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The question of computability in topology
is a delicate one.
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1 Introduction.

1.1 What does “constructive” mean?

It would not be reasonable to “recall” here what the constructive point of view is
when a mathematical theory is considered; examining the modern reference [52]
will show you the subject is rich. A simplified version, here sufficient, consists in
requiring that any construction process must lead to, or more simply must be, an
algorithm constructing the result when coherent data are provided; in other words,
it is a matter of computability. The theory can then be strongly modified.

The following example is striking: in ordinary mathematics, if an increasing real
sequence (xn) is bounded, this sequence has a limit `; from the constructive point
of view, a real number is an algorithm associating to the natural number i a ratio-
nal approximation pi/qi satisfying |pi/qi−pj/qj| < 2−i if i < j. Then, it is possible
to explicitly construct an increasing rational sequence (xn), explicitly bounded,
satisfying the following property: for every real number `, you can explicitly con-
struct a number N and a positive number ε such that n ≥ N ⇒ |xn − `| > ε;
in other words, the classical result about the bounded increasing real sequences
becomes strongly false. See the entry Specker sequence in the index of [52].

1.2 A new research field.

The evolution of Algebraic Topology with respect to the computability problem
is strange and this long introduction is devoted to clarifying a complex situation.
Several previous tentative versions of this paper have been processed by referees
and commentators in a rather amazing way; see [42]. This work concerns an
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actual research field; the first writings presented many defects for two reasons: the
subject is new and all must be invented about what a good writing style could
be; on the other hand, experience shows “standard” culture in computer science is
relatively poor among topologists and this favours numerous misunderstandings.
We understand the referees required to give an opinion on this work are a little
puzzled, but this does not excuse some pathological behaviours: the computability
questions, theoretical or concrete, put numerous colleagues into a strange state;
we must recall that, whatever the situation is, it is better to behave responsably
and, why not, friendly.

But the subject is not the ethology of our profession, it is mathematics. Imag-
ine a mathematical world where Arithmetic would be as you know it, with an
exception: if a random naturel number (say < 1010) is given, you would be in
general unable to determine its prime divisor set, that is, the first classical invari-
ant for a natural number; probably you would consider such a situation is rather
strange; instead of working on the large roots of the ζ function, maybe you would
find more urgent to design an algorithm to compute these divisor sets?

This is precisely the situation in Algebraic Topology. On one hand, a marvelous
work has been done in the last fifty years, an idea of which could be given by the
sections of [28]. Well, but let us suppose a random small 1-reduced1 simplicial set
(small could mean less than 50 simplices) is given; please, could you determine
the first homotopy groups of it? Noone knows today how to solve this problem.
Do not object this is an exercise theoretically easy, in fact tedious and without
real interest; this is false: the theoretical complexity of the solutions proposed
elsewhere, see below, their beauty also, refute such an appreciation. The goal of
the present paper is on the contrary to give a conceptually simple solution; but
the key concepts, namely the notions of locally effective object and of object with
effective homology, are new and obviously at the origin of our difficulties with the
previous referees.

1.3 Finiteness of homotopy groups.

It is elementary to prove the homology groups of finite polyhedrons are computable.
The problem begins to become serious with homotopy groups. The first progress
in this matter is the general finiteness result obtained by Jean-Pierre Serre [44]:
the homotopy groups of finite simply connected polyhedrons are of finite type;
more generally, the classical “reasonable” constructions of algebraic topology give
new spaces with invariants of finite type at least if the standard hypotheses about
simple connectivity are satisfied. Once the usual spectral sequences are available,
the result is obtained in a natural way, a so natural way that it can seem clear it
is a simple exercise to extend Serre’s results to obtain the corresponding results of
computability. In fact the subject is a little more complicated.

1Only one vertex, no edge.
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1.4 Computability of homotopy groups.

Two difficulties, very different from each other, are met to transform the spectral
sequences into algorithms. These difficulties, detailed later in the paper, are so
serious that Edgar Brown [11], proving the first and, for a long time, the only
actual result about the computability of homotopy groups, avoids using spectral
sequences! Furthermore, Brown declared in his introduction his method has only
a theoretical interest, because much too complicated to be concretely applied.
Such an appreciation is still valid forty years later, even with the most powerful
computers you could imagine. The question of a computation method which on
the contrary could be used in a significant number of cases remained open.

The paper of Edgar Brown is divided in two parts; the first one uses the
Postnikov tower method to process the case of simply connected simplicial sets
with finite homology groups; this means each homology group is really finite,
not of finite type: this first method does not work for the 2-sphere. The first
part is relatively easy and is essentially a nice consequence of Serre’s result about
the equivalence between finiteness of homology groups and finiteness of homotopy
groups. But how to process for example the case of the 2-sphere?

The second part of Brown’s paper undertakes a complex approximation work
to extend the result of the first part to simplicial sets with homology groups of
finite type, not necessarily finite. Actual programming of such a method, using
an algorithm of very dynamic style, would be a high level programming work.
No details about programming techniques were included in Brown’s paper; the
implicit hypothesis was the following: if a computing plan can be defined which
could be “obediently” followed by an arbitrary (!?) person, a program can be
written implementing it. The computing program of Brown consists in writing
definitions of finite simplicial sets, free Z-modules of finite type, computing kernel
and image of various homomorphisms, constructing new simplicial sets, and so on.
When Brown’s paper was proposed to2 the Annals of Mathematics, writing such
a machine program was theoretically possible, but the programming languages of
this time were much too poor for an actual work. Furthermore simple calculations
of time complexity prove such a writing work would not have given any serious
application. . .

1.5 Through a desert.

And the subject was abandonned for thirty years. During this time, an enormous
and wonderful work was undertaken in algebraic topology in many fields, but the
problem of designing algorithms able to compute homological, homotopical, K-
theoretical. . . invariants for a significant number of arbitrary data was not really
considered.

2And accepted by.
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1.6 Homology of loop spaces.

A consequence of Serre’s discovery about the essential role of loop spaces soon
led Frank Adams to define the cobar construction [1]; after all this construction
is nothing but an algorithm allowing one to compute the homology groups of a
loop space, when a model of the initial space with an Alexander-Whitney diagonal
(natural coalgebra structure) is known. If this construction could be iterated, a
solution for most of the computability problems in algebraic topology would be
available, but the cobar construction does not carry a natural coalgebra structure
and the problem of iterating the cobar construction then became an essential
obstacle.

1.7 The second cobar construction.

Twenty-four years passed before Hans Baues finds a solution for the second cobar
construction, based on a nice geometric interpretation of the first cobar construc-
tion [8, 9]. But this second cobar construction cannot be iterated either! Iterating
the cobar construction undoubtedly seemed a hard problem.

1.8 How to understand David Anick.

A little later, David Anick obtained negative results about computability in al-
gebraic topology [4]: for example computing homology groups of ΩX, where X
is a finite simply connected simplicial set, is at least NP -hard3. Such a result
is usually understood as follows: the considered problem is so complex that no
algorithm can be used for a large number of cases, so that trying to find such an
algorithm in order to use it is wasting time. But this appreciation is erroneous for
at least three different reasons.

On one hand, the comparison problem between the NP and P -complexities
is today open. The statement of this problem is outstandingly simple and its
practical importance is enormous: most of the (secret) coding methods would
become dangerous if ever the complexities P and NP were proved equal; in fact
P = NP would imply the usual codes can be more or less easily broken! Every
mathematician having understood the problem considers it is the most important4

one in the mathematical landscape of today. It is generally conjectured that P 6=
NP , but if P = NP , Anick’s objection5 disappears. And this situation on the
contrary gives further reasons to study algorithms computing homology of loop
spaces; after all, the topological framework, rather original with respect to what
is usual in computer science, could give new insights into the problem P vs NP .

3The reference [24] gives the basic informations about NP -complexity (non-deterministic
polynomial time complexity).

4Important does not necessarily imply difficult.
5To our knowledge, David Anick never objected anything on this subject; this is only a

shorthand for the more precise expression the objection you could state according to Anick’s
result.
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On the other hand, saying an algorithm with non-polynomial time complex-
ity has no interest is a little ridiculous. Many undefined or unknown “constants”
take place in these questions of time estimates, which often remove any inter-
est from these appreciations. Numerous polynomial algorithms have never been
implemented because evidence shows time saving would be negligible or even neg-
ative for actual problems. Conversely the algorithms determining Groebner basis
for polynomial ideals have a hyper-exponential complexity; however an enormous
work has been devoted to them; is it an error? Anyway even if theory and/or ex-
perience would show an algorithm is without any practical use, this algorithm is a
mathematical object a priori as interesting as any other6: for example the problem
P = or 6= NP is nothing but a mathematical question about the most classical
exponential algorithms; the problem is open, which means these algorithms have
deep mathematical unknown properties. As to the practical point of view, we give
also in this paper a few interesting results about the twisted Eilenberg-Zilber the-
orem which have been experimentally discovered thanks to our hyper-exponential
algorithms.

Furthermore the negative result of Anick artificially favours one parameter of
the problem and does not consider another one, in fact more important from a
practical point of view. Let X be a finite simply connected simplicial set and
n an integer. Anick proved computing HnΩX is NP -hard with respect to the
pair (X,n); on the contrary if you fix n, it is not hard to prove that, if you use
the right algorithms to reduce integer matrices (see for example [6]), then the
Adams algorithm has polynomial time with respect to X. This paper7 gives the
same result for πnX: for n fixed, these groups can be computed in polynomial
time with respect to X; these algorithms therefore satisfy the sacrosanct rule and
can be officially declared interesting to be studied. And so we are closer to the
original goal of algebraic topology: classifying arbitrary spaces. Of course these
considerations do not reduce the interest of Anick’s nice results which in fact should
be reinterpreted as follows: in studying the complete calculation of πnX, instead
of considering arbitrary big values for n, you should bound the n parameter and
consider πnX mainly as a function of X8.

1.9 Schön’s inductive limits.

The beginning of the story, up to 1985, is therefore mainly Serre, Adams, Baues and
Anick. From this time, several people considered again the general computability
problem in algebraic topology. See the papers by Smirnov [46], Schön [40], Justin
Smith [47] and the second author of the present paper [41].

Schön’s solution consists in replacing the usual five lemma by an effective one.
The traditional five lemma gives a short exact sequence 0 → A → X → C → 0

6By the way, Adams’ cobar construction is an algorithm with exponential time complexity;
no interest there?

7And also [46, 40, 47], see later.
8The best later results due to David Anick concern on the contrary the large values of n [5]!

No contradiction here: no algorithm computing πnX in [5].
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where the Z-modules A and C are known and X is the Z-module to be determined.
Nothing is usually given for the solution of the possible extension problem when
A and C have torsion. Various considerations sometimes allow to solve it if the
situation is not too complicated, but when large intricate sets of five lemmas are
involved, for example when processing a spectral sequence, no algorithm is known
to conclude9. Schön replaces the Z-modules by strongly structured inductive limits
of Z-modules — let us call them Schön modules — and then proves an effective
five lemma in this situation: an algorithm working on the given Schön modules
A and C constructs the unknown one X; this is Schön’s main tool, with which
he transforms every classical exact or spectral sequence into an effective method
computing the unknown object even when complicated torsions take place. The
approximation process of the inductive limit by terms of the defining sequence is
an elegant, tricky and powerful extension of Edgar Brown’s method.

It is not at all obvious how to implement on a theoretical or concrete machine
the Schön modules. It is not common in programming to install on a computer an
infinite inductive system of Z-modules, moreover in a dynamic framework: during
runtime, new large sets of Schön modules must be constructed, which will construct
other ones and so on; and an enormous work must be undertaken before seeing
the nice results of Schön transformed into concrete programs; no indications about
programming techniques are given in [40]. In fact, the most modern techniques of
functional programming are needed to program Schön algorithms and at this time
these techniques are not very known among the topologists. The field so opened
by Schön is fascinating and studying it should be a major subject for the next
years.

1.10 Operads.

The papers by Smirnov [46] and Justin Smith [47] are very different from Schön’s
one. Both use essentially the same tool: if X is a simplicial set, using the geometric
nature of X, it is possible to considerably enrich the structure of the chain complex
C∗(X) up to installing a “coalgebra” structure with respect to some particular
algebraic operad. If a “reasonable” geometric construction GX is made starting
from X, for example the loop space construction, then the information available
on the “coalgebra” C∗(X) is sufficient to construct a new chain complex C∗(GX)
having the right homology type and, much more important, to install on it an
analogous structure: the chain complex C∗(GX) then has the right homotopy
type; so that the process can be iterated; a solution for the essential problem
of iterating the cobar construction is so obtained. The coalgebra structures of
Smirnov and Smith can be considered as a large and complete extension of the
Steenrod cohomological operations. This short summary gives a weak idea of the
complexity of their method.

9The Bockstein spectral sequence is not an answer: the problem is so better structured, but
now transferred to its differentials.
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1.11 Schön vs Smirnov and Smith.

How to compare Schön’s solution on one hand, Smirnov and Smith’ solution on
the other hand ? The last ones are relatively sophisticated; the operads to be used
and the “coalgebras” with respect to them are algebraic objects which carry ex-
tremely rich structures: such a structure is a homotopy type; in other words these
structures are a perfect solution for the problem of algebraic topology; topology
is entirely transformed into a subdomain of algebra. On the contrary, once you
can handle on your machine the Schön modules, his method is rather elementary
and its complexity comes only from the large set of objects to put together before
seeing a concrete result. But Schön, Smirnov and Smith have not yet considered
at this time an actual implementation work, so that the readers of their papers are
left a little unsatisfied. But each thing in its proper time: their work is essential
and opens large interesting new fields.

Another comparison must be done; Smirnov and Smith’ solutions do not need
functional programming. In a sense their solution is the canonical one if you want
to use only standard programming. Roughly speaking, things are as follows: many
different constructions can be undertaken if you start of a simplicial set X with the
chain complex C∗X. Then, when C∗X is provided with the coalgebra structures
defined by Smirnov and Smith, you have a complete data base allowing you to
answer any homological further question coming from a geometric construction.
It is a question of resolution: the situation is analogous to the one which is met
when you install the bar-construction for a group G: this unique object contains
an answer for any particular homological question concerning a G-fibration: a
resolution is nothing but an initial object in an appropriate category.

The gigantic size of Smirnov and Smith’ operads and coalgebras seems to be a
serious obstacle for a concrete use; but these sophisticated objects can be coded in
a functional way! A wonderful work field is in front of us here, and it is much too
early to appreciate the concrete efficiency of their methods; anyway, the strongly
structured style of their organization is a sufficient reason not to give up their
point of view.

1.12 Our method.

Our method is very different, from any point of view. The idea consists in working
as close as possible to the original scheme due to Serre. So that the question is
the following: how to process in order to transform the classical spectral sequences
into effective methods, without using complicated objects as Schön modules? Two
essential tools are used, which perfectly complete each other. These tools are
curiously known for a long time: the first one (perturbation lemma) is known
since 1962, and the second one (functional programming), strictly speaking, since
1936! The unique original idea here consists in putting together these essential
tools; the result is soon obtained.
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1.12.1 The perturbation lemma.

The homological perturbation lemma is an elementary but powerful algorithm
which can be used in the following situation: let h be an explicit chain equiv-
alence between two chain complexes h : C1 → C2; let us suppose a perturbation
δ1 of the differential d1 of C1 is also given, defining a new chain complex C ′

1, with
the same underlying graded module, but the new differential d1 + δ1. Then, if
some smallness (nilpotency) hypotheses are satisfied, it is possible to perturb the
whole object h to obtain a new chain equivalence h′ : C ′

1 → C ′
2; it is an implicit

function theorem: the relations satisfied by h are strong and determine how the
whole object must evolve to follow the evolution of one of its components. The
prototype example is the case where C1 is the chain complex of a non-twisted
product, and the perturbation δ1 comes from a torsion of the product, defining
a non trivial fibration; then C ′

1 is the chain complex of the total space of this
fibration. If C2 describes the homology of the non-twisted product,then the new
complex C ′

2 describes the homology of the twisted total space [45].

1.12.2 Functional programming.

The homological perturbation lemma is known for a long time and took its defini-
tive form thanks to Shih Weishu [45] and Ronnie Brown [13]. The previous use
which is the closest to ours is due to Victor Gugenheim [26]; we shall detail in due
time the point reached by Gugenheim and the reason why his work did not give
a solution for iterating the cobar construction. We shall explain how functional
programming gives the ideal tool to extend Gugenheim’s work up to a theoretical
and practical solution for the iterated cobar construction.

Note also a spectral sequence is nothing but the by-product of the homological
perturbation lemma, if functional programming is not available.

It is difficult to integrate this computer science10 tool into a work of topology,
and also to persuade colleagues that a solution of a purely topological problem,
namely how to iterate the cobar construction, can be obtained in this way. This
point is the most original part of the present paper. The sections 3 to 8 of the paper
are devoted to this technique, finally organized around an appropriate terminology.

We have previously explained Schön’s solution also needs functional program-
ming, though the author does not give any explanation about. On one hand
our functional technique is significantly simpler: it is only a question of macro-
generation; this means runtime is precisely split into two steps: during the first
one a (complex) work of automatic program writing is undertaken, but during

10Let us recall that theoretical computer science is a subdomain of mathematics; more precisely
the negative answer to Hilbert’s conjecture (Entscheidungsproblem) comes from the following
inverse inclusion relations: on one hand, “computer science” ⊂ “mathematics”; on the other
hand, “mathematics” ⊂ “computer science”. Turing invented computer science in general and
in particular discovered these relations; it was not easy for the 1954 Fields Medal Jury to realize
the case of Turing had to be seriously considered; the fantastic importance of his work, concrete
as well as theoretical, will have been recognized only many years later. Alan Turing committed
suicid in June 1954, see [27].
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the second step, only ordinary calculations are done. On the contrary in Schön’s
computing plan, functional programming must constantly be used up to the end
of calculation. On the other hand, our technique is certainly the closest to the
traditional organisation of algebraic topology, so close that some renowned but in
this case superficial commentators [42] did not hesitate to publicly declare there
is nothing new here; an amusing story.

Finally the relationship between our method and those of Smirnov, Justin
Smith and Schön can be quickly described as follows. Without functional program-
ming you must use the terrible resolutions of Smirnov and Justin Smith; if you
use the functional programming tool, more elementary solutions can be designed;
the first one is due to Schön, which is not so simple; but, if you systematically use
functional programming, you can go much further and design a solution extremely
close to traditional algebraic topology.

1.12.3 Locally effective objects.

A locally effective object is a set of algorithms modelizing in a locally effective way
a mathematical object such as a chain complex or a simplicial set. The “locally
effective” qualifier means these algorithms are in general unable to give you any
global information about the underlying object; for example it is not possible in
general to decide whether the object is trivial (null or empty) or not. The available
algorithms allow the user to get useful informations about some component or other
of the object. The underlying object could be a presumably enormous simplicial
set; no information is available about the real size of the simplicial set; but if
someone presents any simplex of this simplicial set, an algorithm can compute its
faces.

You have met locally effective objects for a long time. When you use a pocket
calculator to compute the product of two integers, you use a locally effective version
of the set Z of integers: your calculator is unable to give you any global information
about Z; but if you enter two particular integers m and n, it is able to compute the
product m×n; these integers are particular but also arbitrary11. We shall see it is
possible to install and use locally effective versions of the various enormous objects
which must be used to extend Gugenheim’s work, and in this way to iterate the
cobar construction.

The mandatory technique to implement these algorithm sets, whatever the
point of view you are interested in, theoretical or concrete, is functional program-
ming, that is, the wonderful tool invented essentially by Gödel, Church and Turing
to invalidate Hilbert’s conjecture about the existence of a universal algorithm solv-
ing any mathematical problem (Entscheidungsproblem). Church’s version of func-
tional programming, known as λ-calculus, led to one of the major programming
languages of today, namely Common Lisp, result of a long and hard work, see [49].
The authors used this programming language to concretely implement their the-
oretical method and to obtain in several particular cases unknown homological

11Except for memory size considerations.

9



groups. The interest of this program is detailed later in this section.

1.12.4 Objects with effective homology.

When the notion of locally effective object is available, it is elementary to define
what an object with effective homology is, and to use it. It is conceptually a mixed
object: on one hand a locally effective component codes the underlying and possi-
bly infinite object such as a simplicial set or a chain complex; on the other hand
an effective chain complex describes the homology groups of the other object; the
last component is a chain complex of free Z-modules of finite type, which is explic-
itly chain equivalent with the chain complex canonically associated to the locally
effective object: a (strong) chain equivalence is included in the object. If you are
interested in the homology groups, you can use the effective component: because
it is effective, global information is available and it is elementary to compute the
homology groups.

More important, if you use one or several objects Ai with effective homology
to construct a new locally effective object B, then the information available in the
Ai’s often allows you to complete B in order to make of it again an object with
effective homology. The process is stable and therefore can be iterated; in this
way, it is possible to iterate the cobar construction.

1.12.5 The present paper.

The status of the present paper with respect to [41]12 must be given. Strictly
speaking, nothing new here; all the main ideas were described in [41]. However, two
auxiliary tools are available here, which make considerably easier the exposition,
which should make also much easier the understanding.

The first tool is the EAT13 program [39], providing us with a concrete support
to our considerations about functional programming in algebraic topology. These
difficult questions, out of scope of “standard” programming culture, are the most
easily understood in front of a terminal screen, with the appropriate demonstra-
tion. A few people understood our work thanks to the demonstration logfile of [42].
But in the framework of a traditional paper, the exposition work is extraordinarily
difficult: the role of the time factor is essential in these questions and practically
impossible to explain in an ordinary text. The authors spent much work in the first
sections of the present paper making these questions as comprehensible as possible;
these didactical but in fact necessary sections could not be included in [41]: the
EAT program plays an important role in this connection, and was not available
during the writing of [41].

The second tool is the homological perturbation lemma. Its role was not yet
understood by the author when [41] was written and you can observe [41] does
not quote any paper about it. Again this tool makes much easier the exposition,

12Kindly published in Advances in Mathematics.
13EAT = Effective Algebraic Topology.
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so that we can easily include for example a complete re-proof of Edgar Brown’s
theorem about the computability of homotopy groups. Please compare to the
original proof by Edgar Brown to precisely appreciate the powerfulness of our
methods; note also the considerably larger scope of our result: it can be directly
applied to the simply connected simplicial sets with effective homology ; the finite
simplicial sets of Edgar Brown are a microscopic subclass. The same large class
is also covered by Rolf Schön’s result [40], but again compare the simplicity of
our organization with respect to Schön’s one. Similarly, before thinking that our
solution is too easy to attach to it much interest, please read the solutions due to
Smirnov [46] and Justin Smith [47]; their papers are interesting, and furthermore
you will then be able to judge will full knowledge of the facts.

1.13 The EAT program

.

The EAT (Effective Algebraic Topology) program [39] implements the ideas
of this paper about constructive algebraic topology, only in the particular but
essential case of iterated loop spaces. It is a 5,000 lines Common Lisp program,
which was written by both authors of the present paper, without meeting particular
difficulties; only a little patience was necessary.

1.13.1 Computing homology groups.

It is the first time such programs are written, and a large set of technical choices
have had to be done. The following story gives a good idea of the impor-
tance of technical and also theoretical options: we were interested by the group
H7Ω

2Moore(Z2, 4) because a loop space specialist explained a Z4 should be there.
In fact this group is Z2; the first computation for this group spent three days with
the good result; a few days later the first author found a theoretical bug in the
program. We were obliged to replace a program segment by another one, which
is significantly more complicated, so that we were surprised to see the result then
obtained in one day; moreover the result was the same14! We are still unable to
explain why the right program, which seems much more complicated than the first
one, gives a quicker result; probably the good algorithm in fact implies hidden
strong simplifications in intermediate results. A few months later the program
was entirely rewritten to integrate numerous improvements which became obvious
according to the experiences done. With the new version the same group is com-
puted in 10 minutes. Many further improvements remain to be installed in the
program.

The topologists are usually interested in results they are able to compute more
quickly than the program. And examples of this sort are numerous. For instance,
the paper [10] allows to easily calculate the homology groups H∗Ω2S3, but our
program has been unable to compute the group H8Ω

2S3: it then deads because of

14An explanation is given at the end of Section 14.3.
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lack of memory15. In 20 minutes, the EAT program computes the (right) H7. But
wait a moment, the comparison will soon be inversed.

Similarly, most of the observers declare not to be interested by the groups of
the form H∗ΩnΣnX: the classical papers [34] and [17] in principle allow to deduce
these groups from the homology of X. But experience shows this is not so easy:
our program computes for example H5Ω

3Moore(Z2, 4) in a few hours; no expert
has yet been able to give us the right result, and however the best ones have been
questionned; if this group had a real interest they would certainly find the good
result, but in such a case our program could be useful for a validity control, for
the final result or also for intermediate results as other experiences showed it.

But as soon as a group HnΩpX must be computed where X is not a suspension,
it seems noone can give an answer, even in simple situations. Let us quote the
recent paper by Carlsson and Milgram [14, p.545]:

. . . To go further one should study similar models for double loop
spaces, and more generally for iterated loop spaces. In principle this
is direct. Assume X has no i-cells for 1 ≤ i ≤ n then we can iterate
the Adams-Hilton construction of Section 5 and obtain a cell com-
plex which represents ΩnX. However, the question of determining the
boundaries of the cells is very difficult as we already saw with Adams’
solution of the problem in the special case that X is a simplicial com-
plex with sl1(X) collapsed to a point. It is possible to extend Adams’
analysis to Ω2X, but as we will see there will be severe difficulties with
extending it to higher loop spaces except in the case where X = ΣnY .

Let us explain a little bit more explicitly. The solution for ΩX is due to
Adams; a (sophisticated) geometrical solution can also be given for Ω2X based
on permutohedra, called Zilchgons in [14] (see also [9]). But no such solution
was previously known for ΩnX if n > 2, unless X = ΣnY . Instead of qualifying
the difficulties as severe, maybe it would have been a little more precise in a
mathematical text to explain the problem was simply open? In fact the papers
[46], [47], [40] and [41] (none is quoted in [14]) give a complete solution for this
problem and many others. The fourth one, the subject of the present paper, is so
far the only one which has been concretely applied, thanks to the EAT program.

