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Abstract

John McCleary insisted in his interesting textbook entitled “User’s guide to spec-
tral sequences” on the fact that the tool “spectral sequence” is mot in the general
situation an algorithm allowing its user to compute the looked-for homology groups.
The present article explains how the notion of “Object with Effective Homology” on
the contrary allows the user to recursively obtain all the components of the Serre and
Eilenberg-Moore spectral sequences, when the data are objects with effective ho-
mology. In particular the computability problem of the higher differentials is solved,
the extension problem at abutment is also recursively solved. Furthermore, these
methods have been concretely implemented as an extension of the Kenzo computer
program. Two typical examples of spectral sequence computations are reported.
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1 Introduction

The computation of homology groups of topological spaces is one of the first
problems in Algebraic Topology, and these groups can be difficult to reach,
for example when loop spaces or classifying spaces are involved. The methods
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of Effective Homology (9] give in particular to their user algorithms replac-
ing the important spectral sequences of Serre and Eilenberg-Moore: when the
usual inputs of these spectral sequences are organized as objects with effective
homology, general algorithms are produced computing for example the homol-
ogy groups of the total space of a fibration, of an arbitrarily iterated loop
space (Adams’ problem), of a classifying space, etc. The main idea consists in
systematically keeping a deep and subtle connection between the homology of
any object and the object itself, see [9].

But Spectral Sequences are also a useful tool in Algebraic Topology, providing
information on homology groups by successive approximations from the ho-
mology of appropriate associated complexes. A Spectral Sequence is a family
of “pages” {E;ﬁq, d"} of differential bigraded modules, each page being made
of the homology groups of the preceding one. As expressed by John McCleary
in [5], “knowledge of E, and d” determines E 1" but not d"'. If we think of a
spectral sequence as a black box, then the input is a differential bigraded mod-
ule, usually Ei* , and, with each turn of the handle, the machine computes a
successive homology according to a sequence of differentials. If some differen-
tial is unknown, then some other (any other) principle is needed to proceed.”
In most cases, it is in fact a matter of computability: the higher differentials
of the spectral sequence are mathematically defined, but their definition is
not constructive, i.e., the differentials are not computable with the usually

provided information.

In the case of spectral sequences associated to filtered complexes, a formal
expression for the different groups E7 =~ (as quotients of some subgroups of
the filtered complex) is known [6, p. 327], but this expression is not sufficient
to compute the £ ~when the initial filtered complex is not of finite type, a
frequent situation. It was proved in [9] that the so-called effective homology
methods on the contrary give actual algorithms computing homology groups
related to the most common spectral sequences, Serre and Eilenberg-Moore,
even when the initial filtered complex is not of finite type. In this paper,
the process is somewhat reversed: we use the effective homology methods to
compute, as a by-product, the relevant spectral sequence, that is, the whole
set of its components. The structure of this spectral sequence can give useful
informations about the involved construction, for example about the present
transgressions; sometimes this information is more interesting than the final
homology groups.

This paper is organized as follows. In Section 2, some preliminary concepts are
introduced, recalling some basic definitions and results of Algebraic Topology.
In next section we present the effective homology method for the computation
of homology groups; specifically, Subsection 3.1 includes some formal defini-
tions and results, and in Subsection 3.2 some indications about the program
Kenzo [1] (that implements this method) are given. In Section 4, the main



theoretical result which relates the notions of effective homology and spectral
sequences is explained. Section 5 contains a description of the main features of
the new programs, which can be better understood by means of the examples
introduced in Sections 6 and 7. The paper ends with a section of conclusions
and further work.

2 Preliminaries

The following definitions and results about some basic notions of Algebraic
Topology can be found, for instance, in [6].

Definition 1 A chain complex is a pair (C,d) where C' = {C,, }nez is a graded
Abelian group and d = {d, : C, — Cpn_1}nez (the differential map) is a
graded group homomorphism of degree -1 such that d,_1d, = 0 Vn € Z. The
graded homology group of the chain complex C' is H(C) = {H,(C)},en, with
H,(C) = Ker d,,/Im d,;;. A chain complex homomorphism f : (A,d4) —
(B,dg) between two chain complexes (A,d4) and (B,dpg) is a graded group
homomorphism (degree 0) such that fds = dpf.

Note 1 From now on in this paper, the chain complexes we work with are
supposed to be Z-free, i.e. for each n € Z, C,, is a free Z-module.

Definition 2 A filtration F' of a chain complez (C,d) is a family of sub-chain
complexes F,C C C (that is, d(F,C) C F,C) such that

- C F,.1C, C F,C, C F,WC,,C -+ YneZ

Note 2 A filtration F' on C' induces a filtration on the graded homology group
H(C); let i, : F,C — C the p-injection; then F,(H(C)) = H(i,)(H(F,(C))).

Definition 3 A filtration F' of a chain complex C is said to be bounded if
for each degree n there are integers s = s(n) < t = t(n) such that F;C,, =0
and F,C,, = C,,.

Definition 4 A Z-bigraded module is a family of Z-modules E = {E, ;}p 4z
A differential d : E — E of bidegree (—r,r — 1) is a family of homomorphisms
of Z-modules dy, 4 : £, — Ep_yqir—1 for each p,q € Z, with d,, godpirg—ri1 =
0. The homology of E under this differential is the bigraded module H(E) =
H(E,d) = {Hpq(E)}pgez with Hyg(E) = Ker dyq/ Im dpirgri1

Definition 5 A Spectral Sequence E = {E",d"} is a family of Z-bigraded
modules EY, E?,..., each provided with a differential d" = {d;q} of bidegree
(—r,r — 1) and with isomorphisms H(E",d") = E™™ r=1,2....



