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1 Introduction

Algebraic topology is concerned by any kind of topological space, but using the
algebraic tool soon leads to favour the constructors producing spaces which can
be conveniently so analyzed. Two important constructors are considered here, the
first one giving the CW-complexes, the second one the simplicial sets.

The CW-complexes were invented by J.H.C. Whitehead [19] and numerous well
written texts about them are available. On one hand the references [11] and [7] give
a reasonably complete study of the basic facts about CW-complexes; furthermore
their didactical quality is high. On the other hand, most textbooks about algebraic
topology, more precisely about homotopy theory, contain a section devoted to this
subject; see for example [16, Section 7.6] and [18, Chapter II]. This situation allows
us to be satisfied with a quick survey.

The situation is a little less comfortable with simplicial sets; several texts are
in competition, each one favouring some point of view or other. The textbook [11]
also deals with simplicial sets; they were then called semi-simplicial complexes but
the modern framework of contravariant functors with respect to the category ∆
is not considered in [11]; in the more recent textbook [7], this framework is sys-
tematically used, but the exposition does not go very far. The most classical
reference is [12], a little book entirely devoted to this subject, a wonderful tool;
it gives quite complete demonstrations for all the interesting basic theorems, in
particular it contains numerous explicit formulas difficult to find elsewhere; it is
also relatively exhaustive for an introduction to this theory; the bibliographical
notes at the end of each chapter give a precise and useful idea of the birth of every
important notion1. Maybe the unique difficulty is in the writing style; it is not at
all didactical and without some experience previously acquired, the reader finds
the subject rather esoteric2. We will try to organize the present lecture notes as a
little complementary introduction to Peter May’s book. The readers who can read
German are advised to use also the book [10], significantly more detailed, provided

1Those of [7] are also quite interesting.
2To avoid a possible reader wastes some time, let us signal a curious error p.130: the map ξ

in Lemma 29.1 in general is not a linear homomorphism; but it is easy to enrich the hypotheses
to obtain the correct demonstration.
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with many interesting examples, containing also a few subjects not treated in [12],
for example the Steenrod operations. It is really a pity this book has not been
translated into English.

2 CW-complexes.

2.1 The definition.

Definition 1 — A CW-complex structure on a topological space X is defined by
the following data:

1. An increasing sequence of subspaces ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂
Xn+1 ⊂ . . . ⊂ X is given; the whole space X has the topology inherited from
this filtration, that is, U ⊂ X is open if U ∩Xn is an open set of Xn for every
n; the subspace Xn is called the n-skeleton of X;

2. For every integer n ∈ N, an index set An is given, indexing the n-disks
{Dn

α}α∈An which are to be attached to Xn−1 to construct Xn;

3. For every n ∈ N, an attaching map φn : Bn → Xn−1 is given; its source Bn

is the boundary of the n-th disk collection:

Bn = ∂(
∐

α∈An

Dn
α) =

∐
α∈An

Sn−1
α

and the n-th stage Xn is the pushout of the diagram:∐
α∈An

Dn
α ←↩

∐
α∈An

Sn−1
α

φn→ Xn−1,

that is, the disjoint union of the left-hand and right-hand terms where x is
identified with φn(x) if x ∈ Bn.

In particular B0, the boundary of a discrete point set, is empty; φ0 is the
“empty map” with empty source and target. The image of a n-disk in Xn and in
X is traditionally called a n-cell or simply a cell ; the cellular homology, studied in
another lecture series of this Summer School, is defined according to the structure
of the cell sets.

A CW-complex is reduced if its 0-skeleton has only one point, which is then its
base-point.

A relative definition can be given: A CW-complex structure for the pair
(X,X−1) of topological spaces, X−1 being a subspace of X, is analogous, but
you must replace the initial space X−1 = ∅ by the given possibly non empty X−1.

The homotopy type of a CW-complex depends only on the homotopy classes
of its attaching maps. This is a consequence of the homotopy extension property,
stated later.
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2.2 Examples.

2.2.1 The suspension tool.

We will have to use the suspension functor S; if X = (X, ∗) is a pointed space, the
reduced suspension is the space SX = (X × I)/((X × ∂I)∪ (∗× I)); if f : X → Y
is a continuous (pointed) map between pointed spaces, there is a natural map
Sf : SX → SY . The d-sphere Sd can be considered as the d-th suspension of the
0-sphere S0 = ∂I = ∂D1.

2.2.2 The spheres.

The d-sphere can also be considered as a CW-complex where the disk sets An are
empty except A0 and Ad which have one element; in other words Sd = Dd/Sd−1.

The canonical map of degree k denoted by zk : S1 → S1 is the map defined on
the unit circle of the complex plane mapping a complex number to its k-th power.
The same notation zk : Sd → Sd is used in dimension d; the latter map is the
(d− 1)-th suspension of the initial map zk : S1 → S1; the map so obtained is the
canonical map of degree k defined on the d-sphere.

2.2.3 The Moore spaces.

The d-sphere Sd is also the Moore space Moore(Z, d), that is a simply connected

space where every reduced homology group is null except H̃d(S
d) = Z; the relation

d ≥ 1 is assumed. A version of the Moore space X = Moore(Zk, d) is obtained
as a CW-complex with three cells in dimensions 0, d and d + 1: only one way to
construct Xd (= Sd) and the last attaching map φd+1 : Sd → Sd is the map zk

defining the last stage Xd+1 = X. This construction where an attaching map is the
suspension of another one shows that, more generally, the (reduced) suspension of
a reduced CW-complex is also a reduced CW-complex.

2.2.4 The Grassman manifolds.

The Grassman manifold G2,2 = G of planes in R4 is a topological space. Let us
describe a CW-complex structure for it. A plane can be defined by two independant
elements, but many choices are possible. The following set of matrices contains
such choices:
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M1 =


1 0
0 1
0 0
0 0

 , M2(α) =


1 0
0 α
0 β
0 0

 , M3(α, γ) =


α γ
β 0
0 δ
0 0

 ,

M4(α, β) =


1 0
0 α
0 β
0 γ

 , M5(α, γ, δ) =


α γ
β 0
0 δ
0 ε

 , M6(α, β, δ, ε) =


α δ
β ε
γ 0
0 η

 .
If we add the conditions that each column vector is normalized (α2 + . . . = 1),

and that the last variable coefficient of each column is strictly positive, then every
plane is represented exactly by one of these matrices. For example a matrix M2(α)
is associated to every plane containing the first axis, contained in the sum of the
three first axes, but not in the sum of the two first ones; the inequality |α| < 1
must be satisfied and α defines β = +

√
1− α2.

Our reference textbook [11] claims (pp. 13-14) these matrix sets define a CW-
complex structure on G, but this is wrong. The 0-skeleton G0 is the matrix M1,
that is, the plane spanned by the axes 1 and 2. The matrices {M2(α)}α∈[−1,+1], an
interval of planes, must be attached to M1, identifying M2(1) and M2(−1) to M1;
we then have the 1-skeleton G1, a circle of planes. We could hope to continue in the
same way; the set of M3-matrices should be parametrized by {(α, γ) ∈ [−1,+1]2};
it is natural to identify M3(±1, γ) with M2(0), at least if |γ| < 1, and also to
identify M3(α,±1) with M1 if |α| < 1; but you are unable to define such an
identification for M3(±1,±1): the attaching map described in [11, p. 14] does not
work in general in the corners.

A correct solution for this problem is given in [15, Section 6] and consists in
choosing orthonormal bases for our planes, starting from the simplest vectors to
the longest ones. For example the two columns of M3(α, γ) are in general not
orthogonal, so that it is better to use the matrices:

N3(α, γ) =


α γβ
β −γα
0 δ
0 0


where columns are orthogonal; there is a canonical bijection between the sets of
matrices M3(α, γ) and N3(α, γ) for |α|, |γ| < 1, β = +

√
1− α2 and δ = +

√
1− γ2,

the bijection identifying two matrices when the associated planes are the same; but
this bijection cannot be extended to the square boundaries. Our (right) 2-cell is the
set {N3(α, γ);α, γ ∈ [−1,+1]}; the attaching map is defined by φ2(N3(±1, γ)) =
M2(∓γ) and φ2(N3(α,±1)) = M1; in particular the four corners of the square are
coherently mapped to M1; the attaching map φ2 : ∂([−1,+1]2)→ G1 is of degree 2
and this subspace of planes in G is the real projective plane.
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Modifying in an analogous way the definitions of the matrix sets M5 and M6,
you can prove the Grassman space G = G2,2 admits a CW-complex structure with
one 0-cell, one 1-cell, two 2-cells, one 3-cell and one 4-cell; its Euler characteristic
is therefore 2.

