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Abstract

The classical “computation” methods in Algebraic Topology most often work by means of highly
infinite objects and in fadre notconstructive. Typical examples are shown to describe the nature of
the problem. The Rubio—Sergeraert solution for Constructive Algebraic Topology is recalled. This is
not only a theoretical solution: the concrete computer progfenzohas been written down which
precisely follows this method. This program has been used in various cases, opening new research
subjects and producing in several cases significant results unreachable by hand. In particular the
Kenzo program can compute the first homotopy groups of a simply connadigcary simplicial
set.d 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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Introduction

The computation ohomotopy groupgn Algebraic Topology is known as a difficult
problem. Every pointed topological spac¢#, xo) has a family of homotopy groups
{ma (X, x0)}n>1, {7, X} in short, and these groups are abelian/Ace 2. The definition
was given by Hurewicz in 1935, and for the first non-trivial space from this point of view,
namely the 2-spher§?, only the groupsro andss were known at this time, thanks to Hopf.
The groupr4S2 = Z, was determined by Freudenthal in 1937. Thirteen years then passed
without any new homotopy group of sphere. The following growps? were obtained by

Y This text was used as a background paper for a plenary talk of the second author during the EACA Congress
of Tenerife, September 1999. A “general public” version has appeared in [20]; it is an excellent introduction for
the present text.
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Serre for 5< n < 9, in 1950. In fact, fom = 6, Serre proved the groupsS? has twelve

elements but did not succeed in choosing between both possible soltitioasdZ, & Zs.

Two years later, Barratt and Paechter proved there exists an element of ordey$# jiso

that finally 7 S% = Z1. See [21, vol. |, pp. 110 and 113] for details and references.
More generally, Serre obtained a gendirgiteness result

Theorem 0.1 (Serre, [21, p. 14 and pp. 171-207f) X is a simply connected space such
that the homology groupH,, (X; Z) are of finite type, then the homotopy groupsX are
also abelian groups of finite type.

In particular the homology groups of simply connected finite polyhedra, for example the
simply connected compact manifolds, are of finite type, so that their homotopy groups are
also of finite type. Various methods allow to combinatorially describe the finite polyhedra:
these objects may be tlgout of an algorithm. An abelian group of finite type can also be
described by some character string: such a group could keutpetof an algorithm. The
following problem therefore makes sense.

Problem 0.2. Does there exist a general algorithm:

e Input: A simply connected polyhedraXi and an integer > 2;
e Output: The homotopy group, X .

A solution for this computability problem was given by Edgar Brown in 1956 [3]. He
used the general organization just defined by Postnikov, now known Besh@kov tower
then the result is not difficult when the homology groups of the spaegefinite; really
finite, not only of finite type: for example this simple method does not work for the 2-
spheres? because the homology grouS? = Z is of finite type (one generator), but
unfortunately is infinite. The difficult part of the work of Edgar Brown then consisted in
overcoming the birth of infinite objects in the Postnikov tower. A complicated and tricky
process was used to approximate these infinite objects by finite ones and in this way Edgar
Brown succeeded in transforming the finiteness result of Serre into a computability result.
But let us quote Edgar Brown himself in the introduction of his article:

It must be emphasized that although the procedures developed for solving these
problems are finite, they are much too complicated to be considered practical.

Forty years later this appreciation still holds, and will always hold, even with the
most powerful computer you can imagine: it is a consequence of the hyper-exponential
complexity of the algorithm designed by Edgar Brown.

The problem of finding newgeneral algorithms which on the contrary could be
concretelyused in significant cases was not seriously studied up to 1985. This is so true
that topologists from time to time meet some difficulty in expressing precisely where the
actual nature of a problem is, when in fact it is a matter of computability. Section 1 shows
three typical examples of this sort. Let us quote immediately another example found in the
introduction of [12]:
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The book by Cartan and Eilenberg contains essentially all the constructions of
homological algebra that constitute its computational tools, namely standard resolutions
and spectral sequences.

Strictly speaking, this statementis correct, but it is also very misleading. In the “general”
domain of Homological Algebra, it is true, but if you intend to apply these “computational”
tools in Algebraic Topology, then you realize an enormgagis in front of you, mainly
when you have to determine the higher differentials of the spectral sequences you are
working with; and if you succeed in finding them, a collection of hard extension problems
can be waiting at the abutment. The present paper is essentially devoted to these questions.

One of the examples of Section 1 asserts a computability problem in homotopy theory
is “widely” open. In fact three complete solutions are available for several years. Section 2
is devoted to a quick description of these solutions, to their nature and what can be hoped
about their concrete use for computer calculations.

So far, only the Rubio—Sergeraert solution has led to a reasonably complete computer
program which has been used in significant cases. The main tool is standard algebraic
topology combined witiunctional programmingnd Section 3 uses a didactic example to
explain how a functional programming method can be used to obtain efficient algorithms,
even for solving problems where there is a function neither in the input nor in the output.

The main ingredient in our solution is the notionatfject with effective homolog8uch
an object is a subtle combination via chain equivalences of traditeffeadtiveobjects on
one hand, and of othéocally effectiveobjects on the other hand. Section 4 describes the
essential properties of these objects and what an object with effective homology is.

The main tools of basic algebraic topology, mainly the Serre and Eilenberg—Moore
spectral sequences, may then be rewritten in such a way they batgonghmscomputing
the desired homology groups when the necessary data are given; such a property does
not hold for the classical spectral sequences. Section 5 contains the main statements and
describes how they can be used for example to compute the homotopy groups of simply
connected simplicial sets with effective homology. A simple solution is so obtained for
the computability problem of homotopy groups; furthermore its scope is much larger than
Edgar Brown’s one.

Section 7 describes how these theoretical results led to a concrete program named
Kenzo! It is a Lisp program of 16000 lines (joint work with Xavier Dousson), now www-
available [11] with a rich documentation (340 pp.) written by Yvon Siret.

These results open new research fields; in Computer Science because of the original
type of functional programming which is required, but in theoretical Algebraic Topology
as well: the objects that are processed by the Kenzo program are much too complicated to
be studied by hand, specially aroualgebraic fibrations These questions are considered
in Section 8.

Finally Section 9 gives a few examples of calculations.