Remark 6 We must emphasize here that each £7*! in the spectral sequence is
(up to isomorphism) the bigraded homology module of the preceding (E", d").
Therefore if we know the stage r in the spectral sequence (E",d") we can
build the bigraded module at the stage r +1, E™!, but this cannot define the
next differential d"+! which therefore must be independently defined too. This
means, as said in Section 1, that a spectral sequence is not an algorithm that
a machine can compute automatically: at each level r some extra information
is needed and obviously a computer is not able to obtain this information.

Note 3 A spectral sequence can be presented as a tower
0=B'CcB*CcB*C---cC°cC*cC'=FE"

of bigraded submodules of E', where ™! = C"/B" and the differential d"*!
can be taken as a mapping C"/B" — C"/B", with kernel C"*!/B" and image
BB,

We say that the module C™™! is the set of elements that live till stage T,
while B""! is the module of elements that bound by stage r. Let C* =, C"
the submodule of E' of elements that survive forever and B> = (), B" the
submodule of those elements which eventually bound. It is clear that B> C C*°
and therefore the spectral sequence determines a bigraded module:

oo [e%e] [e%e]
Ep7q - Cp7q/Bp7q

which is the bigraded module that remains after the computation of the infinite
sequence of successive homologies.

Definition 7 A spectral sequence (E",d") is said to converge to a graded
module H (denoted by E* = H ) if there is a filtration F' of H and for each p
isomorphisms E° = F,H/F, 1H of graded modules.

Theorem 8 (Theorem 3.1, Chapter XI, in [6, p. 327]) Each filtration F of a
chain complezx (C,d) determines a spectral sequence (E”,d"), defined by

roo_ Z;,q U Fp1Cpiq

P dZ;;%—l,q—r—I—? U prlcp+q

where Z] , is the submodule [a| a € F,Cpyq,d(a) € FyCpyg ], andd’ : B} —
E) ., ir—1 18 the homomorphism induced on these subquotients by the differ-
ential map d : C' — C.

If Fis bounded, E* = H(C); more explicitly, E3° = Fy(HpyC)/Fp_1(HpiqO)
(with F,(HC') induced by the filtration F, as explained in Note 2).

Note 4 In most cases, this formal expression is not sufficient to compute the

E7 ,» because the subgroups Z7 , that appear there are not of finite type in

many situations and in those contexts they cannot be precisely represented



in computer memory. Hence this construction does not allow us to obtain
explicitly spectral sequences associated to every filtered complex, only in very
simple cases.

3 Effective Homology

As said before, spectral sequences are a useful tool in Algebraic Topology
but they cannot be determined in general, only in some elementary cases. On
the contrary, the effective homology method provides real algorithms for the
computation of homology groups. In fact, the program Kenzo (that will be
presented in Subsection 3.2) uses the notion of object with effective homology
to compute homology groups, and has obtained the homology groups of some
complicated spaces related to the most common spectral sequences, those of
Serre and Eilenberg-Moore.

3.1 Definitions and fundamental results

In this section we present some definitions, including the notion of object
with effective homology, which plays an important role in Kenzo (for the
computation of homology groups) and in our new programs. More details
can be found in [9].

Definition 9 A reduction p = (D = C) between two chain complezes is a
triple (f,g,h) where: (a) The components f and g are chain complex mor-
phisms f : D — C and g : C — D; (b) The component h is a homotopy
operator h : D — D (a graded group homomorphism of degree +1); (c) The
following relations are satisfied: (1) fg = ide; (2) gf + dph + hdp = idp;
(3) fh=0;(4) hg=0; (5) hh = 0.

Remark 10 These relations express that D is the direct sum of C and a
contractible (acyclic) complex. This decomposition is simply D = Ker f&Im g,
with Im ¢ = C and H(Ker f) = 0. In particular, this implies that the graded
homology groups H(D) and H(C') are canonically isomorphic.

Definition 11 A (strong chain) equivalence between the complexes C' and E
(denoted by C <= F) is a triple (D, p, p') where D is a chain complex, p and

o are reductions from D over C' and E respectively: C <= D == E.

Note 5 An effective chain complex is essentially a free chain complex C' where
each group C, is finitely generated, and there is an algorithm that returns a
Z-base in each degree n (for details, see [9]).



Definition 12 An object with effective homology is a triple (X, HC, ¢) where
HC' is an effective chain complex and € is a equivalence between a free chain
complex canonically associated to X and HC'.

Note 6 It is important to understand that in general the HC' component of
an object with effective homology is not made of the homology groups of X;
this component HC' is a free Z-chain complex of finite type, in general with
a non-null differential, allowing to compute the homology groups of X; the
justification is the equivalence ¢.

In this way, the notion of object with effective homology makes it possible to
compute homology groups of complicated spaces by means of homology groups
of effective complexes (which can be easily obtained using some elementary
operations). This method is based on the following idea: given some topological
spaces Xi,...,X,, a topological constructor ® produces a new topological
space X. If effective homology versions of the spaces X1, ..., X, are known,
then an effective homology version of the space X can also be built, and
this version allows us to compute the homology groups of X. Some typical
examples of this kind of situation are Serre’s and FEilenberg-Moore spectral
sequences, as we explain in the next two paragraphs.

Example 13 (Serre spectral sequence) Given a fibration G — FE — B
(the initial data are the fibre space G, the base space B, and the twisting
operator 7 : B — G the topological constructor ® produces the total space
of the fibration, £ = B X, G) where G and B are objects with effective
homology (that is, there exist two homotopy equivalences C,(G) <% HG,
and C,(B) <& HB,, with HG and H B effective complexes), it is possible to
obtain the effective homology of the total space FE.

