice is the
key point to master the relatively complex structure of the canonical prism
triangulations.

Definition 13 — The last simplex λp,q of the prism ∆p,q is the (p + q)-
simplex defined by the path:

λp,q = ((0, 0), (1, 0), . . . , (p, 0), (p, 1), . . . , (p, q)). (11)
♣

The path runs some edges of ∆p × 0, visiting all the corresponding ver-
tices in the right order; next it runs some edges of p ×∆q, visiting all the
corresponding vertices also in the right order. Geometrically, the last sim-
plex is the convex hull of the visited vertices. The last simplex of the prism
P1,2 = ∆1 ×∆2 is shown in the figure below. The path generating the last
simplex is drawn in full lines, the other edges of this last simplex are dashed
lines, and the other edges of the prism are in dotted lines.

∆2

•

•
•

•

•
•

•

•
•

• ∆1

•

(12)

4.3 Subcomplexes.

Definition 14 — The hollowed prism H∆p,q ⊂ ∆p,q is the difference:

H∆p,q := ∆p,q − int(last simplex). (13)

The faces of the last simplex are retained, but the interior of this simplex
is removed.

Definition 15 — The boundary ∂∆p,q of the prism ∆p,q is defined by:

∂∆p,q := (∂∆p ×∆q) ∪ (∆p × ∂∆q) (14)

It is the geometrical Leibniz formula.
We will give a detailed description of the pair (H∆p,q, ∂∆p,q) as a col-

lapse, cf. Definition 3; it is a combinatorial version of the well-known topo-
logical contractibility of ∆p,q−{∗} on ∂∆p,q for every point ∗ of the interior
of the prism. A very simple admissible vector field will be given to homo-
logically annihilate the difference H∆p,q − ∂∆p,q. In fact, carefully ordering
the components of this vector field will give the desired collapse.
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4.4 Interior and exterior simplices of a prism.

Definition 16 — A simplex σ of the prism ∆p,q is said exterior if it is
included in the boundary of the prism: σ ⊂ ∂∆p,q. Otherwise the simplex
is said interior. We use the same terminology for the s-paths, implicitly
referring to the simplices coded by these paths. ♣

The barycenter of an exterior simplex of ∆p,q is in ∂∆p,q whereas the
barycenter of an interior simplex is not. The faces of an exterior simplex
are also exterior, but an interior simplex can have faces of both sorts.

Proposition 17 — An s-path π in p × q is interior if and only if the
projection-paths π1 on p and π2 on q run all the respective vertices of p
and q.

The first s-path π in the figure below represents a 1-simplex in ∂∆1,2,
it is exterior, for the point 1 is missing in the projection π2 on the second
factor 2. The second s-path π′ represents an interior 2-simplex of ∆1,2, for
both projections are surjective.

• •
• •
• •

π =

π = ∂1π
′ • •

• •
• •

π′ = (15)

In particular, if π = ((ai, bi))0≤i≤d is an interior simplex of ∆p,q, then
necessarily (a0, b0) = (0, 0) and (ad, bd) = (p, q): an s-path representing an
interior simplex of ∆p,q starts from (0, 0) and arrives at (p, q).
♣ If for example the first projection of π is not surjective, this means the
first projection of the generating path does not run all the vertices of ∆p,
and therefore is included in one of the faces ∂k∆

p of ∆p. This implies the
simplex σπ is included in ∂k∆

p ×∆q ⊂ ∂∆p,q. ♣
We so obtain a simple descrition of an interior simplex ((ai, bi))0≤i≤d:

it starts from (a0, b0) = (0, 0) and arrives at (ad, bd) = (p, q); furthermore,
for every 1 ≤ i ≤ d, the difference (ai, bi) − (ai−1, bi−1) is (0, 1) or (1, 0) or
(1, 1): both components of this difference are non-negative, and if one of
these components is ≥ 2, then the surjectivity property is not satisfied.
In a geometrical way, the only possible elementary steps for an s-path π
describing an interior simplex of ∆p,q are:

• •
• •

• •
• •

• •
• •

(16)

4.5 Faces of s-paths.

If π = ((ai, bi))0≤i≤d represents a d-simplex σπ of ∆p,q, the face ∂kσπ is
represented by the same s-path except the k-th component (ak, bk) which
is removed: we could say this point of p × q is skipped. For example in
Figure (15) above, ∂1π

′ = π. In particular a face of an interior simplex is
not necessarily interior.

12



Proposition 18 — Let π = ((ai, bi))0≤i≤d be an s-path representing an
interior d-simplex of ∆p,q. The faces ∂0π and ∂dπ are certainly not interior.
For 1 ≤ k ≤ d − 1, the face ∂kπ is interior if and only if the point (ak, bk)
is a right-angle or of the s-path π in the lattice p× q.

♣ Removing the vertex (a0, b0) = (0, 0) certainly makes non-surjective a
projection π1 or π2 (or both if (a1, b1) = (1, 1)). The same if the last point
(ad, bd) is removed.

If we examine now the case of ∂kπ for 1 ≤ k ≤ d − 1, nine possible
configurations for two consecutive elementary steps before and after the
vertex (ak, bk) to be removed:

• • •× • • •
• • •
× • •

• •
× • • •

• • •×

• • •
• • •
• • •
×

• •
• •
• •
×

• •
• •×

• •
• •
• •
×

•
•
•
×

(17)

In these figures, the intermediate point •× of the displayed part of the consid-
ered s-path is assumed to be the point (ak, bk) of the lattice, to be removed
to obtain the face ∂kπ. In the cases 1, 2, 4 and 5, skipping this point makes
non-surjective the first projection π1 on p ‘=’ ∆p. In the cases 5, 6, 8 and
9, the second projection π2 on q becomes non-surjective. There remain the
cases 3 and 7 where the announced right-angle bend is observed. ♣

5 Vector-Field Reduction Theorem.

A vector field defined on an algebraic cellular complex defines a reduction
of this chain complex onto the so-called critical chain compex.

Let C∗ = (Cn, dn, βn) be an ACC, and V = {(σi, τi)} be a vector field
defined on C∗. The source (resp. target) cells are the σi’s (resp. the τi’s).
A cell which is neither a source cell nor a target cell is called critical. The
critical chain complex K∗ = (Kn, ?, β

K
n )n is generated by the critical cells,

is provided in dimension n with the distinguished basis βKn made of the
ciritical cells of dimension n, but what about the desired differential?

Theorem 19 (Forman’s Theorems). Given the context of the paragraph
above, a canonical reduction is defined

(C∗, d, β∗) (K∗, dK , β
K
∗ )

f

g
hρ = (f, g, h) = (18)

where dK is a canonical differential for the critical chain complex.

The proof of Forman’s theorems, presented in a relatively different way,
is in the sections 6 to 8 of [8]. The article [22] gives a proof essentially
equivalent, but presented in the framework of homological reductions de-
duced from the fundamental Homological Perturbation Theorem. When we
later apply Forman’s theorems to the EZ theorem, we will have opportuni-
ties to detail the construction of the components f , g and h of the reduction
and also of the critical differential dK .
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6 From vector fields to collapses.

Let (X,A) be an elementary collapse, cf Definition 2. The difference X −A
is made of two non-degenerate simplices σ and τ , the first one being a face
of the second one with a unique face index. The pair (σ, τ) is nothing but
the unique vector of a vector field V , a vector field which, via Forman’s
Theorems 19, defines also the reduction C∗(X)⇒⇒ C∗(A).

Definition 20 — A simplicial pair (X,A) is an elementary filling if the
difference X−A is made of a unique non-degenerate simplex σ, all the faces
of which are therefore simplices of A. ♣

You might think ∂σ is the initial state of a decayed tooth in the body A,
to be restored by adding int(σ), obtaining X.

Definition 21 — Let (X,A) be a simplicial pair. A description by a filling
sequence of this pair, more precisely of the difference X −A, is an ordering
(σi)0<i≤r of the non-degenerate simplices of X − A satisfying the following
condition: if Ai = A∪ (∪ij=1σj), then every pair (Ai, Ai−1) is an elementary
filling. ♣

Every pair (X,A) with a finite number of non-degenerate simplices in
X − A can be described by a filling sequence: order the missing simplices
according to their dimension. In particular, adding an extra vertex is a
particular filling.

It is convenient to describe the general collapses, see Definition 3, by
special filling sequences.

Proposition 22 — Let (X,A) be a simplicial pair. This pair is a collapse
if and only if it admits a description by a filling sequence F = (σi)0<i≤2r

satisfying the extra condition: for every even index 2i, the simplex σ2i−1 is
a face of σ2i with a unique face index.

♣ Such a description is nothing but the vector field V = {(σ2i−1, σ2i)0<i≤r}
with an extra information: the vectors are ordered in such a way they justify
also the collapse property. Such a vector field is necessarily admissible: all
the V -paths go to A and cannot loop. ♣

This extra information given by the order on the elements of the vec-
tor field is an avatar of the traditional difference between homotopy and
homology.

7 The theorem of the hollowed prism.

Theorem 23 — The pair: (H∆p,q, ∂∆p,q) is a collapse.

The hollowed prism can be collapsed onto the boundary of the same
prism.
♣ The proof is recursive with respect to the pair (p, q).

We start from p = 0 and q = 0. If p = 0, the boundary of ∆0 = ∗ is
void, so that the boundary of ∆0,q ∼= ∆q is simply ∂∆q; the last simplex

14



in this case is the unique q-simplex, the hollowed prism H∆0,q is also ∂∆q:
the desired collapse is trivial, the corresponding vector field is empty. The
same if q = 0 for the pair (H∆p,0, ∂∆p,0).

We recall the difference H∆p,q−∂∆p,q is made of all the interior simplices
of ∆p,q, except the last simplex. More precisely we speak of the difference
between the respective collection of simplices.

We prove the general case (p, q) with p, q > 0, assuming the proofs of
the cases (p − 1, q − 1), (p, q − 1) and (p − 1, q) are available, cases respec-
tively concerning ∆p−1,q−1, ∆p,q−1 and ∆p−1,q. We think of these prisms as
simplicial subsets of ∆p,q as follows:

∆p−1,q−1 ∼= ∂0∆p × ∂0∆q

∆p,q−1 ∼= ∆p × ∂0∆q

∆p−1,q ∼= ∂0∆p ×∆q

(19)

The corresponding lattices p− 1 × q − 1, p × q − 1 and p− 1 × q are
accordingly to be considered respectively as top righthand, top or righthand
sublattices of p× q.

Three justifying filling sequences are available; it is more convenient to
see the sequences of simplices as sequences of s-paths:

• F 1 = (π1
i )0<i≤2r1 for ∆p−1,q−1 = ∂0∆p × ∂0∆q.

• F 2 = (π2
i )0<i≤2r2 for ∆p,q−1 = ∆p × ∂0∆q.

• F 3 = (π3
i )0<i≤2r3 for ∆p−1,q = ∂0∆p ×∆q.

A simplex of each filling sequence must be interior in the corresponding
∆∗,∗. Therefore, all the components of these filling sequences are s-paths
starting from (1, 1) (resp. (0, 1), (1, 0)), going to (p, q).