More generally the Grassman space Gm,n of m-subspaces in Rm+n has a CW-
complex structure where any sequence (pm, . . . , p1) satisfying

∑
pi = n produces

a cell of dimension
∑
ipi; for example the set of M5-matrices in our description of

G2,2 corresponds to the index (1, 1) giving a cell of dimension (2× 1) + 1 = 3.

The right reference about these questions is therefore [15] where it is explained
how the cellular structure so defined for Grassman manifolds leads to characteristic
classes of vector bundles.

2.2.5 Projective spaces.

The Grassman space G1,n is nothing but the real projective space P n(R) which
therefore admits a CW-complex structure with one d-cell for every 0 ≤ d ≤ n.
These considerations can be generalized in the same way to other R-algebras C
and H, giving a structure of CW-complex to P n(C) and P n(H), and still more
generally to the Grassman space Gm,n(K), the base field K being R, C or H.

2.2.6 Morse functions and CW-complexes.

If a (differentiable) manifold M is provided with a Morse function, that is, a C∞

function f : M → R with only non-degenerate singularities (in a local chart near
a singularity x0, the function can be described f(x) = f(x0) + Q(x − x0), Q a
non-degenerate quadratic form), and if the critical values f(x0) are different from
each other, then a CW-complex structure is given through f . For example the
ordinary torus T described as the surface of the points of R3 at the distance 1
from the circle {(x, y, z);x2 + y2 = 1, z = 0} can be provided with the Morse
function f(x, y, z) = x; four critical values −3, −1, +1 and +3 with the respective
indices 0, 1, 1 and 2, defining a CW-complex structure of the torus with one 0-cell,
two 1-cells and one 2-cell. This point of view about manifold descriptions is the
root of Milnor’s version of the h-cobordism theorem [13, 14].

2.2.7 Product of CW-complexes.

IfX and Y are CW-complexes, they naturally define another product CW-complex
which will be denoted by Z = X×̃Y . The underlying point sets behave in an ordi-
nary way, no surprise, but some precautions are to be applied from the topological
point of view.

The n-skeleton of Z is Zn = ∪n
i=0Xi×̃Yn−i to be considered as recursively

defined, so that we must describe the (n + 1)-cells of Zn+1. Every (n + 1)-cell of
Zn+1 is more or less the product of a p-cell of X by a q-cell of Y , the relation
p+ q = n+ 1 being satisfied; this (n+ 1)-cell is understood as Dp ×Dq and there
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is a canonical way to attach it to Zn. Processing in such a way all the pairs of
p-cells and q-cells satisfying p+ q = n+ 1 gives the wished (n+ 1)-skeleton Zn+1.
No surprise yet.

The possible pitfall is about topology. We must decide whether X×̃Y and
X × Y (the product as topological spaces) are homeomorphic; not always. There
is a canonical bijective continuous map φ : X×̃Y → X × Y but the inverse map
is not necessarily continuous; it is also continuous if one of the factors X or Y is
a finite CW-complex (the number of cells is finite) or when both have a countable
set of cells, see [11]. The first standard counter-example is the following. Let us
define X as the wedge of an infinite number of intervals [0, 1] indexed by N, the
same for Y but the index set is R:

X = ∨α∈NIα ; Y = ∨β∈RIβ.

It is a pretty exercise to understand the reason why in this case the inverse map
φ−1 is not continuous at the base point, see [4], or [7, p. 59]3. This is not really
important: in fact the map φ is a homotopy equivalence and anyway the right
point of view is to consider the product in the category of CW-complexes which
is the ×̃-product, see [7, Section 2.2]; by the way, what about the morphisms?

2.3 Cellular maps.

We could imagine the good morphisms between CW-complexes should more or
less be compatible with the cellular structure, but such a condition is a little too
strong. For example let X be the circle S1 and Y the wedge S1 ∨ S1; then a map
f : X → Y such that π1(f) sends the generator of π1(X) to the product of both
generators of π1(Y ) is not homotopic to g mapping the 1-cell in one 1-cell. So that
the appropriate definition is the following.

Definition 2 — If X and Y are CW-complexes, a cellular map f : X → Y is a
continuous map satisfying the relation f(Xn) ⊂ Yn for every n.

In this way the map f : X → Y just above is cellular if the base point is
mapped to the base point. The same difficulty is met with the simplicial sets but
frequently overcome thanks to the elegant Kan condition.

Up to homotopy, any map is cellular:

Theorem 3 — If f : X → Y is a continuous map between CW-complexes, f is
homotopic to a cellular map g.

A relative version can also be stated and proved. This is the main tool allowing
to build demonstrations by climbing over the skeleton.

3The analogy between the necessary negative argument and the incompleteness Gödel theorem
is striking.
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2.4 Extending homotopies.

Two main ingredients are used to prove the previous theorem; the most elementary
is the homotopy extension property satisfied by the relative CW-complexes.

Theorem 4 — A relative CW-complex (X,A) satisfies the homotopy extension
property; that is, if f : (X × 0) ∪ (A× I)→ Y is a continuous given map, then a
continuous extension F : (X × I)→ Y of f can be constructed.

Proof. It is sufficient to recursively construct an extension Fn : (X × 0)∪ (Xn ×
I) → Y ; this is a direct consequence of the same property for the pair (X,A) =
(Dn, Sn−1), which in turn results from a strong retracting deformation (Dn×I)⇒
((Sn−1 × I) ∪ (Dn × 0)) consisting in using a radial process centered at (0× 2).

The other main ingredient, significantly more interesting, is a dimension prop-
erty; a simple case where the essential argument begins to be visible is the following
proposition.

Proposition 5 — Let f : S1 → S2 be a continuous map. Then f is homotopic
to a constant map.

Proof. Consider S2 as the boundary of the 3-simplex ∆3, covered by 4 open
sets {Ui}0≤i≤3, the interiors of the unions of every combination of three faces,
each interior being “centered” at a vertex vi. The f -preimage of this covering
is a covering of S1 and a compactness argument gives 0 = a0 < . . . < an = 1
(S1 is parametrized by [0, 1]) such that f([aj−1, aj+1]) ⊂ Uij . We decide to define
f ′(aj) = vj and to affinely extend f ′ between aj and aj+1, with values on the edge
between vij and vij+1

. It is easy to see there is a canonical homotopy between f
and f ′ and we have succeeded in deform f into a map f ′ which runs only along the
edges of ∆3. In particular vi0 = vin , that is, i0 = in. We are mainly interested by
the cellular approximation f ′ of f : the map f is defined on a 1-dimensional object
and the obtained deformation runs along the 1-skeleton of ∆3. Finally because
this 1-skeleton can be deformed in ∆3 to a vertex, the homotopy of f ′ and also f
to a constant map is obtained.

3 The category ∆.

Some strongly structured sets of indices are necessary to define the notion of
simplicial object ; they are conveniently organized as the category ∆. An object
of ∆ is a set m, namely the set of integers m = {0, 1, . . . ,m − 1,m}; this set is
canonically ordered with the usual order between integers.

A ∆-morphism α : m → n is an increasing map. Equal values are permitted;
for example a ∆-morphism α : 2 → 3 could be defined by α(0) = α(1) = 1 and
α(2) = 3. The set of ∆-morphisms from m to n is denoted by ∆(m,n); the
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subset of injective (resp. surjective) morphisms is denoted by ∆inj(m,n) (resp.
∆srj(m,n)).

Some elementary morphisms are important, namely the simplest non-surjective
and non-injective morphisms. For geometric reasons explained later, the first ones
are the face morphisms, the second ones are the degeneracy morphisms.

Definition 6 — The face morphism ∂m
i : m− 1 → m is defined for m ≥ 1 and

0 ≤ i ≤ m by:
∂m

i (j) = j if j < i,
∂m

i (j) = j + 1 if j ≥ i.

The face morphism ∂m
i is the unique injective morphism from m− 1 to m such

that the integer i is not in the image. The face morphisms generate the injective
morphisms, in fact in a unique way if a growth condition is required.