1 Kenzo is the name of the authocst and C.A.T.= Constructive Algebraic Topology; the next version of
our program will therefore be callegimba the daughter of Kenzo.
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1. Threeexamples

A preprint by Karoubi [14], distributed in 1993, begins as follows:

The problem of finding a “computable algebraic model” for the homotopy type of a
CW-complexX remains a widely open problem in topology.

The notion ofcomputable algebraic mod&r a homotopy type is not precisely defined
in the text, but taking account of the rest of the paper, and also of other related papers by
the same author, it is clear the following meaning is the right one:

Definition 1.1. A computable algebraic modé&r the homotopy type of a spacéis an
additional structuré{ over the chain comple&, X such that the paifC, X, H) “contains”
the homotopy type oX.

Two spacesK andY have the same homotopy type if there exist two continuous maps
f:X —>Y andg:Y — X such thatg o f and f o g are homotopic to identity maps;
from the point of view of Algebraic Topology, both spaces are “equal”, even if they are
quite different: for example a point and the infinite unit sph&?e c ¢2 have the same
homotopy type: this sphere is in fact contractible.

As usual, the additional dafd must benatural with respect taX, that is, the mapping
X — (C«X,H) should be a functor. Several contexts are possible. If the chain complex
C. X is thesingularchain complex, then it is easy to give the required additional structure
(the canonical distinguished generators, namely the singular simplices, and the simplicial
operators), but the singular chain complex is a functional space which is so enormous
that no program can handle it: the object so obtained iTaotputable The same in the
simplicial context as soon as the simplicial model is infinite, which is frequent. Karoubi
wants a chain complex of finite type in any dimension, for example the cellular chain
complexCC(x) if X is presented as a CW-complex of finite type in any dimension;
much information abouX is lost in this chain complex and Karoubi searches an additional
structure over this chain complex which captures the homotopy type aff least. The
structures studied by Karoubi intensively use the notionai-commutative differential
formsand are interesting, but to our knowledge, the goal defined by Karoubi is not yet
reached by his method.

In fact three solutions now exist for Constructive Algebraic Topology, and two of them
exactly have the form that Karoubi looked for. In Justin Smith’ solution [23,24], the cellular
chain comple>C§e”(X) is provided with am-structure which, in appropriate context, is a
computable algebraic model for the homotopy typeofin our solution, the same chain
complex is completed with two other chain complexes and a few operators which give the
same result. The solution by Rolf Schon [17] is not presented in this way but finally is
equivalent to both previous ones.

Let us quote now a paper by Carlsson and Milgram [6, p. 545] in James’ Handbook of
Algebraic Topology [13]:
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In Section 5 we showed that for a connected CW complex with no one cells one may
produce a CW complex, with cell complex given as the free monoid on generating
cells, each in one dimension less than the corresponding c#l) which is homotopy
equivalent to [the loop space &f £2X. To go further one should study similar models
for double loop spaces, and more generally for iterated loop spaces.

In principle this is direct. Assum& has nai-cells for 1< i < n then we can iterate
the Adams—Hilton construction of Section 5 and obtain a cell complex which represents
£2"X. However the question of determining the boundaries of the cells is very difficult
as we already saw with Adam’s solution of the problem in the special cas tisaa
simplicial complex withsk1(X) collapsed to a point. It is possible to extend Adams’
analysis ta22X, but as we will see there will be severe difficulties with extending it to
higher loop spaces except in the case whéee X"Y.

The paper by Carlsson and Milgram is an excellent presentation of Adams’ model for a
loop space of a simply connected CW complex and related questions. You see the authors
here consider a problem whose solutioprinciple is direct but newseverdifficulties are
soon announced which can in fact be overcome only if the siidnean iterate suspension
X,

In fact the actual problem is aomputabilityproblem. The following theorem can
easily be deduced from Adams’ construction. In the statement, the operdtas the
desuspension of the “augmentation ideal” : the base generator is removed and the degree
n of a generator becomes— 1; the operatof’ associates to a chain complex its tensor
algebra, another chain complex provided with a multiplicative structure.

Theorem 1.2. If X is a CW complex with on@-cell, without anyi-cell (1 <i < n), then
there exists for the chain complex

GnX — (Tg_l)n C;:ell(X)

a new differentiab such that the chain compl€x” X, §) is the cellular chain complex of
a CW model of the iterate loop spat¥ X.

Theexistencef the differentials can be easily proved thanks to Adams’ work about the
CW model of the first loop space (cf. also [2]), but the existence proofis not constructive: it
is made of a mixture of combinatorial and topological arguments and certainly there are at
least “severe difficulties” to translate the topological constructions into the combinatorial
constructions that are necessary if you intend to obtain a constructive existence proof for
the differentials. The problem ofterating the cobar constructiois theheartof Algebraic
Topology: the main computability problems can be reduced to this one, and it is not
amazing this problem is a little severe. The three current solutions [11,17,19,23,24] for
Constructive Algebraic Topology are firstly solutions for the problem of iterating the cobar
construction.

John McCleary tries in his book [15] to express the same idea in the context of spectral
sequences:
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[p. 6] “Theorem”. There is a spectral sequence V\BIP* = “something computable”

and converging to H*, something desirable. The important observation to make about
the statement of the theorem is that it givesanterm of the spectral sequence but says
nothing about the successive differentigls ThoughE;“’* may be known, withoud,

or some further structure, it may be impossible to proceed.

[p. 28] It is worth repeating the caveat about differentials mentioned in Chapter 1:
knowledge ofE;"* andd, determinesEj‘;["1 but notd, + 1. If we think of a spectral
sequence as a black box, then the input is a differential bigraded module, usually
EI* and, with each turn of the handle, the machine computes a successive homology
according to a sequence of differentials. If some differential is unknown, then some
other (any other) principle is needed to proceed. From Chapter 1, the reader is
acquainted with several algebraic tricks that allow further calculation. In the non-
trivial cases, it is often a deep geometric idea that is caught up in the knowledge of
a differential.

It is in fact again a matter of computability. The higher differentials of a spectral
sequence ammathematicallgefined, but, in most cases, their definitismotconstructive:
the differentials are natomputablevith the provided information. For example the result
of Adams’ work about the first loop space is nothing but an algorithm computing the
higher differentials and solving the extension problems at abutment of the corresponding
Eilenberg—Moore spectral sequence, thanks to the coalgebra structure over the initial
cellular chain complex. But this does not compute the coalgebra structure for the CW
model of the loop space so that you cannot continue: this is nothing but the “severe”
difficulty above observed by Carlsson and Milgram. See the nice work of Baues [2] to
go a little further, but this does not give a solution for the general problem of “iterating the
cobar construction”.