Let us consider the following example which contains a few severe dificulties.
Firstly you attach a 3-disk to ΩS3 with a map of degree 2 to obtain X = ΩS3∪2D

3.
Then X is 1-reduced; what about determining the homology groups of ΩX? Those
of X are obvious: Z, 0,Z2, 0,Z, 0,Z, . . . It is easy to prove a cellular model for
X exists with one cell in even dimensions and a further cell in dimension 3.
Most think in this situation it is sufficient to apply Adams-Hilton (or equivalently
Eilenberg-Moore); the graded module underlying the cobar construction is obvi-
ous but some severe problems are met to establish the right differential. Several
loop space specialists have been questioned and so far none succeeded in giving

15This group is in fact Z2 ⊕ Z30, see [10].
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an algorithm computing the desired homology groups. It is elementary with the
EAT program to construct a version with effective homology of ΩX, and then the
effective component can give the wished homology groups; of course time com-
plexity is hyper-exponential but the EAT program computes HnΩX for n ≤ 7 in
twenty minutes (one hour with a PC-Pentium 100 Mhz). More precisely, com-
puting H7(Ω(ΩS3 ∪2 D

3)) is exactly as easy with the EAT program as computing
H7Ω

2S3: the addedD3 somewhere in the construction does not significantly change
the computing plan.

1.13.2 More important.

Our experience shows the interest of such a program is not at all the computation
of some homology group or other16. Three more important reasons can be given
to devote some work to these programs.

• Locating an actual difficulty: a complete program computing some object
allows its user to analyse where the actual problem is; it it sufficient for such
an analyse to observe during long calculations what program segments are
most requested. From this point of view the striking fact brought to light
by our work is the following: the most important gap in algebraic topology
today is in the twisted Eilenberg-Zilber theorem [12]17. Our programs spent
a negligible time through Eilenberg-Moore, almost all the work is devoted
to compute the twisted Eilenberg-Zilber data. With the exception of the
fantastic paper by Szczarba [50], which unfortunately looks today rather
like a blind alley, no significant work has yet been devoted to the twisted
Eilenberg-Zilber theorem; it is an error18.

• Discovering experimental facts. As explained just before, the twisted
Eilenberg-Zilber theorem works today as a mysterious black box. Our pro-
grams allowed us to experimentally discover striking properties of this mys-
terious object; some of them are now proved, others remain unproved. A
section is devoted to these questions in the paper. They concern the deep
nature of coalgebra structures, not at all the value of some homology group.

• Theoretical computing tool. Our programs allow their users to handle the
traditional objects of algebraic topology: simplicial sets (finite or not), chain
complexes (of finite type or not), algebra and coalgebra structures, suspen-
sions, wedges, pushout (topological or algebraic), and so on, like with a

16Jean-Pierre Serre got his Fields Medal in 1954 not for having computed a few sphere homo-
topy groups: forty years later, noone knows an actual application; the interest of Serre’s work
was in the important(1) new methods which were necessary to reach them.

(1)At least in algebraic topology.
17Let us note it was proved by Edgar Brown, the only person interested by constructive

algebraic topology during the birth of algebraic topology.
18A referee transmitted a previous version of the present paper to another one, in particular

because he knew nothing about the twisted Eilenberg-Zilber theorem; we (sincerely) congratulate
him for his honesty.
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pocket calculator. Our programs are also a convenient tool to investigate
various properties of our usual objects. For example several complicated
formulas for important operators were so easily determined.

We must also remark a fourth type of use is important. The EAT program is an
excellent (mandatory?) didactical tool: most of people having so far understood
our work have attended some day an EAT demonstration. The hard work in this
paper is more or less to simulate a demo; not easy.

1.14 Conclusion.

The readers of this long introduction will have probably understood their authors
are amazed a so little work has so far been done in constructive algebraic topology.
It is true both subjects, algebraic topology and computability, are still among the
most difficult ones today and navigating in both simultaneously is not so easy. But
the authors witness it is fascinating. We hope the present paper will help other
colleagues to enter this nice field19.

1.15 Structure of the paper.

Section 2 roughly describes our general organization of Constructive Algebraic
Topology. The main obstacle is around functional programming, and Sections 3
to 8 are entirely devoted to this question. Section 3 presents, thanks to elementary
Lisp examples, what functional programming is. Section 4 uses the technique so
introduced to explain how it is then possible to handle infinite objects, such as
infinite simplicial sets, on a necessarily finite machine. Section 5 uses the examples
of Section 4 to explain the difference between a usual “mathematical” definition
and a constructive one. In a sense, Sections 3, 4 and 5 constitute a whole, based
on elementary Lisp examples.

Sections 6 and 7 introduce the EAT program, which will be used later to illus-
trate with numerous examples the various constructive results of the paper; main
theorems have a statement beginning by “An algorithm A can be constructed. . . ”;
many essential algorithms of this sort in fact are already constructed, and seeing
them working is certainly the ideal tool for understanding. Section 6 gives a gen-
eral presentation, and Section 7 focuses on loop spaces. Finally Section 8 defines
a new mathematical language, around the notions of effective and locally effec-
tive object (chain complex, simplicial set, etc.). Section 9 reconsiders the vague
definitions of Section 2, taking account of the precise mathematical language now
available. The results of the paper are now stated, they must also be proved; this
is much easier.

19This introduction would not be complete without quoting Jean-Pierre Serre declaring in
official circumstances that this work contains no theorem (sic); constructive algebraic topology
seems a little more difficult than Taniyama-Weil. See also Peter May’s opinion at [42]. These
friendly colleagues have not yet explained the reasons why Smirnov [46], Schön [40] and Justin
Smith [47] spent so much work proving their non-theorems.
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The main tool is the Basic Perturbation Lemma, a detailed proof of which is
the subject of Section 10. Mixing this “lemma” with the traditional organization
of spectral sequences, we obtain our various results all stated in Section 9; the
classical spectral sequences, Serre and Eilenberg-Moore, are now constructive tools.
Sections 11 to 21 detail the process.

Several sections from Section 10 to 21 end with a subsection entitled EAT
implementation, using what is available in the EAT program to help understanding
as far as possible; frequently, in these implementation sections, forward references
must be used: the EAT program is a whole, so that it can be impossible to illustrate
Section s without using what will be explained in Section s+s′; some redundancies
cannot be avoided in such a context; another consequence is that the illustration
of Section s+ s′ can be almost entirely given in Section s.

Finally, a few appendices give some complements.

2 General organization.

We present in this section, without precise definitions from the algorithmic point
of view, our general organization of constructive algebraic topology.

Every considered chain complex is a chain complex of free Z-modules, not
necessarily of finite type.

Definition 1 — A reduction is a 5-tuple (Ĉ, C, f, g, h):

Ĉ
h−→ Ĉ

f ↓↑ g

C

where Ĉ and C are chain complexes, f and g are chain complex morphisms, h is
a homotopy operator of degree 1; these data must satisfy the following relations:

1) fg = 1C ;
2) fh = 0;
3) hg = 0;
4) hh = 0;
5) 1 bC − gf = hd+ dh.

The morphisms f and g and the homotopy operator h describe the (big) chain

complex Ĉ as a direct sum of the (small) chain complex C and an acyclic direct

summand. More precisely, our reduction gives an explicit decomposition Ĉ =
ker(f) ⊕ im(g); the various relations satisfied by h express that h|im(g) ≡ 0 and
h|ker(f) : ker(f) → ker(f) is a homotopy contraction of ker(f). It is frequent but

not mandatory the big chain complex Ĉ is not of finite type, even if implemented
on our machine (“implemented” in short), and on the contrary, the small chain
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complex C is of finite type; in such a case, the homology of C is computable, the
homology of Ĉ is not, but the reduction is after all a chain equivalence between Ĉ
and C, so that the small complex C can be considered as describing the homology
of Ĉ.

Other authors call such an object a contraction or a retraction. We think such a
terminology is not appropriate, because the claimed contraction does not concern
topological objects, but only algebraic ones; in general the chain complexes C
and Ĉ do not carry a simplicial structure. So that the classical algebraic name
reduction is the right one.

Definition 2 — A homotopy equivalence between two chain complexes C1 and
C2 is a pair of reductions:

Ĉ
ρ1 ↙ ↘ ρ2

C1 C2

If C1 and C2 are free Z-chain complexes, a usual chain equivalence between
them can be organized in this way. Frequently the chain complexes C1 and Ĉ are
not of finite type and on the contrary the chain complex C2 is of finite type; its
homology is computable, so that C2 can then be understood as a description of
the homology of C1. The chain complex Ĉ is only an intermediate object.

Note we already contradict our theory about what a right terminology should
be. Our “homotopy equivalence” is strictly algebraic, and would be better called
something like a strong chain equivalence, but it is a little lengthy and we prefer
“homotopy equivalence”.

Definition 3 — An object with effective homology is a 4-tuple (X,C,EC, ε)
where:

1) X is an object;
2) C is the chain complex canonically associated to X;
3) EC is a chain complex of finite type (EC = effective chain

complex);
4) ε is a homotopy equivalence between C and EC.

For example X could be a simplicial set (and C = C∗X), or a group (and
C = C∗(BX)), or even a chain complex (and C = X). Usually, the homology
groups of a simplicial set X are simply the homology groups of C∗(X), but we
will frequently meet situations where X is an implemented infinite simplicial set;
a machine program can then construct the associated chain complex C∗(X), but
its homology groups are not computable. A simplicial set with effective homology
contains also a chain complex EC of finite type having the right homology groups
and a homotopy equivalence between EC and C∗(X). If you are interested by
the homology groups of X, you can compute the homology groups of EC. The
explicit homotopy equivalence ε will be the main tool allowing us to transform
the usual spectral sequences into actual algorithms computing homology groups
of new objects.
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Meta-theorem 4 — If a “classical” exact or spectral sequence “describes” the
homology groups of a new object X constructed from given objects X1, . . . , Xn,
then a general algorithm can work on implemented objects with effective homology
(X1, C1, EC1, ε1), . . . , (Xn, Cn, ECn, εn) to construct a corresponding object with
effective homology (X,C,EC, ε).

So that if you are interested by the homology groups of X, it is sufficient to
compute the homology groups of EC, that are computable. More important, if
you intend to use X to construct a new object Y , an algorithm can use the version
with effective homology of X to obtain such a version for Y : the process can be
iterated, and in this way we can obtain for example the homology groups of an
iterated loop space of a sufficiently connected space X, even if the initial space X
is not a suspension. The severe difficulties of Carlsson and Milgram [28, p.545] are
overcome. Furthermore our solution works even if X is highly infinite, but with
effective homology.

Theorem 5 — A general algorithm ΩEH can work on a 1-reduced simplicial
set with effective homology XEH to construct a version with effective homology
(ΩX)EH of its loop space.

Corollary 6 — A general algorithm Ωn
EH can work on an n-reduced simplicial

set with effective homology XEH to construct a version with effective homology
(ΩnX)EH of its n-th loop space.

See Definition 8 for the notion of n-reduced simplicial set; it is a strong form
of n-connectedness.

Our work needs now two important steps. The only really new consists in
explaining how it is possible to implement on a finite machine an object with
effective homology, several components of which are frequently “highly” infinite
from a classical point of view; as explained in the introduction, it is a matter of
functional programming. The second step then consists in implementing versions
with effective homology of the classical exact and spectral sequences; the main
tool is the basic homological perturbation lemma and this step is quite elementary;
however interesting new problems are so opened.

3 Functional programming in Lisp.

This section contains a few cultural indications about the most important theo-
retical machine models. The main tool in this paper is functional programming
available on a machine equipped with a functional programming language, the
Lisp language here. Some simple tutorial examples are given to explain what the
very nature of functional programming is.
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3.1 Theoretical machines.

There are numerous theoretical machine models. Historically, the first machine
model is the recursive machine, which was designed mainly by Hilbert, Ackermann
and Gödel. For the recursive machine, a program is a (general) recursive function
f : Nd → N or more precisely its definition with respect to the elementary recursive
function constructors; see for example [51, chap. 2 and 3]. The domain of a
recursive function f : Nd → N is not necessarily the whole set Nd; in other words,
a program properly works only for some data, otherwise the program does not
terminate. There does not exist a general algorithm able to guess whether an
element of Nd is in the domain of f (Post’s theorem). There exist a recursive
function f : N → N and an element n ∈ N satisfying the following properties:

1) The “program” computing f(n) does not terminate;

2) There does not exist a proof of 1).

This is essentially incompleteness Gödel’s theorem. Thanks to Novikov’s the-
orem linking Gödel’s theorem to groups of finite presentation [36], a consequence
of these results is the following: there does not exist a general algorithm able to
decide whether a finite simplicial complex is simply connected; furthermore there
exists a finite simplicial complex satisfying the following properties:

1) it is not simply connected;

2) there does not exist a proof of 1).

There exists an explicit universal recursive function u : N2 → N; in other
words for every recursive function f : Nd → N, an explicit integer nf can be given
such that f(n) = u(nf , χ(n)) for every n ∈ Nd, the function χ : Nd → N being a
simple explicit coding χ : Nd → N. Any computer is nothing but such a universal
function.

We shall not use in this paper the framework of recursive functions. The most
classical machine model is the Turing machine [2, chap. 1], which is close to
ordinary computer hardware; the classical computability theorems quoted above
for recursive functions have a natural translation for the Turing machine. For
example an ordinary computer is a universal Turing machine. We shall not use
the Turing machine model either.

Another machine model is the λ-calculus. The classical reference is [16] but
a much more convenient reference to quickly understand the main notions of λ-
calculus is [37]. Again the classical computability results have a translation in
the λ-calculus framework; in fact all known machine models are equivalent and
Church’s thesis [51, chap. 7] consists in believing that it will not be possible to
design a stricly more powerful machine. The λ-calculus machine is at the origin of
an important programming language, the Lisp language, which is the new essential
tool used in this paper to solve theoretical and practical computability problems
in algebraic topology.
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3.2 The Lisp machine.

It is not reasonable to give here a mathematical definition of what is a Lisp ma-
chine, that is, a computer equipped with the Lisp programming language; the
reference [21] is such a mathematical definition (900p.); see also [49]. The only
part of [21] which is essential for us and relatively new with respect to standard
programming culture is the section About Scope and Extent [21, pp 38-47]; this
section explains the notion of lexical closure, important for us; the extraordinary
Y-combinator of λ-calculus is also described there: readers thinking that computer
science is elementary are advised to take a glance at this object, but we do not
use this combinator.

The Nanolisp machine [42] is in a sense the smallest Lisp machine theoretically
equivalent to the classical Lisp machine; but Nanolisp does not contain the very
numerous technical functions that are helpful only for concrete efficient work. In
particular the Nanolisp machine uses the notion of lexical closure; the guide about
closures, available at [42], is probably the most convenient text to understand this
notion and how it is possible to implement it; but reading of this text should not
be necessary to understand the present paper.

The lexical closure technique in Lisp programming is a powerful tool allowing
the user to easily write functions which at run-time will create new functions which
later at run-time will create other new functions and so on; the problem of identifier
scope is then difficult and is very elegantly solved in Lisp, thanks to the notion
of lexical closure. Such a tool is not available in usual programming languages
such as Pascal, C, Ada, etc.; but two (reasonably efficient) arbitrary machines
are equivalent, so that it is possible for an experienced programmer to implement
this technique with the help of his favourite language; he should then understand
the tricky underlying list technique which is explained for example in [42] and [3,
sect. 3.10]. Instead of explaining the essential ingredients of this technique, it
will be sufficient here to explain how it can be practically used. The didactical
examples given in this section are so natural that the reader will probably meet
some difficulty to believe there is here something new and essential; he will be
convinced when he will succeed in creating a C or Pascal environment allowing
him to write equivalent programs.

3.3 First steps in Lisp.

A Lisp expression is a parenthezed list such that (+ 2 2) where the first element
is an operator (prefix convention). In this text, an example is displayed as follows:

> (+ 2 2) ==>
4
>

The ‘>’ symbol is the Lisp prompt, displayed on the terminal screen by Lisp
to explain Lisp is awaiting for the following expression to be evaluated. The Lisp
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prompt depends on the used Lisp implementation; all the examples of this paper
are given using the freeware Allegro20 Common Lisp [22], but translation into
another Common Lisp is always obvious. The sign ‘==>’ ending the first line, in
fact not visible on the screen, means the user typed the Return key to ask Lisp
about the result of evaluation, which is here the integer 4. Then Lisp displays the
waiting prompt for the following expression and so on.

The assignment operator is the predefined setf Lisp operator:

> (setf x 3) ==>
3
> (setf y 4) ==>
4
> (+ x y) ==>
7

3.4 First steps in functional programming.

If a Lisp user21 wants to construct a function which adds 123 to any integer, he
can work in this way:

> (setf add123
(f-of (n) (+ n 123))) ==>

#<function 1 #xD9B260>
> (? add123 23) ==>
146
> (? add123 100) ==>
223

The external form of a result such as #<function 1 #xD9B260> depends on the
used Lisp implementation; in this case the component ‘1’ of the result recalls the
number of variables of the constructed function and the number following the char-
acters ‘#x’ is a machine address which will not be displayed in this paper. The
first setf statement can be read as follows: assign to the symbol add123 the func-
tion able to work with n and returning the result of (+ n 123). In particular the
special symbol f-of22 means “build the function able to work on. . . returning. . . ”;
such a meaning is directly inherited from λ-calculus. Then this function can be

20This version of Common Lisp is very convenient if you have a Windows-95 platform: a
complete hypertext online documentation is available and specialized editors are provided; the
only difference with the commercial version is a limited memory, quite sufficient for the examples
of this paper. The commercial version provides also a convenient tutorial book. Non-payed
advertisement.

21The more or less complicated Lisp examples of this paper have been stored in a public file
examples.lisp which can be obtained at [42]; this Lisp file contains all the Lisp instructions:
(setf ... ...)
showed here; so that the interested user can (Lisp-)load this file and then verify the objects so
constructed and assigned to symbols properly work.

22In fact Common Lisp normally needs here (setf add123 #’(lambda ...)); the strange
special combination #’(lambda ...) asks Lisp to construct the appropriate lexical closure; but
it is possible, using the following macro-definition:
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questionned by the ‘?’ operator, giving the symbol locating the function and also
the necessary object(s) on which the function must work23.

Let us now suppose we want to use a general function able to construct any
additionner function:

> (setf make-adder
(f-of (constant)
(f-of (n)
(+ n constant)))) ==>

#<function 1 ...>
> (setf add5 (? make-adder 5)) ==>
#<closure 1 ...>
> (? add5 6) ==>
11
> (setf add7 (? make-adder 7)) ==>
#<closure 1 ...>
> (? add7 8) ==>
15
> (? add5 8) ==>
13

You see the symbol CONSTANT has now two different values which can be asked
at any time, according to you reach it through add5 or add7; in fact an arbitrary
number of values for this symbol could be installed and used in such a Lisp envi-
ronment; the resulting problem of identifier scope is solved thanks to the lexical
closures: note the values of add7 and add5 are closures, not functions.

A general composition operator can be written to compose any two functions
N → N:

> (setf compose
(f-of (g f)
(f-of (n)
(? g (? f n))))) ==>

#<function 2 ...>
> (setf add12 (? compose add5 add7)) ==>
#<closure 1 ...>
> (? add12 23) ==>
35

You can read: assign to the symbol compose the function working on g and f,
returning the function working on n which returns g(f(n)); then assign to the
symbol add12 the result of the function compose working on add5 and add7. Like
in mathematics, in this functional framework, a function is an ordinary object

(defmacro f-of (&rest rest) ‘(function (lambda ,@rest)))
to exempt the user from writing these signs #’; such a macro-definition is provided at the
beginning of the file examples.lisp.

23In fact the predefined Lisp function doing this work is the funcall function, but it is easy
to make ? and funcall equivalent:
(setf (symbol-function ’?) #’funcall)
and this is done at the beginning of the file examples.lisp.
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which can work on functions to create other functions which will create again
other functions and so on.

4 Functional programming and infinite simpli-

cial sets.

We explain in this section how the functional programming techniques can be
used to code “highly” infinite simplicial sets on a (necessarily finite) machine.
This is illustrated in this section by a Lisp implementation of the infinite standard
simplex ∆∞. In the same way we will be able later to install on our machine the
Kan model GX of a simplicial set X assumed present in our machine memory. If
X is a (finite or not) simplicial set, the Kan model GX for the loop-space ΩX
is a highly infinite simplicial set where the set GXn of n-simplices is a free (non-
commutative) group generated by some (n+1)-simplices of X; if X is itself a Kan
model of a loop-space, the set of generators in GXn is itself highly infinite, and
so on; but it will be proved later that the homology groups of these iterated loop
spaces can be sometimes computed, using these necessarily finite implementations
of Kan models and some further data.

Defining a simplicial set X consists in giving for each dimension n a simplex
set Xn and the various face and degenaracy operators [23, 32, 30]. Let us recall X
is a family {Xn, ∂

n
i , η

n
i } where Xn is defined for n ∈ N and is the set of n-simplices,

the operator ∂n
i : Xn → Xn−1 (face operator) is defined for n ≥ 1 and 0 ≤ i ≤ n

and the operator ηn
i : Xn → Xn+1 (degeneracy operator) is defined for n ≥ 0 and

0 ≤ i ≤ n. Furthermore, these operators must satisfy a few commuting relations,
see [23, 32, 30]. We will give in this section some didactical examples of simplicial
sets, Lisp-implemented.

4.1 The components of a machine simplicial set.

Because we are working on a Lisp machine, any simplex will be a Lisp object. If
X is a simplicial set, the set Xn of the n-simplices of X can be infinite and the
only solution to code such a possibly infinite set is to consider it as a type, that
is, a function able to work on any (Lisp) object and answering whether the object
is an element of the type or not. For example, let us suppose we intend to install
the infinite simplex ∆∞. Then a simplex is an incresing list (finite sequence) of
natural numbers. To prepare the construction of ∆∞, we define the appropriate
type:

> (setf delta-infinity-type
(f-of (object)

(and (listp object)
(every #’integerp object)
(apply #’<= (append ’(0) object))))) ==>

#<function 1 ...>
> (? delta-infinity-type ’symbol)
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NIL
> (? delta-infinity-type ’(0 2 3 4 symbol))
NIL
> (? delta-infinity-type ’(-4 0 2 3 4))
NIL
> (? delta-infinity-type ’(0 2 3 4 3))
NIL
> (? delta-infinity-type ’(0 2 3 4 4))
T

The function delta-infinity-type successively verifies whether the object
is a list, then whether each member is an integer, then whether the list is an
increasing sequence of null or positive integers. The logical “true” object in Lisp
is the symbol “T” and the logical “false” object is the symbol “NIL”.

It is necessary to have a function able to determine the simplex dimension:

> (setf delta-infinity-dmn
(f-of (smp) (1- (length smp)))) ==>

#<function 1 ...>
> (delta-infinity-dmn ’(0 2 4 6 8)) ==>
4

The predefined Lisp function 1- subtracts 1 from its argument, and the length
function returns the length of its argument list. The following point is important
about the general coherence of our functions: the user is supposed to call a function
such as delta-infinity-dmn for an object which actually is a simplex of ∆∞, this
is the reason why the argument is named smp (for simplex). A safer function would
be:

> (setf safe-delta-infinity-dmn
(f-of (smp)

(unless (? delta-infinity-type smp)
(error "The argument of safe-delta-infinity-dmn~@

is not a simplex of delta-infinity."))
(1- (length smp)))) ==>

#<function 1 ...>
> (? safe-delta-infinity-dmn ’(0 2 4 6 8)) ==>
4
> (? safe-delta-infinity-dmn ’(0 4 2 6 8)) ==>
;; Error: The argument of safe-delta-infinity-dmn
;; is not a simplex of delta-infinity.

But these safety strategies are not considered in this paper: the programmer is
assumed secure (!?). The type functions are only used to define the underlying
simplex set through its characteristic function, able to work for any machine object.

It will be frequently necessary to decide whether two simplices are equal or not,
so that an equality function is needed for each machine simplicial set; in particular
such an equality function will allow us to easily construct quotient simplicial sets,
by modifying only the equality function. For ∆∞, we have to compare two integer
lists and the predefined function equal does this work:
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> (setf delta-infinity-equal #’equal)
#<function 2 ...>
> (? delta-infinity-equal ’(1 2 2) ’(1 2 3))
NIL
> (? delta-infinity-equal ’(1 2 3) ’(1 2 3))
T

The simplicial set ∆
∞

, the quotient of ∆∞ by the relation which identifies any
two vertices is important in Kan theory. It can be coded as ∆∞ with a unique
difference for the equality function:

> (setf delta-infinity-bar-equal
(f-of (smp1 smp2)
(or (equal smp1 smp2)

(= 1 (length smp1) (length smp2)))))
#<function 2 ...>
> (? delta-infinity-bar-equal ’(1 2 2) ’(1 2 3))
NIL
> (? delta-infinity-bar-equal ’(2) ’(3))
T
> (? delta-infinity-equal ’(2) ’(3))
NIL

The equality relation between ∆
∞

-simplices is only a little weaker than for ∆∞:
if two simplices have dimension 0 (i.e. their list length is 1), they are certainly
equal.

The following ingredient needed to define a simplicial set is the face opera-
tor. The ∂n

i operator of ∆∞ consists in removing the i-th element of the simplex
(i0 . . . in). Another function does this work:

> (setf delta-infinity-del
(f-of (i smp)
(append (subseq smp 0 i) (subseq smp (1+ i)))))

#<function 2 ...>
> (? delta-infinity-del 2 ’(3 4 5 6 7))
(3 4 6 7)

The first call to the subseq predefined Lisp function extracts the subsequence
between the indices 0 (inclusive) and i (exclusive), and the second call extracts the
subsequence starting at the index i+1 up to the end because the second argument
is omitted; finally these two subsequences are appended. In other words the i-th
element is removed, and the needed i-face operator is so defined; it is not necessary
to give the dimension integer, because in this organization it is implicitly included
in the simplex. In the same way, the degeneracy operator, consisting in repeating
the i-th element of the simplex, can be defined as follows:

> (setf delta-infinity-deg
(f-of (i smp)
(append (subseq smp 0 (1+ i)) (subseq smp i))))

#<function 2 ...>
> (? delta-infinity-deg 2 ’(0 1 2 3 4))
(0 1 2 2 3 4)
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4.2 A machine simplicial set is an ss instance.