Proposition 7 — Any injective ∆-morphism α ∈ ∆inj(m,n) has a unique ex-
pression:

α = ∂n
in ◦ . . . ◦ ∂

m+1
im+1

satisfying the relation in > in−1 > . . . > im+1.

Proof. The index set {im+1, . . . , in} is exactly the difference set n− α(m), that
is, the set of the integers where surjectivity fails.

Frequently the upper index m of ∂m
i is omitted because clearly deduced from

the context. For example the unique injective morphism α : 2 → 5 the image of
which is {0, 2, 4} can be written α = ∂5∂3∂1.

If two face morphisms are composed in the wrong order, they can be exchanged:
∂i ◦ ∂j = ∂j+1 ◦ ∂i if j ≥ i. Iterating this process allows you to quickly compute for
example ∂0∂2∂4∂6 = ∂9∂6∂3∂0.

Definition 8 — The degeneracy morphism ηm
i : m + 1→m is defined for m ≥ 0

and 0 ≤ i ≤ m by:
ηm

i (j) = j if j ≤ i,
ηm

i (j) = j − 1 if j > i.

The degeneracy morphism ηm
i is the unique surjective morphism from m + 1 to

m such that the integer i has two pre-images. The degeneracy morphisms generate
the surjective morphisms, in fact in a unique way if a growth condition is required.

Proposition 9 — Any surjective ∆-morphism α ∈ ∆srj(m,n) has a unique ex-
pression:

α = ηn
in ◦ . . . ◦ η

m−1
im−1

satisfying the relation in < in+1 < . . . < im−1.
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Proof. The index set {in, . . . , im−1} is exactly the set of integers j such that
α(j) = α(j + 1), that is, the integers where injectivity fails.

Frequently the upper index m of ηm
i is omitted because clearly deduced from

the context. For example the unique surjective morphism α : 5 → 2 such that
α(0) = α(1) and α(2) = α(3) = α(4) can be expressed α = η0η2η3.

If two face morphisms are composed in the wrong order, they can be exchanged:
ηi ◦ ηj = ηj ◦ ηi+1 if i ≥ j. Iterating this process allows you to quickly compute for
example η3η3η2η2 = η2η3η5η6.

Proposition 10 — Any ∆-morphism α can be ∆-decomposed in a unique way:

α = β ◦ γ

with β injective and γ surjective.

Proof. The intermediate ∆-object k necessarily satisfies k + 1 = Card(im(α)).
The growth condition then gives a unique choice for β and γ.

Corollary 11 — Any ∆-morphism α : m→ n has a unique expression:

α = ∂in ◦ . . . ◦ ∂ik+1
◦ ηjk

◦ . . . ◦ ηjm−1

satisfying the conditions in > . . . > ik+1 and jk < . . . < jm−1.

Finally if face and degeneracy morphisms are composed in the wrong order,
they can be exchanged:

ηi ◦ ∂j = id if j = i or j = i+ 1;
= ∂j−1 ◦ ηi if j ≥ i+ 2;
= ∂j ◦ ηi−1 if j < i.

All these commuting relations can be used to convert an arbitrary composition
of faces and degeneracies into the canonical expression:

α = η9∂6η3∂7η9∂8η6∂2η4∂9 = ∂7∂6∂2η2η4η6.

This relation means the image of α does not contain the integers 2, 6 and 7, and
the relations α(2) = α(3), α(4) = α(5) and α(6) = α(7) are satisfied.

Corollary 12 — A contravariant functor X : ∆ → CAT is nothing but a
collection {Xm}m∈N of objects of the target category CAT, and collections of
CAT-morphisms {X(∂m

i ) : Xm → Xm−1}m≥1 , 0≤i≤m and {X(ηm
i ) : Xm →

Xm+1}m≥0 , 0≤i≤m satisfying the commuting relations:

X(∂i) ◦X(∂j) = X(∂j) ◦X(∂i+1) if i ≥ j,
X(ηi) ◦X(ηj) = X(ηj+1) ◦X(ηi) if j ≥ i,
X(∂i) ◦X(ηj) = id if i = j, j + 1,
X(∂i) ◦X(ηj) = X(ηj−1) ◦X(∂i) if j > i,
X(∂i) ◦X(ηj) = X(ηj) ◦X(∂i−1) if i > j + 1.
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In the five last relations, the upper indices have been omitted. Such a con-
travariant functor is a simplicial object in the category CAT. If α is an arbitrary
∆-morphism, it is then sufficient to express α as a composition of face and degen-
eracy morphisms; the image X(α) is necessarily the composition of the images of
the corresponding X(∂i)’s and X(ηi)’s; the above relations assure the definition is
coherent.

4 Simplicial sets.

4.1 Terminology and notations.

Definition 13 — A simplicial set is a simplicial object in the category of sets.

A simplicial set X is given by a collection of sets {X(m)}m∈N and collections of
maps {Xα}, the index α running the ∆-morphisms; the usual coherence properties
must be satisfied. As explained at the end of the previous section, it is sufficient to
define the X(∂m

i )’s and the X(ηm
i )’s with the corresponding commuting relations.

The set X(m) is usually denoted by Xm and is called the set of m-simplices
of X; such a simplex has the dimension m. To be a little more precise, these
simplices are sometimes called abstract simplices, to avoid possible confusions with
the geometric simplices defined a little later. An (abstract) m-simplex is only one
element of Xm.

If α ∈ ∆(n,m), the corresponding morphism X(α) : Xm → Xn is most often
simply denoted by α∗ : Xm → Xn or still more simply α : Xm → Xn. In
particular the faces and degeneracy operators are maps ∂i : Xm → Xm−1 and
ηi : Xm → Xm+1. If σ is an m-simplex, the (abstract) simplex ∂iσ is its i-th face,
and the simplex ηiσ is its i-th degeneracy; we will see the last one is “particularly”
abstract.

4.2 The structure of simplex sets.

Definition 14 — An m-simplex σ of the simplicial set X is degenerate if there
exist an integer n < m, an n-simplex τ ∈ Xn and a ∆-morphism α ∈ ∆(m,n)
such that σ = α(τ). The set of non-degenerate simplices of dimension m in X is
denoted by XND

m .

Decomposing the morphism α = β ◦ γ with γ surjective, we see that σ =
γ(β(τ)), with the dimension of β(τ) less or equal to n; so that in the definition of
degenaracy, the connecting ∆-morphism α can be required to be surjective. The
relation σ = α(τ) with α surjective is shortly expressed by saying the m-simplex
σ comes from the n-simplex τ .

Eilenberg’s lemma explains each degenerate simplex comes from a canonical
non-degenerate one.
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Lemma 15 — (Eilenberg’s lemma) If X is a simplicial set and σ is an m-
simplex of X, there exists a unique triple Tσ = (n, τ, α) satisfying the following
conditions:

1. The first component n is a natural number n ≤ m;
2. The second component τ is a non-degenerate n-simplex τ ∈ XND

n ;
3. The third component α is a ∆-morphism τ ∈ ∆srj(m,n);
4. The relation σ = α(τ) is satisfied.

Definition 16 — This triple Tσ is called the Eilenberg triple of σ.

Proof. Let T be the set of triples T = (n, τ, α) such that n ≤ m, τ ∈ Xn and
α ∈ ∆(m,n) satisfy σ = α(τ). The set T certainly contains the triple (m,σ, id)
and therefore is non empty. Let (n0, τ0, α0) be an element of T where the first
component, the integer n0, is minimal. We claim (n0, τ0, α0) is the Eilenberg
triple.

Certainly n0 ≤ m. The n0-simplex τ0 is non-degenerate; otherwise τ0 = β(τ1)
with the dimension n1 of τ1 less than n0, but then (n1, τ1, βα0) would be a triple
with n1 < n0. Finally α0 is surjective, otherwise α0 = βγ with γ ∈ ∆srj(m,n1) and
n1 < n0; but again the triple (n1, β(τ0), γ) would be a triple denying the required
property of n0. The existence of an Eilenberg triple is proved and uniqueness
remains to be proved.