The starting point is the Eilenberg-Zilber reduction C(Bx G) = C(B)®C(G)
(see [3]). Applying the Basic Perturbation Lemma (BPL) (see [9]) with a per-
turbation induced by the twisting operator 7, a reduction C'(B X, G) =
C(B) ®: C(G) is obtained, where the symbol ®; represents a twisted (per-
turbed) tensor product, induced by 7. On the other hand, from the effective
homologies of B and G, we can construct a new equivalence from the tenso-
rial product C'(B) ® C(G) to HB ® HG, and using again the BPL (with the
perturbation to be applied to the differential of C(B) ® C(G) to obtain the
differential of C'(B) ®; C(G)) we construct an equivalence from C(B) ®; C(G)
to a new twisted tensor product HB ®; HG, which is an effective complex.
Finally, the composition of the two equivalences is the effective homology of

B x,G.

Example 14 (Eilenberg-Moore spectral sequence) Another important
example of application of the effective homology method is the case where
X is a simply connected space and the constructor & = €2 is the loop space



functor. In this case, the effective homology of 2.X can be computed using the
cobar construction on a coalgebra (details can be found in [8]).

3.2 The Kenzo program

The Kenzo program [1], developed by the third author of this paper and some
coworkers, is a Lisp 16,000 lines program devoted to Symbolic Computation in
Algebraic Topology. It works with rich and complex algebraic structures (chain
complexes, differential graded algebras, simplicial sets, simplicial groups, mor-
phisms between these objects, reductions, etc.) and has obtained some results
(for example homology groups of iterated loop spaces of a loop space modified
by a cell attachment, components of complex Postnikov towers, etc.) which
had never been determined before.

The fundamental idea of the Kenzo system for the computation of homology
groups is the notion of object with effective homology. Specifically, to obtain
the homology groups of a space X, the program proceeds in the following
way: if the complex is effective, then its homology groups can be determined
by means of diagonalization of matrices. Otherwise, the program uses the
effective homology of the space, which is located in one of its slots.

To roughly explain the general style of Kenzo computations, let us firstly
consider a didactical example. The definitions and results about Eilenberg-
Mac Lane spaces K (m,n) that appear in this subsection can be found in [7].
The “minimal” simplicial model of the Eilenberg-Mac Lane space K(Z,1) is
defined by K(Z,1), = Z'(A",Z) = Z"; an infinite number of simplices is
required in every dimension > 1. This does not prevent such an object from
being installed and handled by the Kenzo program.

> (setf kzl (k-z 1))
[K1 Abelian-Simplicial-Group]

The k-z Kenzo function constructs the standard simplicial Eilenberg-Mac
Lane space and this object is assigned to the symbol kz1. In ordinary math-
ematics notation, a 3-simplex of kz1 could be for example [3|5| — 5], denoted
by (3 5 -5) in Kenzo. The faces of this simplex can be computed:

> (dotimes (i 4)
(print (face kzl i 3 (3 5 -5))))
<AbSm - (5 -5)>
<AbSm - (8 -5)>
<AbSm 1 (3)>
<AbSm - (3 5)>
NIL



You recognize the bar construction faces; in particular the face of index 2 is
degenerated: 02[3| — 5|5] = m1[3]. “Local” (in fact simplex-wise) computations
are so possible, we say this object is locally effective. But no global information
is available. For example if we try to obtain the list of non-degenerate simplices
in dimension 3:

> (basis kzl 3)
Error: The object [K1 Abelian-Simplicial-Group] is
locally-effective.

This basis in fact is Z3, an infinite set whose element list cannot be explicitly
stored nor displayed! So that the homology groups of kz1 cannot be elemen-
tarily computed. But it is well known K (Z, 1) has the homotopy type of the
circle S'; the Kenzo program knows this fact, reachable as follows. We can
ask for the effective homology of K(Z, 1):

> (efhm kz1)
[K22 Homotopy-Equivalence K1 <= K1 => K16]

A reduction Ky = K(Z,1) = K¢ is constructed by Kenzo. What is K67

> (orgn (k 16))
(CIRCLE)

What about the basis of this circle in dimensions 0, 1 and 27

>(dotimes (i 3)
(print (basis (k 16) 1i)))
(%)
(s1)
NIL
NIL

NIL = () and the second NIL is “technical” (independently produced by the
iterative dotimes). The basis are available, the boundary operators too:

> (7 (k 16) 1 ’S1)

The boundary of the unique non-degenerate 1-simplex is the null combination
of degree 0. So that the homology groups of K(Z, 1) are computable through
the effective equivalent object Kig:

> (homology kzl 0 3)
Homology in dimension O :



Component Z
-—-—done---

Homology in dimension 1 :
Component Z
---done---

Homology in dimension 2 :
---done---

This mechanism for computing homology groups of a chain complex through
its effective homology has also been used in our new programs for the compu-
tation of spectral sequences, as explained in Section 5.

4 Main result

Next theorem combines both spectral sequence and effective homology con-
cepts and is the main result on which the new programs are based.

Theorem 15 Let C be a filtered chain complex with effective homology (HC€),
with e = (D, p,p"), p = (f,9,h), and p' = (f',¢',h'). Let us suppose that

filtrations are also defined on the chain complexes HC' and D. If the maps

f, f', g, and g are morphisms of filtered complezes (i.e., they are compat-

ible with the filtrations) and both homotopies h and h' have order < t (i.e.

h(F,D),h' (F,D) C F,.uD Np € 7Z), then the spectral sequences of the com-

plexes C' and HC' are isomorphic for r > t:

E(C),, =2 EHC),, Vr>t

p,q

Proof. Since fg = id¢, the morphisms induced on the spectral sequence are
the same for every r, that is: (fg)" = (id¢)" : E(C), , — E(C), - Therefore,
due to the functoriality of the spectral sequence construction, it follows that
f"9" = idg@c); Vr. On the other hand, h : gf ~ idp, and using Proposition
3.5 in [6, p. 331] we obtain (¢f)" = (idp)" : E(D);, — E(D) ¥r >t
and therefore ¢"f" = idp(p); Vr > t. Hence f : E(D); = E(C),, Vr >t

Analogously f': E(D), , = E(HC),, Vr >t and the composition gives us
the searched isomorphism.