The various functions already defined are a complete definition of ∆∞. The Lisp
language allows the user to put together the components of this definition thanks to
an appropriate structure, the type of which is defined by the predefined operator
defstruct (that is, “define structure”). Let us begin as in a Lisp tutorial with a
very simple example:

> (defstruct point x y z) ==>
POINT
> (setf a1 (make-point :x -2 :y 3 :z -4))
#S(POINT X -2 Y 3 Z -4)
> (setf a2 (make-point :x 1 :y 2 :z 2))
#S(POINT X 1 Y 2 Z 2)
> (setf add-points

(f-of (a b)
(make-point :x (+ (point-x a) (point-x b))

:y (+ (point-y a) (point-y b))
:z (+ (point-z a) (point-z b)))))

#<function 2 ...>
> (setf a3 (? add-points a1 a2))
#S(POINT X -1 Y 5 Z -2)

The first instruction (defstruct ...) tells Lisp a new structure type is de-
fined, namely the point structure type; an instance of this type, or a point

instance, has three slots of name x, y and z. Automatically constructed Lisp func-
tions (constructed when defstruct works) allow the user to construct instances, to
copy them, to read a particular slot of some instance and also to modify (update)
some particular slot.

The automatically defined make-point function can then be used to construct
a point instance; we do not want to explain the strange (necessary) colon which
is in front of x in the (make-point :x ...) statement: it is a question of keyword
parameter (see [49, 21]). Then it is possible to define functions working on and/or
making points, for example a function adding two points and returning their sum;
the slots of an instance can be reached (read) through functions also automatically
constructed by Lisp, the name of which is made of the name of the structure and
the name of the slot; for example to obtain the x-slot of a point instance, you
may use the automatically defined function point-x.

So that it is possible to collect the functions defining the simplicial structure
of ∆∞ or ∆

∞
in instances of an appropriate structure type:

> (defstruct ss type dmn equal del deg) ==>
SS
> (setf delta-infinity

(make-ss :type delta-infinity-type
:dmn delta-infinity-dmn
:equal delta-infinity-equal
:del delta-infinity-del
:deg delta-infinity-deg)) ==>
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#S(SS TYPE #<function 1 #xD90E9C> DMN #<function 1 ...> ...)
> (setf delta-infinity-bar

(make-ss :type delta-infinity-type
:dmn delta-infinity-dmn
:equal delta-infinity-bar-equal
:del delta-infinity-del
:deg delta-infinity-deg)) ==>

#S(SS TYPE ...)

We choose the name ss (simplicial set) for the new structure type, and an
instance of this type has five slots of name type, dmn, equal, del and deg. Each
slot of an ss instance will be a function able to do some work with respect to
the underlying simplicial set. Once the simplicial set is so installed in the Lisp
machine, it can be used through the functional slots:

> (? (ss-equal delta-infinity) ’(0) ’(3)) ==>
NIL
> (? (ss-equal delta-infinity-bar) ’(0) ’(3)) ==>
T
> (? (ss-del delta-infinity) 2 ’(3 4 5 6 7)) ==>
(3 4 6 7)

4.3 Constructing a new simplicial set from others.

The tutorial example of points in R3 shows how it is possible to define functions
working on given points, making another point. In the same way it is possible to
define functions working on simplicial sets and making other simplicial sets. For
example let us consider the product functor for simplicial sets. A simplex of the
product simplicial set is a pair of simplices, which will be coded as a list with two
elements. A few elementary predefined Lisp functions allow the user to construct
and handle such lists:

> (setf l (list 3 4)) ==>
(3 4)
> (first l) ==>
3
> (second l) ==>
4

The list function constructs a list with an arbitrary number of elements, and
the functions first and second extract the first and second components. Let us
now prepare the product construction of two arbitrary simplicial sets:

> (setf type-product
(f-of (ss1 ss2)
(f-of (obj)
(and (listp obj)

(= 2 (length obj))
(? (ss-type ss1) (first obj))
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(? (ss-type ss2) (second obj))
(= (? (ss-dmn ss1) (first obj))

(? (ss-dmn ss2) (second obj))))))) ==>
#<function 2 ...>
> (setf dmn-product

(f-of (ss1 ss2)
(f-of (smp)
(? (ss-dmn ss1) (first smp))))) ==>

#<function 2 ...>
> (setf equal-product

(f-of (ss1 ss2)
(f-of (smp1 smp2)
(and (? (ss-equal ss1) (first smp1) (first smp2))

(? (ss-equal ss2) (second smp1) (second smp2)))))) ==>
#<function 2 ...>
> (setf del-product

(f-of (ss1 ss2)
(f-of (i smp)
(list (? (ss-del ss1) i (first smp))

(? (ss-del ss2) i (second smp)))))) ==>
#<function 2 ...>
> (setf deg-product

(f-of (ss1 ss2)
(f-of (i smp)
(list (? (ss-deg ss1) i (first smp))

(? (ss-deg ss2) i (second smp)))))) ==>
#<function 2 ...>

For example, given two simplicial sets ss1 and ss2, the function type-product

constructs a new type function, verifying whether the argument transmitted is a
list of length two, whether the first (second) component is a simplex of ss1 (ss2),
and whether the dimensions of both components are equal. The other function
constructors are analogous. As in the very simple examples of section 3 it is a mat-
ter of producing new functions depending on other functions already constructed
and this is the reason why functional programming is definitively necessary.

We can see this mechanism working properly as follows:

> (setf d-db-dmn
(? dmn-product delta-infinity delta-infinity-bar)) ==>

#<closure 1 ...>
> (? d-db-dmn ’((1 3 5 7) (2 4 6 8))) ==>
3
> (setf d-db-equal

(? equal-product delta-infinity delta-infinity-bar)) ==>
#<closure 2 ...>
> (? d-db-equal ’((1 2 2) (3 4 4)) ’((1 2 2) (3 4 5))) ==>
NIL
> (? d-db-equal ’((4) (2)) ’((5) (2))) ==>
NIL
> (? d-db-equal ’((2) (4)) ’((2) (5))) ==>
T

We can construct in the same way the other components of the simplicial
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product ∆∞ × ∆
∞

, and collect them in an ss instance, but it is much better to
write a function doing this work by itself:

> (setf ss-product
(f-of (ss1 ss2)
(make-ss :type (? type-product ss1 ss2)

:dmn (? dmn-product ss1 ss2)
:equal (? equal-product ss1 ss2)
:del (? del-product ss1 ss2)
:deg (? deg-product ss1 ss2))))

#<function 2 ...>
> (setf d-db (? ss-product delta-infinity delta-infinity-bar)) ==>
#S(SS TYPE #<closure 1 ...> ...)
> (? (ss-type d-db) ’((1 2 3) (5 7))) ==>
NIL

The last object which is proposed as a possible simplex of ∆∞×∆
∞

obtains a
negative answer: the dimensions of the components are different. And you can as
easily continue:

> (setf d-db-d (? ss-product d-db delta-infinity)) ==>
#S(SS TYPE #<closure 1 ...> ...)
> (? (ss-type d-db-d) ’(((1 2) (3 4)) (5 6))) ==>
T
> (? (ss-type d-db-d) ’((1 2) ((3 4) (5 6)))) ==>
NIL
> (? (ss-type d-db-d) ’((1 2) (3 4) (5 6))) ==>
NIL

In this necessarily very precise framework, the product operator for simplicial
sets is not associative! This is a frequent source of unavoidable technical difficulties;
they can be overcome thanks to tricky technicalities, but this is not the subject of
the present paper.

5 A mathematical definition is not necessarily a

constructive definition.

5.1 A negative result.

It seems so easy in the previous section to construct machine objects that are equiv-
alent to possibly infinite simplicial sets that a careless observer could believe the
computability problem in algebraic topology is solved. This is erroneous, even from
a theoretical point of view. Let us call a machine object such as delta-infinity
a locally effective simplicial set ; this terminology will be justified at the end of this
section.

Theorem 7 — There does not exist any general algorithm able to work on an
arbitrary locally effective simplicial set, determining whether the underlying sim-
plicial set is empty or not.
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The precision “general” for the non-existing algorithm is in principle redundant
but useful to avoid a frequent misunderstanding. In fact it is possible to define
relatively large classes of locally effective simplicial sets such that the emptyness
problem on the contrary has an algorithmic solution, but such a framework is so
artificial that this is without any actual interest.

Proof. This theorem is in fact a simple corollary of Post’s theorem about the
halting problem: given an arbitrary program P working in discrete time (some
state at time 0, the following state at time 1 and so on, until a possible terminal
state, or otherwise always continuing working), you can associate to P the discrete
simplicial set ssP where a Lisp object ω is a simplex if and only if ω is a pair of
integers (d, t) where d ∈ N is its dimension and t is an integer such that the
program P is halted at time t; in other words ssPd = {d}× [h,+∞[ if the program
P halts at time h, else ssP = ∅. The type function for ssP working on the pair
(d, t) must simulate the work of P between times 0 and t to decide whether P
is halted at time t; it is a classical “exercise” about a programming language to
write a program able to simulate the work of the underlying machine when another
arbitrary program is given in the same language (or another one). The faces and
degeneracy operators of ssP are the simple maps (d, t) 7→ (d − 1, t) or (d + 1, t),
so that the non-degenerate simplices have dimension 0. In this way it is possible
to associate to the program P the simplicial set ssP ; now determining whether ssP
is empty or not is equivalent to the halting problem for P : will the program P
terminate? But the latter problem does not have any algorithmic solution (Post’s
theorem).

No general program can determine whether a (locally effective) machine sim-
plicial set is empty or not; therefore no general program is able to compute the
homology groups of a machine simplicial set, otherwise the emptyness problem
would have an algorithmic solution. In the same way no general program can de-
termine whether the homology of a machine simplicial set is of finite type, or null
above some dimension, and so on. A positive solution for a general computability
problem needs more information in the data. The aim of this paper consists in
proving that a few more informations on the contrary allow us to give a posi-
tive solution for the main computability problems, mainly in situations where the
underlying machine simplicial set is highly infinite.

5.2 A further slot for the ss instances.

Let us redefine the ss structure type of the previous section, by addition of a new
slot named basis:

> (defstruct ss type dmn equal basis del deg) ==>
SS

The machine object modelizing the infinite simplex ∆∞ must be also redefined:

> (setf delta-infinity
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(make-ss :type delta-infinity-type
:dmn delta-infinity-dmn
:equal delta-infinity-equal
:basis :locally-effective
:del delta-infinity-del
:deg delta-infinity-deg)) ==>

#S(SS ...)

The keyword (that is, a symbol beginning with a colon) :locally-effective
given as the value of the basis slot means this simplicial set is only locally effective,
so that the information usually asked for in this slot is not available. On the
contrary, if the simplicial set is effective, then this slot must contain a function
giving for each dimension the (necessarily finite) list of simplices of this dimension.
For example let us install in this way the finite simplex ∆5; firstly:

> (setf delta-5-type
(f-of (object)
(and (listp object)

(every #’integerp object)
(apply #’<= (append ’(0) object ’(5)))))) ==>

#<function 1 ...>
> (? delta-infinity-type ’(2 3 6)) ==>
T
> (? delta-5-type ’(2 3 6)) ==>
NIL
> (? delta-5-type ’(2 3 3 5)) ==>
T

will allow us to define the needed new simplex type: now the vertices must be
in {0, 1, . . . , 5}. The slots dmn, equal, del and deg for ∆5 can be simply copied
from ∆∞. For the basis slot, we must write a function giving all the simplices of
dimension dmn in ∆5:

> (setf delta-5-basis
(f-of (dmn)

(let ((result ’()))
(if (zerop dmn)

(dotimes (i 6)
(push (list i) result))

(dolist (smp-1 (? delta-5-basis (1- dmn)))
(dotimes (i (1+ (first smp-1)))
(push (cons i smp-1) result))))

result))) ==>
#<function 1 ...>
> (? delta-5-basis 0) ==>
((5) (4) (3) (2) (1) (0))
> (? delta-5-basis 1) ==>
((0 0) (1 1) (0 1) (2 2) (1 2) (0 2) (3 3) (2 3) (1 3) (0 3) (4 4)
(3 4) (2 4) (1 4) (0 4) (5 5) (4 5) (3 5) (2 5) (1 5) (0 5))

We are now ready to construct the effective simplicial set delta-5 = ∆5:
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> (setf delta-5
(make-ss :type delta-5-type

:dmn delta-infinity-dmn
:equal delta-infinity-equal
:basis delta-5-basis
:del delta-infinity-del
:deg delta-infinity-deg)) ==>

#S(SS TYPE ...)
> (? (ss-type delta-infinity) ’(2 3 6)) ==>
T
> (? (ss-type delta-5) ’(2 3 6)) ==>
NIL
> (? (ss-type delta-5) ’(2 3 3 5)) ==>
T

Obvious similarities between ∆∞ and ∆5 have been used in the implementation
of ∆5, essentially because ∆5 is a simplicial subset of ∆∞. Compare the previous
implementation of ∆5 with the following:

> (setf locally-effective-delta-5
(make-ss :type delta-5-type

:dmn delta-infinity-dmn
:equal delta-infinity-equal
:basis :locally-effective
:del delta-infinity-del
:deg delta-infinity-deg))

#S(SS ...)

The only difference is in the basis slot: here this slot does not
contain a functional object, in principle computing a simplex set;
in locally-effective-delta-5, this slot contains only the keyword
:locally-effective, so that it is no longer possible to get basis informa-
tion:

>(? (ss-basis locally-effective-delta-5) 4)
;; Error: The function :LOCALLY-EFFECTIVE is undefined.

Lisp detects a coherence error: the keyword is not a functional object. In
this new version of ∆5, we are not able to determine the simplex list in some
dimension: the basis slot is essentially missing. An observer cleverly studying
this problem could object a careful examination of the slots type, dmn and equal

in fact allows in this case to determine such a basis; this observer is right: in a
sense the basis slot is redundant, but such a redundancy is valid only, in some
cases, for clever observers, not for a machine. Precisely Theorem 7 states that no
(general) algorithm is able to deduce from the slots type, dmn and equal a basis

information, even if some finiteness property is given.
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5.3 Effective and locally effective objects.

Still more precisely, from a mathematical point of view, the basis slot is always
redundant: the slots type, dmn and equal, if they are coherent, mathematically
define the simplex set in each dimension; the key point is the following: in general,
this definition is not constructive. The definition of the simplicial set becomes
constructive when the basis slot is added. Such a complementary information is
possible only if the underlying simplicial set is finite in each dimension. Otherwise
the only remaining possibility is to artificially fill in the basis slot with the key-
word :locally-effective, a message explaining no basis information is in fact
available.

For example the locally effective implementation of ∆∞ is a complete math-
ematical definition, but an incomplete constructive one. Our work in the rest of
this paper will consist in defining a few supplementary informations to be added
to such a locally effective implementation of an infinite simplicial set, allowing
the user to effectively determine the homology groups of this simplicial set: the
homology groups will become reachable; but the underlying simplicial set will
definitively remain locally effective. The main infinite simplicial sets we have in
mind are Kan models of iterated loop spaces; in this way we do obtain a simple and
elegant solution of the old Adam’s problem: how to iterate the Cobar construction;
compare [40, 46, 47].

We find convenient this terminology: “effectiveness” vs “local effectiveness”.
An effective object is essentially entirely known, at least up to a given finite di-
mension (or degree): for a simplicial set, the complete set of simplices in some
dimension can be enumerated, the faces of these simplices can also be computed,
giving the (necessarily finite) boundary matrix for this dimension, and the same
for the following dimension; an elementary program can then determine the cor-
responding homology group. But this is possible only for finite simplicial sets (in
each dimension). Infinite simplicial sets can also be locally installed; this means
some functions are provided so that if a user is interested in some face of some
(any!) simplex, it can be computed: local information is available. On the con-
trary, global information is not, and it is even not possible in general to determine
whether the underlying simplicial set is void or not. We shall explain in the rest of
this paper that carefully combining effective objects and locally effective objects
allows us to easily solve the general computability problem for simply connected al-
gebraic topology; the method is so powerful that concrete programs can be written
and used to obtain new significant results.

For simplicial sets, a terminology like “simplex-wise effective simplicial set”
(effective for some — in fact for any! — simplex of the underlying simplicial set,
but not globally effective) would be more precise; but the same situation occurs
in relatively different frameworks so that we feel more convenient a “generic”
terminology. In the other sections we shall mainly handle locally effective simplicial
sets, locally effective chain complexes (“generator-wise” effective), and effective
chain complexes. An effective chain complex is a free Z-chain complex, of finite
type in each dimension. It is elementary to compute its homology groups. A locally
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effective chain complex does not satisfy any finiteness condition, but if some (any!)
generator is given, a functional slot can compute the boundary of this generator;
no global information is available so that it is not possible in general to determine
whether some chain group is null or not.

The chain complex canonically associated to a locally effective simplicial set
is a locally effective one, but it is sometimes possible to have a chain equivalence
between this locally effective chain complex with another effective one, so that the
homology groups of the last one are isomorphic to the homology groups of the
locally effective simplicial set. The 4-tuples (X,C∗X,EC∗, h) where X is a locally
effective simplicial set, C∗X is the canonically associated free Z-chain complex,
EC∗ is some effective chain complex and finally h is a chain equivalence between
C∗X and EC∗ will be our main ingredients.

6 The EAT program.

The Lisp example programs given in the previous sections, to illustrate the notions
we are interested by, are very weak; a real use of such programs would quickly
become quite awkward. But Lisp (precisely Common Lisp) is powerful and allows
its user to design much more convenient and efficient programs. The subject of
this paper is not to study Lisp technique; however, it will be easier for the other
sections to be helped by the actual program EAT (Effective Algebraic Topology)
freely distributed by the authors at [39]. EAT is a prototype program, a first try
to implement the particular results of this paper devoted to homology of iterated
loop spaces. In particular it contains general functions handling effective and
locally effective chain complexes, and also effective and locally effective simplicial
sets. The examples constructed using EAT are specially convenient to explain the
very nature of the present work and this section gives the necessary introduction.
Many technicalities are not detailed here. The initialization work undertaken by
the EAT program is relatively complex (see [42]) and is not considered either; we
assume the EAT Lisp environment is installed.

The reader will probably be surprised to see so many technical (and quite
elementary) questions examined in this section, in a paper the aim of which is
strictly mathematical: how to compute homology groups and homotopy groups
known (thanks to Jean-Pierre Serre) of finite type; in particular how to iterate
Adam’s cobar construction, the last problem being (thanks to Jean-Pierre Serre)
the essential one. Experience cruelly shows it is extremely hard to understand
our results without a machine demonstration, so that we must in this paper give
information as close as possible to what can be shown in a machine demo. With-
out the keyboard, the program and the monitor screen, it is a little lengthy, but
conversely the level of detail used here should make relatively easy the reading of
this section.
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6.1 EAT and the simplicial sets.

The first step consists in considering the previous examples (∆∞, ∆
∞

, ∆5, etc.)
and to reconstruct them in the EAT framework. The EAT function build-ss

(build simplicial set) allows the user to construct a simplicial set like ∆∞:

> (setf delta-infinity
(build-ss
:bsp ’(0)
:eqs #’equal
:sbs :locally-effective
:gdl #’(lambda (i dmn gsm)

(asm empty-list
(append (subseq gsm 0 i) (subseq gsm (1+ i)))))

:org ’(delta-infinity))) ==>
[SS-4]

The EAT documentation explains you construct in this way a simplicial set:

1. The base point (bsp) is the (0) object, to be understood as the simplex
spanned by the 0-vertex, therefore a 0-simplex;

2. Comparing two non-degenerate simplices will use the predefined Lisp func-
tion equal;

3. The sbs (simplicial basis) slot is the keyword :locally-effective so that
it will not be possible to get any global information;

4. The gdl (geometric ∂) slot explains how to compute a face of a non-
degenerate simplex; three arguments are needed, the face-index (i), the
dimension (dmn) of the simplex and the simplex itself (gsm)24;

5. Finally the org slot contains a small (text) information about the origin of
the simplicial set.

The output ‘[SS-4]’ means the result is the simplicial set #4 (to be considered
as a number plate); no detail is given in the output about the internal structure
of this object. Each time the function build-ss is used, EAT gives to the new
simplicial set the first free number.

A simplex can be degenerate or not, and many simplex calculations are in
fact only degeneracy calculations. To take advantage of this situation, the EAT
implementation of simplices uses a relatively sophisticated technique. The user
firstly decides a coding for the non-degenerate simplices frequently located in the
EAT program through the symbol gsm (“geometric” simplex); for example for ∆∞,
a non-degenerate simplex is a strictly increasing integer list, to be understood as
the simplex spanning the corresponding vertices. Then an arbitrary simplex is

24Note we do not use anymore the “(f-of ...)” style; the perfectly equivalent standard Lisp
form #’(lambda ...) is now preferred
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an asm object, a structure with two slots, which can be constructed by the asm

function, needing two arguments; the first one is a strictly decreasing integer list
representing a composite degeneracy operator so that the empty-list means “no
degeneracy at all”; the second argument is the coding for the (unique) underlying
non-degenerate simplex. For example look at the gdl slot of ∆∞: a face of a non
degenerate simplex of ∆∞is non degenerate too, so that the asm object constructed
by the gdl slot has an empty list as multiple degeneracy operator, but this face
must be implemented as an asm object.

It is important here not to be misled by the terminology similarity between
the ‘asm’ and ‘gsm’ notions: an asm object is an instance of the asm structure type
with two fields, called ‘dop’ (degeneracy operator) and gsm (geometric simplex).
On the contrary, a gsm object can be any Lisp object, according to the decision of
the user about the coding of the non-degenerate simplices of its simplicial set.

In this way, a (really) degenerate simplex has a unique coding as an asm object;
for example η2η0σ135, the 4-simplex of ∆∞ which would be coded as (1 1 3 3 5)

in the previous section, obtained by degenerating two times the non-degenerate
2-simplex σ135 (spanning the vertices 1, 3 and 5) will be here constructed and
displayed as follows:

> (asm ’(2 0) ’(1 3 5)) ==>
<ASM 2-0 (1 3 5)>

On the contrary, every non-degenerate simplex can be coded in two different
ways. For example the above 2-simplex σ135 of ∆∞ can be coded as the list (1 3 5)

as a “geometric” simplex (the first solution) or (second solution) as the asm object
constructed as follows:

> (asm empty-list ’(1 3 5)) ==>
<ASM * (1 3 5)>

The ‘*’ in the result represents the void list, and the ‘2-0’ in the previous result
represents the composite degeneracy η2η0. In particular handling non-degenerate
simplices needs much care about the necessary representation. Usually, if a func-
tion works only on non-degenerate simplices, the “geometric” representation is
assumed; the functions handling possibly degenerate simplices use the “arbitrary”
representation as an asm object, even if the considered simplex is non-degenerate.

Now we can understand the esoteric function installed in the gdl slot for ∆∞.
The EAT function build-ss needs in the gdl slot a function working on a face-
index, a dimension and a “geometric” (non-degenerate) simplex of this dimension;
this function must compute the right face of this simplex, which could be a degen-
erate simplex, so that the arbitrary format (asm object) is necessary to express the
result, even if the result is non-degenerate, and this is just the case here. Note also
a small difference with the organization of the previous section: now a simplex
does not contain its dimension, so that when some work is asked for a simplex,
its dimension must be also given. The reasons for this organization, less conve-
nient from a theoretical point of view, will not be discussed here; it is a matter
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of memory efficiency. Note again that in the ∆∞ example, it is in fact possible to
deduce the dimension of a “geometric” simplex from its coding, but even in such
a case the (right) dimension must be provided as argument for the function to be
installed in the gdl slot.

The EAT strategy uses the well known fact that the structure of a simplicial
set is entirely determined by the non-degenerate simplices and their faces (which
in general may be degenerate).

Normally, the various slots of the structure implementing ∆∞ are not directly
used; the EAT program provides a relatively large set of functions allowing the
user to easily ask some result or other. For example the gdl slot could be directly
used to compute a face:

> (funcall (ss-gdl delta-infinity) 2 4 ’(1 3 5 7 9)) ==>
<ASM * (1 3 7 9)>

but it is a little simpler and more readable to use the EAT predefined gdl function;
such a function like many others, must firstly quote the simplicial set where the
computation is done, the other arguments are the arguments necessary for the
corresponding functional slot:

> (gdl delta-infinity 2 4 ’(1 3 5 7 9)) ==>
<ASM * (1 3 7 9)>

The letter ‘g’ of gdl recalls this function may work only on geometric simplices,
in other words on non-degenerate simplices correctly coded. Otherwise an error is
generated (even if the simplex is non-degenerate):

> (gdl delta-infinity 2 4 (asm empty-list ’(1 3 5 7 9))) ==>
;; Error: Argument <ASM * (1 3 5 7 9)> to sequence function
;; is not a sequence.

Another EAT predefined function, the adl function, is provided for this work:

> (adl delta-infinity 2 4 (asm empty-list ’(1 3 5 7 9))) ==>
<ASM * (1 3 7 9)>
> (adl delta-infinity 2 4 ’(1 3 5 7 9)) ==>
;; Error: Argument (1 3 5 7 9) was not a structure in ADL.
> (adl delta-infinity 2 4 (asm ’(0) ’(1 3 5 7))) ==>
<ASM 0 (1 5 7)>
> (adl delta-infinity 1 4 (asm ’(0) ’(1 3 5 7))) ==>
<ASM * (1 3 5 7)>

The adl function computes correctly ∂2σ13579 = σ1379; on the contrary the
adl function may not work on the “geometric” coding of the same simplex. But
the adl function may also compute ∂2η0σ1357 = η0σ157 and ∂1η0σ1357 = σ1357:
the adl function knows the commutation relations between face and degeneracy
operators; in the last example, the geometric simplex (1 3 5 7) in fact was not
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really involved in the computation; it was simply a use of the commutation relation:
∂1η0 = id.

The sbs field may not really be used, an error will necessarily occur:

> (sbs delta-infinity 2) ==>
;; Error: The simplicial set [SS-4] is locally-effective.

because the simplicial set is only locally effective.

Two non-degenerate simplices can be compared by the eqs function, without
giving the dimension of the simplices to be compared; in particular these simplices
are assumed to have the same dimension. A consequence is the following: the
equality function must be able to work without dimension information, a fact which
can have some influence when the coding of non-degenerate simplices is chosen.
The (possibly) degenerate simplices can be compared with the eqas function. A
few examples:

> (eqs delta-infinity ’(1 3 5) ’(1 3 5)) ==>
T
> (eqas delta-infinity (asm empty-list ’(1 3 5))

(asm empty-list ’(1 3 5))) ==>
T
> (eqs delta-infinity ’(1 3 5)

(asm empty-list ’(1 3 5))) ==>
NIL
> (eqas delta-infinity ’(1 3 5) ’(1 3 5)) ==>
;; Error: Argument (1 3 5) was not a structure in EQAS.