These filling sequences are made of all the interior non-degenerate s-
paths (simplices) of the difference H∆∗,∗ − ∂∆∗,∗, except the last simplex,
ordered in such a way every face of an s-path is either interior and present
beforehand in the list, or exterior; furthermore, for the s-paths of even index,
the previous one is one of its faces. Using these sequences, we must construct
an analogous sequence for the bidimension (p, q).

The process goes as follows. Every s-path of F 1, F 2 or F 3 will be
completed to become an element of the filling sequence F to be constructed.
This completion process is simple. We will then see two interior simplices of
∆p,q are missing and must be added. Ordering all the s-paths so obtained
gives the solution.

Every s-path πji of dimension d can be completed into an interior s-path

πji of dimension d+ 1 in p× q in a unique way, adding a first diagonal step
((0, 0), (1, 1)) if j = 1, or a first vertical step ((0, 0), (0, 1)) if j = 2, or a first
horizontal step ((0, 0), (1, 0)) if j = 3. Conversely, every interior s-path of
∆p,q can be obtained from an interior s-path of ∆p−1,q−1, ∆p,q−1 or ∆p−1,q

in a unique way by this completion process.
For example, in the next figure, we illustrate how an s-path π1

i of 3× 2
can be completed into an s-path π1

i of 4× 3:

• • • • •
• • • • •
• • • • •
• • • • •

π1
i =

• • • • •
• • • • •
• • • • •
• • • • •

π1
i = (20)
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Adding such a first diagonal step to an element of F 1 does not add any
right-angle bend in the s-path, so that the assumed incidence properties
of the initial sequence F 1 = (π1

1, . . . , π
1
2r1

) are preserved in the completed

sequence F
1

= (π1
1, . . . , π

1
2r1

): the faces of each s-path are already present in
the sequence or are exterior; in the even case π1

2i ∈ F 1, the previous s-path
π1

2i−1 is a face of π1
2i and hence π1

2i−1 is a face of π1
2i. For example in the

illustration above, if i is even, certainly ∂1π
1
i = π1

i−1 (for this face is the only
interior face) and this implies also ∂2π

1
i = π1

i−1.
On the contrary, in the case j = 2, the completion process can add one

right-angle bend, nomore. For example, in this illustration:

• • • • •
• • • • •
• • • • •
• • • • •

π2
i =

• • • • •
• • • • •
• • • • •
• • • • •

π2
i =

• • • • •
• • • • •
• • • • •
• • • • •

∂1π
2
i =

(21)
If the index i is even, then ∂2π

2
i = π2

i−1 and the relation ∂3π
2
i = π2

i−1 is
satisfied as well. But another face of π2

i is interior, namely ∂1π
2
i , generated

by the new right-angle bend; because of the diagonal nature of the first step

of this face, this face is present in the list F
1
, see the previous illustration.

Which is explained about F
2

with respect to F
1

is valid as well for F
3

with respect to F
1
.

The so-called last simplices, see Definition 13, must not be forgotten!
The last simplex λp−1,q−1 (resp. λp,q−1) is not in the list F 1 (resp. F 2):
these lists describe the contractions of the hollowed prisms over the corre-
sponding boundaries: all the interior simplices are in these lists except the
last ones. The figure below gives these simplices in the case (p, q) = (4, 3):

• • • • •
• • • • •
• • • • •
• • • • •

λ3,2 =
• • • • •
• • • • •
• • • • •
• • • • •

λ4,2 = (22)

Examining now the respective completed paths:

• • • • •
• • • • •
• • • • •
• • • • •

λ3,2 =
• • • • •
• • • • •
• • • • •
• • • • •

λ4,2 = (23)

shows that ∂1λp,q−1 = λp−1,q−1; also the faces ∂pλp−1,q−1 and ∂p+1λp,q−1 are

respectively in F
1

and F
2
.

Finally the completion of λp−1,q is λp,q, respectively absent in F 3 and in
the list to be constructed.

Putting together all these facts leads to the conclusion: If F 1, F 2 and
F 3 are respective filling sequences for (H∆(∗,∗) − ∂∆(∗,∗)), with (∗, ∗) =
(p − 1, q − 1), (p, q − 1) and (p − 1, q) then the following list is a filling
sequence proving the desired collapse property for the indices (p, q):

F
1 || F 2 || (λp−1,q−1, λp−1,q) || F

3
(24)

where ‘||’ is the list concatenation. Fortunately, the last simplex λp,q =
λp−1,q is the only interior simplex of ∆p,q missing in this list. ♣

In [15] one can find some examples of the results of the algorithm for the
small dimensions (p, q) ≤ (2, 2), with indices reversed.
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8 If homology is enough.

The proposed proof of Theorem 23 is elementary but a little technical. If you
are only interested by the homological version of the same result, precisely if
you intend to prove the pair (H∆p,q, ∂∆p,q) does not have any homology, it
is sufficient to prove the difference chain complex C∗(H∆p,q)/C∗(∂∆p,q) is
acyclic. An opportunity to understand how a vector field can be sometimes
the right tool, the one used here being close to the vector field which will
be used for the EZ theorem.

Definition 24 — Let σ be an interior simplex of ∆p,q, represented by an
s-path denoted by π. Then the status of σ (or π), source or target or critical,
is defined as follows. You run the examined path π from (p, q) backward to
(0, 0) in the lattice p× q and you are interested by the first “event”:

1. Either you run a diagonal elementary step , in which case the
path π is a source s-path;

2. Or you pass a bend (not a bend ) in which case the path π is a
target s-path.

3. Otherwise it is a critical s-path and only one interior s-path has this
status, it is the s-path corresponding to the last simplex of ∆p,q. ♣

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

π1 = ∈ S
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

π2 = ∈ T
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

π3 = ∈ C

(25)
The figure above displays one example in either case when p = q = 3; the
set S (resp. T , C) is the set of the source (resp. target, critical) cells. The
deciding “event” is signalled by dotted lines. Observe ∂3π2 = π1. More
generally it is clear the operator assigning to every path of T the face in S
corresponding to the bend is a bijection organizing all these paths by pairs
defining a discrete vector field, a good candidate to construct an interesting
reduction: the unique path without any event fortunately is the last simplex!

Proposition 25 — The relative chain complex C∗(H∆p,q, ∂∆p,q) admits a
reduction to the null complex.

♣ This relative chain complex is generated by all the interior simplices σ of
∆p,q except the last one. Representing such a simplex σ by the corresponding
s-path π allows us to divide all these simplices into two disjoint sets S
(source) and T (target).

There remains to prove this vector field is admissible. It is a consequence
of the organization of this vector field as a filling sequence given in Section 7,
but it is possible to prove it directly and simply.

The example of the vector (π1, π2) above is enough to understand. We
have to consider the faces of π2 which are sources, in other words which are
in S, therefore in particular interior, and different from π1. In general at
most two faces satisfy these requirements, here these faces π4 = ∂2π2 and
π5 = ∂5π2:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

π4 = ∂2π2 = ∈ S
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

π5 = ∂5π2 = ∈ S (26)
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This gives a Lyapunov function, see Definition 11. If π ∈ S, decide L(π)
is the number of points of the (p, q)-lattice strictly above the path. Observe
L(π1) = 5 while L(π3) = L(π4) = 4. A reader having reached this point of
the text will probably prefer to play in ending the proof by himself. ♣

9 The Eilenberg-Zilber reduction.

9.1 The (p,q) Eilenberg-Zilber reduction.

Proposition 25 can be arranged to produce a sort of top-dimensional
Eilenberg-Zilber reduction for the prism ∆p,q.

Proposition 26 — The discrete vector field used in Proposition 25 in-
duces a reduction C∗(∆

p,q)⇒⇒ Cc∗(∆
p,q) where in particular the chain group

Cp+q(∆
p,q) of rank

(
p+q
p , q

)
is replaced by a critical chain group with a unique

generator, the so-called last simplex λp,q.

♣ This vector field makes sense as well in this context as in Proposition 25
and the admissibility property remains valid. A reduction is therefore gener-
ated, where in dimension (p+ q) the only critical simplex is the last simplex
λp,q. ♣

9.2 Products of simplicial sets.

Let us recall the product X × Y of two simplicial sets X and Y is very sim-
ply defined. These simplicial sets X and Y are nothing but contravariant
functors ∆→ Sets, and the simplicial set X × Y is the product functor. In
particular (X × Y )p = Xp × Yp and if α : p → q is a ∆-morphism, then
α∗X×Y = α∗X × α∗Y : (X × Y )q → (X × Y )p. It is not obvious when seeing
this definition for the first time this actually corresponds to the standard
notion of topological product but, except in esoteric cases when simplex sets
are not countable, the topological realization of the product is homeomor-
phic to the product of realizations. In these exceptional cases, the result
remains true under the condition of working in the category of compactly
generated spaces [24].

The Eilenberg-Zilber lemma gives for every simplex a canonical expres-
sion from a unique non-degenerate simplex.

Theorem 27 (Eilenberg-Zilber lemma) — Let σ be a p-simplex of a
simplicial set X. Then there exists a unique triple (q, η, τ), the Eilenberg
triple of σ, satisfying:

1. 0 ≤ q ≤ p.

2. η : p→ q is a surjective ∆-morphism.

3. τ ∈ Xq is non-degenerate and η∗τ = σ.

♣ [6, (8.3)] ♣
A p-simplex of the product X × Y is therefore a pair ρ = (σ, τ) of

p-simplices of X and Y , and it is important to understand when this
simplex is degenerate or not. Taking account of the Eilenberg-Zilber
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Lemma 27, we prefer to express both components of this pair as the
degeneracy of some non-degenerate simplex, which produces the expres-
sion (ηis−1 · · · ηi0σ′, ηjt−1 · · · ηj0τ ′) for our p-simplex ρ, where σ′ (resp. τ ′)
is a non-degenerate (p − s)-simplex of X (resp. (p − t)-simplex of Y );
also the sequences i∗ and j∗ must be strictly increasing3 with respect to
their indices. Then the algebra of the elementary degeneracies ηi shows
the simplex ρ = (σ, τ) is non-degenerate if and only if the intersection
{is−1, . . . , i0} ∩ {jt−1, . . . , j0} is empty.

The next definition is a division of all the non-degenerate simplices of
the product Z = X×Y into three parts: the target simplices Zt∗, the source
simplices Zs∗ and the critical simplices Zc∗. This division corresponds to a
discrete vector field V , the natural extension to the whole product Z = X×Y
of the vector field constructed in Sections 7 and 8 for the top bidimension
(p, q) of the prism ∆p,q.

We must translate the definition of the vector field V in Section 8 into the
language of non-degenerate product simplices expressed as pairs of possible
degeneracies. To prepare the reader at this translation, let us explain the
recipe which translates an s-path into such a pair. Let us consider this
s-path:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

(27)

This s-path represents an interior 5-simplex of ∆3,3 to be expressed in
terms of the maximal simplices σ, τ ∈ ∆3

3. Run this s-path from (0, 0) to
(3, 3); every vertical elementary step, for example from (1, 0) to (1, 1) pro-
duces a degeneracy in the first factor, the index being the time when this
vertical step is started, here 1. Another vertical step starts from (2, 2) at
time 3, so that the first factor will be η3η1σ. In the same way, examining
the horizontal steps produces the second factor η4η0τ . Finally our s-path
codes the simplex (η3η1σ, η4η0τ). The index 2 is missing in the degenera-
cies, meaning that at time 2 the corresponding step is diagonal: the lists
of degeneracy indices are directly connected to the structure of the corre-
sponding s-path. We will say the degeneracy configuration of this simplex
is ((3, 1), (4, 0)); a degeneracy configuration is a pair of disjoint decreasing
integer lists.