Note 7 This theorem shows the relation between spectral sequences and ef-
fective homology and will allow us to compute spectral sequences of (com-
plicated) filtered complexes with effective homology. If a filtered complex is
effective, then its spectral sequence (that of Theorem 8) can be computed by



means of elementary operations with matrices (in a similar way to the com-
putation of homology groups); otherwise, the effective homology is needed to
compute the EJ by means of an analogous spectral sequence deduced of an
appropriate filtration on the associated effective complex, which is isomorphic
to the spectral sequence of the initial complex after some level r. Two examples
of application of this theorem are presented in the following paragraphs.

Example 16 (Serre spectral sequence) The Serre spectral sequence [11]
associated to a fibration G — E — B is defined as the spectral sequence
of the total space F, with the natural filtration of cartesian products. The
space E is not effective in most situations, so in general it is not possible to
compute directly its spectral sequence. However, as we have seen in Section
3.1, provided that the spaces B and G are spaces with effective homology we
can also build the effective homology of the total space E, which allows us
to determine the homology groups of E. Moreover, the natural filtration of
tensor products can be defined on the effective complex and it is not difficult
to prove that all the homotopies involved in the equivalence have order < 1.
Applying Theorem 15, the spectral sequence of E and that of the effective
complex are isomorphic after level » = 2, and in this way we can compute the
Serre spectral sequence associated to the fibration by means of the spectral
sequence of an effective complex (which can be easily computed).

Example 17 (Eilenberg-Moore spectral sequence) The Eilenberg-Moore
spectral sequence associated to the loop space of a simply connected simplicial
set X (whose theoretical definition can be found in [2]) expresses relations be-
tween the homology groups H,(X) and H,(QX). The simplicial group QX is
not effective and therefore the computation of its spectral sequence cannot be
done with an elementary algorithm, but the effective homology method can be
used again to compute this spectral sequence. In this case, it is easy to prove
that the Eilenberg-Moore spectral sequence between the homology groups of
a simplicial set and those of its loop space and the spectral sequence of the
corresponding effective complex are isomorphic after level » = 1, that is, they
are isomorphic for every level.

5 New programs

The programs we have developed (with about 1800 lines) allow computations
of spectral sequences of filtered complexes, when the effective homology of this
complex is available. The programs determine not only the groups, but also the
differential maps d” in the spectral sequence, as well as the stage r on which
the convergence has been reached. In this section we explain the essential part
of these programs, describing the functions with the same format as in the
Kenzo documentation [1].

10



For the development of the new module, we have only dealt with filtered chain
complexes satisfying some basic properties: first, we work with filtrations that
are bounded below, i.e. for each degree n there is an integer s = s(n) such
that F,C, = 0. And second, we suppose that for each x € C it is possible to
define its filtration index p = min{t € Z| x € F;C} (which implies that the
filtration is convergent above, that is, C' = U, F,C).

The first step has been to increase the class system of Kenzo with the class
Filtered-Complex, whose definition is:

(DEFCLASS FILTERED-COMPLEX (chain-complex)
((f1lin :type Chcm-FltrIndex :initarg :flin :reader flinl)))

This class inherits from the class Chain-Complex, and has one slot of its own:

flin (FiLtration INdex function) a Lisp function that, from a degree n and
a generator g € C,, determines the filtration index p = min{t € Z| g €
F,C,}).

We have designed this class with several functions that allow us to build filtered
complexes and to obtain some useful information about them (when they are
finitely generated in each degree). The description of some of these methods
is showed here:

build-FltrChcm :cmpr cmpr :basis basis :bsgn bsgn :intr-dffr
intr-dffr :dffr-strt dffr-strt :£lin flin :orgn orgn
The returned value is an instance of type FILTERED-COMPLEX. The
keyword arguments are similar to those of the function build-chcm
(that constructs a chain complex), with the new argument £1in which
is the filtration index function.

change-chcm-to-FltrChem chem :flin flin :orgn orgn
Build a FILTERED-COMPLEX instance from an already created chain
complex chem. The user must introduce the filtration index function
and a list explaining the origin of the object (see [1] for more details
about orgn).

fltrd-basis fltrem degr fltr-index
Return the elements of the basis of F,C,,, with C' the effective filtered
chain complex fltrem, n =degr and p =fltr-indez.

fltr-chcm-dffr-mtrx fltrem degr fltr-index
Matrix of the differential application for degree degr of the subcomplex

F,C, where p =fltr-index and C' =fltrem is an effective chain complex.

The core of this new module consists in several functions that construct the

11



elements of the spectral sequence of a filtered complex (groups, differential
maps, and convergence levels). These main functions are:

print-spct-sqn-cmpns fitrem r p g
Display on the screen the components (Z or Z,) of the group E] , of
the filtered complex fltrem.

spct-sqn-basis-dvs fltrem r p q
Return a description of the group E7 , more precisely of the numera-
tor and denominator of the formula in Theorem 8 (see details of this

representation in the examples of Sections 6 and 7).

spct-sqn-dffr fltrem r p q int-list
Compute the differential dy  : E]  — EJ . .. (the role of int-list is
explained in the examples).

spct-sqn-cnvg-level fltrem degr
Determine the stage r at which the convergence of the spectral se-
quence has been reached for a specific degree degr.