The third result is rather strange and the reader would probably prefer an
error result: it should be illegal to use the eqs function to compare both versions
(gsm and asm) of σ135; yes, it is illegal, but the EAT function eqs only asks Lisp
to compare both objects with the Lisp function equal, installed in the eqs slot
of ∆∞; this Lisp function may compare two arbitrary Lisp objects, so that the
comparison works and returns a negative result: the asm and gsm objects are
(Lisp-) different! We recall EAT in general does not control the coherence of what
you ask for and can possibly work in a perfectly absurd way if the data are not
correct. It is obvious a more complete version of these programs should allow the
user to turn on and off a safety switch; if on, then the EAT functions would verify
the coherence of data; if off, the program would assume the data are coherent and
would immediately work; the safe mode would be safer but also slower; for long
and difficult calculations, the second mode would be necessary to save time, but
coherence would be under the user’s responsability; here only the “off” version is
available.

On the contrary an error occurs in the fourth example, for Lisp is unable to
extract the slots of (1 3 5): the eqas function should find two asm objects.

The reader should be puzzled by the absence of a type slot, able to determine
whether a Lisp object is a simplex of the underlying simplicial set. Nothing pre-
vents from completing the program with such a slot, but the rest of this paper
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will prove this type function, useful to understand the mathematical structure of
the program, in fact is without use in the planned computations! So that, for
ending more quickly the EAT program, these type slots have simply be omitted.
With this organization the ss instance delta-infinity is not a mathematical
definition of ∆∞; this object does not contain any information about simplex sets,
so that any simplicial set which is a simplicial complex, with vertices among Lisp
objects, the simplices being naturally coded as Lisp lists, is correctly coded as a
locally effective simplicial set by the same ss instance!

A simplicial set ∆
∞

(all the vertices are identified) can be constructed in the
same way; the only difference is in the equality function: if the simplices to be
compared are of dimension 0, then they certainly are equal:

> (setf delta-infinity-bar
(build-ss
:bsp ’(0)
:eqs #’(lambda (gsm1 gsm2)

(or (= 1 (length gsm1))
(equal gsm1 gsm2)))

:sbs :locally-effective
:gdl (ss-gdl delta-infinity)
:org ’(delta-infinity-bar))) ==>

[SS-5]

Taking account of the hypotheses about the simplices to be compared, if the
first one has dimension 0, then the second simplex has also dimension 0 and they
are equal: there is only one simplex in dimension 0. Otherwise the simplices, some
integer lists, can be compared by the standard equal Lisp function. The gdl slot
can be copied from ∆∞; this works well, even in dimension 1:

> (setf 0-face (gdl delta-infinity-bar 0 1 ’(5 6))) ==>
<ASM * (6)>
> (setf 1-face (gdl delta-infinity-bar 1 1 ’(5 6))) ==>
<ASM * (5)>
> (eqas delta-infinity-bar 0-face 1-face) ==>
T
> (eqas delta-infinity 0-face 1-face) ==>
NIL

The 0-simplices carried respectively by the 5 and 6 vertices are equal in ∆
∞

, but
different in ∆∞.

The standard 5-simplex ∆5 can be implemented in the same way; because ∆5

is finite, an effective simplicial set can be installed:

> (setf delta-5
(build-ss
:bsp ’(0)
:eqs #’equal
:sbs #’(lambda (dmn)

(delta-inj dmn 5))

38



:gdl (ss-gdl delta-infinity)
:org ’(delta-5))) ==>

[SS-6]

The unique difference with ∆∞ is the sbs slot; it is now a function working on
one integer argument and returning the list of non-degenerate (gsm) simplices in
this dimension:

> (sbs delta-5 0) ==>
((0) (1) (2) (3) (4) (5))
> (sbs delta-5 1)
((0 1) (0 2) (1 2) (0 3) (1 3) (2 3) (0 4)
(1 4) (2 4) (3 4) (0 5) (1 5) (2 5) (3 5) (4 5))
> (sbs delta-5 5)
((0 1 2 3 4 5))
> (sbs delta-5 1000)
NIL

If you are interested by a list including the degenerate simplices (an asm object
list), you can use the sbs-d function:

> (sbs-d delta-5 1) ==>
(<ASM 0 (0)> <ASM 0 (1)> <ASM 0 (2)> <ASM 0 (3)>
<ASM 0 (4)> <ASM 0 (5)> <ASM * (0 1)> <ASM * (0 2)>
<ASM * (1 2)> <ASM * (0 3)> <ASM * (1 3)> ...)

The sbs (simplicial basis) slot for ∆5 uses the EAT predefined delta-inj

function computing the ordered injections between two objects of the abstract ∆
category [30]:

> (delta-inj 2 4)
((0 1 2) (0 1 3) (0 2 3) (1 2 3) (0 1 4)
(0 2 4) (1 2 4) (0 3 4) (1 3 4) (2 3 4)) ==>

Each injection is represented as the image list. Note also that the Lisp object
delta-5 is a mathematical definition of ∆5: the sbs slot gives a complete descrip-
tion of the simplex sets.

6.2 EAT and the chain complexes.

The EAT program allows the user to construct chain complexes in an analogous
way, but we do not want to burden the reader with the various technical (but
necessary) tools available in the EAT program. For understanding the rest of this
paper, it will be sufficient to see how the chain complexes associated to simpli-
cial sets can be automatically obtained, and then used, for example to compute
homology groups.

The EAT ss-cc function constructs the (normalized) chain complex canoni-
cally associated to a simplicial set. The following simple example, starting from
the previous implementation of ∆5, explains the process:
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> (setf cc-delta-5 (ss-cc delta-5)) ==>
[CC-7]

The ss-cc function has worked on the ss instance ∆5 and the result, the chain
complex #7 is assigned to the symbol cc-delta-5. A cc (chain complex) object
has several slots; the main ones can be used as follows.

Because ∆5 is an effective simplicial set, the associated chain complex is also
effective, that is, global information is available. Each chain group is a free Z-
module and its basis can be obtained by the cbs (chain complex basis) function:

> (cbs cc-delta-5 1)
((0 1) (0 2) (1 2) (0 3) (1 3) (2 3) (0 4)
(1 4) (2 4) (3 4) (0 5) (1 5) (2 5) (3 5) (4 5))
> (cbs cc-delta-5 1000)
NIL
> (cbs cc-delta-5 -1)
NIL

The basis of C1∆
5 is nothing but the list of nondegenerate 1-simplices of ∆5. There

is no such simplex in dimension 1000, and also in dimension -1. The boundary of
a generator can be computed by the EAT predefined d-? function:

> (d-? cc-delta-5 2 ’(1 2 3)) ==>
---------------------------------------------------{CMB 1}
<MNM 1 * (1 2)>
<MNM -1 * (1 3)>
<MNM 1 * (2 3)>
----------------------------------------------------------

Here the boundary of the generator σ123 of C2∆
5 is asked: the arguments of the

d-? function are:

1. The chain complex where the calculation is asked;

2. The dimension of the generator;

3. The generator itself.

The result is a cmb object, that is a linear combination of generators; the degree
of the combination is displayed in the top right-hand corner (1 here) and, between
the dashed lines, a list of “monomials” is enumerated; each monomial contains a
coefficient (1 or -1 here) and the corresponding generator; the ‘∗’ sign recalls the
“product”: coefficient times generator. A combination can be made by the user
as follows:

> (setf cmb-sample
(cmb 1 100 ’(1 2) 10 ’(1 3) 1 ’(2 3))) ==>

---------------------------------------------------{CMB 1}
<MNM 1 * (2 3)>
<MNM 10 * (1 3)>
<MNM 100 * (1 2)>
----------------------------------------------------------
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The degree of the combination to be constructed must firstly be given; then,
for each term, the coefficient and the generator is inserted. The boundary of a
combination is computed with the d-??? function:

> (d-??? cc-delta-5 cmb-sample) ==>
---------------------------------------------------{CMB 0}
<MNM -110 * (1)>
<MNM 11 * (3)>
<MNM 99 * (2)>
----------------------------------------------------------

Now the degree must not be given: the cmb object in fact contains this degree, but
of course the chain complex where the calculation occurs must be indicated. It is
easy to verify the rule d2 = 0 for a particular case:

> (d-??? cc-delta-5
(d-??? cc-delta-5 (cmb 5 1000 ’(0 1 2 3 4 5)))) ==>

---------------------------------------------------{CMB 3}
----------------------------------------------------------

No “monomial” is indicated, and the resulting combination is therefore null.

The homology groups of an effective chain complex can be computed by the
cc-homology function. For example let us compute H0C∗∆5:

> (cc-homology cc-delta-5 0) ==>
Computing boundary-matrix in dimension 0.
Rank of the source-module : 6.

;; Clock -> 16h 53m 45s.
Computing the boundary of the generator 1 (dimension 0) :
(0)
End of computing.

;; Clock -> 16h 53m 45s.
Computing the boundary of the generator 2 (dimension 0) :
(1)
End of computing.
[...Lines deleted...]
;; Clock -> 16h 53m 46s.
Computing the boundary of the generator 6 (dimension 0) :
(5)
End of computing.

Computing boundary-matrix in dimension 1.
Rank of the source-module : 15.

;; Clock -> 16h 53m 47s.
Computing the boundary of the generator 1 (dimension 1) :
(0 1)
End of computing.
[...Lines deleted...]
;; Clock -> 16h 53m 51s.
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Computing the boundary of the generator 15 (dimension 1) :
(4 5)
End of computing.

Homology in dimension 0 :
Component Z

---done---

Because such a computation can be long (several days sometimes), a little
information is displayed for the intermediate steps to allow the user to have some
idea about the progress of its calculation. The EAT program must firstly compute
the basis of three chain groups and the corresponding boundary matrices; here the
C−1 group is null, but this is not visible in the output. The rank of the source
modules is given and then the beginning of the computation of the boundary of
each generator is signalled. Finally the result is displayed as a list of components
(Z or Z/nZ). No component at all means the homology group is null:

> (cc-homology cc-delta-5 2) ==>
Computing boundary-matrix in dimension 2.
Rank of the source-module : 20.

;; Clock -> 17h 15m 41s.
Computing the boundary of the generator 1 (dimension 2) :
(0 1 2)
End of computing.
[...Lines deleted...]
;; Clock -> 17h 15m 47s.
Computing the boundary of the generator 20 (dimension 2) :
(3 4 5)
End of computing.

Computing boundary-matrix in dimension 3.
Rank of the source-module : 15.

;; Clock -> 17h 15m 47s.
Computing the boundary of the generator 1 (dimension 3) :
(0 1 2 3)
End of computing.
[...Lines deleted...]
;; Clock -> 17h 15m 52s.
Computing the boundary of the generator 15 (dimension 3) :
(2 3 4 5)
End of computing.

Homology in dimension 2 :

---done---

The simplicial set ∆5 is contractible and kernel and image in C2∆
5 are equal.

The reader probably wishes here an example with torsion in homology. Let X
the wedge of the 3-sphere and the Moore space Moore(Z/3Z, 3):

42



> (setf X (wedge (sphere 3) (moore 3 3))) ==>
[SS-11]
> (cc-homology (ss-cc X) 3) ==>
Computing boundary-matrix in dimension 3.
Rank of the source-module : 2.

;; Clock -> 17h 24m 25s.
Computing the boundary of the generator 1 (dimension 3) :
<W-GSM 1 <S3>>
End of computing.

;; Clock -> 17h 24m 25s.
Computing the boundary of the generator 2 (dimension 3) :
<W-GSM 2 <M3>>
End of computing.

Computing boundary-matrix in dimension 4.
Rank of the source-module : 1.

;; Clock -> 17h 24m 26s.
Computing the boundary of the generator 1 (dimension 4) :
<W-GSM 2 <MM4>>
End of computing.

Homology in dimension 3 :

Component Z/3Z
Component Z

---done---

There are only three nondegenerate simplices for X in dimensions 3 and 4. The
faces and the boundary of the only 4-simplex are:

> (dotimes (index 5)
(print (gdl X index 4 (w-gsm 2 ’<MM4>)))) ==>

<ASM * <W-GSM 2 <M3>>>
<ASM 2-1-0 <W-GSM 0 W-BSP>>
<ASM * <W-GSM 2 <M3>>>
<ASM 2-1-0 <W-GSM 0 W-BSP>>
<ASM * <W-GSM 2 <M3>>>
NIL
> (d-? (ss-cc X) 4 (w-gsm 2 ’<MM4>)) ==>
---------------------------------------------------{CMB 3}
<MNM 3 * <W-GSM 2 <M3>>>
----------------------------------------------------------

In the first result, the index runs from 0 (inclusive) to 5 (exclusive), and for
each value, the corresponding face is displayed; the terminal NIL has no meaning,
it is a by-product of the dotimes process. In the second result, the boundary of
the 4-simplex of the Moore space is three times the 3-simplex of the same space.

The EAT program can also construct the chain complex canonically associated
to a locally effective simplicial set, but the chain complex result is then also locally
effective:
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> (setf cc-delta-infinity (ss-cc delta-infinity)) ==>
[CC-10]
> (cbs cc-delta-infinity 3) ==>
;; Error: The chain complex [CC-10] is locally-effective.

No global information is available for the chain complex C∗∆∞, and it is therefore
not possible to get a basis of C3∆

∞. Trying to compute a homology group of
C∗∆∞ fails:

> (cc-homology cc-delta-infinity 2) ==>
;; Error: CC-MAT cannot work
;; with a LOCALLY-EFFECTIVE chain complex.

The CC-MAT function is called by cc-homology to compute the boundary matrices;
this is not possible if the chain complex is locally effective. But this does not
prevent the user to undertake “local” computations:

> (d-? cc-delta-infinity 3 ’(12 456 678 2222222)) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * (12 456 678)>
<MNM 1 * (12 456 2222222)>
<MNM -1 * (12 678 2222222)>
<MNM 1 * (456 678 2222222)>
----------------------------------------------------------

We have here the essential tool which will allow us to organize our solution
for the problem of constructive algebraic topology: of course an infinite object
cannot be installed in a finite machine, but a partial implementation can be done,
which will be just sufficient for our work. The new mathematical notion of locally
effective object will exempt us from the complicated machineries of Schön [40],
Smirnov [46] and Justin Smith [47]; we will work in this way closely to usual
algebraic topology.

6.3 EAT and the chain complex morphisms.

After the objects constructed and handled by EAT, we must now consider the mor-
phisms between them, that is, the chain complex morphisms. The mrp (morphism)
EAT objects are more generally morphisms of graded Z-modules, not necessarily
compatible with differentials. For example the homotopy operators are (can be
implemented as) mrp objects in the EAT environment.

We illustrate what is possible with the EAT program about morphisms by the
following exercise: the chain complex C∗∆∞ is locally effective and its homology
groups cannot be directly computable. But it is well known this complex is acyclic;
we construct a contracting homotopy h and verify the relation id − hd − dh = 0
for particular cases.

After all, the differential of a chain complex can be considered as a “morphism”
and, in the EAT organization, it is actually a mrp object which can be extracted
from the chain complex by the cc-d function:
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> (setf d (cc-d cc-delta-infinity)) ==>
[MRP-10]

This differential morphism has been assigned to the symbol d. It is possible to
make this morphism work on some generator; compare both following statements:

> (? d 3 ’(4 5 6 7)) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * (4 5 6)>
<MNM 1 * (4 5 7)>
<MNM -1 * (4 6 7)>
<MNM 1 * (5 6 7)>
----------------------------------------------------------
> (d-? cc-delta-infinity 3 ’(4 5 6 7)) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * (4 5 6)>
<MNM 1 * (4 5 7)>
<MNM -1 * (4 6 7)>
<MNM 1 * (5 6 7)>
----------------------------------------------------------

Both statements are equivalent, and in fact EAT converts the second one into the
first one25. When a chain complex is build by EAT, the differential is constructed
as a morphism with source and target this chain complex; source and target of a
morphism can be obtained by the functions mrp-src and mrp-trg. The circularity
of this organization can be made visible:

> cc-delta-infinity ==>
[CC-10]
> (mrp-src (cc-d cc-delta-infinity)) ==>
[CC-10]
> (mrp-src (cc-d cc-delta-infinity)) ==>
[CC-10]
> d ==>
[MRP-10]
> (cc-d (mrp-src d)) ==>
[MRP-10]
> (cc-d (mrp-trg d)) ==>
[MRP-10]

A morphism can also work on combinations:

> (??? d (cmb 2 10 ’(1 2 3) 100 ’(2 3 4))) ==>
---------------------------------------------------{CMB 1}
<MNM -10 * (1 3)>
<MNM 10 * (1 2)>
<MNM 100 * (3 4)>
<MNM -100 * (2 4)>
<MNM 110 * (2 3)>

25the ‘?’ function in the EAT program may be applied only on the mrp instances, not on any
functional object like in the previous sections.
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----------------------------------------------------------
> (d-??? cc-delta-infinity (cmb 2 10 ’(1 2 3) 100 ’(2 3 4))) ==>
---------------------------------------------------{CMB 1}
<MNM -10 * (1 3)>
<MNM 10 * (1 2)>
<MNM 100 * (3 4)>
<MNM -100 * (2 4)>
<MNM 110 * (2 3)>
----------------------------------------------------------

The usual contracting homotopy for ∆∞ is the operator “cone with respect to
the 0 vertex”; it can be constructed in the EAT framework as follows:

> (setf h
(build-mrp

:src cc-delta-infinity
:trg cc-delta-infinity
:dgr +1
:f #’(lambda (dgr gnr)

(if (= 0 (first gnr))
(cmb (1+ dgr))
(cmb (1+ dgr) 1 (cons 0 gnr))))

:org ’(delta-infinity-contraction))) ==>
[MRP-11]

A morphism is constructed with the slots src (source), trg (target), dgr

(degree), f (the Lisp function giving the image of a generator as a combination)
and org (a comment). Here the f slot contains the function returning the null
combination if the generator has the 0 vertex as first element, or otherwise the
0-cone with respect to the generator, presented as a combination; a combination
(cmb 3) is the null combination of degree 3. Our homotopy operator can be tried:

> (? h 3 ’(4 5 6 7)) ==>
---------------------------------------------------{CMB 4}
<MNM 1 * (0 4 5 6 7)>
----------------------------------------------------------
> (? h 3 ’(0 5 6 7)) ==>
---------------------------------------------------{CMB 4}
----------------------------------------------------------

Morphisms can be composed, added, subtracted:

> (setf dh (cmp-mrp d h)) ==>
[MRP-12]
> (setf hd (cmp-mrp h d)) ==>
[MRP-13]
> (setf dh+hd (add-mrp-to-mrp dh hd)) ==>
[MRP-14]
> (setf id-cdelta (id-mrp cc-delta-infinity)) ==>
[MRP-15]
> (setf should-be-null

(sbt-mrp-from-mrp dh+hd id-cdelta)) ==>
[MRP-16]
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When reading the above Lisp lines, it is important to know the text dh+hd is
nothing but one symbol without any addition asked; it is only a notation. Now
we can verify the relation id = dh+ hd for particular cases:

> (? should-be-null 3 ’(4 5 6 7)) ==>
---------------------------------------------------{CMB 3}
----------------------------------------------------------
> (? should-be-null 3 ’(0 5 6 7)) ==>
---------------------------------------------------{CMB 3}
----------------------------------------------------------

6.4 Conclusion.

We hope the reader begins to understand the general organization of the EAT
program. The traditional mathematical objects of algebraic topology are imple-
mented as structures where the important slots are Lisp functions. The ordinary
constructions of new mathematical objects from others already available is im-
plemented as constructions of new structure instances, where the functional slots
can be constructed in using the functional slots of the given objects; it is a simple
question of functional programming. And in some particular cases, these functional
slots can be used to obtain some intermediate “local” result.

7 EAT and the loop spaces.

What about the loop space construction in the EAT program? A combinatorial
version of the loop space construction must firstly be given. Kan [29] gave such a
version, able to work on reduced simplicial sets.

Definition 8 — A simplicial set X = {Xn} is reduced if the vertex set X0 has
only one element. More generally, if n is a natural number, the simplicial set X is
n-reduced if it is reduced and if, for every 0 < k ≤ n, the simplex set Xk does not
have any non-degenerate simplex.

The unique vertex of a reduced simplicial set is usually considered as the base
point of the simplicial set; if X is n-reduced, it is n-connected (πkX = 0 for
0 ≤ k ≤ n), and, conversely, any n-connected simplicial set has in its homotopy
type an n-reduced version.

A tricky process, due to Kan [29], constructs a combinatorial version GX of
the loop space Ω|X|, for every reduced simplicial set X. Here, |X| is the realization
of the simplicial set X, that is, the topological space canonically associated to the
(combinatorial) simplicial set X; see [23, 32, 30]. In this paper, because we are
only interested in homotopy types, we simply call GX “the” loop space of X.

The loop space GX is a simplicial set and we must firstly define its simplex
sets {GXn}n∈N. For n a positive integer, let us denote by X∗n ⊂ Xn the subset
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of the n-simplices that are not 0-degenerate: X∗n = Xn − η0Xn−1. Then GXn is
defined as the free non-commutative group generated by X∗n+1; this is the set of
words with respect to the alphabet X∗n+1, where each letter has also an exponent,
a non-null integer, positive or negative, this set being divided by the equivalence
relation generated by σmσ−m = 1 for every letter σ ∈ X∗n+1 and every integer m;
the group law is defined by concatenation. If the generator set is non-empty, the
non-commutative freely generated group is highly infinite.

Face and degeneracy operators remain to be defined for GX. It is convenient to
denote τ(σ) the generator of the free group GXn corresponding to the simplex σ ∈
X∗n+1. Then the face (resp. degeneracy) operators will be group homomorphisms
∂i : GXn → GXn−1 (resp. ηi : GXn → GXn+1); in other words, the simplicial
set GX will be defined as a simplicial group (see [32, 30]). Now, because GXn

is a free group, it is sufficient to define the face and degeneracy operators for the
generators τ(σ) ∈ GXn, for every simplex σ ∈ X∗n+1:

∂iτ(σ) = τ(∂i+1σ), if 1 ≤ i ≤ n;
∂0τ(σ) = τ(∂1σ)τ(∂0σ)−1;
ηiτ(σ) = τ(ηi+1σ), if 0 ≤ i ≤ n.

Several choices are possible; for example it is possible to replace the second
formula by the following:

∂0τ(σ) = τ(∂0σ)−1τ(∂1σ);

but this implies a corresponding different choice for the action (right or left?) of
the structural groups in the simplicial fibrations considered later. In the same way
the choice of the “special” index 0 (again for the second formula) can be replaced
by n with a corresponding change in the result. The choices given here are those
that have been done in the EAT program.

The EAT loop-space function works on a reduced simplicial set X and returns
a locally-effective simplicial set GX. For example, let us use this function to

construct the loop space G∆
5

of the standard 5-simplex where all the vertices are
identified:

> (setf delta-bar-5
(build-ss

:bsp ’(0)
:eqs #’(lambda (gsm1 gsm2)

(if (= 1 (length gsm1))
t
(equal gsm1 gsm2)))

:sbs #’(lambda (dmn)
(if (zerop dmn)

’((0))
(delta-inj dmn 5)))

:gdl #’(lambda (i dmn gsm)
(asm empty-list

(append (subseq gsm 0 i)
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(subseq gsm (1+ i)))))
:org ’(delta-bar-5)))

[SS-4]
> (setf g-delta-bar-5 (loop-space delta-bar-5))
[SS-5]

We assume a new Lisp session is restarted, with the EAT program loaded. The

ss object delta-bar-5 is constructed to modelize ∆
5
; a simplex is an increasing

list of integers between 0 and 5. In particular a 0-simplex is a list of one integer

and any two such simplices in fact are the same: only one vertex in ∆
5
. Then the

predefined EAT function loop-space can be invoked to construct the loop-space

G∆
5
, another ss object located through the symbol g-delta-bar-5. For example

let us look at its base point:

> (ss-bsp g-delta-bar-5) ==>
<<LOOP *>>

which is the trivial loop. Let us try now to look at the non-degenerate 3-simplices

of G∆
5
:

> (sbs g-delta-bar-5 3) ==>
;; Error: The simplicial set [SS-5] is locally-effective.

This combinatorial version of the loop-space of ∆
5

is highly infinite; there are

252 (degenerate or not) simplices of dimension 4 in ∆
5

and 126 among them are

not 0-degenerate; so that the set of 3-simplices in G∆
5

is a free non-commutative
group with 126 generators. But this situation does not prevent us from undertaking
local computations, a “local” computation being understood as using only a finite
number of simplices.

For example let us denote again by σ02345 the simplex of ∆
5

spanning the

vertices 0, 2, 3, 4 and 526. Then τ(σ02345)
2 is a simplex of G∆

5
and we should be

able to compute its faces. We must firstly code this simplex; the predefined loop3

function allows the EAT user to do it:

> (setf tau-s02345-squared
(loop3 empty-list ’(0 2 3 4 5) 2)) ==>

<<LOOP (<PWR * (0 2 3 4 5) ** 2>)>>

The loop constructor is called loop3 because each information unit needs three
arguments:

1. a composite degeneracy operator;

2. a non-degenerate (gsm) simplex of the original simplicial set;

26More precisely the simplex of ∆
5

coming from the simplex spanning the vertices 0, 2, 3, 4
and 5 of ∆5 divided by the relation identifying its vertices.
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3. a power indicator (a non-null integer).

