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FRANCIS SERGERAERT, Institut Fourier
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Given topological spaces X,Y , a fundamental problem of algebraic topology is understanding the struc-
ture of all continuous maps X → Y . We consider a computational version, where X,Y are given as finite
simplicial complexes, and the goal is to compute [X,Y ], i.e., all homotopy classes of such maps.

We solve this problem in the stable range, where for some d ≥ 2, we have dimX ≤ 2d−2 and Y is (d−1)-
connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and
ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic
tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology).

In contrast, [X,Y ] is known to be uncomputable for general X,Y , since for X = S1 it includes a well
known undecidable problem: testing triviality of the fundamental group of Y .

In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other
problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask
whether it extends to a map X → Y , or computing the Z2-index—everything in the stable range. Outside
the stable range, the extension problem is undecidable.
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1. INTRODUCTION
Among results concerning computations in topology, probably the most famous ones
are negative. For example, there is no algorithm to decide whether the fundamental
group π1(Y ) of a given space Y is trivial, i.e., whether every loop in Y can be continu-
ously contracted to a point.1

Here we obtain a positive result for a closely related and fairly general problem,
homotopy classification of maps;2 namely, we describe an algorithm that works in the
so-called stable range.
Computational topology. This paper falls into the broader area of computational
topology, which has been a rapidly developing discipline in recent years—see, for
instance, the textbooks [Edelsbrunner and Harer 2010; Zomorodian 2005; Matveev
2007].

Our focus is somewhat different from the main current trends in the field, where, on
the one hand, computational questions are intensively studied in dimensions 2 and 3
(e.g., concerning graphs on surfaces, knots or 3-manifolds3), and, on the other hand, for
arbitrary dimensions mainly homology computations are investigated.

Homology has been considered an inherently computational tool since its inception
and there are many software packages that contain practical implementations, e.g.,
polymake [Gawrilow and Joswig 2000]. Thus, algorithmic solvability of homological
questions is usually obvious, and the challenge may be, e.g., designing very fast algo-
rithms to deal with large inputs. Moreover, lot of research has been devoted to develop-
ing extensions such as persistent homology [Edelsbrunner and Harer 2008], motivated
by applications like data analysis [Carlsson 2009].

In contrast, homotopy-theoretic problems, as those studied here, are generally con-
sidered much less tractable than homological ones and the first question to tackle is
usually the existence of any algorithm at all (indeed, many of them are algorithmi-
cally unsolvable, as the example of triviality of the fundamental group illustrates).
Such problems lie at the core of algebraic topology and have been thoroughly stud-
ied from a topological perspective since the 1940s. A significant effort has also been
devoted to computer-assisted concrete calculations, most notably of higher homotopy
groups of spheres; see, e.g., [Kochman 1990a].
Effective algebraic topology. In the 1990s, three independent groups of researchers
proposed general frameworks to make various more advanced methods of algebraic
topology effective (algorithmic): Schön [Schön 1991], Smith [Smith 1998], and Serg-
eraert, Rubio, Dousson, and Romero (e.g., [Sergeraert 1994; Rubio and Sergeraert
2002; Romero et al. 2006; Rubio and Sergeraert 2005]; also see [Rubio and Sergeraert
2012] for an exposition). These frameworks yielded general computability results for
homotopy-theoretic questions (including new algorithms for the computation of higher
homotopy groups [Real 1996]), and in the case of Sergeraert and co-workers, a practical
implementation as well.

The problems considered by us were not addressed in those papers, but we rely on
the work of Sergeraert et al., and in particular on their framework of objects with ef-
fective homology, for implementing certain operations in our algorithm (see Sections 2
and 4).

1This follows by a standard reduction, see, e.g., [Stillwell 1993], from a result of Adjan and Rabin on un-
solvability of the triviality problem of a group given in terms of generators and relations; see, e.g., [Soare
2004].
2The definition of homotopy and other basic topological notions will be recalled later.
3A seminal early result in the latter direction is Haken’s famous algorithm for recognizing the unknot
[Haken 1961].
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We should also mention that our perspective is somewhat different from the previous
work in effective algebraic topology, closer to the view of theoretical computer science;
although in the present paper we provide only computability results, subsequent work
also addresses the computational complexity of the considered problems. We consider
this research area fascinating, and one of our hopes is that our work may help to bridge
the cultural gap between algebraic topology and theoretical computer science.
The problem: homotopy classification of maps. A central theme in algebraic
topology is to understand, for given topological spaces X and Y , the set [X,Y ] of homo-
topy classes of maps4 from X to Y .