Conversely, reading the indices of the degeneracy operators in the canon-
ical writing ρ = (ηis−1 · · · ηi0σ, ηjt−1 · · · ηj0τ) of a simplex ρ of X ×Y unam-
biguously describes the corresponding s-path.

This process settles a canonical bijection between Sp,q and Dp,q if:

1. The set Sp,q is the collection of all the interior s-paths running from
(0, 0) to (p, q) in the (p, q)-lattice.

2. The set Dp,q is the collection of all the configurations of degener-
acy operators which can be used when writing a non-degenerate sim-
plex in its canonical form ρ = (ηis−1 · · · ηi0σ, ηjt−1 · · · ηj0τ), when
σ ∈ Xp and τ ∈ Yq. A configuration is a pair of integer lists
((is−1, . . . , i0), (jt−1, . . . , j0)) satisfying the various coherence condi-
tions explained before: p + s = q + t, every component i− and j−

3Taking account of the reverse numbering of the indice!
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is in [0 . . . (p + q − 1)], both lists are disjoint, and their elements are
increasing with respect to their respective indices.

9.3 The Eilenberg-Zilber vector field.

Definition 28 — Let ρ = (ηis−1 · · · ηi0σ, ηjt−1 · · · ηj0τ) be a non-degenerate
p-simplex of X × Y written in the canonical form. The degeneracy config-
uration ((is−1, . . . , i0), (jt−1, . . . , j0)) is a well-defined element of Dp−s,p−t
which in turn defines an s-path π(ρ) ∈ Sp−s,p−t. Then ρ is a target (resp.
source, critical) simplex if and only if the s-path π(ρ) has the corresponding
property. ♣

Definition 29 — If ρ = (ηis−1 · · · ηi0σ, ηjt−1 · · · ηj0τ) is a p-simplex of X ×
Y as in the previous definition, the pair (p−s, p−t) is called the bidimension
of ρ. It is the bidimension of the smallest prism of X × Y containing this
simplex. ♣

For example the diagonal of the square ∆1,1 has the bidimension (1, 1).
The sum of the components of the bidimension can be bigger than the
dimension.

Definition 30 — Let X × Y be the product of two simplicial sets. The
division of the non-degenerate simplices of X×Y according to Definition 28
into target simplices, source simplices and critical simplices, combined with
the pairing described in the proof of Proposition 25, defines the Eilenberg-
Zilber vector field VX×Y of X × Y . ♣

Theorem 31 (Eilenberg-Zilber Theorem) — Let X×Y be the product
of two simplicial sets. The Eilenberg-Zilber vector field VX×Y induces the
Eilenberg-Zilber reduction:

EZ : C∗(X × Y )⇒⇒ C∗(X)⊗ C∗(Y ). (28)

The reader may wonder why all these technicalities to reprove a well-
known sixty-five years old theorem. Two totally different reasons.

On the one hand, the Eilenberg-Zilber reduction is time consuming when
concretely programmed. In particular, profiler examinations of the effective
homology programs show the terrible homotopy component h : C∗(X×Y )→
C∗(X × Y ) of the Eilenberg-Zilber reduction, rarely seriously considered4,
is the kernel program unit the most used in concrete computations. Our
description of the Eilenberg-Zilber reduction makes the corresponding pro-
gram unit simpler and more efficient.

On the other hand, maybe more important, the same (!) vector field can
be used to process in the same way the twisted products, leading to totally

4With two notable exceptions. In the landmark papers by Eilenberg and. . . MacLane [3, 4],
more useful than the standard reference [7], a nice recursive description of this homotopy op-
erator is given. Forty years later (!), when a computer program was at last available to make
experiments, Julio Rubio found a closed formula for this operator, proved by Frédéric Morace
a little later [12]. We reprove this formula and others in the next section, by a totally elemen-
tary process depending only on our vector field, independent of Eilenberg-MacLane’s and Shih’s
recursive formulas, reproved as well.
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elementary effective versions of the Serre and Eilenberg-Moore spectral se-
quences. Tempting to hope a similar result for the Bousfield-Kan spectral
sequence.
♣ The vector field VX×Y has a layer for every bidimension (p, q). The
admissibility proof given in Proposision 25 shows that every V-path starting
from a source simplex of bidimension (p, q) goes after a finite number of steps
to sub-layers. The Eilenberg-Zilber vector field is admissible.

If σ (resp. τ) is a non-degenerate p-simplex of X (resp. q-simplex of Y ),
we can denote by σ × τ the corresponding (generalized) prism in X × Y ,
made of all the simplices of bidimension (p, q) with respect to σ and τ .
The collection of the interior simplices of this prism σ × τ is nothing but
an exact copy of the collection of the interior simplices of the standard
prism ∆p,q. In particular only one interior critical cell in every prism. You
are attending the birth of the tensor product C∗(X) ⊗ C∗(Y ): exactly one
generator σ⊗ τ for every prism σ× τ , namely the last simplex of this prism:
σ ⊗ τ “=” λp,q(σ × τ).

There remains to prove the small chain complex so obtained is not only
the right graded module C∗(X) ⊗ C∗(Y ), but is endowed by the reduction
process with the right differential. This is a corollary of the next section,
devoted to a detailed study of the Eilenberg-Zilber vector field. ♣

10 Vector Fields and the Homomological

Perturbation Theorem.

This section is devoted to necessary explanations about the proof of For-
man’s theorems based upon the Homological Perturbation Theorem (HPT).
First we recall the statement of the last one and a few details about the re-
sulting formulae.

The data of the HPT are as follows. An initial (homological) reduction
is given:

(Ĉ∗, d̂) (C∗, d)
f

g
hρ = (f, g, h) = (29)

A “big” (resp. “small”) chain complex Ĉ∗ (resp. C∗) is given. Both chain
complexes are connected by a reduction ρ = (f, g, h). This means f and g
are chain complex morphisms, the composition fg is the identity and the
composition gf is homotopic to the identity via the homotopy operator h:
id
Ĉ∗
−gf = d̂h+ hd̂ if d̂ is the differential of Ĉ∗.

Next, we introduce a perturbation δ̂ of d̂, that is, we replace the differ-
ential d̂ of Ĉ∗ by the new differential d̂+ δ̂, needing of course (d̂+ δ̂)2 = 0.
In general, the reduction ρ is no longer valid, in particular f and g do not
remain chain complex morphisms. Notice the composition δ̂h has degree 0.

Theorem 32 (HPT). — If the composition δ̂h is pointwise nilpotent, that
is, for every x ∈ Ĉ∗ there exists an integer νx satisfying (hδ̂)νx(x) = 0, then
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a new reduction ρ′ is canonically defined:

(Ĉ∗, d̂+ δ̂) (C∗, d+ δ)
f ′

g′

h′ρ′ = (f ′, g′, h′) = (30)

In particular, it is necessary in general to perturb also the differential d
of the small complex, becoming d+ δ.

The history of this result is detailed in [22], which also proposes which
seems to be the right proof. In particular the following explicit formulae are
valid for h′, g′and f ′:

h′ =
∞∑
i=0

(−1)ih(δ̂h)i = h− hδ̂h+ hδ̂hδ̂h− · · · (31)

g′ =
( ∞∑
i=0

(−1)i(hδ̂)i
)
g = g − hδ̂g + hδ̂hδ̂g − · · · (32)

f ′ = f
( ∞∑
i=0

(−1)i(δ̂h)i
)

= f − f δ̂h+ f δ̂hδ̂h− · · · (33)

δ = f δ̂g − f δ̂hδ̂g + f δ̂hδ̂hδ̂g − · · · (34)

A lovely application of the HPT is a new orgnization of the proof of
Forman’s theorems.

Let (C∗, d, β∗) be an algebraic cellular complex, provided with a discrete
vector field V = {(σi, τi)}i. The σi’s (resp. τi)’s are the source (resp. target)
cells. The remaining cells, neither source nor target, are the critical cells.
Let K∗ be the graded Z-module generated by the critical cells, and βK∗ the
corresponding distinguished basis, made of the critical cells. Forman’s the-
orems claim, if the vector field V is admissible, the existence of a canonical
reduction:

(C∗, d, β∗) (K∗, dK , β
K
∗ )

f

g
hρ = (f, g, h) = (35)

for an appropriate differential dk on K∗. Let us sketch the simple proof of
this reduction based on the HPT.

Definition 33 — Let V = {(σi, τi)}i be a vector field on the cellular chain
complex C∗. Then the differential dV : C∗ → C∗−1 (resp. the codifferential
d′V : C∗ → C∗+1) is defined as follows: if τi is the target cell of the vector
(σi, τi), then dV τi = ε(σi, τi)σi (resp. d′V τi = 0); if σi is the source cell of
the vector (σi, τi), then d′V σi = ε(σi, τi)τi (resp. dV τi = 0); finally, if χ is a
critical cell, then dV χ = d′V χ = 0. ♣

The number ε(σi, τi) = ±1 is the incidence number between σi and τi,
it is the coefficient of σi in the boundary dτi. The properties of the vector
field V ensure dV (resp. d′V ) really is a differential (resp. codifferential).

The graded module (not the chain complex) C∗ is decomposed as a direct
sum C∗ = T∗ ⊕ S∗ ⊕K∗ of three graded modules respectively generated by
the target cells, the source cells and the critical cells.
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Our ACC (C∗, d, β∗) is provided with an initial differential d. The vector
field V allows us to temporarily replace the differential d by dV and to start
with (C∗, dV , β∗). For the last one, a reduction is easily defined:

(C∗, dV ) (K∗, 0)
f

g
hρ = (f, g, h) = (36)

with fσ = σ if σ is critical, 0 otherwise; gσ = σ, necessarily critical, and
finally h = d′V . The map f is the canonical projection pr3 of the direct
sum over the third component K∗, while g is the canonical injection of K∗
into C∗. Checking the various properties of a reduction is direct. But it
is not the right differential of C∗. This leads to consider the perturbation
δ̂ = d− dV . We could apply the HPT if the nilpotency condition about δ̂h
is satisfied. It happens this is satisfied if and only if the vector field V is
admissible, it is in fact the reason of the definition of admissibility. If so, the
HPT can be applied, producing at once Forman’s theorems, with explicit
convenient formulas for the Forman reduction. Details in [22].

The formula 31 implies a convenient recursive formula for the new ho-
motopy h′:

h′ = h− hδ̂h+ hδ̂hδ̂h− · · ·

= h− (h− hδ̂h+ hδ̂hδ̂h− · · · )δ̂h

= h− h′δ̂h

(37)

If x ∈ Ĉ∗, then (δ̂h)ν(x) = 0 for some integer ν, and δ̂h(x) has a nilpo-
tency degree one less than x. The recursiveness starts when δ̂h(x) = 0. In
particular h′(x) = 0 when h(x) = 0.