To provide a better understanding of these new tools, some elementary ex-
amples of their use are showed in the next section. Besides, in Section 7 we
present two more interesting examples where the application of the programs
allows the computation of some groups and differential maps which are beyond
the calculations appearing in the literature.

These new methods work in a way that is similar to the mechanism of Kenzo
for computing homology groups. If the filtered complex is effective, its spec-
tral sequence can be determined thanks to elementary computations with the
differential matrices. Otherwise, the effective homology is needed to compute
it by means of the spectral sequence of the effective complex. Making use of
Theorem 15, the spectral sequences of both complexes are isomorphic after
some level ¢ (depending on the order of the homotopies in both reductions of
the equivalence). However, we must bear in mind that in the first stages both
spectral sequences are not necessarily the same.

6 Didactic Examples

As explained in the previous section, the new programs allow us to compute
spectral sequences of filtered complexes with effective homology (with the
exception, in some cases, of the first stages), even if the complexes are not
of finite type. In this section two simple examples of this computation are
presented. In these cases, the spectral sequences are well known and can be

12



obtained without using a computer. We propose them as didactic examples
for a better understanding of the new functionality.

6.1 S?x,K(Z,1)

With these programs it is possible to obtain the Serre spectral sequence of the
twisted product S? x, K(Z,1) for a twisting operator 7 : S* — K(Z,1) with
7(s2) = [1]. We use here the standard simplicial description of the 2-sphere,
with a unique non-degenerate simplex s2 in dimension 2. A principal fibration
is then defined by a unique 1-simplex of the simplicial structural group. The
result in this case is the Hopf fibration, the total space S? x, K(Z,1) being
a simplicial model for the 3-sphere S3. The same example could be processed
with 7(s2) = [2], the total space then being the real projectif space P3R. Let
us remark that, since K(Z,1) is not effective, the space S? x, K(Z,1) is not
effective either, and therefore the effective homology (whose computation, for
a general fibration G <— E — B, was explained in Example 13) is necessary
to determine its spectral sequence.

The twisted product S? x, K(Z,1) is built in Kenzo in the following way:

>(setf s2 (sphere 2))
[K23 Simplicial-Set]
>(setf kzl (k-z 1))
[K1 Abelian-Simplicial-Group]
>(setf tau (build-smmr
:sorc s2
:trgt kzi
:degr -1
:sintr #’(lambda (dmns gmsm) (absm O ’(1)))
rorgn ’ (s2-tw-kz1)))
[K28 Fibration K23 -> K1i]
>(setf s2-twl-kzl (fibration-total tau))
[K34 Simplicial-Set]

The object tau implements the twisting operator 7 : S? — K(Z,1) as a
simplicial morphism of degree —1 that sends the unique non-degenerate sim-
plex s2 of dimension 2 to the 1-simplex (1) of the simplicial set kz1 (if we
changed the list ’ (1), that represents this 1-simplex, by the list ’(2), we
would obtain the Hopf fibration of the real projectif space P>R). The function
fibration-total builds the total space of the fibration defined by the twist-
ing operator tau (this operator contains as source and target spaces the base
and the fibre spaces of the fibration respectively), which is a twisted cartesian
product of the base and fibre.

13



Since the effective complex of K(Z,1) is S*, the effective complex of S? x,
K(Z,1) will be S? ® S, with an appropriate perturbation of the differential.
We can inspect it by applying the function rbce (right bottom chain complex)
to the effective homology of the complex:

>(setf s2xtsl (rbcc (efhm s2-twl-kz1)))
[K95 Chain-Complex]

What is this chain complex Kg5?

>(orgn s2xtsl)
(ADD [K74 Chain-Complex] [K93 Morphism (degree -1): K74 -> K74])

This origin means that the complex s2xts1 has been obtained by application
of the BPL, “adding” a perturbation (the morphism Kys, of degree —1 ) to
the initial chain complex K74. We want to know now what K7, is:

>(orgn (k 74))
(TNSR-PRDC [K23 Simplicial-Set] [K16 Chain-Complex])

As expected, we have a tensor product. And finally, what about K3 and K67

> (orgn (k 23))
(SPHERE 2)

> (orgn (k 16))
(CIRCLE)

In this way we can state that K3 = S? and K4 = S', and therefore the
effective complex of s2-twl-kzl= S?*x,K(Z,1) is S?®S" with a perturbation
of the differential.

To compute the Serre spectral sequence of this twisted product it is necessary
to change it into a filtered complex. The filtration in this complex is defined
through the degeneracy degree with respect to the base space: a generator
(2, yn) € C(B x @) has a filtration degree less or equal to ¢ if 3y, € B, such
that y, = s;,_, -+ 8i,U,- Such a filtration can be implemented as follows.

>(setf twpr-flin
#’ (lambda (degr crpr)
(declare
(type fixnum degr)
(type crpr crpr))
(letx ((b (cadr crpr))
(dgop (car b)))
(declare
(type iabsm b)
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(type fixnum dgop))
(the fixnum
(- degr (length (dgop-int-ext dgop)))))))
>(CHANGE-chcm-TO-F1ltrChem s2-twl-kzl :flin twpr-flin
rorgn ‘(filtered-complex ,s2-twl-kzl))
[K34 Filtered-Complex]

A filtration is also needed in the effective complex, S? ®; S*, which is filtered
by the base dimension. In general, for a tensor product: F,(C(B) ® C(G)) =
Bm<pC(B)y @ C(F). The implementation in Common Lisp is as follows.