Let (n1, τ1, α1) be another Eilenberg triple. The morphisms α0 and α1 are
surjective and respective sections β0 ∈ ∆inj(n0,m) and β1 ∈ ∆inj(n1,m) can be
constructed: α0β0 = id and α1β1 = id. Then τ0 = (α0β0)(τ0) = β0(α0(τ0)) =
β0(σ) = β0(α1(τ1)) = (α1β0)(τ1); but τ0 is non-degenerate, so that n1 = dim(τ1) ≥
n0 = dim(τ0); the analogous relation holds when τ0 and τ1 are exchanged, so that
n1 ≤ n0 and the equality n0 = n1 is proved.

The relation τ0 = β0(α1(τ1)) with τ0 non-degenerate implies α1β0 = id, other-
wise α1β0 = γδ with δ ∈ ∆srj(n1,n2) and n2 < n1 = n0, but this implies τ0 comes
from γ(τ1) of dimension n2 again contradicting the non-degeneracy property of τ0;
therefore α1β0 = id but this equality implies τ0 = τ1.

If α0 6= α1, let i be an integer such that α0(i) = j 6= α1(i); then the section β0

can be chosen with β0(j) = i; but this implies (α1β0)(j) 6= j, so that the relation
α1β0 = id would not hold. The last required equality α0 = α1 is also proved.

Each simplex comes from a unique non-degenerate simplex, and conversely, for
any non-degenerate m-simplex σ ∈ XND

m , the collection {α(σ) ; α ∈ ∆srj(n,m) ;
n ≥ m} is a perfect description of all simplices coming from σ, that is, of all
degenerate simplices above σ. This is also expressed in the following formula,
describing the structure of the simplex set of any simplicial set X:∐

m∈N

Xm =
∐
m∈N

∐
σ∈XND

m

∐
n≥m

∆srj(n,m)(σ).
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4.3 Examples.

4.3.1 Discrete simplicial sets.

Definition 17 — A simplicial set X is discrete if Xm = X0 for every m ≥ 1, and
if for every α ∈ ∆(m,n), the induced map α∗ : Xn → Xm is the identity.

The reason of this definition is that the realization (see Section 4.4) of such
a simplicial set is the discrete point set X0; the Eilenberg triple of any simplex
σ ∈ Xm = X0 is (0, σ, α) where the map α is the unique element of ∆(m,0).

4.3.2 The simplicial complexes.

A simplicial complex K = (V, S) is a pair where V is the vertex set (an arbitrary
set, finite or not), and S ⊂ PF (V ) is a set of finite sets of vertices satisfying the
properties:

1. For any v ∈ V , the one element subset {v} of V is an element of S;
2. For any τ ⊂ σ ∈ S, then τ ∈ S.

The simplex σ ∈ S spans its elements. If S = PF (V ), then K is the simplex
freely generated by V , or more simply the simplex spanned by V .

The terminology is a little incoherent because a simplicial set is an object more
sophisticated than a simplicial complex, but this terminology is so well established
that it is probably too late to modify it.

The simplicial complex K = (V, S) is ordered if the vertex set V is provided
with a total order4. Then a simplicial set again denoted by K is canonically
associated; the simplex set Km is the set of increasing maps σ : m → K such
that the image of m is an element of S; note that such a map σ is not necessarily
injective. If α is a ∆-morphism α ∈ ∆(n,m) and σ is an m-simplex σ ∈ Km, then
α(σ) is naturally defined as α(σ) = σ ◦ α. A simplex σ ∈ Km is non-degenerate
if and only if σ ∈ ∆inj(m, V ); if σ ∈ Km = ∆(m, V ), the Eilenberg triple (n, τ, α)
satisfies σ = τ ◦ α with α surjective and τ injective.

This in particular works for K = (d,P(d)) the simplex freely generated by d
provided with the canonical vertex order. We obtain in this way the canonical
structure of simplicial set for the standard d-simplex ∆d.

4.3.3 The spheres.

Let d be a natural number. The simplest simplicial version S = Sd of the d-sphere
is defined as follows: the set of m-simplices Sm is Sm = {∗m}

∐
∆srj(m,d); if

α ∈ ∆(n,m) and σ is an m-simplex σ ∈ Sm, then α(σ) depends on the nature
of σ:

1. If σ = ∗m, then α(σ) = ∗n;

4Other situations where the order is not total are also interesting but will be considered later.
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2. Otherwise σ ∈ ∆srj(m,d) and if σ ◦ α is surjective, then α(σ) = σ ◦ α, else
α(σ) = ∗n (the emergency solution when the natural solution does not work).

This is nothing but the canonical quotient Sd = ∆d/∂∆d, at least if d > 0;
more generally the notion of simplicial subset is naturally defined and a quotient
then appears. In the case of the construction of Sd = ∆d/∂∆d, the subcomplex
∂∆d is made of the simplices α ∈ ∆(m,d) that are not surjective.

The Eilenberg triple of ∗m is (0, ∗0, α) where alpha is the unique element of
∆(m,0). The Eilenberg triple of σ ∈ ∆srj(m,d) ⊂ Sm is (d, id, σ). There are only
two non-degenerate simplices, namely ∗0 ∈ S0 and id(d) ∈ Sd, even if d = 0.

4.3.4 Classifying spaces of discrete groups.

Let G be a (discrete) group. Then a simplicial version of its classifying space BG
can be given. The set of m-simplices BGm is the set of “m-bars” σ = [g1| . . . |gm]
where every gi is an element of G. It is simpler in this situation to define the
structure morphisms only for the face and degeneracy operators:

1. ∂0[g1| . . . |gm] = [g2| . . . |gm];
2. ∂m[g1| . . . |gm] = [g1| . . . |gm−1];
3. ∂i[g1| . . . |gm] = [. . . |gi−1|gigi+1|gi+2| . . .] if 0 < i < m;
4. ηi[g1| . . . |gm] = [. . . |gi|eG|gi+1| . . .], where eG is the unit element of G.

In particular BG0 = {[ ]} has only one element.

The m-simplex [g1| . . . |gm] is degenerate if and only if one of the G-components
is the unit element.

The various commuting relations must be verified; this works but does not give
obvious indications on the very nature of this construction; in fact there is a more
conceptual description. Let us define the simplicial set EG by EGm = SET(m, G),
that is, the maps of m to G without taking account of the ordered structure of m
(the group G is not ordered); if α ∈ ∆(n,m) there is a canonical way to define
α : EGm → EGn; it would be more or less coherent to write EG = G∆.

There is a canonical left action of the group G on EG, and BG is the natural
quotient of EG by this action. A simplex σ ∈ EGm is nothing but a (m + 1)-
tuple (g0, . . . , gm) and the action of g gives the simplex (gg0, . . . , ggm). If two sim-
plices are G-equivalent, the products g−1

i−1gi are the same; the quotient BG-simplex
[g1, . . . , gm] denotes the equivalence class of all the EG-simplices (g, gg1, gg1g2, . . .),
which can be imagined as a simplex where the edge between the vertices i−1 and i
(i > 0) is labeled by gi to be considered as a (right) operator between the adjacent
vertices. Then the boundary and degeneracy operators are clearly explained and
it is even not necessary to prove the commuting relations, they can be deduced of
the coherent structure of EG.
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4.3.5 The Eilenberg-MacLane spaces.

The previous example constructs an Eilenberg-MacLane space, that is, a space with
only one non-zero homotopy group. The realization process (see later) applied to
the simplicial set BG produces a model for K(G, 1): all the homotopy groups are
null except π1 canonically isomorphic to G. The construction can be generalized to
construct K(π, d), d > 1, when π is an abelian group. This requires the simplicial
definition of homology groups, explained in another lecture series. See also [12,
Chapter V] where these questions are carefuly detailed.

Let π be a fixed abelian group, and d a natural number. The simplicial set
E(π, d) is defined as follows. The set of m-simplices E(π, d)m, shortly denoted
by Em, is Em = Cd(∆m, π), the group of normalized d-cochains on the standard
m-simplex with values in π. Such a cochain σ is nothing but a map σ : ∆m

d → π,
defined on the (degenerate or not) d-simplices of ∆m, null for the degenerate
simplices. If α is a ∆-morphism α : n → m, this map defines a simplicial map
α∗ : ∆n → ∆m which in turns defines a pullback map α∗ : Cd(∆m, π)→ Cd(∆n, π)
between m-simplices and n-simplices of Em.