We translate these results in the framework of our vector field V applied
to the ACC C∗. Then h, the initial homotopy, becomes d′V , the perturba-

tion δ̂ becomes δ̂ = d− dV , and the final homotopy h′ becomes the Forman
homotopy h. We obtain:

h(x) = d′V (x)− h(d− dV )d′V (x)

= d′V (x)− h(dd′V (x)− dV d′V (x))
(38)

If x is a critical cell χ or a target cell τ , then h(x) = 0. If x is a source
cell σ, then dV d

′
V (σ) = σ, giving in this case the key formula:

h(σ) = d′V (σ)− h(dd′V (σ)− σ) (39)

easy to understand as a simple recipe: the homotopy of the source cell σ is
the corresponding target cell τ , corrected by the homotopy applied to all the
source cells of dτ except σ itself. The game consists simply in considering
all the paths starting from σ, possible only if there are a finite number of
such paths, all of finite length.

Analogous calculations using the formulae 32, 33 and 34 give the follow-
ing expressions for the f , g and dK components of the Forman reduction:

g = id−hd (40)

f = pr3(id−dh) (41)

dK = pr3(d− dhd) (42)
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You must in particular use that δ̂ = d − dV and that dV goes from T∗
to S∗

We have now the good tool to study the naturality of Forman’s theorems
in general, the naturality of “our” EZ theorem in particular.

11 Naturality of the Eilenberg-Zilber re-

duction.

We consider here four simplicial sets X, X ′, Y and Y ′ and two simplicial
morphisms ϕ : X → Y and ϕ′ : X ′ → Y ′. These morphisms induce a
simplicial morphism ϕ× ϕ′ : X ×X ′ → Y × Y ′. Also the products X ×X ′
and Y × Y ′ carry their respective Eilenberg-Zilber vector fields V and W .

Theorem 34 — With these data, the morphisms ϕ and ϕ′ induce a natural
morphism between both Eilenberg-Zilber reductions:

ϕ× ϕ′ : [ρ = (f, g, h) : C∗(X ×X ′)⇒⇒ C∗(X)⊗ C∗(X ′)] −→ (43)

[ρ′ = (f ′, g′, h′) : C∗(Y × Y ′)⇒⇒ C∗(Y )⊗ C∗(Y ′)]

Let us recall all the chain complexes are normalized. At this time of the
process, we do not have much information for the small chain complexes: we
know the underlying graded modules are (isomorphic to) those of C∗(X)⊗
C∗(Y ) and C∗(X

′)⊗ C∗(Y ′), but we do not yet know their differentials.
It is. . . natural to ask for such a result, but another goal is looked for.

As it is common in a simplicial environment, once such a naturality result
is available, it is often enough to prove some desired result in the particular
case of an appropriate model, maybe a prism ∆p,q, and then to use an
obvious simplicial morphism to transfer this result to an arbitrary product
and obtain the general result. In fact, this method will also be an essential
ingredient of the proof.

The statement of Theorem 34 is. . . natural, but the proof is more difficult
than we could expect. The morphism ϕ × ψ can be not at all compatible
with the respective Eilenberg-Zilber vector fields of X × Y and X ′ × Y ′,
which generates essential obstacles. Consider for example the morphisms
ϕ = id : ∆2 → ∆2 and ψ : ∆2 → ∆1 defined by ψ(012) = (011); the map
ψ is nothing but the map ψ = η1 : ∆2 → ∆1 canonically associated to the
∆-map η1 : [0 . . . 2]→ [0 . . . 1], see Figure (44).

•

•

•

•

•

0

1

2

0

1

(44)

Then the simplicial morphism ϕ × ψ sends the “diagonal” 2-simplex σ of
∆2,2 = ∆2 ×∆2 to some 2-simplex of ∆2,1 as displayed in the next figure,
where a simplex is represented by an s-path.

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•

ϕ× ψ
(45)
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Both simplices are source cells, but for “reasons” which do no match. The
lefthand cell is source because of the diagonal component (1, 1)−(2, 2) of
the s-path, which component is sent by ϕ× ψ to the horizontal component
(1, 1)− (2, 1). While the righthand cell is source because of the diagonal
component (0, 0)−(1, 1). The corresponding target cells are below:

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•

ϕ× ψ
(46)

and they do not match by ϕ×ψ: the image by ϕ×ψ of the lefthand target
cell is in fact degenerate.

It can also happen the image of a source cell is critical:

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•

ϕ× ψ
(47)

or target:

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•

ϕ× ψ
(48)

In other words the tempting relation (ϕ × ψ)V (σ) = V (ϕ × ψ)(σ) in
general is false, or even does not make sense. It is then clear the “natural”
Theorem 34 requires a “real” proof. It depends on a very general result, the
statement of which is rather amazing.

Definition 35 — A cellular morphism ϕ : A∗ → B∗ between two cellular
(chain) complexes A∗ and B∗ is a chain complex morphism which maps
every cell of A∗ to zero or to a cell of B∗. ♣

Definition 36 — A vectorious cellular complex is a pair (A∗, V ) where
A∗ is a cellular complex A∗ provided with an admissible discrete vector
field V . ♣

Definition 37 — Let ϕ : (A∗, V ) → (B∗,W ) be a cellular morphism be-
tween the vectorious cellular complexes (A∗, V ) and (B∗,W ). The mor-
phism ϕ is an admissible morphism if the following conditions are satisfied:

• The morphism ϕ maps every critical cell of V to 0 or to a critical cell
of W .

• The morphism ϕ maps every target cell of V to 0 or to a target cell
of W . ♣

In particular, no condition is required for a source cell of V !

Theorem 38 — Let ϕ : (A∗, V ) → (B∗,W ) be an admissible morphism
between the vectorious cellular complexes (A∗, V ) → (B∗,W ). Then the
morphism ϕ induces a natural morphism between the reductions ρ : A∗ ⇒
⇒ Ac∗ and ρ′ : B∗ ⇒⇒ Bc

∗ where Ac∗ and Bc
∗ are the corresponding critical

complexes.
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♣[38] Let h : A∗ → A∗ and h′ : B∗ → B∗ be the respective homotopies
of ρ and ρ′. We must in particular prove ϕh = h′ϕ. We use the recursive
construction of h given by the formula (39).

The relation ϕh(x) = h′ϕ(x) is obvious if x is a critical or target cell:
the morphism ϕ is admissible and maps such a cell to a cell of the same
sort, or to 0; in any case, both members are null. There remains to prove
ϕh = h′ϕ for a source cell σ.

The formula (39) for a source cell:

h(σ) = d′V (σ)− h(dd′V (σ)− σ) (49)

allows us to recursively assume ϕh(dd′V (σ) − σ) = h′ϕ(dd′V (σ) − σ): every
source cell has a “level” λ(σ), namely the maximal length of a path starting
from σ, but every term of (dd′V (σ) − σ) is made of critical cells, or target
cells, or source cells of level < λ(σ), at least one of them being λ(σ)− 1.

Now we may compute:

ϕh(σ) = ϕd′V (σ)− ϕh(dd′V (σ)− σ)

= ϕd′V (σ)− h′ϕ(dd′V (σ)− σ)

= ϕd′V (σ)− h′d′ϕd′V (σ) + h′ϕ(σ)

= (1− h′d′)ϕd′V (σ) + h′ϕ(σ)

= d′h′ϕd′V (σ) + h′ϕ(σ)

= h′ϕ(σ)

(50)

for ϕd′V (σ) is null or is a target cell.
We have the formula g = id−hd for the injection of the critical complex

Ac∗ in the whole complex A∗ and the same for Bc
∗ and B∗. Therefore: ϕg =

ϕ(id−hd) = (id−h′d′)ϕ = g′ϕ and the morphism ϕ is also compatible with
the injections g and g′ of ρ and ρ′.

There remains to obtain ϕf = f ′ϕ for the respective projections of A∗
and B∗ over the critical complexes Ac∗ and Bc

∗. The map g′ is injective

and the desired relation is equivalent to g′ϕf(= ϕgf)
?
= g′f ′ϕ. But gf =

1− dh−hd, the same for g′f ′ and the relation is a consequence of ϕd = d′ϕ
and ϕh = h′ϕ. ♣[38]

♣[34] Let us prove now Theorem 34. We may work simplex by simplex,
more precisely prism by prism; if σ ∈ X (resp. σ′ ∈ X ′) is a non-degenerate
simplex, then the prism σ × σ′ ∈ X ×X ′ is mapped inside a prism τ × τ ′ ∈
Y × Y ′ depending on the image simplices ϕ(σ) and ϕ′(σ′).

A map ϕ : σ → τ between simplices is a composition of face and degen-
eracy operators. So that it is enough to consider the case with only a face
operator, or only a degeneracy operator. A face operator is injective and
the result is then obvious.

There remains to consider for example the case X = Y = ∆p, X ′ = ∆q,
Y ′ = ∆q−1, ϕ = id∆p and ϕ′ is the degeneracy ηi : ∆q → ∆q−1 for some
0 ≤ i < q which maps the vertex #j to itself if j ≤ i and to the vertex
#(j − 1) if j > i. The hoped-for result is then not at all obvious.

The technology of s-paths explained at Section 4.2 leads to understand
a simplex of ∆p × ∆q as an oriented path in the lattice [0 . . . p] × [0 . . . q].
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For example, the s-path:

•
•
•
•

•
•
•
•

•
•
•
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•
•
•
•

•
•
•
•

(51)

represents the 6-simplex spanned by the vertices (0, 0), (1, 1), (2, 1), (3, 1),
(3, 2), (4, 2) and (4, 3) in the prism ∆4 × ∆3. We refer the reader to Def-
inition 24 for the process dividing these simplices in source, target and
critical simplices. A map id×ηi is the identity for the vertices (j, k) satis-
fying k ≤ i and maps (j, k) to (j, k − 1) for k > i. For example the map
id×η1 : ∆4 ×∆3 → ∆4 ×∆2 could be represented as follows:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

id×η1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

(52)

We let the reader check himself the image of a critical cell is critical or
degenerate, therefore in this case null in the normalized chain complex. The
same for a target cell: essentially a morphism id×ηi cannot destroy the
bend characterizing a target cell without mapping it to a degenerate cell,
cancelled in the normalized cell complex. And fortunately, thanks to the
strange definition of admissible morphism, Definition 37, we do not have to
study the case of the source cells, totally anarchic, see the comments after
the statement of Theorem 34. ♣[34]

12 Two Eilenberg-Zilber reductions.

12.1 Introduction.

Our EZ environment has now two methodologies: the classical one and the
present one. The classical one is most often based on acyclic models, the AW
and EML formulas being rarely given with proofs; a noticeable exception is
the landmark paper [4] with a level of details that can be compared with
the next sections of the present paper.

Our own methodology is based on the discrete vector fields, designed
by Robin Forman about 45 years after [4]. We will see that proving both
methods produce the same results, in particular the same formulas, is quite
technical. A tired reader may ask why so much work to produce the same
result.