>(setf tnpr-flin
#’ (Lambda (degr tnpr)
(declare
(type fixnum degr)
(type tnpr tnpr))
(the fixnum
(degrl tnpr))))

> (CHANGE-chcm-TO-F1ltrChcm s2xtsl :flin tnpr-flin
corgn ‘(filtered-complex ,s2xtsl))
[K95 Filtered-Complex]

Once the filtrations are defined, the new programs can be used to compute the
spectral sequence of the twisted product S? x, K(Z, 1), which is isomorphic in
every level to that of the effective complex S?®,S' because in this specific case
both homotopies in the equivalence have order equal to zero. For instance, the
groups E3, and Ef, are equal to Z:

> (print-spct-sqn-cmpns s2-twl-kzl 2 2 0)
Spectral sequence E~“2_{2,0}

Component Z

> (print-spct-sqn-cmpns s2-twl-kzl 2 0 1)
Spectral sequence E“2_{0,1}

Component Z

These groups can be recognized as the elements of the Serre spectral sequence
of the Hopf fibration.

It is also possible to find the basis-divisors representation of these groups.
This representation shows a list of combinations which generate the subgroup
in the numerator of £y (2] U F, 1Cyy,), as well as the coefficients (with
regard to this list of combinations) of the elements that generate the denomi-
nator (dZy) 1 4 ri2UF,_1Cpiq). For the groups E3  and E | that have been

p
computed above:
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>(spct-sgn-basis-dvs s2-twl-kzl 2 2 0)

((
—————————————————————————————————————————————————————— {CMBN 2}
<-1 * <CrPr - S2 1-0 NIL>>
)
(0))
> (spct-sqn-basis-dvs s2-twl-kzl 2 0 1)
(
—————————————————————————————————————————————————————— {CMBN 1}

In both cases, the “basis” (list of combinations) of the numerator has a unique
element and the list of “divisors” is the list (0). This means that the subgroup
of the numerator is isomorphic to Z and that of the denominator is the null
group 0, so that the wanted E , is in both cases isomorphic to Z. For E2 0 the
generator is the element —1*(32 mnol]) € S*x,K(Z,1), which is not a torsion
element. In a similar way, the unique generator of E§, is —1x (%, [1]), not a
torsion element either. If the second component of a result were, for instance,
(3) instead of (0), the denominator generator would be 3 times the numerator
generator and the corresponding £ , would be the torsion group Zs.

The differential function in a group E7 , can be computed using the function
spct-sqn-dffr. The last argument must be a list that represents the coordi-
nates of the element we want to apply the differential to (with regard to the
generators of the subgroup in the numerator). In the example that follows,
the differential d3 o is applied to the generator of the group E2 o = Z (that, as
we have seen, is the following combination of degree 2: —1 « (32 mmnol ])), and
therefore the list of coordinates must be (1) (the list (2), for instance, would
correspond to the combination —2 * (s2, m11[ |)).

> (spct-sqn-dffr s2-twi-kzl 2 2 0 ’(1))
€D

The obtained list (1) shows that the result of applying d%,o to the generator
of the group is the combination 1 % 93,1, where 9(2)’1 is the generator of the
group E§, = 7Z (which is the combination of degree 1: —1 x (1%, [1])). This
last result means that the differential map d3 , : E3, — Eg, maps (s2,mmno| )

to (no*, [1]). Since the next stage in the spectral sequence E? is isomorphic to
the bigraded homology group of E?, E3 = H,(E?) =Ker d, /Im d’, ,, ;.
it is clear that the groups Ef, and Ez’0 must be null:
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> (print-spct-sqn-cmpns s2-twl-kzl 3 0 1)
Spectral sequence E~3_{0,1}

NIL

> (print-spct-sqn-cmpns s2-twl-kzl 3 2 0)
Spectral sequence E~3_{2,0%}

NIL

Finally, it is also possible to obtain, for each degree n, the level r at which the
convergence of the spectral sequence has been reached, that is, the smallest r
such that B = E7  Vp,q with p + ¢ = n. For instance, for n =0 and n =1
the convergence levels are 1 and 3 respectively:

>(spct-sgqn-cnvg-level s2-twl-kzl 0)
1
>(spct-sgqn-cnvg-level s2-twl-kzl 1)
3

Thus, we can obtain the groups £ with p+¢ = 0 or p+¢ = 1 by computing
the corresponding groups Ej,, Ej |, and E? :

> (print-spct-sqn-cmpns s2-twl-kzl 1 0 0)
Spectral sequence E“1_{0,0}

Component Z

> (print-spct-sqn-cmpns s2-twl-kzl 3 0 1)
Spectral sequence E~3_{0,1}

NIL

> (print-spct-sqn-cmpns s2-twl-kzl 3 1 0)
Spectral sequence E~3_{1,0}

NIL

6.2 S2x; K(Zs,1)

Another example, similar to the previous one, is the twisted product S? x
K(Zy,1), with 7 : §* — K(Zy,1), 7(s2) = [1]. Let us consider our new
structural group, the simplicial group K (Zs, 1): in dimension n, the only non-
degenerate simplex is a sequence of n 1’s, represented by the integer n, and the
integer 0 encodes the void bar object [|. The twisted product is implemented
in the same way as the first example, using the function fibration-total to
build the total space of the fibration defined by the morphism tau2. Afterwards
the complex is provided with the usual filtration for twisted products (through
the degeneracy degree with respect to the base space), implemented in the
function twpr-£f1lin of the previous subsection.