Here the original simplex σ02345 is non-degenerate so that the first argument is
the empty list. The second argument is the original simplex σ02345 denoted by an
integer list; finally the third argument is the power 2. The result is a list between
brackets, prefixed by the indication LOOP, the list being constituted of “powers”
(again a bracketed list prefixed by the indication PWR). Look at the following
example, a little more complicated:

> (setf more-complicated-loop
(loop3 ’(2 1) ’(0 2 3 4 5) 1

’(3 1) ’(0 2 3 4 5) -2
’(3 2) ’(0 2 3 4 5) 1)) ==>

<<LOOP (<PWR 2-1 (0 2 3 4 5) ** 1>
<PWR 3-1 (0 2 3 4 5) ** -2>
<PWR 3-2 (0 2 3 4 5) ** 1>)>>

Here the loop τ(η2η1σ02345)
1τ(η3η1σ02345)

−2τ(η3η2σ02345)
1 is constructed. The

interpretation of the statement and the result should be clear. Because there is no
intersection between the three composite degeneracy operators, this loop is non-
degenerate and the object now located by the symbol more-complicated-loop is

a legal gsm simplex for G∆
5
. On the contrary the following one is illegal:

> (setf erroneous-loop
(loop3 ’(2 1) ’(0 2 3 4 5) 1

’(3 1) ’(0 2 3 4 5) -2)) ==>
<<LOOP (<PWR 2-1 (0 2 3 4 5) ** 1>

<PWR 3-1 (0 2 3 4 5) ** -2>)>>

This loop is an illegal gsm object in G∆
5
; because of the definition of degen-

eracy operators in G∆
5
, we have the relation: η0(τ(η1σ02345)

1τ(η2σ02345)
−2) =

τ(η2η1σ02345)
1τ(η3η1σ02345)

−2. In other words this loop is degenerate, mainly be-
cause the number 1 is in the intersection of the degeneracy families. The predefined
function normalize-loop is able to examine this question; it needs the dimension
of the loop considered and the claimed gsm loop itself; the result is expressed as a
correct asm object:

> (normalize-loop 5 erroneous-loop) ==>
<ASM 0 <<LOOP (<PWR 1 ’(0 2 3 4 5) ** 1>

<PWR 2 ’(0 2 3 4 5) ** -2>)>>>
> (normalize-loop 5 more-complicated-loop) ==>
<ASM * <<LOOP (<PWR 2-1 ’(0 2 3 4 5) ** 1>

<PWR 3-1 ’(0 2 3 4 5) ** -2>
<PWR 3-2 ’(0 2 3 4 5) ** 1>)>>>

You see the normalize-loop function detects the degeneracy property of the
wrongly coded loop; on the contrary the other loop was really non-degenerate.

The ss object located by g-delta-bar-5 contains the necessary information
to compute simplex faces:
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> (gdl g-delta-bar-5 1 3 tau-s02345-squared) ==>
<ASM * <<LOOP (<PWR * (0 2 4 5) ** 2>)>>>

The formula ∂1τ(σ) = τ(∂2σ) is applied. For the 0-face instead of the 1-face:

> (gdl g-delta-bar-5 0 3 tau-s02345-squared) ==>
<ASM * <<LOOP (<PWR * (0 3 4 5) ** 1>

<PWR * (2 3 4 5) ** -1>
<PWR * (0 3 4 5) ** 1>
<PWR * (2 3 4 5) ** -1>)>>>

You see the program knows ∂0 is a free group homomorpphism. The same com-
putations for the more complicated loop:

> (gdl g-delta-bar-5 1 3 more-complicated-loop) ==>
<ASM * <<LOOP (<PWR 1 (0 2 3 4 5) ** 1>

<PWR 2 (0 2 3 4 5) ** -1>)>>>
> (gdl g-delta-bar-5 0 3 more-complicated-loop) ==>
<ASM * <<LOOP (<PWR 1 (0 2 3 4 5) ** 1>

<PWR 2 (0 2 3 4 5) ** -2>
<PWR 2-1 (0 3 4 5) ** 1>
<PWR 2-1 (2 3 4 5) ** -1>)>>>

The reader can easily verify the results. The function loop-space uses the
functional components, essentially the face operator gdl, of the original simplicial
set to construct the corresponding functional components of the loop space; as
previously it is a question of writing functions working on functional arguments
and able to construct a functional result.

Because G∆
5

is a (locally effective) ss object, the ss-cc function can compute
the corresponding chain complex:

> (setf cc-g-delta-bar-5
(ss-cc g-delta-bar-5)) ==>

[CC-7]

which can be locally used:

> (d-? cc-g-delta-bar-5 3 tau-s02345-squared) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * <<LOOP (<PWR * (0 2 3 4) ** 2>)>>>
<MNM 1 * <<LOOP (<PWR * (0 2 3 5) ** 2>)>>>
<MNM -1 * <<LOOP (<PWR * (0 2 4 5) ** 2>)>>>
<MNM 1 * <<LOOP (<PWR * (0 3 4 5) ** 1>

<PWR * (2 3 4 5) ** -1>
<PWR * (0 3 4 5) ** 1>
<PWR * (2 3 4 5) ** -1>)>>>

----------------------------------------------------------

and it is possible to verify the relation d ◦ d = 0 for particular cases :
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> (d-??? cc-g-delta-bar-5
(d-? cc-g-delta-bar-5 3 tau-s02345-squared)) ==>

---------------------------------------------------{CMB 1}
----------------------------------------------------------

Only a finite number of simplices were concerned in this calculation. But
computing the homology groups of this chain complex needs global information
and, because the complex is locally effective:

> (cc-cbs cc-g-delta-bar-5) ==>
:locally-effective

this is not possible:

> (cc-homology cc-g-delta-bar-5 3) ==>
;; Error: CC-MAT cannot work with a LOCALLY-EFFECTIVE chain complex.

It is also possible to iterate the loop-space construction. For example, to con-
struct a second loop space, we must start with a 1-reduced simplicial set. Let

us consider the simplicial set ∆
5,3

defined as the infinite simplex divided by its
2-skeleton:

> (setf delta-bar-five-3
(build-ss :bsp ’(0)

:eqs #’(lambda (gsm1 gsm2)
(if (= 1 (length gsm1))

t
(equal gsm1 gsm2)))

:sbs #’(lambda (dmn)
(case dmn

(0 ’((0)))
((1 2) empty-list)
(otherwise (delta-inj dmn 5))))

:gdl #’(lambda (i dmn gsm)
(case dmn

(0 (error "A face of a 0-dimensional simplex~@
does not make sense."))

((1 2) (error "No non-degenerate 1-simplex~@
in delta-bar-five-3."))

(3 (asm ’(1 0) ’(0)))
(otherwise

(asm empty-list
(append (subseq gsm 0 i)

(subseq gsm (1+ i)))))))
:org ’(delta-bar-infinity-2))) ==>

[SS-6]

The only significant difference with ∆
5

is that any face of a 3-simplex is the
2-dimensional degeneracy of the base point. The chain-complex of the second

loop-space C∗G2∆
5,3

is:
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> (setf cc-g2-delta-bar-five-3
(ss-cc (loop-space (loop-space delta-bar-five-3)))) ==>

[CC-8]

We can consider the simplex τ(τ(σ01234)τ(σ02345)
−1)2:

> (setf double-loop
(loop3 empty-list

(loop3 empty-list ’(0 1 2 3 4) 1
empty-list ’(0 2 3 4 5) -1)

2)) ==>
<<LOOP (<PWR * <<LOOP (<PWR * (0 1 2 3 4) ** 1>

<PWR * (0 2 3 4 5) ** -1>)>> ** 2>)>>

and compute its boundary in C∗G2∆
5,3

:

> (d-? cc-g2-delta-bar-five-3 2 double-loop) ==>
---------------------------------------------------{CMB 1}
<MNM 1 * <<LOOP (<PWR * <<LOOP (<PWR * (0 1 2 3) ** 1>...
<MNM -1 * <<LOOP (<PWR * <<LOOP (<PWR * (0 1 2 4) ** 1>...
<MNM 1 * <<LOOP (<PWR * <<LOOP (<PWR * (0 1 3 4) ** 1>...
----------------------------------------------------------

(only a small part of the result is copied here) and also verify d ◦ d = 0 for this
double loop:

> (d-??? cc-g2-delta-bar-five-3
(d-? cc-g2-delta-bar-five-3 2 double-loop)) ==>

---------------------------------------------------{CMB 0}
----------------------------------------------------------

but it is not possible to directly compute the homology groups H∗G2∆
5,3

:

> (cc-homology cc-g2-delta-bar-five-3 2) ==>
;; Error: CC-MAT cannot work with a LOCALLY-EFFECTIVE chain complex.

Much more work is needed to be able to use these methods to compute such
homology groups. This is the subject of the rest of this paper: we must add much
information to an object like cc-g2-delta-bar-five-3 and transform it into an
object with effective homology.

8 A tentative appropriate mathematical lan-

guage.

The main results of this paper concern the construction of some algorithms satis-
fying interesting properties. For example our main result about iterating the cobar
construction has the following form.
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Theorem 9 — Let SSn the type of n-reduced locally effective simplicial sets with
effective homology; an algorithm λ can be constructed:

λ : SS1 → SS0

such that if X ∈ SS1, then λ(X) is a version with effective homology of GX, the
loop space of X. In particular, λ(SSn) ⊂ SSn−1 if n is a positive integer.

Many things are underlying in such a statement and probably the reader would
prefer a more precise one. But such a precise statement would be very long and
would certainly not help understanding. We must now explain what must actually
be understood: this is the aim of the present section.

8.1 Types.

A type is nothing but the machine version of the mathematical notion of set (col-
lection). Usually, in order to avoid the classical paradoxes of set theory, the notion
of class is preferred for all the simplicial sets, but in our environment this does
not matter because the objects are machine objects, taken among the (countable)
set U of all the machine objects. However, the classical Russel paradox appears
again under a slightly different form; for example the type SS is even not locally
effective: in other words no algorithm can determine whether an arbitrary ma-
chine object is an element of SS and this is the reason why the notion of type
is preferred. We shall explain later an object of type SS is a structure instance
with a few components satisfying some properties; but in general it is impossible
to verify these properties for an arbitrary object. So that an algorithm λ as above
is in principle used only for objects X provided with a proof that really X ∈ SS.
On the contrary the various types considered in the previous sections, defining for
example the simplex set of some simplicial set, were assumed to be locally effec-
tive, and in fact were defined by an algorithm implementing the corresponding
characteristic function.

8.2 The theoretical Lisp machine.

It is possible to modelize the Lisp machine as follows. The set U (universe) is the
countable set of machine objects. The set E is the countable set of environments.
The evaluator ε is a function ε : E×U → (E×U)

∐
{?}. A mathematical definition

of the Lisp machine such as the thick book [49] is nothing but a definition of the
mathematical objects U , E and ε. The following indications are here sufficient.

1. An environment E ∈ E is a set of bindings from symbols to arbitrary objects,
usually called the values of these symbols when evaluation starts. An envi-
ronment is strongly structured to implement the lexical closure mechanism,
see [42, Nanolisp] or [3, section 3.10], but we will not consider these complex
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notions here, giving us the possibility of using functional programming ; we
consider the numerous shown examples should be sufficient.

2. An object ω ∈ U is some “machine object” such as a number, a string
character, a function,. . .

3. If E is an environment and ω a machine object, the value (E ′, ω′) = ε(E, ω) is
a pair where the first component E ′ is the new environment after evaluation
(some bindings can be modified or added), and the object ω′ is simply called
the object returned by the evaluator working on ω in the environment E;
still more simply, ω′ is the result of the evaluation of ω, the underlying
environment being implicit.

4. Sometimes the evaluator work does not terminate, for example if there is an
infinite loop in the program. In such a case the mathematical translation
is ε(E, ω) =?. In general, according to the Post theorem, we are unable to
guess such a result.

Let us look at the simple example:

> (setf 2-x-list
#’(lambda (list)

(append list list))) ==>
#<function 1 ...>
> (funcall 2-x-list ’(a b c)) ==>
(A B C A B C)

The first statement returns a functional object and modifies the current en-
vironment: a new binding from the symbol 2-x-list towards the function just
created is installed. The second statement makes this functional object work on
the list (a b c) through the binding just installed.

Another way to obtain the same result, more usual in Common Lisp, is the
following:

> (defun 2-x-list (list)
(append list list)) ==>

2-X-LIST
> (2-x-list ’(a b c)) ==>
(A B C A B C)

The first statement (defun = define function) assigns a functional object to the
functional slot of the symbol 2-x-list; in this way the symbol can be directly used
at the very beginning of the list (2-x-list ...) without using funcall, which
is compulsory if the functional object is assigned to the value slot of the symbol;
see [49] for details. We understand the reader is a little irritated at considering so
technical considerations, but they cannot be avoided: in the first sections it was
didactically more appropriate to consider only the value slots of symbols; for actual
programming, using the functional slots is much more convenient and because we

55



intend to base exposition on the actual EAT program, we are obliged to speak of
these esoteric notions.

A stranger but equivalent method is the following:

> ((lambda (list)
(append list list))

’(a b c)) ==>
(A B C A B C)

A unique statement makes the functional object and immediately uses it. The
first method, using a binding installed in the environment is the usual one, but
it is easy to proof any set of statements can always be put together in a unique
statement, with the same result. In this way we can theoretically ignore the role of
the environments and modelize our machine as a simpler function ε : U → U

∐
{?}.

We will no longer consider the questions of environment.

Most of our computability results have the following form:

Proposition 10 — An algorithm α can be constructed satisfying the following
property: if the object ω1 (resp. ω2) satisfies the property P1 (resp. P2), then the
object α(ω1, ω2) satisfies the property P .

The number of arguments (here 2) which the function α may work on is usually
constant but sometimes may be also variable. For example the previous Lisp
example could be formalized as follows:

Proposition 11 — An algorithm α can be constructed such that, if λ is a list,
then the result α(λ) is the list λ concatenated with itself.

A more serious example of such a result, concerning the loop space examples
of section 7 can be now stated in this way:

Proposition 12 — An algorithm λ can be constructed such that, if X is an ef-
fective or locally effective reduced simplicial set, then λ(X) is a locally effective
version of the loop space GX.

Such a statement needs a preliminary work. On one hand the object types
effective simplicial sets and locally effective simplicial sets must be defined. On the
other hand there must be explained the reason why producing the result objectGX
amounts to essentially constructing a few functional slots from various ingredients,
in particular the functional slots of X; in other words it is essentially a question of
functional programming. The situation is even a little better than in traditional
mathematics: a complete formal construction is often available as an actual Lisp
program27.

27A referee of a previous version of this paper did not hesitate to judge: “The paper’s claim to
be algorithmic is a joke” (sic); however the necessary information was given to reach the complete
actual program, a program already demonstrated in numerous mathematical departments, a
program where no error has yet been discovered.
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8.3 The ss object type.

Definition 13 — An ss machine object X ∈ U is a 4-tuple X = (τ, χ, β, ∂)
where:

1. The τ component is a function τ : N × U → {nil, t} describing the sets of
simplices of X: a machine object σ is a non-degenerate n-simplex of X if
and only if τ(n, σ) = t.28

2. The χ component is a function χ : Uχ → {nil, t}; the source set Uχ is the
set of pairs (σ1, σ2) where both components are simplices having the same
dimension in X29; the result is the symbol t if and only if the simplices σ1

and σ2 are equal : one simplex can be modelized as different machine objects.

3. The β component can be the keyword :locally-effective or a function
β : N → U ; in the last case, the value β(n) is the (necessarily finite) list
of non-degenerate simplices in dimension n (only one representant for every
“mathematical” simplex): the simplicial set is therefore finite in each dimen-
sion. In the first case, this information is unavailable and the ss object X is
then called locally effective and can be “highly” infinite; in the second case,
the ss object X is called effective.

4. The ∂ component is a function ∂ : U∂ → U ; the source U∂ is the set of
triples (i, n, σ) where n is a positive integer, the integer i satisfies 0 ≤ i ≤ n
and σ is an n-simplex of X. The image ∂(i, n, σ) = (η, σ′) is a pair; the
first component η is a multiple degeneracy operator (possibly the identity:
no degeneracy at all) and σ′ is some nondegenerate simplex; this pair is the
canonical expression of the corresponding face: ∂i(σ) = ησ′.

5. Finally these components must verify the obvious coherence conditions to
define a simplicial set; for example the ∂ component must satisfy the classical
commutation relations; if two simplices are equal, the faces of same index
must be equal too, and so on.

Nothing new in this definition with respect to what was explained in Section 6:
the chosen language is only closer to the traditional mathematical one. If the Lisp
machine is precisely defined as a mathematical object like in [49], a definition like
above allows one to state that some object X is an effective simplicial set or a
locally effective simplicial set: the object X is an element of the mathematical set
U satisfying some properties with respect to the Lisp evaluator ε.

28We recall this slot is in fact never used in the calculations we are interested in, so that it is
omitted in the EAT program.

29Several dimensions are possible for the same pair, but the result must not depend on the
considered dimension.
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8.4 The cc object type.

Definition 14 — We can define in the same way the cc object type. A cc

object C is a 4-tuple C = (τ, χ, β, d) where:

1. The τ component is a function τ : N × U → {nil, t} describing the sets
of generators of the chain complex C: a chain group Cn is a free Z-module
provided with an explicit basis, namely the set of machine objects x satisfying
the condition τ(n, x) = t.30

2. The χ component is a function χ : Uχ → {nil, t}; the source set Uχ is the
set of pairs (x1, x2) where both components are generators having the same
degree in C31; the result is the symbol t if and only if the generators x1 and
x2 are equal : one generator can be modelized as different machine objects.

3. The β component can be the keyword :locally-effective or a function
β : N → U ; in the last case, the value β(n) is the (necessarily finite) list
of generators in degree n (only one representant for every “mathematical”
generator): the chain complex is therefore of finite type in each dimension.
In the first case, this information is unavailable and the cc object C is then
called locally effective and can be “highly” infinite; in the second case, the
cc object C is called effective.

4. The d component is a function d : Ud → U ; the source Ud is the set of
pairs (n, x) where n is an integer and x is a generator of Cn. The image
d(n, x) =

∑
αixi is a finite Z-combination of generators of Cn−1 expressed

in an appropriate way.

5. Finally these components must verify the obvious coherence conditions to
define a chain complex; for example d ◦ d = 0; if two generators are equal,
their boundaries must be equal too, and so on.

We hope the reader now understands analogous definitions may be given for
the classical types of structures used in algebraic topology. For example we shall
frequently use some coalgebras ; in this framework, a coalgebra will be a cc object
completed with a further component ∆ implementing in an obvious way the co-
multiplication; the function ∆ must be able to work on pairs (n, x) where x is a
generator of Cn, returning a description of the object ∆(x), the coproduct of the
generator x.

8.5 Morphism objects.

Let us suppose two cc objects C1 and C2 are installed in our machine.

30Cf footnote28.
31Cf footnote29.
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Definition 15 — A morphism object f : C1 → C2 is a function f : Uf → U
where Uf = Ud1 , that is, the set of pairs (n, x) where x is a generator of C1,n.
Then f(x, n) =

∑
αiyi is a finite Z-combination of generators of C2,n. Of course

a few coherence conditions must be satisfied; for example d2 ◦ f = f ◦ d1; if two
generators are equal, their images by f must be equal too, and so on.

It is easy to define in the same way homotopy operators between chain com-
plexes, coalgebra morphisms, and so on.

8.6 Functor objects.

The classical “reasonable” functors can be implemented. A typical example fol-
lows.

Proposition 16 — An object ⊗ can be constructed. This object is a function:

⊗ : CC × CC → CC

able to work on pairs (C1, C2) and returning a new cc object C modelizing the
tensor product of chain complexes C1 ⊗ C2.

Proof. A generator of C is implemented as a pair of generators of C1 and C2;
the generator types of C1 and C2 therefore allow us to define the corresponding
generator type for the chain complex C. The same for the other components of C:
constructing them amounts to defining new functions using the functional slots of
C1 and C2; it is a simple matter of functional programming .

So that understanding our main theorem 9 amounts to defining the notions of
simplicial sets with effective homology ; it is the subject of the next section.

9 The general organization revisited.

9.1 Basic definitions.

The notions of effective and locally effective objects (simplicial sets and chain
complexes mainly) are now precisely defined. We may reconsider the definitions
of Section 2 in the light of these definitions.

Definition 17 — (cf. Definition 1) A reduction is a 5-tuple ρ = (Ĉ, C, f, g, h):

Ĉ
h−→ Ĉ

f ↓↑ g

C
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where Ĉ and C are locally effective chain complexes, f and g are chain complex
morphisms, h is a homotopy operator of degree 1; these data must satisfy the
following relations:

1) fg = 1C ;
2) fh = 0 ;
3) hg = 0 ;
4) hh = 0 ;
5) 1 bC − gf = hd+ dh.

The reduction ρ is called a (LE,E) reduction if the big chain complex Ĉ is
locally effective and the small one C is effective. Otherwise the reduction is at
least of type (LE,LE). If the reduction is of type (LE,E), then the homology
groups of the small chain complex C are computable, so that the reduction can be
understood as a complete description of the homology of the big chain complex Ĉ:
giving a homology class of Ĉ amounts to giving a cycle of C, and a representant
in Ĉ can be reached through the g-component of the reduction ρ. If a cycle of Ĉ
is given, an algorithm can determine whether this cycle is a boundary, and if so a
preimage by the differential can be computed.

Definition 18 — A homotopy equivalence between two (locally effective) chain
complexes C1 and C2 is a pair of reductions:

Ĉ
ρ1 ↙ ↘ ρ2

C1 C2

where in general the chain complex Ĉ is assumed only locally effective.

A homotopy equivalence is of type (LE,LE,E) if the bottom right-hand chain
complex C2 is effective. Others combinations can be considered but in this paper
only the (LE,LE,LE) and (LE,LE,E) situations happen. Again a (LE,LE,E)
homotopy equivalence can be considered as a complete descritpion of the homology
of the bottom left-hand chain complex C1.

Definition 19 — An object with effective homology is a 4-tuple (X,C,EC, ε)
where:

1) X is a locally effective object;
2) C is the locally effective chain complex canonically associated

to X;
3) EC is an effective chain complex;
4) ε is a (LE,LE,E) homotopy equivalence between C and EC.
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In this paper, the object X is a simplicial set or a chain complex (in this case
C = X), sometimes with additional structure; for example a simplicial set could
be a simplicial group, a chain complex could be a differential coalgebra, etc.

The main results we obtain in this paper are the constructive versions of the
classical spectral sequences, due to Serre and Eilenberg-Moore. The following
object types will be used:

1. The type of n-reduced simplicial sets with effective homology is denoted
by SSn

EH ; a simplicial set is n-reduced if it has one vertex and no other
non-degenerate simplex in dimension ≤ n; it is in particular n-connected;

2. The type of locally effective simplicial groups is denoted by SG;

3. The type of n-reduced simplicial groups with effective homology is denoted
by SGn

EH

4. A (simplicial) fibration is a 5-tuple Φ = (B,F,G, τ, E) where F and B are
locally effective — from now on this qualifier is implicit — simplicial sets, G
is a simplicial group acting on F , τ is a torsion operator τ : B → G defining
a fibration of E = B ×τ F over the base space B with fiberF . See details in
Section 13. If F = G and if the action of G on itself is the canonical one,
then the fibration is principal. The type of fibrations is denoted by F .

9.2 Results.

Theorem 20 — An algorithm SERREEH can be constructed:

SERREEH : [F × SS1
EH × SS0

EH ]χ −→ SS0
EH

where [. . .]χ is the set of coherent triples (Φ, BEH , FEH), that is those triples such
that the underlying simplicial set of BEH is the base space of Φ and the underlying
simplicial set of FEH is the fiber space. The output of the algorithm working on
coherent data is a version with effective homology of the total space, in other words
a (complete) description of its Z-homology is available.

This is the version with effective homology of the Serre spectral sequence.

Theorem 21 — An algorithm ELMREH can be constructed:

ELMREH : [F × SS1
EH × SS0

EH ]χ −→ SS0
EH

where [. . .]χ is the set of coherent triples (Φ, BEH , EEH), that is those triples such
that the underlying simplicial set of BEH is the base space of Φ and the underlying
simplicial set of EEH is the total space. The output of the algorithm working on
coherent data is a version with effective homology of the fiber space.
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Just as for the ordinary Eilenberg-Moore spectral sequence, a more general
statement can be proved for the total space of induced fibrations.

Combining this with Theorem 9, we obtain as a corollary:

Theorem 22 — An algorithm LPSPEH can be constructed:

LPSPEH : [N× SS0
EH ]χ −→ SS0

EH

where [. . .]χ is the set of pairs (n,XEH) such that the underlying simplicial set X
is at least n-reduced; the output is (ΩnX)EH , a version with effective homology of
tne n-th loop space ΩnX (more precisely of its Kan version). The result is void if
n = 0, (strictly) contains the usual Adams Cobar construction for n = 1, and is a
solution of the problem of iterating the Cobar construction if n > 1.

Please, compare the solution here proposed with the other ones ([8], [9], [14],
[46], [40], [47]). When all these solutions will be understood, then you will be
competent to decide if the present work is mathematics or negligible [42] technical
programming of available algorithms.

The statement of the previous theorem explains the algorithm LPSPEH can
be constructed; in fact this algorithm is constructed, see Section 9.3; it is the EAT
program to be considered as a prototype application of the methods developped in
this paper. Futhermore, when this paper is prepared, the present solution is the
only one which has led to concrete programming work.

The other ordinary Eilenberg-Moore spectral sequence “computes” the homol-
ogy of the base space.

Theorem 23 — An algorithm ELMR′
EH can be constructed:

ELMR′
EH : [F × SS0

EH × SS0
EH × SG0

EH ]χ −→ SS1
EH

where [. . .]χ is the set of coherent 4-tuples (Φ, FEH , EEH , GEH) and the result a
version with effective homology of the base space.

Combining this result with the classical results about K(π, 1), we obtain the
ideal result about Eilenberg-MacLane spaces.

Theorem 24 — An algorithm CARTANEH can be constructed:

CARTANEH : FAG × N −→ SSEH

where FAG is the type of abelian groups of finite type and the output of the algo-
rithm working on the pair (π, n) is K(π, n)EH , a version with effective homology
of K(π, n).
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How to compare this result with famous Cartan’s paper [15]? On one hand
Cartan gave a simple algorithm which very quickly gives the ordinary homology
groups of K(π, n). Our algorithm certainly cannot be used for n = 20 for example,
because of time and space complexity. On the contrary, it is elementary to use
Cartan’s algorithm to compute the Z-homology of K(π, 20), and the algorithm
will be quite efficient. But without further informations, you are unable to use the
ordinary Z-homology of K(π, n) to construct the Postnikov or Whitehead tower of
a simply connected spaceX. The ordinary Z-homologies of a base space and a fiber
space do not determine in general the Z-homology of the total space of a given
fibration. The missing informations are precisely inside K(π, n)EH , our version
with effective homology of K(π, n). In this way we obtain the computability of
the homotopy groups of simply connected spaces.

Theorem 25 — An algorithm WHTHEH can be constructed:

WHTHEH : SS1
EH × N −→ SS1

EH

where the output of the algorithm working on the pair (X,n) is Xn
EH , a version

with effective homology of the n-th floor of the Whitehead tower, that is, the space
X with the πi canceled for i < n.