2. Three complete solutionsfor the computability problem

In fact three solutions are now available to work inanstructivecontext in Algebraic
Topology. This section describes the main ingredients of the solutions that are due to Rolf
Schon [17] and Justin Smith [23,24]. The rest of the paper is devoted to our solution and
the corresponding Kenzo program.

2.1. Rolf Schon’s solution

Schén’s solution [17] is a systematic reorganization of Edgar Brown’s special work
[3] around the computation of homotopy groups. Frequently in Homological Algebra, we
work with large chain complexes, the homology groups of which are of finite type; for
example the singular chain complex of a compact manifold is not at all of finite type, but
the homology groups of this chain complex on the contrary are. The same in a simplicial
context; for example a simplicigroupversion of the circles® necessarily has an infinite
number of simplices in any positive dimension, but the homology groups are null or with
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only one generator. When you work with the traditional tools of homological algebra, you
must frequently handle highly infinite chain complexes even if you know the final result is
of finite type.

Edgar Brown designed an approximation process which has been skilfully generalized
by Rolf Schon. LetX be a simplicial set, described as the limit of a sequéige of finite
approximations. Then the homology groif,(X) is the inductive limit of the groups
(Hp,(X3))n, so that the following definition could be useful.

Definition 2.1. A SchonZ-moduleG is a triple

(G0, @n)nz0. @),

where the following conditions are satisfied. Evéry is a Z-module of finite type, and
¢ Gp — Gyt is a morphism ofZ-module; the sequend&,, ¢,): G, — G,+1) iS an

inductive system and its limi& is again of finite type. The third componeantprecisely

describes how the limit is reached; N — N x N is as follows: ifx(i) = (j, k), then

i < j <k and the canonical morphism I&; — G is in fact an isomorphism:

Gj—>ImG,-CGk
ai|—>[ =] }
G

Theexistencef such a mag is implied by the finiteness property of the inductive limit
G which is assumed, but affectiveknowledge of this map is required. Because you do
not know a priori what approximations, of X will be later required for some calculation,
the valuex (i) must becomputabldor anyi. We call the maje theconvergence descriptor.
The books of Homological Algebra are full of theorems of this sort:

Theorem 2.2. There is an exact sequence

o> AL B CoS DS ES -

The underlying idea is that if you know th&-modulesA, B, D and E, then you
should be able to guess the unknown modull€f course you must in fact also know the
mapsf:A — B andg: D — E to determine the modules Cokgn and KeKg), giving a
simpler exact sequence:

0— Coker f) — C — Ker(g) — 0,

and now you could have an extension problem in front of you, about which the exact
sequence says nothing at all! The situation is analogous with the spectral sequences but
usually much more complicated. It was exactly the problem encountered by Serre when
he was looking for the groupsS2: the unknown group was in an exact sequence at the
end of a spectral sequence between two grdispandZs, and a new idea is necessary to
terminate.

On the contrary such a problem is entirely solved in the framework designed by Rolf
Schon. The situation is now the following: the modukesB, D and E are four known
Schon moduleghe map is in fact a morphism of inductive systems and in particular
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for everyn a morphismy, is defined satisfying the usual properties; the same between the
other components of the exact sequence. Fouttk@ownSchén module€”, the underlying
inductive system is known but its convergence descrifgarot. You know there is an
exactsequence between the limids B, C, D and E, but at thenth stage of the inductive
systems, you have only a “differential” sequence:

Al e, %D, 8 E,
where two successive maps have a null composition, but this sequence is not necessarily
exact.

(An, @n), aa i (j,k)
v (fn)
(B, @), ap i > (j, k)
L)

(&)
(D, ¥y, ap i (jk)
1 (8n)
(En, V), ag i (j, k)

Theorem 2.3 (Schon [17]). With the previous data, an algorithm can compute the
convergence descriptor of the intermediate Schén madule

Once the missing descriptag is available, then you can compute the lifiitBut, and
maybe this is more important, the processtable:the objectC = ((C,), (xx), @¢c) which
is returned by Schoén’s algorithm is again a Schén module and can be a part of the input
for another call of the same algorithm. Rolf Schén explains in his nice paper [17] how
this method allows to entirely transform classical Homological Algebra imtorstructive
theory.

To our knowledge, Schon’s work has not yet led to concrete machine programs. It
is a pity: his general framework is quite original and interesting with respect to what is
usually done in computational algebra. The opinion of the present author is that concrete
implementation of Schén’s results must absolutely be done and should give new insights
into several fields: at least in symbolic computation, in computational algebra and also in
algebraic topology.

2.2. Justin Smith’ solution

This second solution is quite different from the previous one. In a sense it is exactly
the solution of the problem stated by Karoubi (cf. Section 1). Kebe asimplicial
complex. The main problem in Algebraic Topology comes from the non-commutativity
of the Alexander—Whitney diagonal. If you intend to send an intehvahto the diagonal
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of a squard x I, using only the bisimplicial structure of this square, that is, usinly its
four boundary edges, then you can join one vertex to the opposite one turning around the
square in two different ways:

s

These paths are different but they are homotopic. This homotopy is quite important and
leads to this diagram:

Ce(X2) —2— Co(X) ® C(X)

R\L \ H\L
C.(X?) = Co(X) ® Ci(X)

The chain complexC,(X?) is obtained from the canonicaimplicial structure of
X2: on the contrary the other chain compléx(X) ® C.(X) comes from the canonical
bisimplicial structure of the same space. If for exampilés the intervall = [0, 1], in the
first case a square is presented as the union of two triangles joined along a diagonal; in the
second case no diagonal in the square, only the boundary edges, the square is simply the
product of two intervals. Both presentations are related by the Alexander—Whitney map
A. Furthermore both components &f can be swapped, and this leads to the vertical
canonical (different) mapg. Then the diagram is not commutativ:o 7 # 7 o A.
Nevertheless the homotopy operatoexplains both maps are homotopic. But the same
difficulty occurs now for the homotopyt which in turn is not compatible with the
symmetry of its source and its target, but again a homotopy can be constructed and so on.
This process roughly explained here for both factors works also for an arbitrary number of
factorsX” and all the homotopies are related by a very rich structure calsxhiyebra
structure with respect to the symmetric opefad

Using an appropriate modified model for the symmetric ope@dand also a
corresponding notion of coalgebra calledstructure, Justin Smith succeeded firstly in
iterating the cobar construction [23], and more recently [24] in proving that a chain
complex carrying amn-structure contains a homotopy type, so that such a structure can
be used as th&{ component (cf. Definition 1.1) for the computable algebraic model
demanded by Karoubi.