On the one hand, once our EZ DVF is defined, this DVF is too natural,
too amusing also, to allow us not to study the exact connection with [7, 4].
There is another argument. The “distance” between both methods is a
striking measure of the difference between the RM formula, really complex,
and the EZ DVF: our vector field is nothing but a process which “magically”
avoids the countless degenerate terms of the RM formula, as soon as a
factor of the studied product has degenerate faces. The reader will see
the RM formula has rich cancellation properties, so far never considered,
cancellation properties that are automatically and efficiently processed by
our vector field. This explains the enormous difference of efficiency between
the previous version of our program of constructive algebraic topology and
the last one. See [14] for a report in a computer science meeting.
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Let X and Y be two simplicial sets. We have now in our toolbox two
reductions EZ1 = (f1, g1, h1) : C∗(X × Y ) ⇒⇒ C∗(X) ⊗ C∗(Y ) and EZ2 =
(f2, g2, h2) : C∗(X × Y ) ⇒⇒ C∗(X) ⊗ C∗(Y ). The first one was determined
by Eilenberg and MacLane in [3, 4], the second one is obtained from our
“Eilenberg-Zilber” vector field, see Definition 30 and Theorem 31. In fact
both reductions are the same, it is the goal of this section.

Both reductions have quite different definitions and a real task is in front
of us. The structure of the proof is as follows:

1. We recall the standard formulas for the Eilenberg-MacLane reduc-
tion EZ1, that is, the AW -formula for f1 (Alexander-Whitney), the
EML-formula for g1 (Eilenberg-MacLane) and the RM -formula for h1

(Rubio-Morace).
2. The homotopy operator h2 defined by our vector field satisfies also the

RM -formula, it is the key point. And the most difficult.
3. We deduce from this fact that g2 = g1 and f2 = f1: our vector

field reduction also satisfies the traditional Alexander-Whitney and
Eilenberg-MacLane formulas.

4. We give the appropriate formula for the composition g2f2 = g1f1.
5. We prove the RM -formula satisfies the recursive Eilenberg-MacLane

definition of h1.

The last point is redundant with respect to which is available elsewhere,
but the vector field understanding of the Eilenberg-MacLane recursive for-
mula becomes too simple to be omitted.

12.2 Alexander-Whitney, Eilenberg-MacLane and
Rubio-Morace.

The three components of the reduction EZ1 are:

f1 = AW : C∗(X × Y )→ C∗(X)⊗ C∗(Y ) (AW = Alexander-Whitney)

g1 = EML : C∗(X)⊗ C∗(Y )→ C∗(X × Y ) (EML = Eilenberg-MacLane)

h1 = RM : C∗(X × Y )→ C∗(X × Y ) (RM = Rubio-Morace)

The explicit formulas for these components are:

AW (xp × yp) =

p∑
i=0

∂p−i+1 · · · ∂pxp ⊗ ∂0 · · · ∂p−i−1yp (53)

EML(xp ⊗ yq) =
∑

(η,η′)∈Sh(p,q)

ε(η, η′) (η′xp × ηyq) (54)

RM(xp × yp) =
∑

0≤r≤p−1,0≤s≤p−r−1,(η,η′)∈Sh(s+1,r)

(−1)p−r−s ε(η, η′) (55)

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂pxp× ↑p−r−s(η)∂p−r−s · · · ∂p−r−1yp)

where xp and yp are respective p-simplices of X and Y , which can be degen-
erate, but their cartesian product (xp × yp) is not. We denote (xp × yp) the
p-simplex of X × Y defined by its projections xp and yp, with the separa-
tor ×, more readable in our relatively complex formulas than the traditional
comma in (xp, yp). So that (xp × yp) denotes here a simplex, not a prism.
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The diagonal map C∗(X)→ C∗(X×X) composed with the AW formula
defines in particular the standard coproduct ∆ : C∗(X) → C∗(X)⊗ C∗(X)
of a simplicial chain complex.

Two symmetric formulas are possible for AW , and any affine combina-
tion of both is also possible. The paper [11] gives a further condition with
respect to some order compatibility to obtain a unique choice for AW . The
EML formula is unique [10].

It is clear four symmetric possible choices are possible for our Eilenberg-
Zilber vector field. Examine the process described in Definition 24 to decide
whether an s-path is source, target or critical. Instead of running the s-path
backward from (p, q) to (0, 0) you could run this path forward from (0, 0) to
(p, q). Instead of replacing the diagonal by a bend to define the target
associated to some source s-path, you could once for all prefer to replace
the diagonal by a bend , modifying accordingly the criterion for a target
s-path. Finally four possible natural vector fields. Giving four different
symmetric RM -formulas, two different symmetric AW -formulas and only
one EML-formula. Our choice gives the most standard AW -, EML- and
RM -formulas given above.

In the EML formula above, the set Sh(p, q) is made of all the (p, q)-
shuffles of (0 · · · (p+ q− 1)), that is, all the partitions of these p+ q integers
in two increasing sequences of length p and q. Every shuffle produces in
turn a pair of multi-degeneracy operators denoted in the same way; for
example the shuffle ((0 3), (1 2 4)) produces the pair (η, η′) = (η3η0, η4η2η1):
the factors are to be in the right degeneracy order. Such a pair (η, η′) is so
associated to a permutation, producing a signature ε(η, η′). For example, the
shuffle ((0 1 5), (2 3 4)) in the case p = q = 3 produces the term −(η4η3η2x3×
η5η1η0y3), for the permutation (0 1 5 2 3 4) is negative.

Julio Rubio, using numerical results computed by the EAT program [19],
produced without proof in his thesis [17] the lovely formula RM (there called
SHI) for the Eilenberg-Zilber homotopy operator. This formula was also
called SHI in [12], this time with a proof (due to Frédéric Morace) based
on the recursive formula given for Φn at [23, Page 25]. In fact this recursive
formula is already at [4, Formula (2.13)].

The ↑-operator in the RM -formula shifts the indices of the multi-
degeneracy operator, for example ↑(η3η1) = η4η2, ↑3(η4η2) = η7η5.

This section is devoted to a careful analysis of the Eilenberg-Zilber vector
field, leading to new proofs of all these formulas. Nothing more than a
combinatorial game with the s-paths of prisms, that is, with the degeneracy
operators. The key point is to obtain first the RM -formula, the others being
in fact consequences.

12.3 Collisions between degeneracies.

A simplex in a prism is represented by an s-path such as this one:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

(56)
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This is the s-path representation of the 6-simplex spanning the vertices
(0 × 0) − (1 × 0) − (1 × 1) − (2 × 2) − (3 × 2) − (3 × 3) − (4 × 3) of the
(4× 3)-prism ∆4 ×∆3.

The last vertical or horizontal segments of an s-path will play an essential
role. For example, for the above s-path, the fact the last two segments are
a vertical one followed by a horizontal one implies the RM -value for this
simplex is null. A sequence of lemmas are to be devoted to various situations.

Let us carefully examine the generic term of the RM -formula, where we
forget the sign:

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂pxp× ↑p−r−s(η)∂p−r−s · · · ∂p−r−1yp) (57)

Its dimension is p + 1 and the configuration of the degeneracy operators
will be essential. The pair (η, η′) is a (s+ 1, r)-shuffle, invoking the indices
0 · · · (r+ s), so that ↑p−r−s(η′) and ↑p−r−s(η) collectively invoke the indices
(p−r−s) · · · p. Taking account also of the isolated operator ηp−r−s−1, finally
all the indices of (p− r − s− 1) · · · p are explicitly invoked in the formula.

But in general the initial factors xp and yp can also contain degeneracy
operators, often generating “collisions” with the just considered explicit op-
erators, then cancelling the corresponding term. For example if you consider
a term (η6η4x

′, η5η3y
′) of dimension 7, then if ever x′ or y′ contains an η4

in his canonical expression, then this term is degenerate. If x′ = η4x
′′, then

(η6η4x
′, η5η3y

′) = (η6η4η4x
′′, η5η3y

′) = (η6η5η4x
′′, η5η3y

′) = η5(η5η4x
′′, η3y

′)
is degenerate; something analogous if y′ = η4y

′′. This is due to the permuta-
tion rule ηiηj = ηj+1ηi if j ≥ i which tends to increase the indices when you
sort the degeneracy operators. These examples allow us to state without
any proof the next lemma.

Lemma 39 (Collision lemma) — In an expression (η′x′×ηy′) of dimen-
sion p + 1 where the multidegeneracies η′ and η contain all the indices of
(p− r− s− 1) · · · p, then, if x′ or y′ contains a degeneracy with an index in
the same range, the term (η′x′, ηy′) is in fact degenerate. ♣

The minimal size of the range (p − r − s − 1) · · · p is (p − 1) · · · p for
r = s = 0.

12.4 Null terms in the RM -formula.

A sequence of elementary lemmas playing with degeneracies will give shorter
RM -formulas according to the nature of the simplex (xp × yp) considered.
The general nature of these lemmas is roughly the following: if xp and/or
yp contains degeneracy operators with high indices, then the corresponding
terms of the RM -formula, because of the collision lemma, will be null unless
the face operators previously annihilate these degeneracies.

Lemma 40 — If xp = ηp−1x
′, then the terms r = 0 of the RM -formula

are null.

♣ This corresponds to this situation:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

(58)
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where the pale dashed line between (0, 0) and (4, 2) means we do not have
any specific information about the s-path between the points (0, 0) and (4, 2).

Anyway, the relation p−r−s−1 ≤ p−1 is satisfied in the generic term of
the RM -formula. Because of the collision lemma, if the ηp−1 of xp = ηp−1x

′

is not swallowed by a face operator, the term of the RM -formula will be
null, which required r ≥ 1. ♣

Lemma 41 — If xp = ηp−1ηp−2 · · · ηp−ρx′, then the terms r < ρ of the
RM -formula are null.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 2

(59)

♣ Induction with respect to ρ, the previous lemma being the case ρ = 1. If
the lemma is known for ρ−1, this implies a non-null term satisfies r ≥ ρ−1;
also the degeneracies ηp−1 · · · ηp−ρ+1 are annihilated by the face operators
∂p−ρ+2 · · · ∂p. Then the relation p− r− s− 1 ≤ p− ρ is satisfied. To avoid a
collision, it is necessary to annihilate also the ηp−ρ, which requires r ≥ ρ. ♣

Lemma 42 — If xp = ηp−1ηp−2 · · · ηp−ρx′ and yp = ηp−ρ−1y
′ then the

terms r 6= ρ or s = 0 of the RM -formula are null. This is valid even if
ρ = 0.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 2

(60)

♣ We already know a non-null term satisfies r ≥ ρ. So that p− r− s− 1 ≤
p−ρ−1 and the ηp−ρ−1 in the expression of yp is to be annihilated to avoid
a collision. This needs at least a face operator in the second component,
that is, s > 0, and the last face index (p − r − 1) is ≥ p − ρ − 1, that is,
r ≤ ρ, so that finally r = ρ. ♣

Lemma 43 — If xp = ηp−1ηp−2 · · · ηp−ρx′ and yp = ηp−ρ−1 · · · ηp−ρ−σy′
with σ > 0 then the terms r 6= ρ or s < σ of the RM -formula are null. This
is valid even if ρ = 0.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 1

σ = 2

(61)

♣ Induction with respect to σ. ♣

Lemma 44 — If xp = ηp−1ηp−2 · · · ηp−ρηp−ρ−σ−1x
′ and yp =

ηp−ρ−1 · · · ηp−ρ−σy′ with σ > 0 then RM(xp, yp) = 0. This is valid even
if ρ = 0.
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•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 1

σ = 2

(62)

♣ A non-null term would satisfy r = ρ and s ≥ σ, so that the relation
p − r − s − 1 ≤ p − ρ − σ − 1 is satisfied. The ηp−ρ−σ−1 must therefore
be annihilated to produce a non-null term, but nomore face operator is
available in the corresponding component. Note σ > 0 is crucial while on
the contrary ρ = 0 is possible. ♣

Lemma 45 — If xp = ηp−1ηp−2 · · · ηp−ρx′ and yp = ηp−ρ−1 · · · η0y
′, then

RM(xp × yp) = 0. This is valid even if ρ = 0 or σ = 0.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

ρ = 3

σ = 4

(63)

♣ A non-null term would satisfy r ≥ ρ and s ≥ σ but the required inequality
r + s ≤ p− 1 cannot be satisfied. ♣

Corollary 46 — If (xp×yp) is a target or critical cell in the product X×Y ,
then RM(xp × yp) = 0.