In fact the (n + 1)-th floor is the total space of a fibration the base space of
which is the n-th floor and the fiber space is K(HnXn, n− 1). Because the effec-
tive homology of Xn is known, you can construct this fibration; because effective
homologies of base and fibre spaces are available, using Theorem 20, you can de-
termine the effective homology of Xn+1 and iterate. Again compare with the other
solutions [11] and [40]: we have a conceptually simple solution to determine the
first homotopy groups of an arbitrary 1-reduced simplicial set with effective homol-
ogy; the computations already done for iterated loop spaces indicate a significant
concrete work is feasible.

Corollary 26 — An algorithm HMT-GRP can be constructed:

HMT-GRP : SS1
EH × N −→ FAG

computing the homotopy groups of 1-reduced simplicial sets with effective homology.

An analogous work can be undertaken for the Postnikov tower to determine
the Postnikov “invariants”.

9.3 EAT implementation.

9.3.1 Reductions

The EAT program defines and uses a rdc (reduction) structure type allowing the
user to conveniently handle reductions. For example let us consider the Eilenberg-
Zilber reduction, detailed in Section 14. The Eilenberg-Zilber theorem is a process
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constructing a reduction ρ = (f, g, h) for every pair (X, Y ) of simplicial sets; the
chain map f (resp. g, h) is the Alexander-Whitney (resp. Eilenberg-MacLane,
Shih) operator. The EAT program provides a function eilenberg-zilber to
construct such a reduction. Let us apply this function in the case X = Y = ∆∞,
two copies of the simplex spanned by the natural numbers, see page 34; this
simplicial set was then constructed from scratch but it is in fact predefined in the
EAT program and can be reached through the symbol *delta*:

> *delta* ==>
[SS-0]
> (gdl *delta* 2 4 ’(0 1 2 3 4)) ==>
<ASM * (0 1 3 4)>

The reduction ρ corresponding to two copies of ∆∞ can be constructed as
follows:

> (setf dd-rdc (eilenberg-zilber *delta* *delta*)) ==>
[RDC-0]
> (setf cpr-cc (rdc-tcc dd-rdc))
[CC-10]
> (setf tpr-cc (rdc-bcc dd-rdc))
[CC-9]
> (setf aw (rdc-f dd-rdc)) ==>
[MRP-11]
> (setf eml (rdc-g dd-rdc)) ==>
[MRP-12]
> (setf shih (rdc-h dd-rdc)) ==>
[MRP-13]

This particular Eilenberg-Zilber reduction is the object [RDC-0] with five main
slots:

1. tcc (top chain complex) = [CC-10], that is, C∗(∆∞ ×∆∞);

2. bcc (bottom chain complex) = [CC-9], that is, C∗(∆∞)⊗ C∗(∆∞);

3. f, the Alexander-Whitney map C∗(∆∞ ×∆∞)
f→ C∗(∆∞)⊗ C∗(∆∞);

4. g, the Eilenberg-MacLane map C∗(∆∞)⊗ C∗(∆∞)
g→ C∗(∆∞ ×∆∞);

5. h, a homotopy between 1[CC−10] and g ◦ f .

The traditional definitions of these maps can be verified:

> (? aw 2 (cpr nil ’(0 1 2) nil ’(100 101 102))) ==>
-----------------------------------------{CMB 2}
<MNM 1 * <TPR (0 1 2) (102)>>
<MNM 1 * <TPR (0 1) (101 102)>>
<MNM 1 * <TPR (0) (100 101 102)>>
------------------------------------------------
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> (? eml 3 (tpr 1 ’(0 1) 2 ’(100 101 102))) ==>
-----------------------------------------{CMB 3}
<MNM 1 * <CPR 2-1 (0 1) 0 (100 101 102)>>
<MNM -1 * <CPR 2-0 (0 1) 1 (100 101 102)>>
<MNM 1 * <CPR 1-0 (0 1) 2 (100 101 102)>>
------------------------------------------------

> (? shih 1 (cpr nil ’(0 1) nil ’(100 101)))
-----------------------------------------{CMB 2}
<MNM -1 * <CPR 0 (0 1) 1 (100 101)>>
------------------------------------------------

A (geometric) simplex of the cartesian product of two SS objects is constructed
by the function cpr (cartesian product), using as arguments:

1. A multi-degeneracy operator as an integer list, nil meaning an empty list,
that is, no degeneracy;

2. A geometric simplex of the first factor;

3. Another multi-degeneracy operator;

4. A geometric simplex of the second factor.

For example, the generator on which aw works above is the triangle of ∆∞×∆∞

whose projections are respectively (0 1 2) and (100 101 102) (non-degenerate);
the image of the Shih map, working on the diagonal of a square α1 × α2, the
projection α1 (resp. α2) being the 1-simplex (0 1) (resp. (100 101)), is the top
left-hand triangle of this square; the first projection of this triangle is η0α1 and
the second one is η1α2.

In the same way, to construct a generator of the tensor product of two chain
complexes, you use the tpr function, needing also four arguments:

1. The degree of the generator of the first factor, for example 1;

2. A generator of the first factor (0 1);

3. The degree of the second factor, 2;

4. A generator of the second factor (100 101 102).

and in this way the generator (tpr 1 ’(0 1) 2 ’(100 101 102)), representing
essentially a prism, product of an edge by a triangle, can be used for the Eilenberg-
MacLane map, returning the decomposition of the prism into three 3-simplices.
Note that when a tensor product is returned, the degrees of factors are not dis-
played, look for example at the result of the Alexander-Whitney map.
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9.3.2 Homotopy equivalences.

A homotopy equivalence is simply a pair of reductions; the heq structure type is
defined in the EAT program and a heq object has nine main slots, the bottom left-
hand chain complex (lbcc), the top one (tcc), the bottom right-hand one (rbcc),
the left f (lf), the left g (lg) and the left h (lh), and also the components of the
right reduction (rf, rg and rh). Let us consider the following exercise: construct
the version with effective homology of Ω2S3, extract the homotopy equivalence,
compute the 3-basis of the right bottom chain complex, and verify the composition
`f ◦ rg is compatible with the differentials.

Constructing the version with effective homology of Ω2S3 needs the
loop-space-eh function, see details in Section 9.3.3.

> (setf o2s3eh (loop-space-eh (ess-sseh (sphere 3)) 2)) ==>
[SS-EH 8]

The last argument 2 for loop-space-eh asks for the second loop space. The result
is the object [SS-EH 8], an oeh object, the main slot of which is the heq slot which
can be extracted:

> (setf o2s3eh-heq (oeh-heq o2s3eh)) ==>
[HEQ-10]

Then the slots of this heq object we are interested in can be also extracted:

> (setf rbcc (heq-rbcc o2s3eh-heq)) ==>
[CC-79]
> (setf lbcc (heq-lbcc o2s3eh-heq)) ==>
[CC-80]
> (setf rbcc-d (cc-d rbcc)) ==>
[MRP-274]
> (setf lbcc-d (cc-d lbcc)) ==>
[MRP-281]
> (setf rg (heq-rg o2s3eh-heq)) ==>
[MRP-276]
> (setf lf (heq-lf o2s3eh-heq)) ==>
[MRP-323]

The basis (in degree 3) of the bottom left-hand chain complex is given by the
cbs function, and we extract from it the first generator:

> (setf basis (cbs rbcc 3)) ==>
(<<ALOOP (<GGNR 0 GNR-Z> ...
[... Lines deleted ...]
> (setf generator (first basis)) ==>
<<ALOOP (<GGNR 0 GNR-Z>

<GGNR 4 <<ALOOP (<GGNR 0 GNR-Z>
<GGNR 3 <S3>>
<GGNR 3 <S3>>)>>>)>>
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Both necessary combinations of morphisms and differentials are to be com-
puted:

> (setf comp-1 (cmp-mrp lbcc-d (cmp-mrp lf rg))) ==>
[MRP-329]
> (setf comp-2 (cmp-mrp (cmp-mrp lf rg) rbcc-d)) ==>
[MRP-331]

Applying them to our generator gives two combinations:

> (setf cmb-1 (? comp-1 3 generator)) ==>
---------------------------------------------------{CMB 2}
<MNM -2 * <<LOOP ( <PWR 1 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>

<PWR 2 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>)>>>
<MNM 2 * <<LOOP ( <PWR 2 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>

<PWR 1 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>)>>>
----------------------------------------------------------
> (setf cmb-2 (? comp-2 3 generator)) ==>
---------------------------------------------------{CMB 2}
<MNM -2 * <<LOOP ( <PWR 1 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>

<PWR 2 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>)>>>
<MNM 2 * <<LOOP ( <PWR 2 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>

<PWR 1 <<LOOP ( <PWR * <S3> ** 1>)>> ** 1>)>>>
----------------------------------------------------------

and the simplest way to compare them is to ask for a subtraction:

> (sbt-cmb-from-cmb lbcc cmb-1 cmb-2) ==>
---------------------------------------------------{CMB 2}
----------------------------------------------------------

9.3.3 Objects with effective homology.

We reconsider Ω2S3, this time constructed step by step (a new EAT session is
restarted). We construct the 3-sphere and transform it into a (trivial) object with
effective homology, the function ess-sseh (effective simplicial set to simplicial
set with effective homology) does this work; the simplicial set is finite so that
the homotopy equivalence is trivial, but anyway a normal form containing such a
homotopy equivalence must be firstly constructed:

> (setf s3 (sphere 3)) ==>
[SS-4]
> (setf s3eh (ess-sseh s3)) ==>
[SS-EH 0]

Then the EAT function loop-space-eh can be applied twice, which constructs
versions with effective homology of the first and second loop space:

> (setf os3eh (loop-space-eh s3eh)) ==>
[SS-EH 4]
> (setf o2s3eh (loop-space-eh os3eh)) ==>
[SS-EH 8]
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The last object contains the chain complex of the second loop-space which is
locally effective:

> (oeh-cc o2s3eh) ==>
[CC-80]
> (cbs (oeh-cc o2s3eh) 3) ==>
;; Error: The chain complex [CC-80] is locally-effective.

It is the chain complex #80 and because it is locally effective, asking for its basis
in degree 3 generates an error. But the same object with effective homology
contains also an effective chain complex, the basis of which in some degree may
be determined:

> (oeh-ecc o2s3eh) ==>
[CC-79]
> (cbs (oeh-ecc o2s3eh) 3) ==>
(<<ALOOP (<GGNR 0 GNR-Z> <GGNR 4 #>)>>
<<ALOOP (<GGNR 0 GNR-Z> <GGNR 2 #> <GGNR 2 #> <GGNR 2 #>)>>)
> (cc-homology (oeh-ecc o2s3eh) 3)
Computing boundary-matrix in dimension 3.
[... Lines deleted ...]
Homology in dimension 3 :
Component Z/2Z
---done---

The basis is a set of algebraic loops, that is some elements of our bi -Cobar
construction coming from C∗S3. The result obtained can be easily verified, for
example by using the results of the paper [10]. But let us decide now to paste a
three disk to the first loop space before constructing the second loop space, using
an attachment map of degree 2 from S2 to ΩS3; the space denoted by ΩS3∪2D

3 is
to be constructed. The EAT program may build this space as a simplicial set with
effective homology; firstly the “fundamental” simplex of ΩS3 is located through
the symbol fund-simp and also the null 2-simplex through the symbol null-simp:

> (setf fund-simp (asm nil (loop3 nil ’<S3> 1))) ==>
<ASM * <<LOOP ( <PWR * <S3> ** 1>)>>>
> (setf null-simp (null-asm-loop 2)) ==>
<ASM 1-0 <<LOOP *>>>

Then we can paste a three simplex to our loop space with effective homology,
asking for a new simplex having as faces of index 0 and 2 the fundamental simplex,
as faces of index 1 and 3 the base point:

> (setf dos3eh
(disk-paste-eh os3eh 3

(list fund-simp null-simp fund-simp null-simp) :new ’<D3>)) ==>
[SS-EH 9]

The space so obtained is also with effective homology, so that for example the
second homology group can be verified being the right one:
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> (homology dos3eh 2) ==>
Computing boundary-matrix in dimension 2.
[... Lines deleted ...]
Homology in dimension 2 :
Component Z/2Z
---done---

Our simplicial set dos3eh is again a simplicial set with effective homology, so
that its loop space (with. . . ) can be constructed:

> (setf odos3eh (loop-space-eh dos3eh)) ==>
[SS-EH 13]

and the first homology groups of Ω(ΩS3 ∪2 D
3) are reachable, for example:

> (homology odos3eh 5) ==>
Computing boundary-matrix in dimension 5.
Rank of the source-module : 14.
[... Lines deleted ...]
End of computing.
Computing boundary-matrix in dimension 6.
Rank of the source-module : 26.
[... Lines deleted ...]
End of computing.

Homology in dimension 5 :

Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z

---done---

that is, H5(Ω(ΩS3∪2D
3)) = Z6

2⊕Z; the severe [14, p.545] difficulties in computing
the right differential have been overcome.

10 The Basic Perturbation Lemma [45] [13].

Let ρ = (Ĉ, C, f, g, h) be a reduction. This reduction can be considered as a

description of the homology of the “big” chain complex Ĉ through the “small”
one C. Frequently, taking account of the ordinary vertical diagram for a reduction
(see Definition 1 or 17), we name the big chain complex Ĉ the top chain complex;

in the same way, C is called the bottom chain complex. The chain complex Ĉ
could be locally effective, hence its homology is unreachable, whereas C could be
effective, with computable homology groups.
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The Basic Perturbation Lemma works as follows: if the differential of the big
chain complex Ĉ is softly modified, then coherent modifications can be applied to
the other components of the reduction in such a way a new reduction is obtained;
the homology of the new big chain complex is again described through the homol-
ogy of the new small one. The basic perturbation lemma is a little like an implicit
function theorem; Appendix 23 shows it is in fact a simple generalization of the
well-known fact that a triangular matrix is equivalent to a diagonal one.

This “lemma” is the heart of our algorithmic versions of the main spectral
sequences (Serre, Eilenberg-Moore, etc.). The ordinary versions of these spectral
sequences are nothing but what remains available when functional programming
is not.

Definition 27 — A perturbation of the differential d of a chain complex C is an
operator δ : C → C of degree -1 such that the sum d + δ is again a differential:
the relation (d+ δ) ◦ (d+ δ) = 0 is satisfied.

Definition 28 — A perturbation δ̂ of the differential d̂ of the top chain complex
Ĉ of a reduction ρ = (Ĉ, C, f, g, h) satisfies the condition of local nilpotency if for

every x in Ĉ, there exists an integer n satisfying the relation (h ◦ δ̂)n(x) = 0; this

relation is equivalent to the following: for every x in Ĉ, there exists an integer n
satisfying the relation (δ̂ ◦ h)n(x) = 0.

Theorem 29 — (Basic Perturbation Lemma [45] [13]) Let R be the type of
reductions. An algorithm can be constructed:

bpl : [R×P]χ −→ R

where [. . .]χ is the set of coherent pairs (ρ = (Ĉ, C, f, g, h), δ̂) (that is, δ̂ is a

perturbation of the differential d̂ of Ĉ satisfying the condition of local nilpotency);

the output is a reduction ρ′ = (Ĉ ′, C ′, f ′, g′, h′) where the new top chain complex

Ĉ ′ is the old one Ĉ provided with the new differential d̂′ = d̂+ δ̂; in particular the
new bottom chain complex C ′ is the old one with a new differential d + δ, where
d is the old differential of C and δ is a perturbation determined by the algorithm
bpl; the same for the new maps f ′, g′ and h′.

It is important to note that the graded modules underlying the top and bottom
chain complexes are let unchanged in the perturbation process; only the various
maps are perturbed.

Taking account of the importance of this “lemma”, which would be better
called the Fundamental Theorem of Homological Algebra, we give a demonstration
which is nothing but a detailed rewriting of [13] (see also [7]).

Proof. Because of the local nilpotency condition, the following series have, for
each element which they work on, only a finite number of non-null terms and their
sums are defined:
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φ =
∞∑
i=0

(−1)i(hδ̂)i; ψ =
∞∑
i=0

(−1)i(δ̂h)i.

The operators φ and ψ have degree 0 and trivially satisfy a few relations; these
relations are the only ones that are from now on utilized :

φh = hψ ;
δ̂φ = ψδ̂ ;
φ = 1− hδ̂φ = 1− φhδ̂ = 1− hψδ̂ ;
ψ = 1− δ̂hψ = 1− ψδ̂h = 1− δ̂φh.

The reduction ρ′ = (Ĉ ′, C ′, f ′, g′, h′) to be constructed is then simply defined
by:

d̂′ = d̂+ δ̂, differential of Ĉ
′
;

d′ = d+ δ is the differential of C ′ where δ = f δ̂φg = fψδ̂g ;
f ′ = fψ ;
g′ = φg ;
h′ = φh = hψ .

Lemma 30 — Let C be a chain complex with the differential d and let h be an
operator on C of degree +1, satisfying the relations:

hh = 0 ;
hdh = h.

Then D = dh+ hd is a projector which splits the chain complex C into the direct
sum of chain complexes ker(D)⊕ im(D) where the second one is acyclic. In other
words, (C, kerD, 1−D, 1, h) is a reduction.

Proof. The operator D is a projector, because of the computation: D2 = (dh+
hd)2 = dhdh + hdhd = dh + hd = D (because hh = 0 and dd = 0). Furthermore
D and therefore also 1 −D are chain complex morphisms : d(dh + hd) = dhd =
(dh+ hd)d (because dd = 0). The lemma is proved.

In the theorem, the operator h does satisfy these relations with respect to d̂,
because hh = 0 is explicitly required among the reduction properties and hd̂h =
(1 − d̂h − gf)h = h (because hh = 0 et fh = 0). The projection D = d̂h + hd̂ is
also the difference 1 − gf , and therefore the complementary projection 1 − D is
the composition gf .

The new homotopy operator h′ has been defined by h′ = φh = hψ. Firstly, we
naturally obtain from the definition of h′ the definitions of f ′, g′ et δ.

The new operator h′ satisfies also the relations h′h′ = 0 and h′d̂′h′ = h′. In fact
h′h′ = φhhψ = 0 and h′d̂′h′ = φh(d̂+ δ̂)hψ = φhd̂hψ+φhδ̂hψ = φhψ+φh(1−ψ) =

φh = h′ (because δ̂hψ = 1− ψ).
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We then obtain from the lemma the fact that D′ = d̂′h′ + h′d̂′ is a projector;
let us denote by π = gf the complementary projector of D and π′ = 1 − D′ the
complementary projector of D′.

We already know the relations hh = h′h′ = 0. Furthermore hh′ = hhψ = 0 et
h′h = φhh = 0. In fact any composition of an operator of type h with an operator
of type π is null. Firstly πh = (1 − d̂h − hd̂)h = h − hd̂h = h − h = 0 and hπ =

h(1− d̂h− hd̂) = h− hd̂h = h− h = 0. Next πh′ = πhψ = 0 and h′π = φhπ = 0.

Then π′h′ = h′π′ = 0 is proved like πh = hπ = 0. Finally π′h = (1− d̂′h′−h′d̂′)h ;

but h′h = 0 and d̂′ = d̂+ δ̂, therefore π′h = h− φh(d̂+ δ̂)h = h− φhd̂h− φhδ̂h =

h − φh − (1 − φ)h = 0 (because hd̂h = h and φhδ̂ = 1 − φ). In the same way

hπ′ = h(1−d̂′h′−h′d̂′) = h−h(d̂+δ̂)hψ = h−hd̂hψ−hδ̂hψ = h−hψ−h(1−ψ) = 0.

Let us now consider the compositions ππ′π and π′ππ′. Firstly ππ′π = π(1 −
d̂′h′ − h′d̂′)π = π2 = π, because πh′ = h′π = 0. In the same way π′ππ′ =

π′(1 − d̂h − hd̂)π′ = π′2 = π′. Therefore the operators π and π′ are inverse
morphisms between the images of π′ and π ; they are only homomorphisms of
graded modules, in general non compatible with the natural differentials of the
respective images. But the image of π has a bijective mapping towards the small
graded module C through f and g, so that a composition provides an isomorphism
of graded modules between C and the image of π′ which allows us to install a new
differential on C deduced from the differential of im(π′), restriction of d̂′ = d̂+ δ̂.

Firstly let us note that h′g = φhg = 0, and that fh′ = fhψ = 0. Taking
account of what was explained in the previous paragraph, it is natural to define
g′ = π′g = (1− d̂′h′−h′d̂′)g = g−φhd̂g−φhδ̂g = −φhgd+(1−φhδ̂)g = φg. Then
the “projection” f ′ will be the composition of the actual projection π′ with the
composition fπ. But fπ = f(1− d̂h− hd̂) = f − fd̂h− fhd̂ = f − dfh− fhd̂ = f

and we obtain f ′ = fππ′ = fπ′ = f(1 − d̂′h′ − h′d̂′) = f − fd̂hψ − f δ̂hψ =

−d̂fhψ + f(1 − δ̂hψ) = fψ. We have obtained the announced formulas for the
desired reduction components f ′ and g′.

The new differential to be installed on the graded module underlying C remains
to be determined. We naturally compute: d + δ = fπ(d̂ + δ̂)π′g = f(d̂ + δ̂)πg =

fd̂π′g + f δ̂φg = fd̂(1− d̂′h′ − h′d̂′)g + f δ̂φg = fd̂g − fd̂d̂′h′g − dfh′d̂′g + f δ̂φg =

fd̂g+ f δ̂φg = d+ f δ̂φg = d+ fψδ̂g ; we must therefore choose δ = f δ̂φg = fψδ̂g.

The perturbation lemma is proved.

EAT implementation.

The algorithm bpl is the function rdc-bpl of the EAT program [42]. We think the
power of Common-Lisp is well illustrated by the text of this Lisp function (about 25
lines), more powerful than the classical spectral sequences. The programming lines
very precisely follow the mathematical definitions of the components of the wished
reduction, see Appendix 24. Whatever the spectral sequence to be transformed
into an actual algorithm, we use the same Lisp function rdc-bpl.

We illustrate how the rdc-bpl function can be used by our implementation of
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the twisted Eilenberg-Zilber theorem, the demonstration of which by Shih Weishu
is precisely at the origin of the perturbation lemma. The predefined EAT object
located through the symbol *deltab* implements the simplicial set ∆

∞
, the quo-

tient of the infinite simplex ∆∞, spanned by the natural numbers, by its 0-skeleton:

> *deltab* ==>
[SS-2]
> (eqs *deltab* ’(0 3) ’(0 4)) ==>
NIL
> (eqs *deltab* ’(3) ’(4)) ==>
T

You see the edges (0 3) and (0 4) are different, but the vertices (3) and (4) are
the same; in fact only one vertex in ∆

∞
. The function loop-space can construct

its loop-space:

> (setf *gdeltab* (loop-space *deltab*)) ==>
[SS-4]
> (gdl *gdeltab* 0 2 (loop3 nil ’(0 1 2 3) 2))
<ASM * <<LOOP ( <PWR * (0 2 3) ** 1>

<PWR * (1 2 3) ** -1>
<PWR * (0 2 3) ** 1>
<PWR * (1 2 3) ** -1>)>>>

You recognize the Kan formula for the expression of ∂0τ(σ0123)
2, see Section 7.

The eilenberg-zilber function constructs the Eilenberg-Zilber reduction corre-
sponding to the non-twisted product G∆

∞ ×∆
∞

:

> (setf initial-rdc
(eilenberg-zilber *gdeltab* *deltab*)) ==>

[RDC-0]

Let us look at the differential of the top chain complex; we see it is non-twisted:

> (setf tcc-d (cc-d (rdc-tcc initial-rdc))) ==>
[MRP-10]
> (? tcc-d 3 (cpr ’(2 1 0) (loop3 )

nil ’(0 1 2 3))) ==>
-----------------------------------------{CMB 2}
<MNM -1 * <CPR 1-0 <<LOOP *>> * (0 1 2)>>
<MNM 1 * <CPR 1-0 <<LOOP *>> * (0 1 3)>>
<MNM -1 * <CPR 1-0 <<LOOP *>> * (0 2 3)>>
<MNM 1 * <CPR 1-0 <<LOOP *>> * (1 2 3)>>
------------------------------------------------

To observe the non-torsion, we have computed the boundary of the simplex whose
vertical projection is the simplex (0 1 2 3), and horizontal projection is the base
point of the loop space. Note how this simplex in the product is constructed: the
cpr function uses the necessary multi-degeneracy (2 1 0) (to be understood as
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η2η1η0), the null loop (loop3 without any arguments), nil (no degeneracy for the
second factor) and the simplex (0 1 2 3).

The simplicial set which is the co-universal fibration is constructed by the
function cpr-tau:

> (setf twisted-product (cpr-tau *deltab*)) ==>
[SS-8]

This function uses only a (reduced) simplicial setX and constructs the co-universal
total space GX ×τ X = ΩX ×τ X. The torsion can be observed in computing the
0-face of the same simplex:

> (gdl twisted-product 0 3 (cpr ’(2 1 0) (loop3)
nil ’(0 1 2 3))) ==>

<ASM * <CPR * <<LOOP ( <PWR * (0 1 2 3) ** 1>)>> * (1 2 3)>>

or in computing the associated chain complex, the corresponding differential and
the boundary of the same simplex:

> (setf twisted-tcc (ss-cc twisted-product)) ==>
[CC-11]
> (setf twisted-tcc-d (cc-d twisted-tcc)) ==>
[MRP-14]
> (? twisted-tcc-d 3 (cpr ’(2 1 0) (loop3 )

nil ’(0 1 2 3))) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * <CPR 1-0 <<LOOP *>> * (0 1 2)>>
<MNM 1 * <CPR 1-0 <<LOOP *>> * (0 1 3)>>
<MNM -1 * <CPR 1-0 <<LOOP *>> * (0 2 3)>>
<MNM 1 * <CPR * <<LOOP ( <PWR * (0 1 2 3) ** 1>)>> * (1 2 3)>>
----------------------------------------------------------

We are now exactly in a situation where the Basic Perturbation Lemma can
be applied; the perturbation is the difference between both differentials:

> (setf delta (sbt-mrp-from-mrp tcc-d twisted-tcc-d)) ==>
[MRP-15]

and we can pass to the function rdc-bpl the initial reduction and the perturbation
to obtain the new reduction:

> (setf twisted-rdc (rdc-bpl initial-rdc delta))
[RDC-1]

Let us compare for example the value of the bottom differentials for the gen-
erator ∗ ⊗ σ0123:
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> (d-? (rdc-bcc initial-rdc) 3 (tpr 0 (loop3) 3 ’(0 1 2 3))) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * <TPR <<LOOP *>> (0 1 2)>>
<MNM 1 * <TPR <<LOOP *>> (0 1 3)>>
<MNM -1 * <TPR <<LOOP *>> (0 2 3)>>
<MNM 1 * <TPR <<LOOP *>> (1 2 3)>>
----------------------------------------------------------
> (d-? (rdc-bcc twisted-rdc) 3 (tpr 0 (loop3) 3 ’(0 1 2 3))) ==>
---------------------------------------------------{CMB 2}
<MNM -1 * <TPR <<LOOP *>> (0 2 3)>>
<MNM 1 * <TPR <<LOOP *>> (0 1 3)>>
<MNM -1 * <TPR <<LOOP *>> (0 1 2)>>
<MNM 1 * <TPR <<LOOP ( <PWR * (0 1 2 3) ** 1>

<PWR 2-1 (1 3) ** 1>)>> (3)>>
<MNM 1 * <TPR <<LOOP ( <PWR 2 (0 1 2) ** 1>

<PWR 1 (1 2 3) ** 1>
<PWR 2-1 (2 3) ** 1>)>> (3)>>

[... Lines deleted ...]
----------------------------------------------------------

We have found the quite complicated Shih differential for the simplex ∗⊗σ0123

of G∆
∞ ⊗t ∆

∞
. See Section 14.