While preparing this paper, the second author received a message of Justin Smith
announcing a partial programming work was just starting around the symmetric operad
&. So that we can hope Justin Smith’ solution finally leads also to a concrete computer
program. The situation here is also interesting because of the original environment where
work is to be undertaken: it is probably the first time an operad structure is implemented.
Certainly, at least because they solve the same problem (!), Justin Smith’ program and ours
will be strongly related. Probably the structure of Justin Smith’s solution is richer than for
our solution; the latter works essentially like a blackbox, because of its highly functional
process which in a sense hides what actually happens during the execution. When both
solutions will be available, determining what exactly the relations between them are will
be still more interesting!
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2.3. A quick sketch of the Rubio—Sergeraert solution

The nature of this “third® solution is not so far from Justin Smith’ one. In our
framework, any reasonable homotopy type is described as follows: firstly &fobain
complex of finite type in any dimensioBC,X is given; then a further structurk is
added to this chain complex in such a way a homotopy type is finally so defined; in fact
this homotopy type can be realized as a CW-complex, the cellular complex of which being
EC,X; it is well known this cellular complex does not define a homotopy type, but the
added structuré{ gives the missing information. What is quite original with respect to
the traditional organization in Algebraic Topology is the dedplyctionalnature of the
structureH, the main subject of the rest of this paper.

3. A didactic exampleof functional programming

We briefly recall in this section a typical situation where it is much better to work with
functional objects carrying an enormous information, instead of working with data close
to those that are looked for.

Let G be a finite graphG = (V, E); the setV is the vertex set and is the set of
the edges. Agood colouring of G consists in defining a colour for each vertex so that
two adjacent vertices have different colours. Theomatic numbely (G) is the minimal
number of colours that are necessary. It is not so easy to design a program computing this
chromatic number. The traditional backtracking methods work but are quite inefficient.

If you think of a recursive method, you cannot design such a method if you work only
with the chromatic number. Let € E be an edge between the vertiocgav € V. You
would like for example to deducg(G) from x (G’) whereG’ is the graphG without
the edgex. In fact two interpretations of;’ make sense. The first orie; has the same
vertex set asy, ande is simply removed fromE. The second interpretatiafi, consists
in collapsing the edge over one vertex coming for both verticesand w; in particular
if we previously had two different edges anduw starting from another vertex and
going respectively to andw, both edges give only one edged: both G-edges are now
identified in Go. For example ifG is a complete graph of order, thenG is the same
with only one edge removed, bGt, is the complete graph of order— 1. And very simple
cases show the knowledge g{G1) and x(G2) is not sufficient to computg (G): the
chromatic number does not contain enough informatineed more

AN

vw

IS
<
£
<

w

G Gl Gz

2 The first announcement goes back to 1987 [18]; the first computer program computing an iterate cobar
construction started in 1990 [16].
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Let us consider thehromatic polynomialPg (X); it is a polynomial with one variable
defined as follows: ifz is a positive integer, theRg (n) is the number of good colourings
of G that are possible with colours. Now the situation is good:

1) A recursive relation holds and it is simplg (X) = Pg,(X) — Pg,(X); in fact, let
us consider a good colouring @f1; then, depending on whether both coloursvof
andw are the same or not, you obtain a good colouringdgror G, and the relation
betweenPg, Pg, and Pg, follows; starting with graphs without any edge, you obtain
in particular thatPg actually is a polynomial!

2) The polynomialPg contains annfinite number of elementary data: how many good
colourings exist with 1 color, with 2 colours, and so on; we now have enough
information;

3) These data are coded ifitmctionalway: of course you cannot store in your machine
all the valuesPg (n); but it is sufficient to store the degree and the coefficientBaf
a polynomial is dinite object which is nothing but programready to compute the
value Pg (n) for every integen in theinfinite setN;

4) The chromatic numbey (G) is a by-productof the polynomialPg: it is sufficient
to computePs (1), P;(2), ..., until you find the first integer satisfying Pg(n) > 0;
theny (G) =n.

It is then easy to write down a recursive program computing the chromatic number;
it is more efficient than a program using backtracking, but however it has an exponential
complexity; the problem of finding a polynomial time algorithm computing the chromatic
number is open: it is a special case of the gendRatomplete problem.

Our solution for constructive Algebraic Topology is quite similar. The role of the
chromatic numbery (G) is played by areffectivechain complexEC, X, which is the
cellular chain complex of some CW-model of the homotopy type we intend to algebraically
define. The situation is the same: the information given in this chain complex is in general
too poor to process new objects deduced from this one and otheraged moreWe
will define new ingredients, in general containingiafinite number of elementary data
and which completely define a homotopy type; but these ingredients will be coded in
a functionalway so that a machine program will be able to handle them as easily as
polynomial$ and to compute the corresponding ingredients for a new homotopy type
constructed from others which were defined by means of such data.

4. Objectswith effective homology
4.1. Effective chain complexes
A chain complex is a sequence®fmodules and homomorphisms:

= Cr1 < Cp«—Cpyyg <+

3 At least if your programming language allows you to figectional programming
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where the composition of two successive arrows is null.

From now on 4.1. All the chain group<”,, of a chain complexC, arefree Z-modules with
distinguished basis.

In the following definition, the st is the “machine universe”: any machine objectis an
element of/; the set Listc U is the subset of alists, in other words the finite sequences
of elements ot/.