Many of the celebrated results throughout the history of topology can be cast as
information about [X,Y ] for particular spaces X and Y . An early example is a famous
theorem of Hopf from the 1930s, asserting that the homotopy class of a map f : Sn →
Sn, where Sn is the n-dimensional sphere, is completely determined by an integer
called the degree of f , thus giving a one-to-one correspondence [Sn, Sn] ∼= Z. Another
great discovery of Hopf, with ramifications in modern physics and elsewhere, was a
map S3 → S2, now called by his name, that is not homotopic to a constant map.

These two early results concern higher homotopy groups: for our purposes, the kth
homotopy group πk(Y ), k ≥ 2, of a space Y can be identified with the set [Sk, Y ]
equipped with a suitable group operation.5 In particular, a very important special case
are the higher homotopy groups of spheres πk(Sn), whose computation has been one of
the important challenges propelling research in algebraic topology, with only partial
results so far despite an enormous effort (see, e.g., [Ravenel 2004; Kochman 1990b]).
The extension problem. A problem closely related to computing [X,Y ] is the exten-
sion problem: given a subspace A ⊂ X and a map f : A → Y , can it be extended to a
map X → Y ? For example, the famous Brouwer fixed-point theorem can be re-stated as
non-extendability of the identity map Sn → Sn to the ball Dn+1. A number of topologi-
cal concepts, which may seem quite advanced and esoteric to a newcomer in algebraic
topology, e.g. Steenrod squares, have a natural motivation in trying to solve the exten-
sion problem step by step.
Early results. Earlier developments around the extension problems are described in
Steenrod’s paper [Steenrod 1972] (based on a 1957 lecture series), which we can recom-
mend, for readers with a moderate topological background, as an exceptionally clear
and accessible, albeit somewhat outdated, introduction to this area. In particular, in
that paper, Steenrod asks for an effective procedure for (some aspects of) the extension
problem.

There has been a tremendous amount of work in homotopy theory since the 1950s,
with a wealth of new concepts and results, some of them opening completely new areas.
However, as far as we could find out, the algorithmic part of the program discussed in
[Steenrod 1972] has not been explicitly carried out until now.

4In this paper, all maps between topological spaces are assumed to be continuous. Two maps f, g : X → Y
are said to be homotopic, denoted f ∼ g, if there is a map F : X × [0, 1] → Y such that F (·, 0) = f and
F (·, 1) = g. The equivalence class of f of this relation is denoted [f ] and called the homotopy class of f .
5Formally, the kth homotopy group πk(Y ) of a space Y , k ≥ 1, is defined as the set of all homotopy classes
of pointed maps f : Sk → Y , i.e., maps f that send a distinguished point s0 ∈ Sk to a distinguished point
y0 ∈ Y (and the homotopies F also satisfy F (s0, t) = y0 for all t ∈ [0, 1]). Strictly speaking, one should write
πk(Y, y0) but for a path-connected Y , the choice of y0 does not matter. Furthermore, πk(Y ) is trivial (has
only one element) iff [Sk, Y ] is trivial, i.e., if every map Sk → Y is homotopic to a constant map. Moreover,
if π1(Y ) is trivial, then for k ≥ 2, the pointedness of the maps does not matter and one can identify πk(Y )
with [Sk, Y ]. Each πk(Y ) is a group, which for k ≥ 2 is Abelian, but the definition of the group operation is
not important for us at the moment.
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A:4 M. Čadek et al.

As far as we know, the only algorithmic paper addressing the general problem of
computing of [X,Y ] is that by Brown [Brown (jun.) 1957] from 1957. Brown showed
that [X,Y ] is computable under the assumption that Y is 1-connected6 and all the
higher homotopy groups πk(Y ), 2 ≤ k ≤ dimX, are finite. The latter assumption is
rather strong7; in particular, Brown’s algorithm is not applicable for Y = Sd since
πd(S

d) ∼= Z.
In the same paper, Brown also gave an algorithm for computing πk(Y ), k ≥ 2, for

every 1-connected Y . To do this, he overcame the restriction on finite homotopy groups
mentioned above, and also discussed in Section 2 below, by a somewhat ad-hoc method,
which does not seem to generalize to the [X,Y ] setting.