♣ Restatement of the last two lemmas. ♣

Lemma 47 — If xp = ηp−1 · · · ηp−ρ+1x
′ and yp = ηp−ρ−1 · · · ηp−ρ−σ+1y

′ for
σ ≥ 2, then a non-null term in the RM -formula must satisfy r = ρ and
σ − 1 ≤ s ≤ p− ρ− 1, or r = ρ− 1 and 0 ≤ s ≤ p− ρ.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 2

σ = 3

(64)

♣ If r > ρ, the first degeneracy ηp−ρ−1 of the second factor remains alive
and becomes ηp−ρ−s−1; the condition p−ρ− s−1 < p− r− s−1 is required
to avoid a collision, that is, r < ρ, contradiction. Now if r = ρ and s < σ−1,
then a degeneracy remains in the second factor, the first one being again
ηp−ρ−s−1, requiring also r < ρ to obtain a non-null term. ♣

12.5 Examining a source cell.

The important part of a source cell is the last diagonal, certainly followed
first by horizontal segments, then by vertical segments; but these vertical
and/or horizontal parts can be missing. A generic expression for such a
source cell is therefore:

(ηp−1 . . . ηp−ρx
′ × ηp−ρ−1 · · · ηp−ρ−σy′) (65)
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with the degeneracy operator ηp−ρ−σ−1 absent in x′ and y′, so that the
segment of the s-path between times p− ρ−σ− 1 and p− ρ−σ is diagonal :

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 1

σ = 2

(66)

We noticed above the non-totally symmetric role of ρ and σ. This is the
reason why two different cases are to be considered in our final expression
for the RM -formula when evaluated on a source cell.

Proposition 48 — Let (xp×yp) be a source p-simplex of a simplicial prod-
uct X × Y , detailed as above. Then there are two different situations. If
σ = 0, then an RM -term is non null only if r ≥ ρ. The RM -formula
therefore is then:

RM(xp × yp) =
∑

ρ≤r≤p−1,0≤s≤p−r−1,(η,η′)∈Sh(s+1,r)

(−1)p−r−s ε(η, η′) (67)

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂pxp× ↑p−r−s(η)∂p−r−s · · · ∂p−r−1yp)

If σ > 0, then to obtain a non-null term, the conditions r = ρ and s ≥ σ
are required The RM -formula therefore is then:

RM(xp × yp) =
∑

σ≤s≤p−ρ−1,(η,η′)∈Sh(s+1,ρ)

(−1)p−ρ−s ε(η, η′) (68)

(↑p−ρ−s(η′)ηp−ρ−s−1∂p−ρ+1 · · · ∂pxp, ↑p−ρ−s(η)∂p−ρ−s · · · ∂p−ρ−1yp)

Some of the preserved terms can be also null because we do not have any
information for the faces of xp and yp, and also because of other collisions
as it will be observed later. But at least one term is certainly non-null, we
call it the principal term, the one corresponding to the parameters r = ρ,
s = σ and (η, η′) the trivial shuffle ((0 · · ·σ), ((σ + 1) · · · (ρ+ σ))); it is:

(−1)p−ρ−σ(ηp · · · ηp−ρ+1ηp−ρ−σ−1xp−ρ × ηp−ρ · · · ηp−ρ−σyp−σ) (69)

which is nothing but the target cell associated to our source cell in our
Eilenberg-Zilber vector field VEZ .

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 1

σ = 2

VEZ

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
ρ = 1

σ = 2

(70)

In other words, the “first non-null term” of the RM -formula is the corre-
sponding target cell. Someone who knows only the RM -formula can guess
our Eilenberg-Zilber vector field, in fact unique to be compatible with a ho-
motopy operator, for it can be easily proved that the homotopy h operator
of the reduction ρ = (f, g, h) defined by a vector field V is enough to recover
this vector field.
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12.6 EZ-Homotopy = RM-formula

Theorem 49 — Let X ×Y be the product of two simplicial sets X and Y .
The Eilenberg-Zilber vector field VEZ defines a reduction (f2, g2, h2) and in
particular a homotopy operator h2. Then h2 = RM = h1.

Cf. Definition 28 for the Eilenberg-Zilber vector field VEZ .
♣ The naturality property obtained in Section 11 allows us to consider only
X = Y = ∆p and to prove the RM -formula for the operator h for the
diagonal simplex (δp × δp). But the necessary recursive process leads to
consider more generally any non-degenerate simplex (xp × yp) ∈ ∆p × ∆p

where xp and/or yp can be degenerate.
If (xp×yp) is a target or critical cell, we say its level is 0. If it is a source

cell, its level is the length of the longest VEZ-path starting from this simplex.
The proof is recursive with respect to the level of (xp × yp). Corollary 46
proves the result if the level is null.

We assume now the result is known for a source cell of level ` − 1 and
we assume (xp × yp) is a source cell of level `. The homotopy operator is
defined by the recursive formula (39): h(σ) = d′V (σ)− h(dd′V (σ)− σ) if σ is
a source cell, if d′V is the associated codifferential. The term dd′V (σ)− σ is
made of cells of levels < level(a), which justifies the recursive process.

In our Eilenberg-Zilber situation, in fact a maximum of two components
of dd′V (σ)−σ are source cells, certainly with a smaller level. The game now is
the following: we (recursively) assume h(dd′V (σ)−σ) can be computed by the
RM -formula and we will prove h(σ) can be computed by the same formula.
Which can seem a priori a little strange, but it will be a consequence of the
results detailed in Section 12.4.

12.6.1 The case σ = 0.

A source cell admits a canonical presentation as explained before Proposi-
tion 48, producing in particular two important indices ρ and σ. The situation
is very different in the cases σ = 0 or σ 6= 0. We begin with the first one
σ = 0.

The essential part of the corresponding s-paths are drawn below.

•
• p− ρ− 1

• p− ρ
•
• p

a

•
• p− ρ− 1

• • p− ρ + 1

•
• p + 1

p− ρ

b = V (a)

•

• • p− ρ
•
• p

p− ρ− 1

a1 = ∂p−ρ−1b

•
• p− ρ− 1

•
• p− ρ + 1•
• p

p− ρ

a2 = ∂p−ρ+1b

(71)

The s-path a represents a simplex denoted also by a finishing by a vertical
segment of length ρ, preceded by a diagonal segment between times p−ρ−1
and p− ρ. Its associated target cell b is obtained by replacing this diagonal
segment by a vertical one followed by a horizontal one. All the faces of b are
also target cells except the faces of index p−ρ−1 and p−ρ+1. So that the
recursive formula for the homotopy operator is simply in this case: h(a) =
b + h(a1) + h(a2) if we forget the signs. The values of h(a1) and h(a2) are
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recursively given by the RM -formula: h(a1) = RM(a1), h(a2) = RM(a2)
and we must prove h(a) = RM(a).

We must appropriately express b, a1, a2, h(a1) and h(a2) and observe
which is finally obtained is exactly which is expected for h(a). We collect
first the simplices:

a = (ηp−1 · · · ηp−ρx′ × yp) (72)

b = (ηp · · · ηp−ρ+1ηp−ρ−1x
′ × ηp−ρy) (73)

a1 = (ηp−1 · · · ηp−ρx′ × ηp−ρ−1∂p−ρ−1yp) (74)

a2 = (ηp−1 · · · ηp−ρ+1ηp−ρ−1x
′ × yp) (75)

The components x′ and yp can contain other degeneracies, but they do not
concern the rest of the computation.

We systematically forget the signs, always easily checked correct. The
hoped-for formula for h(a) is:

h(a) =
∑

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂p−ρx′× ↑p−r−s(η)∂p−r−s · · · ∂p−r−1yp)

the parameters satisfying ρ ≤ r ≤ p − 1, 0 ≤ s ≤ p − r − 1, (η, η′) ∈
Sh(s+ 1, r).

First the simplex b is the term in this formula corresponding to r = ρ,
s = 0 and (η, η′) = ((0), (1 · · · ρ)).

The simplex a1 has σ > 0, which implies the known formula for h(a1) is:

h(a1) =
∑

(↑p−ρ−s(η′)ηp−ρ−s−1x
′× ↑p−ρ−s(η)∂p−ρ−s · · · ∂p−ρ−1yp)

because of a happy relation ∂p−ρ−1ηp−ρ−1 = id in the second factor. The
valid parameters are 1 ≤ s ≤ p − ρ − 1 and (η, η′) ∈ Sh(s + 1, ρ). This
implies h(a1) produces all the desired terms for the h(a)-formula satisfying
r = ρ and s ≥ 1.

Processing h(a2) is more complex. The initial formula for h(a2) is:

h(a2) =
∑

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂p−ρ+1ηp−ρ−1x
′×

× ↑p−r−s(η)∂p−r−s · · · ∂p−r−1yp)
for ρ − 1 ≤ r ≤ p − 1, 0 ≤ s ≤ p − r − 1 and (η, η′) ∈ Sh(s + 1, r). For
r = ρ − 1, the degeneracy ηp−ρ−1 survives in the first factor, so that the
condition p − ρ − 1 < p − r − s − 1 is required to avoid a collision, that is,
s = 0. This produces all the terms of the desired formula for h(a) satisfying
ρ = r, s = 0, except the term b. Observe in particular how the shuffles in
Sh(1, ρ− 1) in h(a2) produce the shuffles in Sh(1, ρ) in h(a).

If r = ρ, the degeneracy ηp−ρ−1 in the first factor again remains alive, but
this time, the collision cannot be avoided and all the corresponding terms
in fact are null. Finally, if r > ρ, the degeneracy ηp−ρ+1 is annihilated by a
face operator and an elementary computation shows all the obtained terms
of this sort are exactly the same as those with the same indices in h(a).

12.6.2 The case σ > 0.

Consider the figures below to understand the involved degeneracies. Again
the simplex a produces a target cell b, and only two faces of b are source cells,
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so that we again have to deduce h(a) = RM(a) from h(a1) = RM(a1) and
h(a2) = RM(a2) and from the recursive formula h(a) = b + h(a1) + h(a2),
signs omitted.