Definition 4.2. An effective chain compldg defined as a pair of algorithms:

o B:7Z — List;
e d:7 xU — List;

where:

1. The outputB(n) is the given basis of the fré&-moduleC,; this basis is a list and in
particular is finite;

2. Apair(n,g)isinZ x U if g is a generator of,,, that is, ifg € B(n);

3. The outputi(n, g) is a list representing the differentid|(g) € C,—1.

If an effective chain complex’, and an integer are given, a program can compute
the boundary matrices in dimensions+ 1 andn, and an elementary algorithm then
determines the homology grouf), (C.). Theglobal nature of an effective chain complex
C, is reachable for any dimensian

4.2. Locally effective chain complexes
Definition 4.3. A locally effective chain comple, is defined as a pair of algorithms:

e B/:Z x U — Boolean;
o d:7 xU — List;

where:

1. The outpup’(n, y) is the Boolean true if and only if the objegtis a generator of the
chain groupCy;

2. The sub-produck x i interpreted as in the previous definition and the differential
as well.

It is explained in the handbooks of set theory there are two different methods to define
a setS. You can give the element list &; in a computational framework, such a list is
necessarily finite. You can also define the Séty means of a characteristic property of
its elements. For example you can require an elemestwiust be an integer and must
be odd. Then such a set may be infinite. Do not object the set of actual elements that can
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actually be processed on your machine is finite; consider for example this Lisp definition
of the setNgqggq:

> (setf odd-integers
# (1 anmbda (object)
(and (integerp object)
(oddp object))))

This string of 82 characters is finite addfineghe infinite set of odd integers.

In the same way the generators of our locally effective chain complexes are defined by
means of a characteristic property, so that now our chain groups are not necessarily of finite
type. This looks like an advantage with respect to the notion of effective chain complex,
but there is an important drawback: in general no global information is reachable for such a
machine chain complex; in particular the homology groups in general are not computable.
This is an avatar of the main incompleteness theorem (Gdodel, Church, Turing, Post).
The key point of our solution for Constructive Algebraic Topology consists in combining
effectiveandlocally effective chain complexes, connecting thenréguctions.

4.3. Reductions

Definition 4.4. A reductionp: D, = C, between two chain complexes is a triple=
(f, g, h) where:

1. The componentg andg are chain complex morphisms
fiDy— Cy and g:Cy— Dy;

2. The componerit is a homotopy operatdr: D, — D, (degree 1);
3. The following relations are satisfied:

(@) fog=idc,; g0 f+dp,oh+hodp,=idp,;

(b) foh=0;hog=0;hoh=0.

In these formulas]p, denotes the differential of the chain compiBx. These formulas
have a simple interpretation: the chain compt&x the small one, is isomorphic to a
subcomplex ofD,, the big one, and a decompositidh, = C, & E. is given where
the summandt, is acyclic and provided with an explicit homological contraction. This
implies both chain complex&s, and D, have the same homology.

Frequently in our context, the big chain complB is locally effective, so that its
homology groups are not computable; on the contrary, the small chain cor@pléx
effective, so that its homology groups are computable. In such a situation, the reduction
can be understood as a provided description of the global homological propefigsiof
particular if you are interested by the explicit valueHf(D,), you can obtain the result
by H,(C,); furthermore an explicit representative for any homology class can be deduced
in D,; if z is a cycle ofD,, the homology class aof can be determined, and if null, a
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chainc € D, 1 can be found such thaftc = z. In a word you knoweverythingabout the
homological properties ab,.

Definition 4.5. An equivalences:C, <= E, is a paire = (p¢, pr) of reductionsp,:
D, = C,andp,: D, = E,.

Again, frequently the chain complex€s and D, are only locally effective and the
third oneE, is effective; so that the equivaleneelescribes the homological properties of
C, thanks toE,.

4.4. Objects with effective homology

Definition 4.6. An object with effective homologg a pair (X, e) where X is some
locally effective object and is an equivalence between the chain complex “canonically”
associated t&X and some effective chain complex.

The associated chain complex depends on the context. For exampls & simplicial
set, thenC, (X) could be the normalized chain complex defining its simplicial homology.
The simplicial setX should be also locally effective; in other words some algorithm is
given as the characteristic property of theimplices ofX; if o is such a simplex, another
algorithm can compute the facggo). The equivalence:

e CX) LD XX EX

entirely describes the homological propertiesXaf because the chain compléX. X is
effective. In general there is no way deducethis equivalence from the locally effective
objectX. Most often we start with effective objects where such an equivalence is trivial,
and also with special objects for which the particular situation gives such an equivalence;
the Eilenberg—MacLane spac&S, 1) are of this sort if the group is abelian of finite

type. Then theeffective homology versioof the “classical” construction methods of
Algebraic Topology allow you to obtain new objects with effective homology. For example
the Eilenberg—MacLane spadé(r, 2) is the classifying space of (7, 1), so that the
effective homology version of the classifying space construction, available in the program
Kenzo, will give you a copy oK (7, 2) with effective homology. You can trivially iterate

the process and obtain versions with effective homology of the Eilenberg—MacLane spaces
K (7, n)’s. Proceeding in the same way with the loop space construction, a very simple
solution foriterating the cobar constructiois obtained.

5. The spectral sequencesrevisited

Many constructions in algebraic topology can be organized as solutions of fibration
problems. In particular the classifying spad8® of a topological grougs is the solution
for a fibrationBG x; G where the fiber space is the given gradpthe base space is the
classifying spac®G and the producBG x G is twisted in such a way the total space
BG x; G is contractible. The same idea where the base spategiven and the fibre
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space is unknown leads to the loop sp&x¥ and the contractible total spadex, 2 X.
The handbooks of Algebraic Topology more or less explain the Eilenberg—Moore spectral
sequence can be used to “compute” the homology groups of the new db{gelisd 2 X
if the homology groups o& or X are known. In fact this spectral sequence is in general
unable to give you the new homology groups, unless you are in a very special situation.
The Serre spectral sequence works in the third situation, when you are looking for the
homology groups of a total spa&x, F if the homology groups oB and F are known;
but in general you meet the same difficulties with the higher differentials and the extension
problems at abutment.
The Serre and Eilenberg—Moore spectral sequencesdftaaive homologyersions
which work when the data are simplicial sets with effective homology. We detail a little the
organization and the proof for the Serre spectral sequence.

Theorem 5.1. There exists an algorithm

e Input: Two simplicial sets? and F' with effective homology and a twisting operator
defining a fibrationF — B x; F — B,;
e Output: A versionwith effective homologyf the total spacd = B x, F.

The same with the Eilenberg—Moore spectral sequences when you are looking for the
effective homology of the base spaBdresp. the fiber spack), if versions with effective
homology of the total spacg and the fiber spac& (resp. the base spa@ are given.

These effective homology versions of the Serre and Eilenberg—Moore spectral sequences
are available in the program Kenzo.