On the negative side, it is undecidable whether [S1, Y ] is trivial (since this is equiv-
alent to the triviality of π1(Y )). By an equally classical result of Boone and of Novikov
[Boone 1954a; 1954b; 1955; Novikov 1955] it is undecidable whether a given map
S1 → Y can be extended to a map D2 → Y , even if Y is a finite 2-dimensional simplicial
complex. Thus, both the computation [X,Y ] and the extension problem are algorithmi-
cally unsolvable without additional assumptions on Y . These are the only previous
undecidability results in this context known to us; more recent results, obtained as a
follow-up of the present paper, will be mentioned later. For a number of more loosely
related undecidability results we refer to [Soare 2004; Nabutovsky and Weinberger
1999; 1996] and the references therein.
New results. In this paper we prove the computability of [X,Y ] under a fairly general
condition on X and Y . Namely, we assume that, for some integer d ≥ 2, we have
dimX ≤ 2d−2, while Y is (d−1)-connected. A particularly important example of a (d−
1)-connected space, often encountered in applications, is the sphere Sd. We also assume
that X and Y are given as finite simplicial complexes or, more generally, as finite
simplicial sets (a more flexible generalization of simplicial complexes; see Section 4).

An immediate problem with computing the set [X,Y ] of all homotopy classes of con-
tinuous maps is that it may be infinite. However, it is known that under the just men-
tioned conditions on X and Y , [X,Y ] can be endowed with a structure of a finitely gen-
erated Abelian group.8 Our algorithm computes the isomorphism type of this Abelian
group.

THEOREM 1.1. Let d ≥ 2. There is an algorithm that, given finite simplicial com-
plexes (or finite simplicial sets) X,Y , where dimX ≤ 2d− 2 and Y is (d− 1)-connected,
computes the isomorphism type of the Abelian group [X,Y ], i.e., expresses it as a direct
product of cyclic groups.

Moreover, given a simplicial map f : X → Y , the element of the computed direct
product corresponding to [f ] can also be computed. Consequently, it is possible to test
homotopy of simplicial maps X → Y .

We remark that the algorithm does not need any certificate of the 1-connectedness
of Y , but if Y is not 1-connected, the result may be wrong.

In the remainder of the introduction, we discuss related results, applications, gen-
eral motivation for our work, and directions for future research. In Section 2, we will
present an outline of the methods and of the algorithm. In Sections 3–5, we will intro-

6A space Y is said to be k-connected if every map Si → Y can be extended to Di+1, the ball bounded by
the spheres Si, for i = 0, 1, . . . , k. Equivalently, Y is path-connected and the first k homotopy groups πi(Y ),
i ≤ k, are trivial.
7Steenrod [Steenrod 1972] calls this restriction “most severe,” and conjectures that it “should ultimately be
unnecessary.”
8In particular, the groups [X,Sd] are known as the cohomotopy groups of X; see [Hu 1959].
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duce and discuss the necessary preliminaries, and then we present the algorithm in
detail in Section 6.
Follow-up work. We briefly summarize a number of strengthenings and extensions
of Theorem 1.1, as well as complementary hardness results, obtained since the original
submission of this paper. They will appear in a series of follow-up papers.

Running time. In the papers [Čadek et al. 2012; Krčál et al. 2013] it is shown that, for
every fixed d, the algorithm as in Theorem 1.1 can be implemented so that its running
time is bounded by a polynomial in the size of X and Y .9 The nontrivial part of this
polynomiality result is a subroutine for computing Postnikov systems, which we use as
a black box here—see Section 2. For the rest of the algorithm, verifying polynomiality
is straightforward, see [Krčál 2013]; except for some brief remarks, we will not consider
this issue here, in order to avoid distraction from the main topic.