11 Bicomplexes and cones.

A convenient method to understand how the ordinary spectral sequences work
consists in examining the case of bicomplexes ; see for example [31, Section XI-6].
We use the same method here, and this section is devoted to the version with
effective homology of the bicomplex spectral sequence.

11.1 Bicomplexes.

Definition 31 — A locally effective bicomplex B is a system:

B = {Bp,q, d
′
p,q, d

′′
p,q}p,q∈Z

where every Bp,q is a locally effective (free) Z-module, every d′p,q is a mor-
phism d′p,q : Bp,q → Bp−1,q, every d′′p,q is a morphism d′′p,q : Bp,q → Bp,q−1; these
morphisms satisfy the relations d′p,qd

′
p+1,q = 0 (the horizontals are chain com-

plexes), d′′p,qd
′′
p,q+1 = 0 (the verticals are chain complexes too) and d′p+1,qd

′′
p+1,q+1 +

d′′p,q+1d
′
p+1,q+1 = 0 (the squares are anti-commutative) for any integer pair (p, q).

The bicomplex is first quadrant if Bp,q = 0 when p < 0 or q < 0. The bicomplex
is effective if every chain group Bp,q is effective.

Only the first quadrant bicomplexes are considered in this section; obvious gen-
eralizations can possibly be stated and proved for other situations. If a bicomplex
is locally effective, an algorithm is available to decide whether a machine object a
is a distinguished generator of Bp,q; in general, Bp,q is not of finite type, no global
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information is available about it, but if a is any distinguished generator of Bp,q,
a provided algorithm can compute the images of a by d′p,q and d′′p,q. If B is an
effective bicomplex, a further algorithm can work for every integer pair (p, q) to
compute the necessarily finite distinguished basis of Bp,q.

Definition 32 — Let B be a locally effective bicomplex B = {Bp,q, d
′
p,q, d

′′
p,q}.

The totalization of the bicomplex B is the chain complex T (B) = {Tn(B), dn}n∈Z
where:

• Tn(B) = ⊕p+q=nBp,q;

• dn |Bp,q= d′p,q ⊕ d′′p,q if p+ q = n.

If B is a locally effective bicomplex, its totalization is also locally efective.
Some precautions must be taken to avoid generator collisions: the same machine
object a could be a generator of several different Bp,q’s; the solution consists in
defining for each generator a of Bp,q a generator (a, p, q) for T (B)p+q. Methods
of this sort must constantly been used, are always obvious and will be no longer
detailed.

If B is effective and first quadrant, its totalization is also effective. This is false
for a second quadrant bicomplex, unless some vanishing conditions are satisfied by
the components.

A bicomplex can also be presented as a (horizontal) chain complex of (vertical)
chain complexes. Let us suppose that, for every integer p, a chain complex Bp,∗ is
given and also a chain complex morphism bp : Bp,∗ → Bp−1,∗; the system of chain
complexes is in turn a complex of chain complexes if the condition bp−1bp = 0
holds for every p. Such a system can be transformed into a bicomplex, using
the suspension trick; an element of Bp,q, normally of degree q must now have the
modified degree p + q; this is done by applying the suspension operator Sp to
Bp,∗ which lets Bp,∗ unchanged, except that the degree function decides now the
degree of Bp,q is p + q. The Koszul convention then explains the right definition
for the new differential is dSpx = (−1)pSpdx: in other words the sign of the
differential is changed for all the odd columns. So that the d′p,q of the bicomplex
to be constructed is simply bp,q, and the d′′p,q is (−1)pdq(Bp,∗). The vanishing
conditions for the operators of the bicomplex are then satisfied.

Our version with effective homology of the spectral sequence of a bicomplex
concerns the case where every column (Bp,∗)EH is a chain complex with effective
homology. A general algorithm takes ((Bp,∗)EH , bp)p∈Z as input and computes a
version T (B)EH of the totalization T (B) also with effective homology. The result
is much stronger than the ordinary one obtained by the classical spectral sequence:
our process is stable and the obtained version for the totalization T (B)EH has ex-
actly the same structure as the chain complex components (Bp,∗)EH . In particular
if you are interested by the homology groups of T (B), the effective component
of T (B)EH gives the result, no mysterious and unreachable differential dr

p,q to be
determined (cf. [33, pp. 6 and 28]), no extension problems to be solved at abut-
ment; furthermore if T (B) is used as a component of a new construction, then
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the version T (B)EH can probably be used to obtain again a version with effective
homology of the object newly constructed, and so on.

Theorem 33 — An algorithm can be constructed:

TOTALEH : BEH −→ CCEH

where BEH is the type of first quadrant bicomplexes defined as a complex BEH =
((Bp,∗)EH , bp)p∈Z, and the output TOTALEH(BEH) is a version with effective ho-
mology T (B)EH of the totalization of the underlying bicomplex B.

More precisely, for every column index p, a chain complex with effective ho-
mology (Bp,∗)EH = (Bp, EBp, εp) is given, that is, a triple with a locally effec-
tive chain complex, an effective one and a homotopy equivalence between them;
also a morphism bp : Bp → Bp−1 between underlying chain complexes is also
given; the condition bp−1bp = 0 is satisfied. Then the algorithm outputs a triple
(T (B), ET (B), T (ε)) with the ordinary totalization T (B), some effective chain
complex ET (B) and some homotopy equivalence T (ε) between them.

Proof. Each homotopy equivalence εp is a pair (ρ1
p, ρ

2
p) of reductions. The reduc-

tion ρ1
p is a 5-tuple ρ1

p = (B̂p, Bp, f
1
p , g

1
p, h

1
p); in the same way the reduction ρ2

p is a

5-tuple ρ2
p = (B̂p, EBp, f

2
p , g

2
p, h

2
p) where the chain complex EBp is effective. The

(horizontal) morphisms bp are only between the bottom right-hand complexes Bp,
but we can also naturally define:

• b̂p = g1
p ◦ bp ◦ f 1

p : B̂p → B̂p−1;

• Ebp = f 2
p ◦ g1

p ◦ bp ◦ f 1
p ◦ g2

p : EBp → EBp−1.

The first definition is correct and actually defines a top bicomplex B̂ =
(B̂p, b̂p)p∈Z: the necessary relation b̂p−1 ◦ b̂p = 0 holds, essentially because
f 1

p−1 ◦ g1
p−1 = 1Bp−1 . But the second definition does not define a bicomplex

(EBp, Ebp)p∈Z, because this time, to prove the necessary relation Ebp−1 ◦Ebp = 0,
we should use the hoped-for relation g2

p−1 ◦ f 2
p−1 = 1 bBp

, but this relation is false

in general; the composition g2
p−1 ◦ f 2

p−1 is only homotopic to the identity, certainly
not equal to, except when the reduction ρ2

p is trivial; this is the essential obstacle
which is partially overcome by the bicomplex spectral sequence. Here, using the
perturbation lemma, we obtain an easy complete solution.

But let us firstly examine what can be done on the left-hand part. It is in fact
easy to verify that the entire collection of left-hand reductions (ρ1

p)p can be put

together to produce again a reduction T (ρ1) = (T (B̂), T (B), T (f 1), T (g1), T (h1)).
Essentially the reduction T (ρ1) is the simple direct sum of all the “column” reduc-
tions ρ1

p, no accident happens. The last step consists in determining a correct bot-

tom right-hand chain complex T (EB) and a reduction between T (B̂) and T (EB).
The notation T (. . .) is a litlle mistaking because at this time no bicomplex EB is
defined.
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The tentative incorrect definition above for the bicomplex EB can be roughly
simplified if we decide to annihilate the problematic horizontal differentials. Let us
denote by EB′ the bicomplex obtained from the columns EBp, with null horizontal
differentials; this time the bicomplex EB′ is correctly defined. In the same way
we can consider the bicomplex B̂′ obtained from B̂ by deciding to remove the
horizontal differentials b̂p, more precisely to replace them by null operators. Then

B̂′ is a new bicomplex with the same graded module as B̂, but with a different
differential. We are in a situation where the basic perturbation lemma can be
applied.

The initial reduction is (T (B̂′), T (EB′), T (ρ′2)); it is a simple direct sum of
“column” reductions. The perturbation δ to be applied to the top chain complex
is given by the horizontal differentials δ = ⊕pb̂p. We can use the basic perturbation
lemma if the nilpotency condition is proved; the perturbation lowers the horizontal
p-degree , and the homotopy component h = ⊕ph

2
p of the initial reduction lets it

unchanged (such a homotopy lives inside a column), so that the iteration process
(hδ)n eventually goes for each element towards the columns with negative index,
which were assumed null (first quadrant condition): the nilpotency condition is
satisfied.

The basic perturbation lemma produces a new reduction ρ2 = (T (B̂), T (EB),

T (f 2), T (g2), T (h2)). In this expression, the notation T (B̂) is correct, but the other
notations T (. . .) are not. More precisely, for example, T (EB) is not the totaliza-
tion of a bicomplex, but the totalization of a multicomplex; this means that if you
detail T (EB) with the usual bigraduation T (EB) = ⊕EBp,q, then the differen-
tials after perturbation coming from EBp,q are d0

p,q = Edp,q : EBp,q → EBp,q−1 (the
differential coming from the initial column), d1

p,q = Ebp,q (the tentative horizontal

differential), d2
p,q = f 2

p−2,q+1b̂p−1,q+1h
2
p−1,q b̂p,qg

2
p,q (a necessary correction), and so on;

you must run the following path for each component dr
p,q : EBp,q → EBp−r,q+r−1;

firstly climb through g2
p,q into B̂p,q, then follow a stairs path in the bicomplex B̂

where the horizontal components are some b̂p′,q′ and the vertical ones are some

h2
p′,q′ , reach the component B̂p−r,q+r−1, finally get down to EBp−r,q+r−1 through
f 2

p−r,q+r−1; here the differential component dr
p,q is entirely obtained from the initial

data. These considerations are direct consequences of the explicit formulas giving
the components of the perturbed reduction. Analogous descriptions can be ob-
tained for the components f 2, g2 and h2 of the final reduction between T (B̂) and
T (EB).

11.2 The cone construction.

A particular case is important, when the bicomplex contains only two columns,
two chain complexes B1 = C and B0 = C ′, the other columns being null. In such
a case, the horizontal differential is a unique chain complex morphism b : C → C ′,
and the totalization is known as the cone C ′′ = Cone(b); it is a chain complex
where the chain group C ′′

n is defined as C ′′
n = Cn−1 ⊕ C ′

n and the differential
d′′n : C ′′

n → C ′′
n−1 is defined by the matrix formula:
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d′′n =

[
−dn−1 0
bn−1 d′n

]
=

[
−d 0
b d′

]
where in the second expression the indices are not showed. Let us suppose the chain
complexes C and C ′ are with effective homology. This means four reductions are
provided, ρ1 = (Ĉ, C, f1, g1, h1), ρ2 = (Ĉ, EC, f2, g2, h2), ρ

′
1 = (Ĉ ′, C ′, f ′1, g

′
1, h

′
1)

and ρ′2 = (Ĉ ′, EC ′, f ′2, g
′
2, h

′
2). We would like to compute the effective homology

of the cone C ′′ = Cone(b). A morphism b̂ : Ĉ → Ĉ ′ is naturally defined by

b̂ = g′1bf1, which allows us to define a “top cone” Ĉ ′′. In the same way, a morphism

Eb : EC → EC ′ is defined by Eb = f ′2b̂g2 defining a bottom right-hand cone EC ′′:
because the “bicomplex” has only two columns, the “accident” about the bottom
right-hand bicomplex does not happen, so that the perturbation lemma is now
useless to guess the right differential at this place. Now combining the components
of the four provided reductions, it is easy to construct a new pair of reductions
ρ′′1 = (Ĉ ′′, C ′′, f ′′1 , g

′′
1 , h

′′
1) and ρ′′2 = (Ĉ ′′, EC ′′, f ′′2 , g

′′
2 , h

′′
2); the left-hand reduction is

simply the direct sum of the reductions ρ1 and ρ′1:

f ′′1 =

[
f1 0
0 f ′1

]
; g′′1 =

[
g1 0
0 g′1

]
; h′′1 =

[
−h1 0
0 h′1

]
but the right-hand one is a little more complicated:

f ′′2 =

[
f2 0

f ′2b̂h2 f ′2

]
; g′′2 =

[
g2 0

−h′2b̂g2 g′2

]
; h′′2 =

[
−h2 0

h′2b̂h2 h′2

]
Corollary 34 — An algorithm can be constructed:

CONEEH : [CCEH × CCEH ×M]χ −→ CCEH

where [. . .]χ is the type of coherent triples (CEH , C
′
EH , b), two chain complexes with

effective homology and a morphism between the underlying chain complexes. The
algorithm CONEEH then outputs a chain complex with effective homolgy C ′′

EH ,
the underlying chain complex being the cone of the morphism b.

Suppose now you have a bicomplex with three non-null columns B0, B1 and
B2. You can consider its totalization as the cone of a morphism defined on the
column B2 towards the. . . cone of the morphism between the columns B1 and B0.
Applying twice the previous corollary, you find a few more complicated formulas
to process such a system of three columns. You can iterate and in this way find
the right formulas for the reduction of a “big” bicomplex when a reduction of each
column is given. You have in this way rediscovered the perturbation lemma.

Proposition 35 — Let ρ = (Ĉ, C, f, g, h) be a reduction. Then both cones
Cone(f) and Cone(g) are acyclic; more precisely a reduction to the null chain
complex can be defined.
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Proof. The necessary homotopy operators are:

hCone(f) =

[
−h g
0 0

]
; hCone(g) =

[
0 f
0 h

]
.

Proposition 36 — Two reductions ρ = (C,C ′, f, g, h) and ρ′ = (C ′, C ′′, f ′, g′, h′)
can be composed to give the reduction ρ′′ = (C,C ′′, f ′f, gg′, h+ gh′f).

But how to compose two homotopy equivalences? Let ε = (ρ1, ρ2) and ε′ =
(ρ′1, ρ

′
2) be two homotopy equivalences between C, C ′ and C ′′:

C
ρ1

⇐ Ĉ
ρ2

⇒︸ ︷︷ ︸
ε

C ′ ρ′1⇐ Ĉ ′
ρ′2⇒︸ ︷︷ ︸

ε′

C ′′

We would like to compose them. Then we can put together Ĉ, C ′ and Ĉ ′ with
the help of f2 and f ′1 to organize them as a “bicone” BC = Bicone(f2, f

′
1). This

object BC can be considered as the cone of f2 from Ĉ to the cone of f ′1; because
the last cone is contractible, we can construct a reduction ρ′′1 : C ⇐ BC. But in a
symmetric way we can also construct a reduction ρ′′2 : BC ⇒ C ′′. The pair (ρ′′1, ρ

′′
2)

is the wished homotopy equivalence.

Proposition 37 — An algorithm can be constructed:

HE-COMP : [HE ×HE ]χ −→ HE

where [. . .]χ is the type of pairs of homotopy equivalences which could be composed,
the output being the composition.

11.3 EAT implementation.

The algorithms TOTALEH and CONEEH are not implemented for the general
case in the EAT program, but a particular case of the first one is an essential
component allowing us to obtain versions with effective homology of iterated loop
spaces. We illustrate this point with the following example: let us take again the
simplicial set with effective homology odos3eh implementing Ω(ΩS3 ∪2D

3) in the
section 9, and let us inspect it:

> odos3eh
[SS-EH 13]
> (oeh-heq (oeh 13))
[HEQ-16]
> (heq-lrdc (heq 16))
[RDC-41]
> (rdc-org (rdc 41))
(CMP-RDC [RDC-40] [RDC-38])
> (rdc-org (rdc 38))
(BPL [HEQ-14] [MRP-420] NEW-LRDC)
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> (heq-org (heq 14))
(PRE-COTOR-2HEQ [HEQ-12] [HEQ-13])
> (mrp-org (mrp 420))
(COBAR-HOR-D [COM-11] [COM-12] [CC-117])

You can read:

1. Our implementation of Ω(ΩS3 ∪2 D
3) is the object with effective homology

[SS-EH 13];

2. The HEQ slot of this object is the homotopy equivalence [HEQ-16];

3. The LRDC (left reduction) slot of this homotopy equivalence is the reduction
[RDC-41];

4. This reduction is the composition of the reductions [RDC-40] and [RDC-38];

5. The last reduction has been obtained by the Basic Perturbation Lemma
(BPL) working with the homotopy equivalence [HEQ-14] and the perturba-
tion [MRP-420];

6. The homotopy equivalence [HEQ-14] is a “Pre-Cotor” of homotopy equiv-
alences: the prefix “Pre” means no horizontal differential is present; two
homotopy equivalences ε′ = [HEQ-12] and ε = [HEQ-13] are given and the
homotopy equivalence [HEQ-14] is nothing but:

∞⊕
n=0

ε′ ⊗ ε⊗n

that is, a homotopy equivalence between bicomplexes, each “column” being
the homotopy equivalence ε′ ⊗ ε⊗n;

7. The perturbation [MRP-420] to be applied in the perturbation lemma is
the missing horizontal differential in the bottom left-hand bicomplex of the
previous homotopy equivalence; it is produced by the function COBAR-HOR-D.

Detailed explanations will be given later, see Sections 12, 17 and 18. Any
object produced by the EAT program can be examined in this way to elucidate
when and why it has been constructed.

12 Tensor products.

Processing tensor products of chain complexes with effective homology is as ele-
mentary as usual. We only state the useful results with minimal indications about
proofs.
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Proposition 38 — An algorithm can be constructed:

TPR-2CCEH : CCEH × CCEH −→ CCEH

which may work on pairs (C1, C2) of chain complexes with effective homology,
returning a version with effective homology of the tensor product of underlying
chain complexes.

Proof. A homotopy equivalence is a pair of reductions, and it is sufficent to know
how to compute the tensor product of two reductions ρ1 = (Ĉ1, C1, f1, g1, h1)

and ρ2 = (Ĉ2, C2, f2, g2, h2). A tensor product ρ = ρ1 ⊗ ρ2 can be defined by

ρ = (Ĉ1 ⊗ Ĉ2, C1 ⊗ C2, f1 ⊗ f2, g1 ⊗ g2, h1 ⊗ 1 bC2
+ g1f1 ⊗ h2), without forgetting

the Koszul convention for the last component.

Corollary 39 — An algorithm can be constructed:

TPR-NEH : CCEH × N −→ CCEH

computing some tensor power of a given chain complex with effective homology.

Corollary 40 — If every column of a first quadrant bicomplex is a tensor product
of chain complexes with effective homology, a (general) algorithm can construct a
version with effective homology of its totalization.

Proof. Combine Theorem 33 and Corollary 38.

EAT implementation.

The algorithms of this section are not implemented in the EAT program because
not necessary for our particular planned application, the iterated loop spaces.
But they are used in a hidden way. The following illustration anticipates other
sections, but this should not really hamper the understanding of what concerns
the current section. Let us consider again the EAT example of Section 11, page 81,
concerning some parts of the construction of a version with effective homology of
the simplicial set X = ΩY where Y = ΩS3 ∪2 D

3. The main ingredients are two
homotopy equivalences ε′ and ε. The first one is a reduction of a twisted tensor
product C∗(ΩY ) ⊗t C∗(Y ) to the unit chain complex (only one Z in degree 0);
such a reduction can be constructed because the total space of the co-universal
fibration ΩY → ΩY ×τ Y → Y is contractible. So that:

ε′ = (C∗(ΩY )⊗t C∗(Y ) = C∗(ΩY )⊗t C∗(Y ) ⇒ Z).

(the left reduction is trivial). The other homotopy equivalence ε is simply the
main ingredient of the previously computed version with effective homology of the
simplicial set Y :
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ε = (C∗Y ⇐ ĈY ⇒ ECY ).

The complex C∗(Y ) has an Alexander-Whitney coalgebra structure, and the
first complex C∗(ΩY ) ⊗t C∗(Y ) is a C∗(Y ) right comodule. This allows us to
construct a bicomplex CobarC∗(Y )(C∗(ΩY ) ⊗t C∗(Y ),Z); it is a bicomplex B∗,∗
where the p-th column is the tensor product:

Bp,∗ = (C∗(ΩY )⊗t C∗(Y ))⊗ C∗(Y )⊗n,

the complex C∗(Y ) being the “augmentation ideal”, that is, the 0-degree compo-
nent is removed. We are almost in the situation of Corollary 40; every column
is a tensor product of chain complexes with effective homologies described by ε
and ε′; the only difference is that B∗,∗ is a second quadrant bicomplex. So that
it is possible to implement this Cobar construction as a unique chain complex; if
you remove the horizontal differentials coming from the coalgebra and comodule
coproducts, you can even implement the Cobar so simplified (we call it a Pre-
Cobar) as a chain complex with effective homology, the homotopy equivalence of
which being nothing but the object [HEQ-14] showed in the previous section; the
bottom right-hand chain complex is of finite type because Y is 1-reduced. Let us
denote by M the comodule C∗(ΩY )⊗t C∗(Y ); the object [HEQ-14] looks like the
diagram:

Pre-CobarC∗Y (M,Z) ⇐ Pre-Cobar
bCY (M,Z) ⇒ Pre-CobarECY (Z,Z).

All these Pre-Cobar’s are defined, though ĈY and ECY are not coalgebras: no
horizontal differential is required.

Now the removed horizontal differential (the object [MRP-420]) is the pertur-
bation which we must take account of, which has been constructed by the EAT
function COBAR-HOR-D. Then the perturbation lemma can work with the Pre-
Cobar and the perturbation to construct a new homotopy equivalence where this
time the bottom left-hand chain complex is the right Cobar, not the Pre-Cobar:
the horizontal differential is now present. We obtain the diagram

CobarC∗Y (M,Z) ⇐ “Cobar”
bCY (M,Z) ⇒ “Cobar”ECY (Z,Z).

with a true Cobar at the bottom left-hand side, but pseudo-Cobar’s for the top
chain complex and also the bottom right-hand one: the pseudo-Cobar structure
has been transmitted from the true one at the bottom left-hand side to the others
by the basic perturbation lemma. The perturbed bottom right-hand chain com-
plex “Cobar”ECY (Z,Z) is then a multi-complex of finite type which computes the
homology of this Cobar; this is the reason why we call this homotopy equivalence
a Cotor ; and the Pre-Cobar with its effective homology is a Pre-Cotor. The left
reduction of the Cotor homotopy equivalence is the object [RDC-38] seen in the
previous section; it must next be combined with another reduction [RDC-40], the
“missing link”; these considerations will be detailed in Section 15.
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13 Fibrations.

Let us detail the short Definition 9.1 for the fibration type. In this paper, a
fibration is a twisted cartesian product. We need three simplicial sets, the fiber
space F , the base space B and the structural group G; the latter is a simplicial set
where Gn, the set of n simplices, carries a group structure; furthermore every face
and degeneracy operator is a group homomorphism; we denote by en the neutral
element of Gn. This simplicial group acts over the fiber space F , that is a simplicial
map F ×G→ F is given satisfying the traditional coherence properties for a right
action.

A torsion operator τ : B → G is given, describing how the cartesian product
F ×B must be twisted to obtain the total space E = F ×τ B. The torsion operator
is a collection of maps τn : Bn → Gn−1 (n ≥ 1); then the set of n-simplices En is
the same as the one (F ×B)n of the non-twisted product, but the 0-face operator
is modified; in the non-twisted product, the 0-face is ∂0(f, b) = (∂0f, ∂0b); taking
account of the torsion operator, the 0-face operator in the twisted product F ×τ B
is ∂0(f, b) = (∂0f. τ(b), ∂0b). The torsion operator τ must satisfy a small set of
relations in such a way the new ∂0 so defined is again coherent with respect the
other face and degeneracy operators:

∂0τ(b) = τ(∂1b)τ(∂0b)
−1,

∂iτ(b) = τ(∂i+1b) if i > 0,
ηiτ(b) = τ(ηi+1b) and
τ(η0b) = e∗.

For example, if B is a reduced simplicial set, the Kan loop space model F = GB
can be constructed, see Section 7; it is a simplicial group and GBn is the non-
commutative free group generated by a subset of Bn+1, namely the set of non-0-
degenerate (n+1)-simplices; if b is such a simplex of B, the corresponding generator
of GB was denoted by τ(b) in Section 7. This “operator” τ can then after all be
interpreted as a torsion operator, and this is correct because the coherence proper-
ties are satisfied; in fact Kan defined the group structure in GB (see Section 7) in
such a way this is true! So we obtain the canonical fibration GB ↪→ GB×τB → B,
the total space of which is contractible, see Section 17.

13.1 EAT implementation.

The fibration type in fact is not currently available in the EAT program. The
particular case of the co-universal fibration:

GX ↪→ GX ×τ X → X

for an arbitrary 1-reduced locally effective simplicial set X is implemented thanks
to the function loop-space which constructs GX from X and the function
cpr-tau (twisted cartesian product) which constructs GX ×τ X from X. See
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Section 10 where these functions have been used to illustrate the basic pertur-
bation lemma, exactly in the situation which gives the twisted Eilenber-Zilber
theorem.