The main ingredient for the proof of the effective homology version of the Serre spectral
sequence is thBasic Perturbation Lemmib].

Theorem 5.2 (Basic Perturbation Lemmad)et p : D, = C, be a chain complex reduction
and ép, : D, — D, a perturbationof the differentialdp, satisfying the nilpotency
condition. Then a general algorithm can compute a new redugsio®, = C, where
the underlying graded modules &f, and D, (resp.C, and C.) are the same, but the
differentials are perturbed

dp, =dp, +ép,,
d(jjF ch* +éc,.

The perturbationSp, for the differential of the big chain complex given on the
contrary the perturbatiodc, for the small one i€omputedoy the algorithm. In a sense,
the perturbation of the big chain complex is ateduced.This is possible thanks to the
nilpotency condition: lek : D, — D, be the homotopy component of the reductigithen
the nilpotency condition is satisfied if the compositior: o §p, iS pointwise nilpotent,
that is,v” (x) = 0 for ann € N depending onx.

A typical application of the basic perturbation lemma is the following.T.et B x; F
be a fibration with the base spaBeand the fiber spacg. Let us assume two reductions
pB:C«(B) = EB, and pr : C«(F) = EF, are given, describing the homology of both
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spaces by means of tledfectivechain complexe& B, andE Fy; then it is easy, thanks to
Eilenberg-Zilber, to computerson-twistedoroduct reduction:

o5 X pr:Cs(B x F) = EB, ® EF,.

The underlying graded modules6f(T) = C.(B x; F) andC,(B x F) are the same but

the differentials are not; the difference is a perturbation of the big chain complex. If the base
spaceB is 1-reduced (no edge, the geometry begins in dimension 2), then the nilpotency
condition is satisfied and applying the Basic Perturbation Lemma gives a reduction:

pr :Ci(T)=Cyx(B x: F) = EB, ®; EF;

which describes the homology of the total space of the fibration by means of a twisted
tensor product of the chain complexe8, andE F.

This was already done by Shih [22] and the present work about effective homology
is nothing but the following remark: if functional programming is used, then Shih’s
presentation of the Serre spectral sequence becomakyarthm computing a version
with effective homologgf the total space of a fibration if analogous versions of the fibre
and base spaces are given, at least if the base space is simply connected. It is a little more
complicated but not very difficult to process in the same way the Eilenberg—Moore spectral
sequences to compute a version with effective homology of the base space or the fibre space
if such versions of both other components of the fibration are given.

6. Computing homotopy groups

Theorem 6.1. Let X be al-reduced(one vertex, no edgesimplicial set with effective
homology. Then the homotopy groupskoére computable.

This is a strong generalization of Edgar Brown'’s theorem about the computability of
homotopy groups of finite 1-reduced simplicial sets [3]. Furthermore our proof is not
difficult and leads to concrete programs actually computing the first homotopy groups of a
“reasonable” simplicial set; an example is given in Section 9.

Letr = 7, X the first non-zero homotopy group. Hurewicz’ theorem implies this group
is also the first non-trivial homology groug, (X, Z) = =, a group which is computable,
becauseX has effective homology. Then a fundamental cohomology das$” (X, )
is defined, which in turn defines a canonical fibration:

K(m,n—1)— X,11 > X.

The groupr is of finite type so that starting frorK (77, 1) and using(n — 2) times the
version with effective homology of the Eilenberg—Moore spectral sequence gives a copy
with effective homology ofK (;r, » — 1). Then applying our version of the Serre spectral
sequence produces the total spaGe.1 of our fibration with its effective homology. This
total space is the same spaceXasxcept that thath homotopy group is nullr, X,, 11 = 0.
Applying again Hurewicz’ theorem t&,, 1 givesm, 11X = mp+1Xn+1 = Hy+1(Xn41, Z).
Iterating the process gives the result.
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This sequential process to compute the homotopy groups is known &ghitehead
tower. The dual proces@ostnikov tower)nay be used as well, computing also Pest-
nikov invariants.

7. The Kenzo program

TheKenzoprogram implements the main components of the organization that is roughly
described in these notes. It is a 16000 lines Lisp program, www-reachable at the address
[11], with a rich documentation (340 pp.). It can be used with any Common Lisp system
satisfying the ANSI nornf.A small typical demonstration is www-visible [11].

It seems difficult to realize the same work with another programming language. At least
for four reasons:

e The heart of our programming work is mainly devoted to complex functional
programming; this feature forbids to use the so called imperative languages such
as Gr+ or Java with which functional programming is theoretically possibieit
practically it is not.

e The structures of Algebraic Topology that are processed by the Kenzo program
are rich and complex: chain complexes, differential graded algebras, differential
coalgebras, differential Hopf algebras, simplicial sets, Kan simplicial sets, simplicial
groups, various morphisms between these objects, reductions, equivalences between
chain complexes. In the current context, the modern methods of Object Oriented
Programming (OORNust be usedn particular the multi-inheritance feature available
in Common Lisp is invaluable: for example a simplicial group is simultaneously a
simplicial set and a differential graded algebra, and these classes are both subclasses
of the class of chain complexes. In functional programming languages such as ML
or Maple-V8 the OOP tools that are provided are too weak (or lacking) to work
comfortably. On the contrary, from this point of view, Axiom would be satisfactory,
but....

e The time complexity of the algorithms implemented in the Kenzo program is high;
more simply, computing time is critical. Common Lisp is a stratified language where
the lowest level can be understood as the assembly language of a virtual machine
(functionscar, cdr, cons, ...) and the Lisp compiler produces very efficient
code for the low level functions. So that using this assembly-like language when
programming the kernel of a program is an excellent optimization tool. Furthermore
the powerful Lisp macrogenerator allows the user to define his own intermediate
language. Other good languages such as Axiom, ML, Maple have a too thick interface
between the machine and the user to be satisfactory from this point of view.

4 Mainly Allegro Common Lisp (cf. www.franz.com), LispWorks (www.harlequin.com) and Mac Common
Lisp (www.digitool.com).

5 All languages are “equivalent”.

8 Functional programming is available in Maple-V release 5.
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e Lispis one of the oldest languages still available and his enormous and well organized
package of predefined functions, for example to process lists, trees, binary numbers,
gives the user powerful tools again not available in the other current high level
languages, in particular when dynamically created functions are implied.