•
• p− ρ− σ − 1

• • • p− ρ
•
• p

p− ρ− σ

a

•
• p− ρ− σ − 1

• • • • p− ρ + 1

•
• p + 1

p− ρ− σ

b

(76)

•

• • • • p− ρ
•
• p

p− ρ− σ − 1

a1 = ∂p−ρ−σ−1b

•
• p− ρ− σ − 1

• • • p− ρ
• p− ρ + 1•
• p

p− ρ− σ

a2 = ∂p−ρ+1b

(77)

The simplices are:

a = (ηp−1 · · · ηp−ρx′ × ηp−ρ−1 · · · ηp−ρ−σy′) (78)

b = (ηp · · · ηp−ρ+1ηp−ρ−σ−1x
′ × ηp−ρ · · · ηp−ρ−σy′) (79)

a1 = (ηp−1 · · · ηp−ρx′ × ηp−ρ−1 · · · ηp−ρ−σ−1∂p−ρ−σ−1y
′) (80)

a2 = (ηp−1 · · · ηp−ρ+1ηp−ρ−σ−1x
′ × ηp−ρ−1 · · · ηp−ρ−σy′) (81)

Again the subcomponents x′ and y′ can have other degeneracies. The sim-
plex a has σ > 0, so that the formula to be proved is:

h(a) =
∑

(↑p−ρ−s(η′)ηp−ρ−s−1x
′× ↑p−ρ−s(η)∂p−ρ−s · · · ∂p−ρ−σ−1y

′)

for σ ≤ s ≤ p−ρ−1 and (η, η′) ∈ Sh(s+1, ρ). The corresponding target cell b
is the term of this sum with s = σ and (η, η′) = ((0 · · ·σ), ((σ+1) · · · (ρ+σ)).

The simplex a1 has also σ > 0, which gives us the expression:

h(a1) =
∑

(↑p−ρ−s(η′)ηp−ρ−s−1x
′× ↑p−ρ−s(η)∂p−ρ−s · · · ∂p−ρ−σ−1y

′)

for σ + 1 ≤ s ≤ p − ρ − 1 and (η, η′) ∈ Sh(s + 1, ρ); always at least one
face operator ∂p−ρ−σ−1 in the second factor. We see this h(a1) gives all the
terms of the desired expression for h(a) satisfying s ≥ σ + 1.

Again processing h(a2) is more complex, for a2 has σ = 0. The initial
expression for h(a2) is:

h(a2) =
∑

(↑p−r−s(η′)ηp−r−s−1∂p−r+1 · · · ∂p−ρ+1ηp−ρ−σ−1x
′×

↑p−r−s(η)∂p−r−s · · · ∂p−r−1ηp−ρ−1 · · · ηp−ρ−σy′)
for r = ρ − 1 and 0 ≤ s ≤ p − ρ, or r = ρ and σ ≤ s ≤ p − ρ − 1, see
Lemma 47.

For r = ρ, the tail of the first factor is ∂p−ρ+1ηp−ρ−σ−1x
′ =

ηp−ρ−σ−1∂p−ρx
′, and to avoid a collision, the relation p−ρ−σ−1 < p−ρ−s−1

is necessary, that is, s < σ, contradiction.
For r = ρ−1, all the face operators of the first factor are absent and there

remains for the first component: ↑p−ρ−s+1(η′)ηp−ρ−sηp−ρ−σ−1x
′. Again, to

avoid a collision, the relation p − ρ − σ − 1 < p − ρ − s is necessary, that
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is, s ≤ σ. So that all the face operators are also absent of the second factor
which becomes: ↑p−ρ−s+1(η)ηp−ρ−s−1 · · · ηp−ρ−σy′. A careful examination
then shows we have so found all the remaining terms of the desired formula
for h(a) satisfying s = σ, except the term corresponding to b. In particular
a term s = σ, (η, η′) ∈ Sh(σ + 1, ρ) of h(a) corresponds to a term of h(a2)
with s = σ − ` for ` the length of the longest “trivial” initial sequence
(0 · · · (`− 1)) ⊂ η, the maximal length σ + 1 being excluded, coming on the
contrary of the target cell b. Also the position of this removed trivial initial
sequence does not modify the signature of the underlying permutation. ♣

12.7 Eilenberg-MacLane formula.

Theorem 50 — Let (f2, g2, h2) be the reduction associated to the Eilenberg-
Zilber vector field on the product X × Y of two simplicial sets. Then the
chain complex morphism g2 is given by the Eilenberg-MacLane formula:

EML(xσ ⊗ yρ) =
∑

(η,η′)∈Sh(σ,ρ)

ε(η, η′) (η′xσ × ηyρ) (82)

We prefer our favorite indices σ and ρ instead of the traditional p and
q: they had essentially the same interpretations as in the previous sections.

Taking account of [10], Theorem 50 was already proved thirty years ago.
But it is good training for further tasks to obtain the result directly using
this game of vector fields and s-paths.
♣ The g-component of our vector field reduction (f, g, h) is a chain complex
morphism g : C∗(X) ⊗ C∗(Y ) → C∗(X × Y ). More precisely, a generator
xσ⊗yρ ∈ Cσ(X)⊗Cρ(Y ) of the source chain complex must first be translated
into the so-called “last simplex” λ(xσ, yρ) = (ηp−1 · · · ησxσ×ησ−1 · · · η0yρ) ∈
C∗(X × Y ); see the explanations after Theorem 31.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

ρ = 3

σ = 4

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

ρ = 3

σ = 4

(83)

The formula g = id−hd for the injection of the critical complex into
the whole complex was given at (11). In particular id(λ(xσ, yρ)) is the term
with (η, η′) = ((0 · · · (σ − 1)), (σ · · · (ρ+ σ − 1))) of the EML-formula.

The hd(λ(xσ, yρ)) must produce the other terms with the right signs.
The homotopy operator is null except for the source cells, and it happens we
have only one source cell in d(λ(xσ, yρ)), drawn above, with the expression:

d(λ(xσ, yρ)) = (ηρ+σ−2 · · · ησxσ, ησ−2 · · · η0yρ) (84)

We apply the RM -formula to this term to obtain:∑
(↑ρ+σ−r−s−1(η′)ηρ+σ−r−s−2∂ρ+σ−r · · · ∂ρ+σ−1ηρ+σ−2 · · · ησxσ× (85)

↑ρ+σ−r−s−1(η)∂ρ+σ−r−s−1 · · · ∂ρ+σ−r−2ησ−2 · · · η0yρ)

for r = ρ and σ − 1 ≤ s ≤ ρ + σ − r − 2 = σ − 2, impossible, and there
remain only the parameters r = ρ − 1, 0 ≤ s ≤ σ − 1. The face operators
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of the first factor are exactly cancelled by the following degeneracies, and
the face operators of the second factor are totally cancelled by the following
degeneracies, but some of these degeneracies in general remain alive. We
obtain finally:∑

(↑σ−s(η′)ησ−s−1xσ× ↑σ−s(η)ησ−s−2 · · · η0yρ) (86)

for 0 ≤ s ≤ σ−1 and (η, η′) ∈ Sh(s+1, ρ−1). The generic term of this sum
corresponds to the term (η′xσ × ηyρ) of the standard Eilenberg-MacLane
formula for σ − s − 1 the length of the maximal “trivial” initial segment
(0 · · · (σ − s − 2)) in η. The last simplex (ηρ+σ−1 · · · ησxσ × ησ−1 · · · η0yρ)
would correspond to s = −1, not possible, but this last simplex had been
previously produced by the id term of the formula g = id−hd. For further
reference, we give the formula obtained:

hd(λ(xσ, yρ)) =
∑

(η′xσ × ηxρ) (87)

where (η, η′) ∈ Sh(ρ, σ)−{id}, that is, all the shuffles are to be used except
the trivial one.

We let the reader check the signs are also correct. ♣

12.8 Alexander-Whitney formula.

Theorem 51 — Let (f2, g2, h2) be the reduction associated to the Eilenberg-
Zilber vector field on the product X × Y of two simplicial sets. Then the
chain complex morphism f2 is given by the Alexander-Whitney formula:

AW (xp × yp) =

p∑
i=0

∂p−i+1 · · · ∂pxp ⊗ ∂0 · · · ∂p−i−1yp (88)

Same remark with respect to [11] as with respect to [10] in the previous
section for the EML-formula.
♣ This morphism f2 is natural and it is sufficient to consider the particular
case X = Y = ∆p and (xp × yp) = (δp × δp) if δp is the maximal simplex of
∆p and (δp × δp) the diagonal p-simplex of ∆p ×∆p.

The formula 41 is f = pr3(id−dh) with pr3 being the canonical pro-
jection on the critical subcomplex. For example pr3 id(δp × δp) = 0, for
this diagonal simplex is a source cell, giving a null projection on the crit-
ical complex. Except if p = 0 where the AW -formula is then obvious, for
h(δ0 × δ0) = 0.

Now we have to compute dh(δp × δp) and to extract from a lot of terms
those that are critical. Figure 1 should help to understand a generic term
of h(δp × δp), that is:

(↑p−r−s (η′)ηp−r−s−1∂p−r+1 · · · ∂pδp× ↑p−r−s (η)∂p−r−s · · · ∂p−r−1δp)

The figure represents the particular case p = 7, r = 2 and s = 2. In general
the face operators of this generic term cancel the vertices (p− r + 1) · · · (p)
of the first factor and (p− r− s) · · · (p− r− 1) for the second factor, so that
the s-path is allowed to run among a subset of (0 · · · p)×(0 · · · p) represented
by •’s in the figure, whereas the forbidden points are represented by ×’s.
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Figure 1: Understanding RM(δp × δp)

The “generic” simplex is represented by an s-path with essentially three
parts:

1. A diagonal part starting at (0× 0) up to the point (p− r− s− 1× p−
r − s− 1); this diagonal part can be a point, if r + s = p− 1.

2. A vertical segment, always present, devoted to this very particular
degeneracy of the first factor ηp−r−s−1, starting at (p− r− s− 1× p−
r−s−1) up to (p− r−s−1×p− r) in a unique step, for the expected
intermediary vertices are in fact cancelled by the face operators of the
second factor. We call this segment the pole of the s-path, think of the
pole of a flag, a flag to be described soon.

3. Finally an “Eilenberg-MacLane” step starting from (p−r−s−1×p−r)
up to (p−r×p) by an arbitrary combination of vertical (toward north))
and horizontal segments (toward east), combination depending only on
the shuffle (η, η′). For example, in our figure, it is the shuffle ((1·2·4)(0·
3)). We call “EML-flag” the rectangle between (p− r− s− 1× p− r)
and (p − r × p), for this part of the path, parametrized by a shuffle,
mimics an s-path produced by the EML-formula. And this flag is
“carried” by the “pole” ηp−r−s−1.

Remember we have to select all the critical components of the expression
dh(δp × δp). The figure represents one term of h(δp × δp). A component of
dh(δp × δp) is obtained by cancelling one of the vertices of the s-path, and
which remains must be a critical cell, that is, an s-path made first only of
horizontal segments and then only of vertical segments.

For example, for the simplex represented by Figure 1, no face of this
simplex is critical, for a simple reason: there certaily will remain at least
one diagonal component if we apply a face operator. In other words we just
have to consider the cases p− r − s− 1 = 0 or 1.