The simplicial set E(π, d) so defined contains the simplicial subset K(π, d),
made only of the cocycles, those cochains the coboundary of which (d :
Cd(∆m, π) → Cd+1(∆m, π) is null. In fact E(π, d) is a simplicial group, that
is, a simplicial object in the category of groups, and K(π, d) is a simplicial sub-
group. The quotient simplicial group E(π, d)/K(π, d) is canonically isomorphic to
K(π, d+ 1) and this structure defines the Eilenberg-MacLane fibration:

K(π, d) ↪→ E(π, d)→ K(π, d+ 1)

See later the section about simplicial fibrations for some details.

4.3.6 Simplicial loop spaces.

Let X be a simplicial set. We can construct a new simplicial set DT (X) (the
acronym DT meaning Dold-Thom) from X, where DT (X)m is the free Z-module
generated by the m-simplices Xm; the operators of DT (X) are also “generated”
by the operators of X. This is a simplicial version of the Dold-Thom construction,
producing a new simplicial set DT (X), the homotopy groups of which being the
homology groups of the initial X. The simplicial set DT (X) is also of simplicial
group; its simplex sets are nothing but the chain groups at the origin of the
simplicial homology of X, but in DT (X), each simplicial “chain” of X is one
(abstract) simplex. See [12, Section 22].

The same construction can be undertaken, but instead of using the abelian
group generated by the simplex sets Xm, we could consider the free non-
commutative group generated by Xm. This also works, but then the obtained
space is a simplicial model for the James construction of ΩΣX, the loop space
of the (reduced) suspension of X. See [2] for the James construction in general
and [3] for the simplicial case.
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It is even possible to construct the “pure” loop space ΩX, without any suspen-
sion. This is due to Daniel Kan [9] and works as follows. It is necessary to assume
X is reduced, that is with only one vertex: the cardinality of X0 is 1. Let X∗m the
set of all m-simplices, except those that are 0-degenerate: X∗m = Xm − η0(Xm−1);
this makes sense for m ≥ 1. Then let GXm be the free non-commutative group
generated by X∗m+1; to avoid possible confusions, if σ ∈ X∗m+1, let us denote by
τ(σ) the corresponding generator of GXm. The simplicial object GX to be defined
is a simplicial group, so that it is sufficient to define face and degeneracy operators
for the generators:

∂iτ(σ) = τ(∂i+1σ), if 1 ≤ i ≤ m;
∂0τ(σ) = τ(∂1σ)τ(∂0σ)−1;
ηiτ(σ) = τ(ηi+1σ), if 0 ≤ i ≤ m.

These definitions are coherent, and the simplicial set GX so obtained is a
simplicial version of the loop space construction. See [12, Chapter VI] for details
and related questions, mainly the twisted Eilenberg-Zilber theorem, at the origin of
the general solution described in [17] for the computability problem in algebraic
topology.

4.3.7 The singular simplicial set.

Let X be an arbitrary topological space. Then the singular simplicial set associ-
ated to X is constructed as follows. The set of m-simplices SXm is made of the
continuous maps σ : ∆m → X; one (abstract) simplex is one continuous map but
no topology is installed on SXm; in particular when SX will be realized in the
following section, the discrete topology must be used. The source of the abstract
m-simplex σ is the geometric m-simplex ∆m ⊂ Rm provided with the traditional
topology. If α ∈ ∆(n,m) is a ∆-morphism, this α defines a natural continuous
map α∗ : ∆n → ∆m between geometric simplices, and this allows us to naturally
define α∗(σ) = σ◦α∗. An enormous simplicial set is so defined if X is an arbitrary
topological space; it is at the origin of the singular homology theory.

4.4 Realization.

If K = (V, S) is a simplicial set, the realization |K| is a subset of R(V ), the R-vector
space generated by the vertices v ∈ V ; a point x ∈ R(V ) is a function x : V → R
almost everywhere null, that is, the set of v’s where x is non-null is finite. Such
a function can also be denoted by x = {xv}v∈V , the set of indexed values, or also
the linear notations x =

∑
xv.ev or x =

∑
xv.v can be used. Then |K| is the set

of x’s in R(V ) satisfying the following conditions:

1. For every v ∈ V , the inequality 0 ≤ xv ≤ 1 holds;
2. The relation

∑
v∈V xv = 1 is satisfied;

3. The set {v ∈ V st xv 6= 0} is a simplex σ ∈ S.
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The right topology to install on |K| is induced by all the finite dimensional
spaces Rσ for σ ∈ S. In this way the realization |K| is a CW-complex. In partic-
ular, if ∆m is the simplex freely generated by m, the realization is the standard
geometric m-simplex again denoted by ∆m, provided with its ordinary topology.
In general the topology of |K| is induced by its (geometric) simplices.

If α : m → n is a ∆-morphism, then α defines a covariant induced map α∗ :
∆m → ∆n (between the “simplicial” simplices or the geometric realizations, as you
like) and for any simplicial setX a contravariant induced map α∗ : Xn → Xm.From
now on, unless otherwise stated, ∆m denotes the geometric standard simplex, that
is, the convex hull of the canonical basis of Rm.

If X is a simplicial set, the (expensive) realization |X| of X is:

|X| =
∐

m∈N
Xm ×∆m / ≈ .

Each component of the coproduct is the product of the discrete set of m-
simplices by the geometric m-simplex; in other words, each abstract simplex σ
in Xm gives birth to a geometric simplex {σ} × ∆m, and they are attached to
each other following the instructions of the equivalence relation ≈, to be defined.
Let α ∈ ∆(m,n) be some ∆-morphism, and let σ be an n-simplex σ ∈ Xn and
t ∈ ∆m ⊂ Rm. Then the pairs (α∗σ, t) and (σ, α∗t) are declared equivalent.

It is not obvious to understand what is the topological space so obtained. A
description a little more explicit but also a little more complicated explains more
satisfactorily what should be understood.

The cheap realization ‖X‖ of the simplicial set X is:

‖X‖ =
∐

m∈N
XND

m ×∆m / ≈

where the equivalence relation ≈ is defined as follows. Let σ be a non-degenerate
m-simplex and i an integer 0 ≤ i ≤ m; let also t ∈ ∆m−1; the abstract (m − 1)-
simplex ∂∗i σ has a well defined Eilenberg triple (n, τ, α); then we decide to declare
equivalent the pairs (σ, ∂i∗(t)) ≈ (τ, α∗(t)).

For example let S = Sd be the claimed simplicial version of the d-sphere de-
scribed in Section 4.3.3. This simplical set S has only two non-degenerate sim-
plices, one in dimension 0, the other one in dimension d. The cheap realization
needs a point ∆0 and a geometric d-simplex ∆d corresponding to the abstract sim-
plex id ∈ ∆(d,d); then if t ∈ ∆d−1 and 0 ≤ i ≤ d, the equivalence relation asks
for the Eilenberg triple of ∂i(id) = ∗d−1 which is (0, ∗0, η), the map η being the
unique element of ∆(d− 1,0). Finally the initial pair (id, ∂i∗t) in the realization
process must be identified with the pair (∗0,∆0); in other words ‖S‖ = ∆d/∂∆d,
homeomorphic to the unit d-ball with the boundary collapsed to one point.

Proposition 18 — Both realizations, the expensive one and the cheap one, of a
simplicial set X are canonically homeomorphic.
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Proof. The homeomorphism f : |X| → ‖X‖ to be constructed maps the equiv-
alence class of the pair (σ, t) ∈ Xm × ∆m to the (equivalence class of the) pair
(τ, α∗(t)) ∈ Xn ×∆n if the Eilenberg triple of σ is (n, τ, α). The inverse homeo-
morphism g is induced by the canonical inclusion

∐
XND

m ×∆m ↪→
∐
Xm ×∆m.

These maps must be proved coherent with the defining equivalence relations and
inverse to each other.

If α = βγ is a ∆-morphism expressed as the composition of two other ∆-
morphisms, then an equivalence (σ, β∗γ∗t) ≈ (γ∗β∗σ, t) can be considered as a
consequence of the relations (σ, β∗γ∗t) ≈ (β∗σ, γ∗t) and (β∗σ, γ∗t) ≈ (γ∗β∗σ, t),
so that it is sufficient to prove the coherence of the definition of f with respect to
the elementary ∆-operators, that is, the face and degeneracy operators.