No particular difficulty has been met during the programming work. In particular, the
rigorousmathematicaldefinition of the virtual Common Lisp machine [8,25] gives the
programmer a safe and convenient framework.

8. New research fields

Variousnewresearch fields are open by this work, in computer science and in “pure”
mathematics as well. Let us quickly describe two typical examples.

8.1. A new subject in computer science

A Kenzo computation of some homology group, for example a homology group of an
iterated loop spac#, 2" X is split in two steps:

1. Constructing a versiowith effective homologgf the loop space2” X; during this
step, an enormous set of functional objects, something like several hundreds or
thousands, are dynamically constructed. They are organized as an oriented graph
where the nodes are the functional objects and each piadeconnected to several
other nodesfi, ..., f, if a call of f requires the call off1, ..., fi, to be viewed as
auxiliary functions (subroutines), which in turn have other auxiliary functions, and so
on. But at this time these functions have not yet worked: the first step is in a sense
macrogenerationf object code;

2. When the computation d¥,£2" X is started, the effective chain complex correspond-
ing to 2" X is examined, two (finite) boundary matrices are constructed, and the ho-
mology group is computed. The construction of this boundary matrix is the problem
with “severe” difficulties mentioned by Carlsson and Milgram, see Section 1; the “pro-
gram” written in the step 1 now works and most functions are used.

This situation gives rise to a difficult and interesting problem of memory optimization.
When the functionf is called and some resuft(xy, ..., xx) has been computed, what
about the idea of storing the result? After all, and this is frequent, the same calculation will
be again required later. If the calculation is trivial, for example if the nfisip constant,
or if it is fast, storing the result is expensive in time and space. If on the contrary the
computation is long, it is better to store the result to avoid the repetition. But the decisions
that are to be taken are not independent from each other: if the calculatjow pis long
but amounts in fact to calculating (x), storing the resuljf1(x’) implies the calculation

7 In fact, this is an illusion: thanks to tf@osuremechanism, only an enormous set of pointers is installed.



J. Rubio, F. Sergeraert / Bull. Sci. math. 126 (2002) 389—-412 407

of f(x) becomes very fast! Furthermore, after a long wakperiencecan show that in
fact some stored result has never been reused, so that it could be thrown away? Yes, but
in general the program is unable to prove the result edgitainly not be re-used. It seems
clear only empirical methods can be applied, but nevertheless modelizing and studying
simplified models from this point of view should be interesting and useful.

In the Kenzo program, a small set of empirical methods are applied to decide when a
result is stored or not, but it is obvious we are far from the “best” choices.

8.2. A new research field in pure mathematics

The complicated calculations which may be undertaken with the help of the Kenzo
program give new insights into some fields. The following example is typicl.if a 1-
reduced (one vertex, no edge) simplicial set, the main result which was obtained by Adams
[1]8 towards the calculation of the homology grous2 X was a morphism of differential
graded algebras:

a:CobaF*(Z,7) — C.2X

which is a chain equivalence. In interesting cases, the soureeibf finite type. The
computation ofH,£2X amounts to considering the chain complex Céb4¢Z, Z) and

its finiteness properties make the homology groups computable. The Kenzo program
computes such a mapand also arexplicitinverse chain equivalence:

B:C.2X — Cobaf*X(Z, 7).

Once upon a time, a student implicitly used tigais also a morphism of differential
graded algebra. To persuade him he was wrong, the second author used the Kenzo program
to give him simple examples showing such a statement is not sensible, but he was rather
surprised: the map automatically constructed by the Kenzo program is, at least for the
numerous examples that have been tried, a morphism of algebra! In fact so many cases
have been computed that this is nowexperimentatdefinitive” fact. This is an amazing
strong version of Adams’ result: there exists a two-sided idéakhe algebraC, £2 X such
that Adams’ Cobar construction Cobaf (Z, Z) is nothing but the quotier@* 2 X /1.

This became the main research subject of this student. Several interesting results in
this direction have been obtained, but at this time, the complete result has not yet been
proved. In particular it was completely obtained if a new differential is installed on
Cobaf*X (2, Z), but it is not clear what the status of this new differential is. See [9,10].

Other amazing experimental results of this sort have been obtained, in particular around
the canonicahlgebraicfibration:

Cif2X > X ®;Cy2X — X.
This is thealgebraicversion of the co-universal fibration:

22X — PX — X,

8 See also [6] for an excellent recent extensive study of the subject.
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where the fibre space (resp. total space) is the loop space (resp. the path space) of the
pointed space&. The path space is contractible: it is a “unit” space and in a sende,

is an inverse space of. In the same way, the twisted tensor proddc®, C.22X is

acyclic and an explicit contractionof this chain complex plays a capital role in effective
homology. Theexistenceof this contraction is known for a long time [4], but the explicit
Kenzo computation ok shows very surprising properties, which imply we are far from
mastering the underlying algebraic structure. Let us recall the loop space construction is
the heart of Algebraic Topology and that many problems can be reduced to problems about
loop spaces; they weisventedby Jean-Pierre Serre fifty years ago for this reason.

9. Examplesof calculations
9.1. Hs23Moore(Zy, 4)

Carlsson and Milgram explain in the paper quoted in Section 1 the computation of
H,2"X may be undertaken iX is a suspensioX = §"Y; then the homology groups
H.2"X are entirely determined by the homology groufsY thanks to a process
where the Dyer—Lashof homology operations play the main role, see [6,7]. For example
the Moore space Moo(E,, 4) is nothing but the third suspensici? P2R, so that the
homology groups, £23 Moore(Z,, 4) are entirely determined by the well known groups
H,.P?R = (Z,75,0,0,...). The best specialists have been questioned and so far they have
not yet been able to compute for examples22 Moore(Z,, 4).° With the Kenzo program
the Moore space Moo(&,, 4) = S2 P2R is constructed as follows:

USER(3): (setf noore-2-4 (nmoore 2 4))
[KI Sinplicial-Set]

The (sub-) statementrpore 2 4) constructs the Moore space and the statement
(setf ...) assigns the result to the symbmbor e- 2- 4. Lisp explains the result is
the Kenzo object #1[(KI . ..]) and this object is a simplicial set. Then the third loop
space is constructed and the result is assigned to the syrBbafoor e- 2- 4:

USER(4): (setf 03-npore-2-4 (|oop-space noore-2-4 3))
[ K30 Sinplicial-Goup]

This time, the result is a simplicigiroup.And the groupHs23X = zg is obtained in
one minute:

USER(5): (honol ogy 03-noore-2-4 5)

Conputing boundary-matrix in di mension 5.
Rank of the source-nmodule : 23.