The extension problem. In [Čadek et al. 2012, Theorem 1.4], it is shown that the meth-
ods of the present paper also yield an algorithm for the extension problem as defined
above. The extension problem can actually be solved even for dimX ≤ 2d − 1, as op-
posed to 2d− 2 in Theorem 1.1 (still asumming that Y is (d− 1)-connected). Again, the
running time is polynomial for d fixed.
Hardness outside the stable range. The dimension and connectivity assumptions in
Theorem 1.1 turned out to be essential and almost sharp, in the following sense: In
[Čadek et al. 2013], it is shown that, for every d ≥ 2, the extension problem is un-
decidable for dimX = 2d and (d − 1)-connected Y . Similar arguments show that for
dimX = 2d and (d− 1)-connected Y , deciding whether every map X → Y is homotopic
to a constant map (i.e., |[X,Y ]| = 1) is NP-hard and no algorithm is known for it [Krčál
2013, Theorem 2.1.2].
Dependence on d. The running-time of the algorithm in Theorem 1.1 can be made
polynomial for every fixed d, as was mentioned above, but it depends on d at least
exponentially. We consider it unlikely that the problem can be solved by an algorithm
whose running time also depends polynomially on d. One heuristic reason supporting
this belief is that Theorem 1.1 includes the computation of the stable homotopy groups
πd+k(Sd), k ≤ d − 2. These are considered mathematically very difficult objects, and
a polynomial-time algorithm for computing them would be quite surprising. Another
reason is that the related problem of computing the higher homotopy groups πk(Y ) of a
1-connected simplicial complex Y was shown to be #P-hard if k, encoded in unary, is a
part of input [Anick 1989; Čadek et al. 2013], and it is W[1]-hard w.r.t. the parameter k
[Matoušek 2014], even for Y of dimension 4. Still, it would be interesting to have more
concrete hardness results for the setting of Theorem 1.1 with variable d.

Lifting-extension and the equivariant setting. In [Čadek et al. 2013; Vokřı́nek 2013],
the ideas and methods of the present paper are further developed and generalized to
more general lifting-extension problems and to the equivariant setting, where a fixed
finite group G acts freely on both X and Y , and the considered continuous maps are
also required to be equivariant, i.e., to commute with the actions of G. The basic and
important special case with G = Z2 will be discussed in more detail below.

9Here, for simplicity, we can define the size of a finite simplicial complex X as the number of its simplices;
for a simplicial set, we count only nondegenerate simplices. It is not hard to see that if the dimension of X
is bounded by a constant, then X can be encoded by a string of bits of length polynomial in the number of
(nondegenerate) simplices; also see the discussion in [Čadek et al. 2012].
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Homotopy testing. By Theorem 1.1, it is possible to test homotopy of two simplicial
mapsX → Y in the stable range. It turns out that for this task, unlike for the extension
problem, the restriction to the stable range is unnecessary: it suffices to assume that
Y is 1-connected [Filakovský and Vokřı́nek 2013].
Applications, motivation, and future work. We consider the fundamental nature
of the algorithmic problem of computing [X,Y ] a sufficient motivation of our research.
However, we also hope that work in this area will bring various connections and ap-
plications, also in other fields, possibly including practically usable software, e.g., for
aiding research in topology. Here we mention two applications that have already been
worked out in detail.
Robust roots. A nice concrete application comes from the so-called ROB-SAT problem—
robust satisfiability of systems of equations The problem is given by a rational value
α > 0 and a piecewise linear function f : K → R

d defined by rational values on the
vertices of a simplicial complex K. The question is whether an arbitrary continuous
g : K → R

d that is at most α-far from f (i.e., ‖f − g‖∞ ≤ α) has a root. In a slightly dif-
ferent and more special form, this problem was investigated by Franek et al. [Franek
et al. 2011], and later Franek and Krčál [Franek and Krčál 2014] exhibited a compu-
tational equivalence of ROB-SAT and the extension problem for maps into the sphere
Sd−1. The algorithm for the extrendability problem based on the present paper then
yields an algorithmic solution when dimK ≤ 2d− 3.
Z2-index and embeddability. An important motivation for the research leading to the
present paper was the computation of the Z2-index (or genus) ind(X) of a Z2-space X,10

i.e., the smallest d such that X can be equivariantly mapped into Sd. For example, the
classical Borsuk–Ulam theorem can be stated in the form ind(Sd) ≥ d. Generalizing
the results in the present paper, [Čadek et al. 2013] provided an algorithm that decides
whether ind(X) ≤ d, provided that d ≥ 2 and dim(X) ≤ 2d − 1; for fixed d the running
time is polynomial in the size of X.