>(setf kz21 (k-z2 1))
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[K110 Abelian-Simplicial-Group]
>(setf tau2 (build-smmr
:sorc s2
(trgt kz21
:degr -1
:sintr #’(lambda (dmns gmsm) (absm O 1))
rorgn ’ (s2-tw-kz2)))
[K122 Fibration K23 -> K110]
>(setf s2-tw2-kz21 (fibration-total tau2))
[K128 Simplicial-Set]
>(CHANGE-chcm-TO-F1ltrChem s2-tw2-kz21 :flin twpr-flin
corgn ‘ (filtered-complex ,s2-tw2-kz21))
[K128 Filtered-Complex]

In this case the complex is finitely generated (in each degree), and therefore
the spectral sequence can be computed directly without the need of effective
homology. For instance, some groups of the spectral sequence are:

> (print-spct-sqn-cmpns s2-tw2-kz21 2 0 1)
Spectral sequence E"2_{0,1}

Component Z/2Z

> (print-spct-sqn-cmpns s2-tw2-kz21 2 2 0)
Spectral sequence E~“2_{2,0}

Component Z

> (print-spct-sqn-cmpns s2-tw2-kz21 3 0 3)
Spectral sequence E~3_{0,3}

Component Z/2Z

The groups Ef, and Ej 4 are isomorphic to Z; and therefore their generators
must be torsion elements, with order 2. We can inspect, for instance, the

2 .
generator of Fg,:

>(spct-sgqn-basis-dvs s2-tw2-kz21 2 0 1)

((
—————————————————————————————————————————————————————— {CMBN 1}
<1 * <CrPr 0 * - 1>>
)
(2))
The combination 1 % (19%,1) = (no*,1) is the generator of the numerator

in Eg,. The list of divisors (2) means that the denominator in the quo-
tient is generated by the element 2 x g, where g is the respective gener-
ator in the numerator, in this case g = (no%,1). In this way, the group
E§, = Z(nox, 1)/Z(2 * (nox,1)) = Z/2Z = Z,. The generator of the group

18



E§ , is therefore the element (1o, 1), with order 2.
Similarly, we can obtain the generator of the group E22’0 =7

>(spct-sgqn-basis-dvs s2-tw2-kz21 2 2 0)

((

—————————————————————————————————————————————————————— {CMBN 2}
<1 % <CrPr - S2 1 1>>
<-1 ¥ <CrPr - 82 1-0 0>>
<1 * <CrPr 1-0 *x - 2>>
—————————————————————————————————————————————————————— {CMBN 2}
<1 * <CrPr - S2 - 2>>
<-1 * <CrPr - S2 0 1>>
—————————————————————————————————————————————————————— {CMBN 2}
<-1 * <CrPr - S2 0 1>>
<1 * <CrPr - S2 1-0 0>>
—————————————————————————————————————————————————————— {CMBN 2}
<-1 * <CrPr - S2 1 1>>
<1 * <CrPr - S2 1-0 0>>
—————————————————————————————————————————————————————— {CMBN 2}
<1 * <CrPr - S2 1-0 0>>

)

(11110))

In this case the numerator is generated by five elements, the combinations
1 (s2,m1) — 1% (s2,mno0) + 1 % (mmo*,2),1 % (82,2) — 1 % (s2,1m01), —1 *
(s2,m01)+1x(s2,mn00), —1% (82,1 1)+ 1%(s2,m1700), and 1% (s2, 71100). The
denominator has four generators, the four first combinations in the previous
list: 1% (s2,m11) — 1% (82, mm00) + 1% (mmox, 2), 1 % (s2,2) — 1% (s2, 1), —1 %
(s2,m0l) + 1 x (s2,m1m00), and —1 * (s2,m11) + 1 * (82, 171190). Therefore the
group Eio, that is isomorphic to Z, is generated by the fifth combination, the
element 1 % (s2,71700) = (s2, m1100).

As in the previous example, it is possible to compute the differential of this

group applied, for instance, to the generator (s2,7;700) (whose coordinates
correspond to the list (1)):
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> (spct-sqn-dffr s2-tw2-kz21 2 2 0 ’(1))
€D

This means that d3 o((s2,m1100)) = (0%, 1).
Finally, some convergence levels (for n = 1,2, 3) are:

(spct-sgqn-cnvg-level s2-tw2-kz2 1)

>
3
> (spct-sqn-cnvg-level s2-tw2-kz2 2)
1
> (spct-sqn-cnvg-level s2-tw2-kz2 3)
1

7 Advanced examples

As said in the first paragraph of Section 6, the two filtered complexes presented
there are elementary and the computation of their spectral sequences can be
done by hand without any special difficulty. We introduce in this section two
other examples, which are perhaps not so easy to understand as the preceding
ones, but they have a higher interest because their spectral sequences seem
difficult to be studied by the theoretical methods documented in the literature.
However, with the use of the new programs the different groups £, , and the
differential maps dj, , are computed.

7.1  Postnikov tower

The first example considered in this section corresponds to the space X, of
a Postnikov tower [7] with a m; = Z, at each stage and the “simplest” non-
trivial Postnikov invariant. Ours programs compute the groups E7 ~of the
Serre spectral sequence of the fibration producing our space X, in a short
time for p 4+ ¢ < 6, and they determine some differential maps d® which are
not null.

The theoretical details of the construction of the space X, are not included
here, they can be found in [10, pp. 142-145]. This complex can be built by
Kenzo with the following statements:

> (setf X2 (k-z2 2))

[K133 Abelian-Simplicial-Group]

> (setf k3 (chml-clss X2 4))

[K245 Cohomology-Class on K150 of degree 4]
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> (setf F3 (z2-whitehead X2 k3))

[K260 Fibration K133 -> K246]

> (setf X3 (fibration-total F3))

[K266 Kan-Simplicial-Set]

> (setf k4 (chml-clss X3 5))

[K479 Cohomology-Class on K464 of degree 5]
> (setf F4 (z2-whitehead X3 k4))

[K494 Fibration K266 -> K480]

> (setf X4 (fibration-total F4))

[K500 Kan-Simplicial-Set]

This example also corresponds to a total space of a fibration, a twisted product
K(Zg,4) X, X3, where X3 is again a twisted product K(Z,3) Xy, K(Zs,2)
and k; and k3 are called the k-invariants of the Postnikov tower. Therefore
the filtrations in the space X, and in its effective complex are defined as in the
examples of Section 6 (since all of them are particular instances of the Serre
spectral sequence):