Another obstacle for a face to be critical is the vertical segment ηp−r−s−1
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followed by an Eilenberg-MacLane path made of horizontals and verticals
joining the extreme points of the rectangle (((p − r − s − 1) · · · (p − r)) ×
((p − r) · · · p)): it is difficult for such a path not to have a bend qualifying
this path as a target cell, and the same for its faces.

The width of the EML-area is (p − r) − (p − r − s − 1) = s + 1 ≥ 1,
which implies the certain presence of at least one horizontal segment for our
path in this area. More precisely, after the pole, there certainly will be a
bend . This bend, or another possible one, later in the flag, qualifies our
s-path as a target cell, which is not amazing: a value of the RM -formula
is a combination of target cells. This already implies the terms for which
p − r − s − 1 = 1 can be given up, because for these terms we will have
to destroy by one face operator a diagonal and a bend , impossible. For
p− r − s− 1 = 0, that is, for r + s = p− 1, no initial diagonal part for our
s-path.

But we have to apply now to this target cell a face operator to get a
critical cell, not easy! First we must have in our target cell a unique bend

, for it is impossible to destroy two such bends with one face operator
without creating a diagonal:

•
• •
• •
i

∂i

•
• •
• •

(89)

Remember also a critical cell has a unique bend or no bend at all.
If you remove the precise point of the unique bend of our target cell,
you create a diagonal and the result is a source cell, forbidden. If you
remove another point, then you first think this cannot suppress the bend

? Correct, except a special case, when the bend has before (resp. after)
the bend the initial vertical (resp. final horizontal) segment of the path.
This is the key point of our subject which, once understood, immediately
products the Alexander-Whitney formula. An example of this sort is below
(p = 4, r = 2, s = 1, (η, η′) = (0 · 1, 2 · 3)):
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(90)

For an arbitrary p ≥ 1, we so obtain p terms of the Alexander-Whitney
formula, those corresponding in the RM -formula to the parameters 0 ≤ r ≤
p − 1, s = p − r − 1, (η, η′) = ((0 · · · s), ((s + 1) · · · (p − 1))), to which we
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apply the ∂0-operator. For example we obtain for p = 4:
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(91)
One term of the Alexander-Whitney formula is still missing. It is ob-

tained by another unique particular case, when r = p − 1, s = 0,
(η, η′) = ((p− 1), (0 · · · (p− 2))). The figure when p = 4:
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There remains to apply the canonical correspondance between critical
cells of the product ∆p ×∆p and the generators of C∗∆

p ⊗ C∗∆p. That is:
(ηp−1 · · · ηp−r∂p−r+1 · · · ∂pδp × ηp−r−1 · · · η0∂0 · · · ∂p−r−1δp) 7−→

∂p−r+1 · · · ∂pδp ⊗ ∂0 · · · ∂pδp.
and also to check the final sign is always positive. . . ♣

12.9 The critical differential.

Several times in the previous sections we used the expression “critical sub-
complex” to designate the graded submodule generated by the critical cells.
Which submodule in general is not a subcomplex.

In the Eilenberg-Zilber particular case, we must now study the differ-
ential to be installed on Cc∗(X × Y ) and check, taking account of the iso-
morphism Cc(X × Y ) ∼= C∗(X)⊗C∗(Y ), that we find the usual differential
of the tensor product. It is as funny (!?) as in the previous sections. Be-
cause of the naturality of our process, it is sufficient to consider the case of
C∗(∆

p ×∆p).
A generic critical cell to be considered is:

sc = (ηp−1 · · · ησδσ × ησ−1 · · · η0δρ) ∼= δσ ⊗ δρ (93)

where as usual δσ and δρ are simplices of respective dimensions σ and ρ with
σ + ρ = p.

The formula (42) d′ = pr3(d − dhd) is to be applied to our critical
generic simplex sc. The game is similar to the one of the previous section
for Alexander-Whitney. Anyway we must compute the initial differential
dsc (signs omitted):

dsc =

p∑
i=0

∂i(ηp−1 · · · ησδσ × ησ−1 · · · η0δρ) (94)

and study which happens according to the situation of i with respect to σ.
If i < σ, the face operator on the one hand is to be applied to the δσ of the
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first factor, and on the other hand annihilates a degeneracy of the second
factor, to produce:

∂is
c = (ηp−2 · · · ησ−1∂iδσ × ησ−2 · · · η0δρ) ∼= ∂iδσ ⊗ δρ (95)

where we recognize the expected ∂iδσ ⊗ δρ; this is valid for i < σ, just one
face of this sort ∂σδσ ⊗ δρ is missing.

Symmetrically, if i > σ, in the same way, we obtain:

∂is
c = (ηp−2 · · · ησδσ × ησ−1 · · · η0∂i−σδρ) ∼= δσ ⊗ ∂i−σδρ (96)

We recognize the expected δσ ⊗ ∂jδρ for j = i− σ > 0; one face of this sort
is missing: δσ ⊗ ∂0δρ.

All these simplices are critical cells and they contribute to the studied
differential d′ only via the component pr3d in the expression d′ = pr3(d −
dhd), for the homotopy operator h is null on the critical cells.

Processing the face of index σ is very particular. First the face operator
cancels the last degeneracy of the first factor and the first one of the sec-
ond factor, without forgetting how the degeneracies of the first factor are
renumbered:

∂σs
c =: s′ := (ηp−2 · · · ησδσ × ησ−2 · · · η0δρ) (97)

We are again in front of this “almost critical” simplex which generates the
EML-formula, in fact a source simplex. Example for σ = 4 and ρ = 3:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

σ = 4

ρ = 3s′ = (98)

It is a source cell, so that the contribution of this face in d′sc = pr3(d −
dhd)(sc) is only −pr3dh∂σs

c = dhs′, sign omitted. We rewrite as follows the
formula (87):

hs′ =
∑

(η′xσ × ηxρ) (99)

for(η, η′) ∈ Sh(ρ, σ)− {id}. The final step consists in computing the differ-
ential of this sum and keeping in the obtained terms the critical cells.

Every term of this sum is a target cell; again it is a little funny, for in the
Eilenberg-MacLane formula, all the terms are target cells except the trivial
one which is critical. In the case 4 × 3 drawn above at (98), an Eilenberg-
MacLane term must go from (0 × 0) to (4 × 3) following only horizontals
toward east and verticals toward north. A unique path of this sort is without
a bend , the critical cell (0× 0)→ (4× 0)→ (4× 3). All the other paths
necessarily have somewhere a bend and this is why they are target cells.

Now we have to differentiate such a cell and keep the critical cells. Re-
member the discussion page 40 for the Alexander-Whitney formula where
we already meet such a situation. A target cell containing a critical cell in
his differential must have a unique bend and this bend must be either
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preceded by the initial vertical segment of the path or followed by its final
horizontal segment. Only two possibilities drawn below in the case 4× 3:
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which fortunately exactly produces the two terms missing in the differential
of our critical complex. ♣

12.10 Eilenberg-MacLane’s recursive formula.

The recursive formula [4, (2.13)]:

Φcq = −Φ′cq + h′D0cq (101)

is essential when Eilenberg and MacLane process the Eilenberg-Zilber equiv-
alence. The pseudo-derivative operator to be applied to Φ and h in the
second member, these operators Φ and h being mainly made of face and
degeneracy operators, consists in fact in taking the same operator for one
dimension less and to shift all the face and degeneracy indices by +1. For
example, if k(s) := η2∂3s+η1∂4s for a 5-simplex s, then k′(s) = η3∂4s+η2∂5s
for a 6-simplex s. The Φ of Eilenberg-MacLane is our homotopy operator
h = RM and their h is our composition gf = EML ◦ AW . Finally D0 is
our degeneracy η0.

So that the translation of Eilenberg-MacLane’s recursive formula into
our notations is:

RM(xp × yp) = −RM ′(xp × yp) + EML′AW ′η0(xp × yp) (102)

Also, possibly degenerate terms in the final result are to be cancelled.
We deduce from the AW formula (53) and the EML-formula (54) the

following expression for the composition EML ◦AW (signs omitted):∑
(η′∂p−r+1 · · · ∂pxp × η∂0 · · · ∂p−r−1yp) (103)

for 0 ≤ r ≤ p and (η, η′) ∈ Sh(p − r, r). Replacing xp and yp by η0xp
and η0yp, and shifting the indices to take account of the pseudo-derivations
gives: ∑

(↑(η′)∂p−r+2 · · · ∂p+1η0xp× ↑(η)∂1 · · · ∂p−rη0yp) (104)

We must now install the η0’s at the right place. The right one is always killed
by a face operator, except for r = p; the left one always remains alive, so
that the unique term corresponding to r = p disappears, it is 0-degenerate,
and there remains:∑

(↑(η′)η0∂p−r+1 · · · ∂pxp× ↑(η)∂1 · · · ∂p−r−1yp) (105)

for 0 ≤ r ≤ p− 1 and (η, η′) ∈ Sh(p− r, r). We recognize here all the terms
of the RM -formula (55) for which s = p− r−1 or, simpler, all the terms for
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which p− r− s− 1 = 0, that is, exactly these terms where this very specific
degeneracy operator ηp−r−s−1 is in fact η0.

Which orients the study of the Eilenberg-MacLane recursive formula to
Figure 1. All the terms of the RM -formula can be divided in two simple
classes. The first one contains all the terms starting by a vertical, that is,
those terms where p− r− s− 1 = 0. An example of this sort is the lefthand
figure of (90). These terms are produced by EML′AW ′η0(xp×yp) in (102).
The second class of terms are those satisfying p − r − s − 1 > 0, that is,
those starting by a diagonal segment in Figure 1; they are produced by
−RM ′(xp × yp) in (102), for a possible pattern for the s-path after the first
diagonal segment is a RM -pattern for one dimention less. ♣

13 Conclusion.

As it was briefly explained in the introduction, the previous text settles a
complete correspondence between, on the one hand the reduction deduced
from what was called the Eilenberg-Zilber vector field, and on the other hand
the “old” Eilenberg-Zilber reduction defined by the AW-EML-RM formu-
lae. It was the role of the long Section 12, consisting mainly in carefully
examining the numerous degeneracy operators of the RM-formula and tak-
ing account of the so-called “collisions” between these operators, cancelling
many terms of the RM-formula.

The terms of the RM-formula corresponding to these collisions are auto-
matically ignored in the vector field environment, explaining the efficiency
of the implementation of the EZ theorem based upon the EZ vector field.

In another paper, we will explain how the same strategy can be applied
to the twisted EZ-theorem. This time it is the terrible Szczarba formula [25]
which is involved, still more complicated than the formulae of the present
text. In fact Szczarba’s formula is a sort of twisted EML formula. No
close formula is yet known for a hypothetical twisted RM-formula. But
the twisted EZ vector field is exactly the same (!!) as the non-twisted one,
allowing to easily apply the vector field method to obtain the corresponding
reduction. This really amazing property of the EZ vector field definitely
implies this vector field is in fact the real kernel of this subject.

Producing our simple solution for constructive versions of Serre and
Eilenberg-Moore spectral sequences. To be explained in forthcoming pa-
pers.
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