Let us assume the Eilenberg triple of σ ∈ Xm is (n, τ, α), so that f(σ, t) =
(τ, α∗t). We must in particular prove that f(η∗i σ, t) and f(σ, ηi∗t) are coher-
ently defined. The second image is the equivalence class of (τ, α∗ηi∗t); the Eilen-
berg triple of η∗i σ is (n, τ, αηi) so that the first image is the equivalence class of
(τ, (αηi)∗t) and both image representants are even equal.

Let us do now the analogous work with the face operator ∂i instead of the
degeneracy operator ηi. Two cases must be considered. If ever the composition
α∂i ∈ ∆(m− 1,n) is surjective, the proof is the same. The interesting case
happens if α∂i is not surjective; but its image then forgets exactly one element j
(0 ≤ j ≤ n) and there exists a unique surjection β ∈ ∆(m− 1,n− 1) such that
α∂i = ∂jβ. The abstract simplex ∂∗j τ gives an Eilenberg triple (n′, τ ′, α′) and the
unique possible Eilenberg triple for ∂∗i σ is (n′, τ ′, βα′). Then, on one hand, the
f -image of (σ, ∂i∗t) is (τ, α∗∂i∗t) = (τ, ∂j∗β∗t); on the other hand the f -image of
(∂∗i σ, t) is (τ ′, α∗β∗t); but according to the definition of the equivalence relation
≈ for ‖X‖, both f -images are equivalent. The coherence of f is proved.

Let σ ∈ XND
m , 0 ≤ i ≤ m, t ∈ ∆m−1 and (n, τ, α) (the Eilenberg triple of

∂∗i σ) be the ingredients in the definition of the equivalence relation for ‖X‖;
the pairs (σ, ∂i∗t) and (τ, α∗t) are declared equivalent in ‖X‖; the map g is
induced by the canonical inclusion of coproducts, so that we must prove the
same pairs are also equivalent in |X|. But this is a transitive consequence of
(σ, ∂i∗t) ≈ (∂∗i σ, t) = (α∗τ, t) ≈ (τ, α∗t). We see here we had only described the
binary relations generating the equivalence relation ≈; the defining relation is not
necessarily stable under transitivity. The coherence of g is proved.

The relation fg = id is obvious. The other relation gf = id is a consequence of
the equivalence in |X| of (σ, t) ≈ (τ, α∗t) if the Eilenberg triple of σ is (n, τ, α).

4.4.1 Examples.

Let us consider the construction of the classifying space of the group G = Z2

described in Section 4.3.4. The universal “total space” EG has for every m ∈
N exactly two non-degenerate m-simplices (0, 1, 0, 1, . . .) and (1, 0, 1, 0, . . .). The
only non degenerate faces are the 0-face and the m-face. For example the faces
of (0, 1, 0, 1) are (1, 0, 1) ∈ EGND

2 , (0, 0, 1) = η0(0, 1), (0, 1, 1) = η1(0, 1) and
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(0, 1, 0) ∈ EGND
2 . Each non-degenerate m-simplex is attached to the (m − 1)-

skeleton of EG like each hemisphere of Sm is attached to the equator Sm−1 and
EG is nothing but the infinite sphere S∞. The details are not so easy; the key
point consists in proving the geometric m-simplex corresponding for example to
σ = (0, 1, 0, 1, . . .) with a few identification relations on the boundary, following
the instructions read from the various iterated faces of σ, is again homeomorphic to
the m-ball, its boundary to the (m−1)-sphere; the simplest case is ∆2/∂1∆

2 ∼= D2,
for ∂1∆

2 = ∆1 is contractible, and this can be extended to the higher dimensions.

The classifying space BG is the quotient space of EG by the canonical action
of Z2, that is, the quotient space of S∞ by the corresponding action; so that
BG is homeomorphic to the infinite real projective space P∞R; the m-skeleton
(throw away all the non-degenerate simplices of dimension > m and also their
degeneracies) is a combinatorial description of PmR. If σm = [1|1| . . . |1|1] denotes
the unique non-degenerate simplex of BG; then ∂0σm = σm−1, ∂1σm = η0σm−2,
. . . , ∂m−1σm = ηm−2σm−2 and ∂mσm = σm−1.

Let us also consider the case of the singular simplicial set of a topological
space X (see Section 4.3.7). There is a canonical continuous map f : |SX| → X
defined as follows; if (σ, t) represents an element of |SX|, this means the (abstract)
simplex σ is a continuous map σ : ∆m → X, but t is an element of the geometric
simplex ∆m, so that it is tempting to define f(σ, t) = σ(t); it is easy to verify
this definition is coherent with the equivalence relation defining |SX|. This map
is always a weak homotopy equivalence, and is an ordinary homotopy equivalence
if and only if X has the homotopy type of a CW-complex.

4.4.2 Simplicial maps.

A natural notion of simplicial map f : X → Y between simplicial sets can be de-
fined. The map f must be a system {fm : Xm → Ym}m∈N satisfying the commuting
relations α∗X◦fm = fn◦α∗Y if α is a ∆-morphism α ∈ ∆(m,n). If f : X → Y is such
a simplicial map, a realization |f | : |X| → |Y |, a continuous map, is canonically
defined.

4.5 Products of simplicial sets.

Definition 19 — If X and Y are two simplicial sets, the simplicial product Z =
X×Y is defined by Zm = Xm×Ym for every natural number m, and α∗Z = α∗X×α∗Y
if α is a ∆-morphism.

The definition of the product of two simplicial sets is perfectly trivial and
is however at the origin of several landmark problems in algebraic topology, for
example the deep structure of the twisted Eilenberg-Zilber theorem, still quite
mysterious, and also the enormous field around the Steenrod algebras.

Every simplex of the product Z = X × Y is a pair (σ, τ) made of one simplex
in X and one simplex in Y ; both simplices must have the same dimension. It is
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tempting at this point, because of the “product” ambience, to denote by σ × τ
such a simplex in the product but this would be a terrible error! This is not at
all the right point of view; the pair (σ, τ) ∈ Zm is the unique simplex in Z whose
respective projections in X and Y are σ and τ and this is the reason why the pair
notation (σ, τ) is the only one which is possible. For example the diagonal of a
square is a 1-simplex, the unique simplex the projections of which are both factors
of the square; on the contrary, the “product” of the factors is simply the square,
which does not have the dimension 1 and which is even not a simplex.

Theorem 20 — If X and Y are two simplicial sets and Z = X × Y is their
simplicial product, then there exists a canonical homeomorphism between |Z| and
|X|×|Y |, the last product being the product of CW-complexes (or also of k-spaces).

If you consider the product |X| × |Y | as the product of topological spaces, the
same accident as for CW-complexes (see Section 2.2.7) can happen.

Proof. There are natural simplicial projections X × Y → X and Y which define
a canonical continuous map φ : |X × Y | → |X| × |Y |. The interesting question is
to define its inverse ψ : |X| × |Y | → |X × Y |.

First of all, let us detail the case of X = ∆2 and Y = ∆1 where the essential
points are visible. The first factor X has dimension 2, and the second one Y
has dimension 1 so that the product Z shoud have dimension 3. What about
the 3-simplices of Z? There are 3 such non-degenerate 3-simplices, namely ρ0 =
(η0σ, η2η1τ), ρ1 = (η1σ, η2η0τ) and ρ2 = (η2σ, η1η0τ), if σ (resp. τ) is the unique
non-degenerate 2-simplex (resp. 1-simplex) of ∆2 (resp. ∆1). This is nothing but
the decomposition of a prism ∆2 ×∆1 in three tetrahedrons.

Note no non-degenerate 3-simplex is present in X and Y and however some
3-simplices must be produced for Z; this is possible thanks to the degenerate
simplices of X and Y where they are again playing a quite tricky role in our
workspace; in particular a pair of degenerate simplices in the factors can produce
a non-degenerate simplex in the product! This happens when there is no common
degeneracy in the factors.

For example the tetrahedron ρ0 = (η0σ, η2η1τ) inside Z is the unique 3-simplex
the first projection of which is η0σ, and the second projection is η2η1τ ; the first
projection is a tetrahedron collapsed on the triangle σ, identifying two points when
the sum of barycentric coordinates of index 0 and 1 (the indices where injectivity
fails in η0) are equal; the second projection is a tetrahedron collapsed on an interval,
identifying two points when the sum of barycentric coordinates of index 1, 2 and
3 are equal.