> (setf effX4 (rbcc (efhm X4)))

[K696 Chain-Complex]

> (CHANGE-CHCM-TO-FltrChcm X4 :flin fbrt-flin
rorgn ‘(filtered-complex ,X4))

[K500 Filtered-Complex]

> (CHANGE-CHCM-TO-FltrChcm effX4 :flin tnpr-flin
rorgn ‘(filtered-complex ,effX4))

[K696 Filtered-Complex]

Some groups £, , at the stage r = 2 are:

>(print-spct-sqn-cmpns X4 2 0 4)
Spectral sequence E~2_{0,4}
Component Z/2Z

> (print-spct-sqn-cmpns X4 2 5 0)
Spectral sequence E~“2_{5,0}
Component Z/4Z

> (print-spct-sqn-cmpns X4 2 6 0)
Spectral sequence E“2_{6,0}
Component Z/2Z

Component Z/2Z

For p+ ¢ =4,5,6,7, the spectral sequence converges at the stage r = 6:

> (spct-sqn-cnvg-level X4 4)
6
> (spct-sqn-cnvg-level X4 5)
6
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> (spct-sqn-cnvg-level X4 6)
6
> (spct-sqn-cnvg-level X4 7)
6

This means that there are some differential maps d® which are not null. Specif-
ically, the programs compute dg,o and d?,o that map the unique generators of
B2y = Zy and B2 = Zy to the unique generators of Ej, and E3, (both
isomorphic to Zs) respectively:

> (spct-sqn-dffr X4 5 5 0 ’ (1))
(1)
> (spct-sqn-dffr X4 57 0 ’(1))
(D

Finally, we can conclude that the groups E for p+q = 4,5,6, 7 are the same
than Equ, which are easily obtained. For instance, for n = 7, all of them are
null except Ej, and Ef ,):

> (dotimes (p 8)
(let ((q (= 7 p)))
(terpri)
(print-spct-sqn-cmpns X4 6 p q)
)
Spectral sequence E6_{0,7}
Component Z/2Z
Spectral sequence E"6_{1,6}
Spectral sequence E~6_{2,5}
Spectral sequence E"6_{3,4}
Component Z/2Z
Spectral sequence E~6_{4,3}
Spectral sequence E~6_{5,2}
Spectral sequence E"6_{6,1}
Spectral sequence E~6_{7,0}

7.2 Eilenberg-Moore spectral sequence

The programs presented here can also be used to determine the Eilenberg-
Moore spectral sequence between a simplicial set X and its loop space Q2.X,
introduced in Example 17. If the space X is an 1-reduced simplicial set with
effective homology, the program Kenzo determines the effective homology of
its loop space QX using the cobar construction on a coalgebra. Moreover, if
X is m-reduced, this process may be iterated m times, producing an effective
homology version of Q¥ X, k < m. As seen in Example 17, the effective homol-
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ogy of the loop space together with the natural filtration defined on the cobar
construction allows the computation of the spectral sequence between H,(X)
and H,(QX) for every level r.

The Eilenberg-Moore spectral sequence has been traditionally considered to
be an important tool for obtaining homotopic information of a space, by means
of its relation with its loop space. In particular, it can be used for the study
of the effect of the attachment of a disk to an space of infinite dimension,
especially a loop space. This problem seems to be very difficult in general
as explained in [4]. Our programs have determined the different elements of
the spectral sequence for some spaces constructed in this way that, up to
now, have not appeared in the literature. As a little introduction of this work
(that is yet incomplete and whose details will appear in a future paper), we
present in Figures 1 and 2 the groups E> (for ¢ —p < 8) of the spectral
sequences for the spaces 252 and Q5% Uy D? (the last one obtained from Q.53
by attaching a 3-disk by a map v : S? — QS? of degree 2). The first space
and its loop space have been extensively considered by theoretical methods
and a lot of results about them are known. However, for our second example,
the attachment of the 3-disk increases the difficulty of the calculation of the
Eilenberg-Moore spectral sequence between 52U, D? and its loop space that,
up to our knowledge, had not been determined before. See Figures 1 and 2 for
the calculated EJ ’s.

8 Conclusions and further work

In this paper, we have presented some programs that improve the functionality
of Kenzo, computing spectral sequences (groups, differential maps, and conver-
gence levels) of filtered complexes with effective homology. These programs can
be applied to compute, for instance, spectral sequences of double complexes,
the Serre spectral sequence, the Eilenberg-Moore spectral sequences...

One of our next goals is the development of some new programs (working in
a similar way to that explained in this paper) to deal with exact couples [12].
As it is known, exact couples determine spectral sequences (containing more
information that makes it possible to determine the successive differentials
d"). This is a way of obtaining spectral sequences more general than that of
filtered complexes: a filtered complex determines an exact couple whose spec-
tral sequence is isomorphic to that of the filtered complex; on the other hand,
an exact couple does not need to arise from a filtration. In this way, there are
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Fig. 1. Groups E;5 of the Eilenberg-Moore spectral sequence between 053 and
0(QS?)

q
16 Ly
15 0

14 0 Zio
13 0 0
12 Zg 0 Lo

11 0 0 0
10 Ls 1o 0 Ly

9 0 0 0 0

8 0 0 Zo Zz 7o

7 0 0 0 0

6 0 0 Zs Lo

5 0 0 0

4 0 0 Zs

3 0 O

2 0 Z

1 0

0 Z

0 1 2 3 4 5 6 7 8 p

spectral sequences (for instance, the Bousfield-Kan spectral sequence) which
do not correspond to any filtered complex. Therefore we find that it would be
interesting to build a new set of programs allowing its computation.
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