9 In a case, two different (1) results were successively proposed but both were wrong
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;; Clock -> 1999-08-10, 14h 19m 56s.

[... ... Lines deleted ... ...]
Conputing boundary-matrix in di mension 6.
Rank of the source-nodule : 53.

[... ... Lines deleted ... ...]

Honol ogy i n dinmension 5

Conponent Z/ 27

Component Z/ 2Z

Component Z/ 2Z

Component Z/ 2Z

Component Z/ 2Z

---done---

;; Cock -> 1999-08-10, 14h 20m 50s.

The Kenzo program has constructed a chain equivalence between the highly infinite
chain complexC,.£23X and an effective on& C,, which for example has 53 generators in
dimension 5. The boundary matrices can be computed and the corresponding homology
group is obtained.

9.2. A CW-model fof23(P®R/P3R)

Let us now consider an example where the Kenzo program overcomes the “severe
difficulties” quoted by Carlsson and Milgram, see again Section 1. In a sense, the first
case where their proposed methods fail is the following: what about a CW-modePfor
whereX is the quotientX = P®°R/P3R? Let us construct such a model with the Kenzo
program; the spac¥ is constructed as follows:

USER(6): (setf p4 (r-proj-space 4))
[ K405 Sinplicial-Set]

The statementr(- pr oj - space 4) constructs the infinite real projective space
“pbeginning” only in dimension 4, that is the required quotignt PR/ P3R. The third
loop space is constructed as before:

USER(7): (setf o3p4 (|l oop-space p4 3))
[ K434 Sinplicial - Goup]

The Kenzo objecb3p4 is a simplicial group with effective homology and tbfective
associated chain-complex can be extracted:

USER(8): (setf eff-chain-conpl ex-of-03p4 (echcm o3p4))
[ K794 Chai n- Conpl ex]
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You see 794- 434— 1 = 359 other Kenzo objects (chain complexes with various added
structures and chain complex morphisms) have also been constructed to obtain the result.
The boundary matrix in dimension 5 of this effective chain complex is computed by the
Kenzo program in 30 seconds:

USER(9): (chcm mat eff-chai n-conpl ex-of -03p4 5)
Conputing boundary-matrix in di mension 5.

Rank of the source-nodule : 33.

;; Clock -> 1999-08-10, 14h 22m 30s.

[. ... Lines deleted ... ...]

- Cl ock -> 1999-08-10, 14h 22m 57s.

L1=[ Cl=-2]

L2=[ Cl=- 1]

L3=[Cl=-4] [C2=1] [C3=-1] [C4=-2]

L4=[ C2=1] [C3=-1] [06=2]

L5=[ C1=6] [ C4=1] [ C6=1]

L6=[ Cl=4] [C4=4] [C6=4] [C7=3]

L7=[ Cl=4] [Cl2=-2] [Cl4=2]

L8=[ C1=6] [ C4=1] [ C6=1]

L9=[ Cl=4] [CA4=4] [OC6=4] [C7=3]

L10=[ C8=4] [Cl0=I] [Cll=-1] [Cl4=-4] [Cl5=-2] [C20=-2]

L11=[ Cl=4] [C8=4] [Cl0=1] [Cll=-1] [Cl6=-4] [Cl8=-1]
[C19=1] [C23=-2]

L12=[ C12=4] [Cl3=2] [Cl6=-4] [Cl8=-1] [Cl9=1] [C27=-2]

L13=[ Cl=-1] [C20=4] [C21=2] [C23=-4] [C24=-2] [C27=4]
[ C28=2]

========== END- MATRI X

You must read the result as follows: the non-ml} terms of the matrix are; 1 = -2,
az1=-1,...,a1328=2. Thisis a computer-aided proof that there exists a CW-model for
23X with in particular 13 4-cells and 33 5-cells. This is an easy consequence of Adams’
Cobar construction, but the severe difficulties about the differentials are here solved. In
particular the boundary of the first 56 ceﬁ is del = —2e1 — e2 4e3 + 6e5 + 4e6 +
4e7 + 6e8 + 4e9 + 4e e13 This defines only the homology type of the attaching map
for e?, but the rest of the Kenzo object contains alsdisnotopytype.

9.3. 75(253 Uy €)

The Kenzo program may compute the first homotopy groups ddrhitrary simply
connected simplicial set with effective homology. Our last example of Kenzo computation
shows the calculation ofs(£2 S2 Us ¢3): a 3-celled is attached to the loop spazs® by
amapse® = §2 — 252 of degree 2. The spacé = 252 U, ¢, calleddos3 below, can
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be constructed by a process which is not necessary to detail here and which finishes as
follows:

USER( 13): (setf dos3 (disk-pasting os3 3 'new faces))
[ K826 Sinplicial-Set]

In principle the groupH2X should beZs:

USER(14): (honol ogy dos3 2)

Comput i ng boundary-nmatrix in di nension 2.
[... ... Lines deleted ... ...]

Honol ogy i n dinmension 2 :

Component Z/ 2Z

---done---

and the notion of a canonical cohomology class in dimension 2 is defined; the Kenzo
program can construct it:

USER(15): (setf ch2 (chm -clss dos3 2))
[ K947 Cohonol ogy-Cd ass (degree 2)]

The canonical fibratioX (Z2, 1) <— X3 — X induced by this cohomology class is then
constructed, and the total space of the fibration is extracted:

USER(16): (setf f2 (z2-whitehead dos3 ch2))
[ K962 Fi brati on]

USER(17): (setf X3 (fibration-total f2))

[ K968 Si nplici al - Set ]

This is the beginning of the classical Whitehead tower, see Section 6. In particular the
group H3X3 = n3X3 = w3X can be computed; in fact the Kenzo program has applied the
version with effective homology of the Serre spectral sequence:

USER( 18): (honol ogy X3 3)

Comput i ng boundary-matrix in dinension 3
[... ... Lines deleted ... ...]

Honol ogy i n dinmension 3 :

Conponent 272/ 27

---done---

so thatr3 X = Zp. Continuing in the same way for the following stages of the Whitehead
tower, the groupg4X =7Z + Z4, 15X = Z‘z‘ are obtained in less than one hour.
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