Let us take a point of coordinates r = (r0, r1, r2, r3) in the simplex ρ0. Its
first projection is the point of X = ∆2 of barycentric coordinates s = (s0 =
r0 + r1, s1 = r2, s2 = r3); in the same way its second projection is the point of
Y = ∆1 of barycentric coordinates t = (t0 = r0, t1 = r1 + r2 + r3). So that:

φ(ρ0, (r0, r1, r2, r3)) = ((σ, (r0 + r1, r2, r3)), (τ, (r0, r1 + r2 + r3)))
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In the same way:

φ(ρ1, (r0, r1, r2, r3)) = ((σ, (r0, r1 + r2, r3)), (τ, (r0 + r1, r2 + r3)))

φ(ρ2, (r0, r1, r2, r3)) = ((σ, (r0, r1, r2 + r3)), (τ, (r0 + r1 + r2, r3)))

The challenge then consists in deciding for an arbitrary point
((σ, (s0, s1, s2)), (τ, (t0, t1))) ∈ |X| × |Y | what simplex ρi it comes from and
what a good φ-preimage (ρi, r) could be. You obtain the solution in comparing
the sums u0 = s0, u1 = s0 + s1, u2 = t0 ; the sums s0 + s1 + s2 and t0 + t1 are
necesarily equal to 1 and do not play any role. You see in the three cases, the
values of ui’s are:

((η0σ, η2η1τ), r)⇒ u0 = r0 + r1, u1 = r0 + r1 + r2, u2 = r0,
((η1σ, η2η0τ), r)⇒ u0 = r0, u1 = r0 + r1 + r2, u2 = r0 + r1,
((η2σ, η1η0τ), r)⇒ u0 = r0, u1 = r0 + r1, u2 = r0 + r1 + r2,

so that you can guess the degeneracy operators to be applied to the factors σ and
τ from the order of the ui’s; more precisely, sorting the ui’s puts the u2 value in
position 0, 1 or 2, and this gives the index for the degeneracy to be applied to σ;
in the same way the u0 and u1 values must be installed in positions “1 and 2”, or
“0 and 2”, or “0 and 1” and this gives the two indices (in reverse order) for the
degeneracies to be applied to τ . It’s a question of shuffle. Furthermore you can
find the components ri from the differences between successive ui’s. Now we can
construct the map ψ:

φ((σ, s)(τ, t)) = (ρ0, (u2, u0 − u2, u1 − u0, 1− u1)) if u2 ≤ u0 ≤ u1,
= (ρ1, (u0, u2 − u0, u1 − u2, 1− u1)) if u0 ≤ u2 ≤ u1,
= (ρ2, (u0, u1 − u0, u2 − u1, 1− u2)) if u0 ≤ u1 ≤ u2.

There seems an ambiguity occurs when there is an equality between u2 and u0

or u1, but it is easy to see both possible preimages are in fact the same in |Z|.
Now this can be extended to the general case, according to the following recipe.

Let σ ∈ Xm and τ ∈ Yn be two simplices, s ∈ ∆m and t ∈ ∆n two geometric points.
We must define ψ((σ, s), (τ, t)) ∈ |Z| = |X×Y |. We set u0 = s0, u1 = s0 + s1, . . . ,
um−1 = s0 + . . . + sm−1, um = t0, um+1 = t0 + t1, . . . , um+n−1 = t0 + . . . + tn−1.
Then we sort the ui’s according to the increasing order to obtain a sorted list (v0 ≤
. . . ≤ vm+n−1). In particular um = vi0 , . . . , um+n−1 = vin−1 with i0 < . . . < in−1,
and u0 = vj0 , . . . , um−1 = vjm−1 with j0 < . . . < jm−1. Then:

ψ((σ, s), (τ, t)) =
((ηin−1 . . . ηi0σ, ηjm−1 . . . ηj0τ), (v0, v1 − v0, . . . , vm+n−1 − vm+n−2, 1− vm+n−1)).

Now it is easy to prove ψ ◦ φ = id|Z| and φ ◦ ψ = id|X|×|Y |, following the proof
structure clearly visible in the case of X = ∆2 and Y = ∆1.
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It is also necessary to prove the maps φ and ψ are continuous. But φ is the
product of the realization of two simplicial maps and is therefore continuous. The
map ψ is defined in a coherent way for each cell σ × τ (this time it is really the
product |σ| × |τ | ⊂ |X| × |Y |) and is clearly continuous on each cell; because of
the definition of the CW-topology, the map ψ is continuous.

If three simplicial sets X, Y and Z are given, there is only one natural map
|X × Y ×Z| → |X| × |Y | × |Z| so that “both” inverses you construct by applying
twice the previous construction of ψ, the first one going through |X×Y |×|Z|, the
second one through |X| × |Y × Z| are necessarily the same: the ψ-construction is
associative, which is interesting to prove directly; it is essentially the associativity
of the Eilenberg-MacLane formula.

4.5.1 The case of simplicial groups.

Let G be a simplicial group. The object G is a simplicial object in the group
category; in other words each simplex set Gm is provided with a group structure
and the ∆-operators α∗ : Gm → Gn are group homomorphisms.

This gives in particular a continuous canonical map |G × G| → |G|; then
identifying |G × G| and |G| × |G|, we obtain a “continuous” group structure for
|G|; the word continuous is put between quotes, because this does not work in
general in the topological sense: this works always only in the category of “CW-
groups” where the group structure is a map |G| × |G| → |G|, the source of which
being evaluated in the CW-category; because of this definition of product, it is
then true that |G| × |G| = |G × G|. The composition rule so defined on |G|
satisfies the group axioms; in particular the associativity property comes from
the considerations about the associativity of the ψ-construction in the previous
section.

4.6 Kan extension condition.

Let us consider the standard simplicial model S1 of the circle, with one vertex
and one non-degenerate 1-simplex σ. This unique 1-simplex clearly represents
a generator of π1(S

1), but its double cannot be so represented. This has many
disadvantages and correcting this defect was elegantly solved by Kan.

Definition 21 — A Kan (m, i)-hat (Kan hat in short) in a simplicial set X is a
(m + 1)-tuple (σ0, . . . , σi−1, σi+1, . . . , σm+1) satisfying the relations ∂jσk = ∂k−1σj

if j < k, j 6= i 6= k.

For example the pair (∂0id, ∂1id, ∂2id, ) is a Kan (3, 3)-hat in the standard 3-
simplex ∆3 if id is the unique non-degenerate 3-simplex. Also the pair (σ, σ) is a
Kan (2, 1)-hat of the above S1.

Definition 22 — If (σ0, . . . , σi−1, σi+1, . . . , σm+1) is a Kan (m, i)-hat in the sim-
plicial set X, a filling of this hat is a simplex σ ∈ Xm+1 such that ∂jτ = σj for
j 6= i.
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The 3-simplex id of ∆3 is a filling of the example Kan hat in ∆3. The example
Kan hat of S1 has no filling. A Kan (m, i)-hat is a system of m-simplices arranged
like all the faces except the i-th one of a hypothetical (m+ 1)-simplex.

Definition 23 — A simplicial set X satisfies the Kan extension condition if any
Kan hat has a filling.

The standar simplex ∆d satisfies the Kan condition. The other elementary
simplicial sets in general do not.

The simplicial sets satisfying the Kan extension condition have numerous in-
teresting properties; for example their homotopy groups can be combinatorially
defined [12, Chapter 1], a canonical minimal version is included, also satisfying
the extension condition [12, Section 9], a simple decomposition process produces
a Postnikov tower [12, Section 8].

The simplicial groups are important from this point of view: in fact a simplicial
group always satisfies the Kan extension condition [12, Theorem 17.1]. For example
the simplicial description of P∞R (see Section 4.4.1) is a simplicial group and
therefore satisfies the Kan condition, which is not so obvious; it is even minimal.
The singular complex SX of a topological space X also satisfies the Kan condition
but in general is not minimal. These simplicial sets satisfying the Kan condition
are so interesting that it is often useful to know how to complete an arbitrary given
simplicial set X and produce a new simplicial set X ′ with the same homotopy type
satisfying the Kan condition. The Kan-completedX ′ can be constructed as follows.

Let us define first an elementary completion χ(X) for X. For each Kan (m, i)-
hat of X, we decide to add the hypothetical (m+ 1)-simplex (even if a “solution”
preexists), and the “missing” i-th face; such a completion operation does not
change the homotopy type of X. Doing this completion construction for every
Kan hat of X, we obtain the first completion χ(X). Then we can define X0 = X,
Xi+1 = χ(Xi) and X ′ = lim→Xi is the desired Kan completion. You can also run
this process in considering only the failing hats.