Let us illustrate the universal nature of the cpr-tau function with the construc-
tion of the co-universal fibration for the 3-sphere. The three sphere is constructed,
then the function cpr-tau is used to construct the total space GS3×τ S

3 and the
cpr-2ss function is also used to construct the non-twisted cartesian product:

> (setf s3 (sphere 3))
[SS-4]
> (setf gs3-times-tau-s3 (cpr-tau s3))
[SS-7]
> (setf gs3-times-s3 (cpr-2ss (loop-space s3) s3))
[SS-9]

Then the 0-face operator is successively applied to (∗, σ), (∗, σ)τ (the sub-
script τ indicates the simplex must be considered in the twisted product, but
it is in fact the same machine object), (η0τ(σ), σ)τ and (η0τ(σ)−1, σ)τ , the sim-
plex σ (coded as <S3>) being the unique 3-simplex of S3, and τ(σ) (coded as
(loop3 nil ’<S3> 1)) being the corresponding “fundamental” simplex of GS3:

> (gdl gs3-times-s3 0 3 (cpr ’(2 1 0) (loop3) nil ’<S3>))
<ASM 1-0 <CPR * <<LOOP *>> * *>>
> (gdl gs3-times-tau-s3 0 3 (cpr ’(2 1 0) (loop3) nil ’<S3>))
<ASM * <CPR * <<LOOP ( <PWR * <S3> ** 1>)>> 1-0 *>>
> (gdl gs3-times-tau-s3 0 3 (cpr ’(0) (loop3 nil ’<S3> 1) nil ’<S3>))
<ASM * <CPR * <<LOOP ( <PWR * <S3> ** 2>)>> 1-0 *>>
> (gdl gs3-times-tau-s3 0 3 (cpr ’(0) (loop3 nil ’<S3> -1) nil ’<S3>))
<ASM 1-0 <CPR * <<LOOP *>> * *>>

14 The twisted Eilenberg-Zilber algorithm.

One of the simplest topological (bi-) functors is the cartesian product functor.
Thanks to the Eilenberg-Zilber theorem, computing the homology groups of a
product is easy when the homology groups of each factor are given. The same
in constructive algebraic topology, but the situation is interesting: it allows us to
describe in a still very simple situation how it is necessary to proceed. In particular
the Künneth theorem is no longer the key point.

In our organization, just after the ordinary Eilenberg-Zilber theorem, we find
the twisted Eilenberg-Zilber theorem, due to Edgar Brown [12], who gave a demon-
stration based on acyclic carriers; the subsequent demonstration given by Shih
Weishu [45] introduced the basic perturbation lemma; we repeat here Shih’s proof.

From now on, except where otherwise stated, all the chain complexes canoni-
cally associated to a simplicial set are normalized, that is, only the non-degenerate
simplices are generators.
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14.1 The Eilenberg-Zilber theorem.

If X and Y are two simplicial sets, the cartesian product X × Y is naturally
defined by (X × Y )n = Xn × Yn, and the face and degeneracy operators are the
products of the corresponding operators of each factor simplicial set. If σ ∈ Xn and
τ ∈ Yn are two n-simplices, the notation (σ, τ) must be preferred to the tempting
notation σ × τ : the pair notation (σ, τ) has the advantage to clearly mean this is
the n-simplex whose first (resp. second) projection is σ (resp. τ). The “product”
σ×τ , even if both simplices have not the same dimension, should normally denote
the element of C∗(X × Y ) which is the Eilenberg-MacLane image of the element
σ ⊗ τ ∈ C∗X ⊗ C∗Y , that is, the geometrical decomposition in simplices of the
geometrical product of σ and τ .

Theorem 41 — An algorithm can be constructed:

EZ : SS × SS −→ RDC

computing for any pair (X, Y ) of simplicial sets a reduction

EZ(X, Y ) : C∗(X × Y ) ⇒ C∗(X)⊗ C∗(Y ).

It is the Eilenberg-Zilber theorem, which is true as stated above only if the
normalized chain complexes are considered. It is frequently presented as a conse-
quence of the theorem of acyclic models [48], which is not very explicit; however
this method can be made effective [38]. It is simpler to use the effective formulas
for the Eilenberg-Zilber reduction EZ(X,Y ) = (f, g, h) known as the Alexander-
Whitney (f), Eilenberg-MacLane (g) and Shih (h) operators. They come from the
the recursive definition of these operators (see [18] and [19], or [45]).

The Eilenberg-MacLane and Shih operators have an essential “exponential”
nature. It is not a question of method of computation, it is a question of very na-
ture: the number of different terms produced by the Eilenberg-MacLane operator
working on a tensor product of bi-degree (p, q) is the binomial coefficient

(
p+q

p

)
.

So that any algorithm going through such a formula is necessarily of exponential
complexity. Furthermore this formula is unique [35], and the difficulty localized
here is therefore quite essential. In a sense, “classical” algebraic topology, typically
the work around Steenrod operations, consists in avoiding the definitively expo-
nential complexity of the Eilenberg-MacLane formula in order to be able to reach
high dimensions; this paper on the contrary focuses on arbitrary spaces in low di-
mensions (something like < 12) where much interesting work is also to be done. A
consequence of these considerations is that our computing methods will certainly
not lead to high sphere homotopy groups; we are processing the orthogonal prob-
lem: we are not concerned by high dimensional invariants of known objects, we
are only interested by the first invariants of random objects.

Corollary 42 — An algorithm can be constructed:
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EZEH : SSEH × SSEH −→ SSEH ;

The output of the algorithm working on two simplicial sets with effective ho-
mology is a version with effective homology of the cartesian product of underlying
simplicial sets.

Proof. Let (X,C∗(X), ECX , εX) and (Y,C∗(Y ), ECY , εY ) two simplicial sets
with effective homology. Eilenberg and Zilber give a homotopy equivalence
ε1 : C∗(X × Y ) = C∗(X × Y ) ⇒ C∗(X) ⊗ C∗(Y ) (the left reduction is triv-
ial); Corollary 39 gives also a homotopy equivalence ε2 between C∗(X) ⊗ C∗(Y )
and ECX ⊗ ECY . Composing these homotopy equivalences (Proposition 37), we
obtain the wished homotopy equivalence between C∗(X × Y ) and the effective
chain complex ECX ⊗ ECY .

The Künneth theorem is not used; it allows you to guess the homology groups of
ECX⊗ECY if you know the homology groups of factors, but we are not concerned
by this question: the chain complexes ECX and ECY are effective, so that ECX⊗
ECY is also effective, and this is sufficient. We are on the contrary essentially
interested by an explicit homotopy equivalence between C∗(X × Y ) and ECX ⊗
ECY , and the explicit definition of the Eilenberg-Zilber reduction is the key point.

14.2 EAT implementation.

The bifunctor cartesian product for simplicial set is implemented, and also the
bifunctor tensor product of chain complexes. The Eilenberg-Zilber algorithm 41 is
implemented in EAT, but not its version 42 with effective homology.

Let us look at what is available. Let us construct a simplicial version of the
real projective plane X = P 2R:

> (setf p2r (moore 1 2)) ==>
[SS-4]
> (dotimes (i 3) (print (sbs p2r i))) ==>
(*)
(<M1>)
(<MM2>)
NIL

The call (moore 1 2) constructs the Moore space Moore(Z2, 1), that is the
real projective plane. We see it has only one vertex (*), one edge (<M1>) and one
triangle (<MM2>). What about the faces of the triangle?

> (dotimes (i 3) (print (gdl p2r i 2 ’<MM2>))) ==>
<ASM * <M1>>
<ASM 0 *>
<ASM * <M1>>
NIL
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The faces of index 0 and 2 are the unique edge, and the face 1 is the 0-degeneracy
of the base point. The chain complex:

> (setf ccp2r (ss-cc p2r)) ==>
[CC-7]
> (d-? ccp2r 2 ’<MM2>) ==>
-------------------------------{CMB 1}
<MNM 2 * <M1>>
--------------------------------------

has the right homology, because the boundary between dimensions 2 and 1 is the
multiplication by 2. The cartesian square Y = X ×X can be constructed:

> (setf p2r2 (cpr-2ss p2r p2r)) ==>
[SS-5]
> (dotimes (i 5) (print (sbs p2r2 i))) ==>
(<CPR * * * *>)
(<CPR 0 * * <M1>> <CPR * <M1> 0 *> <CPR * <M1> * <M1>>)
(<CPR 1-0 * * <MM2>> <CPR 0 <M1> 1 <M1>> <CPR 1 <M1> 0 <M1>>
<CPR 0 <M1> * <MM2>> <CPR 1 <M1> * <MM2>> <CPR * <MM2> 1-0 *>
<CPR * <MM2> 0 <M1>> <CPR * <MM2> 1 <M1>> <CPR * <MM2> * <MM2>>)
(<CPR 1-0 <M1> 2 <MM2>> <CPR 2-0 <M1> 1 <MM2>> <CPR 2-1 <M1> 0 <MM2>>
<CPR 0 <MM2> 2-1 <M1>> <CPR 1 <MM2> 2-0 <M1>> <CPR 2 <MM2> 1-0 <M1>>
<CPR 0 <MM2> 1 <MM2>> <CPR 0 <MM2> 2 <MM2>> <CPR 1 <MM2> 0 <MM2>>
<CPR 1 <MM2> 2 <MM2>> ...)
(<CPR 1-0 <MM2> 3-2 <MM2>> <CPR 2-0 <MM2> 3-1 <MM2>> <CPR 3-0 <MM2> 2-1 <MM2>>
<CPR 2-1 <MM2> 3-0 <MM2>> <CPR 3-1 <MM2> 2-0 <MM2>> <CPR 3-2 <MM2> 1-0 <MM2>>)
NIL
> (length (sbs p2r2 3)) ==>
12

There are many simplices, in particular 12 3-simplices. Each simplex in the
cartesian product is a <CPR ...> object with four slots, a multi-degeneracy op-
erator for the first component, the non-degenerate simplex corresponding to the
first component, and the same for the second component; a ‘*’ for the multi-
degeneracy means no degeneracy at all. So, the object <CPR 2-1 <M1> 0 <MM2>>

must be read (η2η1M1, η0MM2), it is a 3-simplex; the object <CPR * <MM2> 1 <M1>>

is the simplex (MM2, η1M1) and the mysterious object <CPR * * * *> is the base
point of Y , each projection on X being the non-degenerate base point of X: the
stars in position 1 and 3 mean no degeneracy, and the stars in position 2 and 4
denote the base point of X.

It is an effective simplicial set, so that its chain complex and its homology
groups can be computed:

> (cc-homology-gen ccp2r2 3) ==>
Computing boundary-matrix in dimension 3.
Rank of the source-module : 12.
[... Lines deleted ...]
Computing boundary-matrix in dimension 4.
Rank of the source-module : 6.
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[... Lines deleted ...]
Homology in dimension 3 :
Component Z/2Z
Generator :
1 * <CPR 0 <MM2> 2-1 <M1>>
1 * <CPR 2 <MM2> 1-0 <M1>>
1 * <CPR 1 <MM2> 2 <MM2>>
1 * <CPR 2 <MM2> 0 <MM2>>
-1 * <CPR 2 <MM2> 1 <MM2>>
---done---

The function cc-homology-gen is analogous to cc-homology, but a generator for
each component of the homology is also given. Verify the indicated generator is a
cycle.

The Eilenberg-Zilber reduction between C∗(Y ) and C∗(X) ⊗ C∗(X) can be
also computed:

> (setf rdc (eilenberg-zilber p2r p2r)) ==>
[RDC-0]
> (dotimes (i 5) (print (cbs (rdc-tcc rdc) i))) ==>
(<CPR * * * *>)
[... Lines deleted ...]
<CPR 2-1 <MM2> 3-0 <MM2>> <CPR 3-1 <MM2> 2-0 <MM2>> <CPR 3-2 <MM2> 1-0 <MM2>>)
NIL
> (dotimes (i 5) (print (cbs (rdc-bcc rdc) i))) ==>
(<TPR * *>)
(<TPR <M1> *> <TPR * <M1>>)
(<TPR <MM2> *> <TPR <M1> <M1>> <TPR * <MM2>>)
(<TPR <MM2> <M1>> <TPR <M1> <MM2>>)
(<TPR <MM2> <MM2>>)
NIL

The bottom chain complex has less generators, because it corresponds to a
bi-simplicial triangulation of (P 2R)2; of course the third homology group should
be the same:

> (cc-homology-gen (rdc-bcc rdc) 3) ==>
Computing boundary-matrix in dimension 3.
Rank of the source-module : 2.
[... Lines deleted ...]
Homology in dimension 3 :
Component Z/2Z
Generator :
1 * <TPR <MM2> <M1>>
1 * <TPR <M1> <MM2>>
---done---

and the Eilenberg-MacLane map will give six 3-simplices corresponding to these 2
prisms, organized as another generator of the same homology:

> (??? (rdc-g rdc) (cmb 3 1 (tpr 2 ’<MM2> 1 ’<M1>)
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1 (tpr 1 ’<M1> 2 ’<MM2>))) ==>
-------------------------------{CMB 3}
<MNM 1 * <CPR 2-1 <M1> 0 <MM2>>>
<MNM -1 * <CPR 2-0 <M1> 1 <MM2>>>
<MNM 1 * <CPR 1-0 <M1> 2 <MM2>>>
<MNM 1 * <CPR 2 <MM2> 1-0 <M1>>>
<MNM -1 * <CPR 1 <MM2> 2-0 <M1>>>
<MNM 1 * <CPR 0 <MM2> 2-1 <M1>>>
--------------------------------------

Both generators are certainly homologous. Exercise: use the EAT program to
find a 4-chain the boundary of which is the difference between these generators.
The (unique) solution is:

-------------------------------{CMB 4}
<MNM -1 * <CPR 3-1 <MM2> 2-0 <MM2>>>
<MNM 1 * <CPR 2-1 <MM2> 3-0 <MM2>>>
--------------------------------------

The label Constructive Algebraic Topology is appropriate.

14.3 The twisted Eilenberg-Zilber theorem.

Theorem 43 — An algorithm can be constructed:

TEZ : F −→ R.

If Φ is a fibration, the algorithm TEZ working on the input Φ = (B,F,G, τ, E)
constructs a reduction ρ from the chain complex of the total space C∗(E) =
C∗(F ×τ B), the big complex, on a “twisted tensor product” C∗(F ) ⊗t C∗(B),
the small complex, also constructed by TEZ.

Proof. The ordinary (non-twisted) Eilenber-Zilber theorem gives a reduction
between the non-twisted cartesian and tensor products, the torsion operator being
null. But we must take account of the torsion τ ; this torsion does not change
the underlying top graded module, only the differential is modified: the 0-face
operator is twisted. The basic perturbation lemma may be applied if the nilpotency
condition is satisfied.

If (f, b) is a simplex of E, the component b has a unique form b = ηb′ where b′ is
non-degenerate and η is a multy-degeneracy operator; if b is non-degenerate then
b′ = b and η is the identity, no degeneracy at all. Following Serre, the filtration
degree of (f, b) is the dimension of b′, the “base dimension”. The Shih homotopy
operator of Eilenberg-Zilber is natural, and when it works on (f, b) it is equal to
the one which is defined on F × b′, just above the simplex b′; therefore the Shih
operator does not increase the filtration degree.

On the contrary the perturbation δ̂(f, b) = (∂0f. τ(b), ∂0b) − (∂0f, ∂0b) has a
filtration degree smaller than the filtration degree of (f, b). If b is non-degenerate, it
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is obvious. If b is degenerate and if the η in the expression b = ηb′ does not contain
a η0, then ∂0ηb

′ = η′∂0b
′, because of the commuting relation ∂0ηi = ηi−1∂0 if i > 0;

the filtration degree of (f ′, ∂0b) is again less than the one of (f, b). Finally, if the
multi-degeneracy operator η contains a η0, then τ(b) is trivial and the perturbation
is null.

The basic perturbation lemma is then applied and produces the wished
reduction.

The following technical proposition is the key point allowing one to use the
twisted Eilenberg-Zilber theorem to obtain versions with effective homology of
Serre and Eilenberg-Moore spectral sequences.

Proposition 44 — Let Φ = (B,F,G, τ, E) be a fibration. Let ρ : C∗(F × B) ⇒
C∗(F ) ⊗ C∗(B) (resp. ρ′ : C∗(F ×τ B) ⇒ C∗(F ) ⊗t C∗(B)) be the non-twisted
(resp. twisted) reduction given by the Eilenberg-Zilber (resp. twisted Eilenberg-
Zilber) theorem. Let d (resp. d′) the differential of C∗(F )⊗C∗(B) (resp. C∗(F )⊗t

C∗(B)) and let δ = d′ − d the bottom differential perturbation computed by the
twisted Eilenberg-Zilber theorem. Then, if B is 1-reduced, the bottom perturbation
δ decreases the filtration degree at least by 2.

That is, if b (resp. f) is a p-simplex (resp. q-simplex) of B (resp. F ), then:

δ(f ⊗ b) =

p∑
r=2

δr(f ⊗ b)

where δr(f ⊗ b) ∈ Cq+r−1(F ) ⊗ Cp−r(B). Note it is not possible to coherently
choose one of both possible notations (f ⊗ b) and (f ⊗t b): in fact δ = d′ − d and
d (resp. d’) is to be applied to (f ⊗ b) (resp. (f ⊗t b)).

Proof. Let ρ = (AW,EML, SH) the ordinary Eilenberg-Zilber reduction be-

tween C∗(F × B) and C∗(F )⊗ C∗(B). If δ̂ = d̂ ′ − d̂ is the top perturbation, the
explicit formula for the bottom perturbation in the proof of Theorem 29 gives:

δ(f ⊗ b) = (AW ◦ (
∞∑
i=0

(−1)i(δ̂ ◦ SH)i) ◦ δ̂ ◦ EML)(f ⊗ b).

We have observed in the previous proof the top perturbation δ̂ decreasess the
filtration degree at least by 1; furthermore, the Shih operator does not increase this
filtration degree; therefore, the components with i ≥ 1 in the expression just above
satisfy the wished condition. The main work concerns only the i = 0 component.

The Eilenberg-MacLane operator working on f ⊗ b (f a non-degenerate q-
simplex of F , b a non-degenerate p-simplex of B) produces a set of terms of the
form ±(ηf, η′b) for some multi-degeneracy operators η and η′. If η′ contains a
η0, then the corresponding torsion is null and there is no perturbation. We can
organize the other terms as follows: ±(ηf, η′η′′b) where η contains a η0, η

′′ is
a composition of consecutive degeneracies η′′ = ηkηk−1 . . . η2η1 = ηk

1 , and η′ is
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another composition η′ = ηi` . . . ηi1 with i1 ≥ k+2 and k+ ` = q; the integer k+1
is the first missing index in the degeneracies of the second component. We have
then the expression:

(δ̂ ◦ EML)(f ⊗ b) =
∑

±[(∂0ηf. τ(η
′η′′b), η′−1η

′′
−1∂0b)− (∂0ηf, η

′
−1η

′′
−1∂0b)].

In the expression above, a term η′−1 denotes the multi-degeneracy operator η′

where all the indices have been replaced by the same minus one; in particular
η′′−1 = ηk−1 . . . η0. There remains to apply the Alexander-Whitney operator:

AW (f ′, b′) =

p+q−1∑
j=0

∂p+q−1−j
j+1 f ′ ⊗ ∂j

0b
′.

If j > k, then there is at least two operators ∂0 which remain alive in the
right component; this comes from the relation ∂j

0ηk−1 . . . η0 = ∂j−k
0 . In such a case,

the term becomes something like ±(. . . , η′′′∂m
0 b) with m ≥ 2, and the result is

obtained.

If j ≤ k, the torsion modifier τ(η′η′′b) becomes by Alexander-whitney
τ(∂p+q−1−j

j+2 η′η′′b), because the face index is increased by one when entered inside
the τ argument. On one hand the inequality p+q−1−j ≥ p+q−1−k = p−1+` is
satisfied; on the other hand all the indices i`, . . . , i1 are greater than k+1 ≥ j+1,
so that the following relation is satisfied:

∂p+q−1−j
j+2 η′η′′ = ∂p−1+k−j

j+2 η′′.

But we have also the relation:

∂p−1+k−j
j+2 ηk . . . η1b = ηj . . . η1∂

p−1
2 b;

finally, the p-simplex b gives a 1-simplex ∂p−1
2 b, necessarily degenerate because the

base space B is 1-reduced; the corresponding tosion is trivial and the associated
bottom perturbation is null.

The previous demonstration is heavier than the original ones [12, 45] (see
also [25]). In these demonstrations, a more convenient demonstration is based
on the notion of twisting cochain, giving an interesting conceptual structure for
the twisted tensor product C∗(X) ⊗t C∗(Y ). Once this structure is installed, a
proof of Proposition 44 is direct. In fact some further properties are needed to
obtain such a cochain, which were not satisfied in the first version of the EAT pro-
gram (cf. the “story” of Section 1.13.1), and this is the reason why our program
contained a “theoretical” bug. But the more general demonstration given just
above proves our program was in fact correct, and the right results then obtained
are so explained.
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15 The SERREEH algorithm.

Let F ↪→ E → B a simplicial fibration. The Serre spectral sequence gives a set
of relations between the homology groups of F , E and B. In some particular
cases, this spectral sequence gives a method allowing you to deduce the homology
groups of one of the components, E for example, when the homology groups of the
others (B and F ) are given. But in the general case, the Serre spectral sequence
is not an algorithm; see for example [33, pp 6 and 28] for detailed explanations
on this question. Using both our main tools, namely functional programming and
the basic perturbation lemma, we construct in this section an algorithmic version
of the Serre spectral sequence giving from a base space and a fiber space with
effective homology a total space with effective homology.

Theorem 45 — An algorithm SERREEH can be constructed:

SERREEH : [F × SS1
EH × SS0

EH ]χ −→ SS0
EH

where [. . .]χ is the set of coherent triples (Φ, BEH , FEH), that is those triples such
that the underlying simplicial set of BEH is the 1-reduced base space of the fibra-
tion Φ and the underlying reduced simplicial set of FEH is the fiber space of the
same fibration. The output of the algorithm working on coherent data is a version
with effective homology EEH of the total space E.

In other words, you can compute the homology groups of the total space E,
no mysterious unreachable differential, no extension problem at abutment; see [33,
pp 6 and 28]. More important, if the total space E is one of the elements of a new
“reasonable” construction, the object EEH can again be used to obtain a version
with effective homology of the new constructed object, and so on.

Proof. If the first component of the given object (Φ, BEH , FEH) is the fibration
Φ = (B,F,G, τ, E), we must construct a homotopy equivalence ε between C∗(E) =
C∗(F ×τ B) and some effective chain complex. We construct ε as the composition
of two homotopy equivalences ε′ and ε′′.

The first one is produced by the twisted Eilenberg-Zilber theorem:

ε′ = {C∗(F ×τ B) = C∗(F ×τ B) ⇒ C∗(F )⊗t C∗(B)}

where the left reduction is trivial. When ε′ and in particular C∗(F ) ⊗t C∗(B)
are constructed, then we can construct the second necessary homotopy equiv-
alence ε′′, by applying the basic perturbation lemma to the difference between
C∗(F )⊗t C∗(B) and C∗(F )⊗ C∗(B). Two homotopy equivalences are available:

εF = {C∗(F ) ⇐ ĈF ⇒ ECF}
εB = {C∗(B) ⇐ ĈB ⇒ ECB}

and we can construct their (non-twisted) tensor product (Proposition 38):
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εFB = {C∗(F )⊗ C∗(B) ⇐ ĈF ⊗ ĈB ⇒ ECF ⊗ ECB.}

A filtration degree is defined on the three tensor products according to the
degree with respect the second factor C∗(B), ĈB or ECB. Let us introduce on
the bottom left-hand chain complex of this homotopy equivalence the necessary
perturbation to obtain the twisted tensor product C∗(F )⊗tC∗(B); the base space
B is 1-reduced and according to Proposition 44, this perturbation decreases the
filtration degree at least by 2.

The left reduction of εFB describes the bottom left-hand chain complex as a
subcomplex of the top chain complex ĈF ⊗ ĈB, so that the perturbation can be
transferred to this top chain complex with the same property about the filtration
degree. The homotopical component of the right reduction of ε′′ increases the
filtration degree at most by one. The basic perturbation lemma can therefore be
applied to the right reduction and the perturbation obtained for the top chain
complex and the result is obtained.

15.1 EAT implementation.

This version with effective homology of the Serre spectral sequence is not yet imple-
mented in the EAT program. Because we were obviously interested by situations
where it is possible with our methods to reach still unknown homology groups,
we focused our work on a more complex spectral sequence, the Eilenberg-Moore
spectral sequence, see the following sections. It is extremely easy to implement
our version with effective homology of the Serre spectral sequence, and if ever you
are actually interested by a computation needing it, please contact us.
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16 The ELMREH algorithm.

17 The LPSPEH algorithm.

18 The practical organization of LPSPEH in the
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20 The ELMR′
EH algorithm.
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[35] Alain Prouté. Sur la transformation d’Eilenberg-MacLane. Comptes-Rendus
de l’Académie des Sciences de Paris, 1983, vol. 297, pp 193-194.

[36] Michael O. Rabin. Recursive unsolvability of group theoretic problems. Annals
of Mathematics, 1957, vol. 67, pp 172-194.

[37] G. Revesz. Lambda Calculus, combinators and functional programming. Cam-
bridge University Press, 1988.

[38] Julio Rubio, Francis Sergeraert. Supports Acycliques et Algorithmique, in Al-
gorithmique, Topologie et Gomtrie Algbriques, Astrisque, 1990, vol.192.

[39] Julio Rubio, Francis Sergeraert, Yvon Siret. The EAT program.
ftp://www-fourier.ujf-grenoble.fr/~ftp/pub/EAT

[40] Rolf Schön. Effective algebraic topology. Memoirs of the American Mathemat-
ical Society, 1991, vol. 451.

97



[41] Francis Sergeraert. The computability problem in algebraic topology. Advances
in Mathematics, 1994, vol. 104, pp 1-29.

[42] Francis Sergeraert.
http://www-fourier.ujf-grenoble.fr/~sergerar/

[43] Jean-Pierre Serre. Homologie singulière des espaces fibrés. Applications. An-
nals of Mathematics, 1951, vol. 54, pp. 425-505.

[44] Jean-Pierre Serre. Groupes d’homotopie et classes de groupes abéliens. Annals
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