4.7 Simplicial fibrations.

A fibration is a map p : E → B between a total space E and a base space B
satisfying a few properties describing more or less the total space E as a twisted
product F ×τ B. In the simplicial context, several definitions are possible. The
notion of Kan fibration corresponds to a situation where a simplicial homotopy
lifting property is satisfied; to state this property, the elementary datum is a Kan
hat in the total space and a given filling of its projection in the base space; the
Kan fibration property is satisfied if it is possible to fill the Kan hat in the total
space in a coherent way with respect to the given filling in the base space. This
notion is the simplicial version of the notion of Serre fibration, a projection where
the homotopy lifting property is satisfied for the maps defined on polyhedra. The
reference [12] contains a detailed study of the basic facts around Kan fibrations,
see [12, Chapters I and II].

22



We will examine with a little more details the notion of twisted cartesian prod-
uct, corresponding to the topological notion of fibre bundle. It is a key notion in
topology, and the simplicial framework is particularly favourable for several rea-
sons. In particular the Serre spectral sequence becomes well structured in this
environment, allowing us to extend it up to a constructive version, one of the main
subjects of another lecture series of this Summer School. We give here the basic
necessary definitions for the notion of twisted cartesian product.

A reasonably general situation consists in considering the case where a sim-
plicial group G acts on the fiber space, a simplicial set F , the fiber space. As
usual this means a map φ : F × G → F is given; source and target are simpli-
cial sets, the first one being the product of F by the simplicial set G, underlying
the simplicial group; the map φ is a simplicial map; furthermore each component
φm : (F × G)m = Fm × Gm → Fm must satisfy the traditional properties of the
right actions of a group on a set. We will use the shorter notation f. g instead of
φ(f, g). Let also B be our base space, some simplicial set.

Definition 24 — A twisting operator τ : B → G is a family of maps {τm : Bm →
Gm−1}m≥1 satisfying the following properties.

1. ∂0τ(b) = τ(∂1b)τ(∂0b)
−1;

2. ∂iτ(b) = τ(∂i+1(b)) if i ≤ 1;
3. ηiτ(b) = τ(ηi+1b);
4. τ(η0b) = em if b ∈ Gm+1, the unit element of Gm being em.

In particular it is not required τ is a simplicial map, and in fact, because of
the degree -1 between source and target dimensions, this does not make sense.

Definition 25 — If a twisting operator τ : B → G is given, the corresponding
twisted cartesian product E = F ×τ B is the simplicial set defined as follows. Its
set of m-simplices Em is the same as for the non-twisted product Em = Fm×Bm;
the face and degeneracy operators are also the same as for the non-twisted product
with only one exception: ∂0(f, b) = (∂0f. τ(b), ∂0b).

The twisting operator τ , the unique ingredient at the origin of a difference
between the non-twisted product and the τ -twisted one, acts in the following way:
the twisted product is constructed in a recursive way with respect to the base
dimension. Let B(k) be the k-skeleton of B and let us suppose F ×τ B

(k) is already
constructed. Let σ be a (k + 1)-simplex of B; we must describe how the product
F × σ is to be attached to F × B(k); what is above the faces ∂iσ for i ≥ 1
is naturally attached; but what is above the 0-face is shifted by the translation
defined by the operation of τ(b). It is not obvious such an attachment is coherent,
but the various formulas of Definition 25 are exactly the relations which must
be satisfied by τ for consistency. It was not obvious, starting from scratch, to
guess this is a good framework for working simplicially about fibrations; this was
invented (discovered ?) by Daniel Kan [9]; the previous work by Eilenberg and
MacLane [5, 6] in the particular case of the fibrations relating the elements of the
Eilenberg-MacLane spectra was probably determining.
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4.7.1 The simplest example.

Let us describe in this way the exponential fibration exp : R→ S1 : t→ e2πit. We
take for S1 the model with one vertex ∗0 and one non-degenerate edge id(1) = σ
(see Section 2.2.2). For R, we choose R0 = Z and RND

1 = Z, that is one vertex k0

and one non-degenerate edge k1 for each integer k ∈ Z; the faces are defined by
∂i(k1) = (k + i)0 (i = 0 or 1). The discrete (see Section 4.3.1) simplicial group Z
acts on the fiber; for any dimension d, the simplex group Zd is Z with the natural
structure, and ki . g = (k+g)i for i = 0 or 1. It is then clear that the right twisting
operator for the exponential fibration is τ(g) = 1 for g ∈ RND

1 .

4.7.2 Fibrations between K(π, n)’s.

Let us recall (see Section 4.3.5) E(π, d) is the simplicial set defined by E(π, d)m =
Cd(∆m, π) (only normalized cochains) and K(π, n) is the simplicial subset made
of the cocycles. The maps between simplex sets to be associated to ∆-morphisms
are naturally defined. A simplicial projection p : E(π, d)→ K(π, d+1) associating
to an m-cochain c its coboundary δc, necessarily a cocycle, is also defined. The
simplicial set ∆m is contractible, its cochain complex is acyclic and the kernel of p,
the potential fibre space, is therefore the simplicial set K(π, d). The base space is
clearly the quotient of the total space by the fibre space (principal fibration), and
a systematic examination of such a situation (see [12, Section 18]) shows E(π, d)
is necessarily a twisted cartesian product of the base space K(π, d+1) by the fiber
space K(π, d).

It is not so easy to guess a corresponding twisting operator. A solution is
described as follows; let z ∈ Zd+1(∆m, π) a base m-simplex; the result τ(z) ∈
Zd(∆m−1, π) must be a d-cocyle of ∆m−1, that is a function defined on every
(d+1)-tuple (i0, . . . , id), with values in π, and satisfying the cocycle condition; the
solution τ(z)(i0, . . . , id) = z(0, i0 + 1, . . . , id + 1) − z(1, i0 + 1, . . . , id + 1) works,
but seems a little mysterious. The good point of view consists in considering the
notion of pseudo-section for the studied fibration; an actual section cannot exist if
the fibration is not trivial, but a pseudo-section is essentially as good as possible;
see the definition of pseudo-section in [12, Section 18]. When a pseudo-section is
found, a simple process produces a twisting operator; in our example, the twisting
operator comes from the pseudo-section ρ(z)(i0, . . . , id) = z(0, i0 + 1, . . . , id + 1),
quite natural.

The fibrations between Eilenberg-MacLane spaces are a particular case of uni-
versal fibrations associated to simplicial groups. See [12, Section 21].

4.7.3 Simplicial loop spaces.

A simplicial set X is reduced if its 0-simplex set X0 has only one element. We have
given in Section 4.3.6 the Kan combinatorial version GX of the loop space of X.
This loop space is the fiber space of a co-universal fibration:
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GX ↪→ GX ×τ X → X.

Only the twisting operator τ remains to be defined. The definition is simply. . .
τ(σ) := τ(σ) for both possible meanings of τ(σ); the first one is the value of the
twisting operator to be defined for some simplex σ ∈ Xm+1 and the second one
is the generator of GXm corresponding to σ ∈ Xm+1, the unit element of GXm if
ever σ is 0-degenerate (see Section 4.3.6). The definition of the face operators for
GX are exactly those which are required so that the twisting operator so defined
is coherent.

It is again an example of principal fibration, that is the fiber space is equal
to the structural group and the action GX × GX → GX is equal to the group
multiplication. This fibration is co-universal, with respect to X; in fact, let H ↪→
H ×τ ′ X

p→ X another principal fibration above X for another twisting operator
τ ′ : X → H. Then the free group structure of GX gives you a unique group
homomorphism GX → H inducing a canonical morphism between both fibrations.

If the simplicial space X is 1-reduced (only one vertex, no non-degenerate 1-
simplex), then an important result by John Adams [1] allows one to compute
the homology groups of GX if the initial simplicial set X is of finite type; an
intermediate ingredient, the Cobar construction, is the key point. One of the main
problems in Algebraic Topology consists in solving the analogous problem for the
iterated loop spaces GnX when X is n-reduced; it is the problem of iterating the
Cobar construction; one of the lecture series of this Summer School is devoted to
this subject, organized around a constructive version of Algebraic Topology.
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