The computation of ind(X) arises, among others, in the problem of embeddability
of topological spaces, which is a classical and much studied area; see, e.g., the sur-
vey by Skopenkov [Skopenkov 2008]. One of the basic questions here is, given a k-
dimensional finite simplicial complex K, can it be (topologically) embedded in R

d?
The famous Haefliger–Weber theorem from the 1960s asserts that, in the metastable
range of dimensions, i.e., for k ≤ 2

3d − 1, embeddability of K in Rd is equivalent to
ind(K2

∆) ≤ d− 1, where K2
∆, the deleted product of K, is a certain Z2-space constructed

from K in a simple manner. Thus, in this range, the embedding problem is, compu-
tationally, a special case of Z2-index computation. A systematic study of algorithmic
aspects of the embedding problem was initiated in [Matoušek et al. 2011], and the
metastable range was left as one of the main open problems there (now resolved as a
consequence of [Čadek et al. 2013]).

The Z2-index also appears as a fundamental quantity in combinatorial applications
of topology. For example, the celebrated result of Lovász on Kneser’s conjecture can
be re-stated as χ(G) ≥ ind(B(G)) + 2, where χ(G) is the chromatic number of a graph
G, and B(G) is a certain simplicial complex constructed from G (see, e.g., [Matoušek
2007]). We find it striking that prior to [Čadek et al. 2013], nothing seems to have been
known about the computability of such an interesting quantity as ind(B(G)).

10A Z2-space is a topological space X with an action of the group Z2; the action is described by a homeomor-
phism ν : X → X with ν ◦ ν = idX . A primary example is a sphere Sd with the antipodal action x 7→ −x.
An equivariant map between Z2-spaces is a continuous map that commutes with the Z2 actions.
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Explicit maps? Our algorithm for Theorem 1.1 works with certain implicit represen-
tations of the elements of [X,Y ]; it can output a set of generators of the group in this
representation, and it contains a subroutine implementing the group operation.

It would be interesting to know whether these implicit representations can be con-
verted into actual maps X → Y (given, say, as simplicial maps from a sufficiently fine
subdivision of X into Y ) in an effective way. Given an implicit representation of a ho-
motopy class κ ∈ [X,Y ], we can compute an explicit map X → Y in κ by a brute force
search: go through finer and finer subdivisions X ′ of X and through all possible simpli-
cial maps X ′ → Y until a simplicial map in κ is found. Membership in κ can be tested
using Theorem 1.1; this may not be entirely obvious, but we do not give the details
here, since this is only a side-remark. However, currently we have no upper bound on
how fine subdivision may be required.

This would also be of interest in certain applications such as the embeddability
problem—whenever we want to construct an embedding explicitly, instead of just de-
ciding embeddability.

Various measures of complexity of embeddings have been studied in the literature,
and very recently, Freedman and Krushkal [Freedman and Krushkal 2013] obtained
bounds for the subdivision complexity of an embedding K → R

d. Here d and k = dimK
are considered fixed, and the question is, what is the smallest f(n) such that every k-
dimensional complex K with n simplices that is embeddable in Rd has a subdivision L
with at most f(n) simplices that admits a linear embedding in Rd (i.e., an embedding
that is an affine map on each simplex of L)? Freedman and Krushkal essentially solved
the case with d = 2k (here the embeddability can be decided in polynomial time—this
is covered by [Čadek et al. 2013] but this particular case goes back to a classical work of
Van Kampen from the 1930s; see [Matoušek et al. 2011]). The subdivision complexity
for the other cases in the metastable range, i.e., for k ≤ 2

3d− 1, is wide open at present,
and obtaining explicit maps X → Y in the setting of Theorem 1.1 might be a key step
in its resolution.

2. AN OUTLINE OF THE METHODS AND OF THE ALGORITHM
Here we present an overview of the algorithm and sketch the main ideas and tools.
Everything from this section will be presented again in the rest of the paper. Some
topological notions are left undefined here and will be introduced in later sections.
The geometric intuition: obstruction theory. Conceptually, the basis of the algo-
rithm is classical obstruction theory [Eilenberg 1940]. For a first encounter, it is prob-
ably easier to consider a version of obstruction theory which proceeds by constructing
maps X → Y inductively on the i-dimensional skeleta11 of X, extending them one
dimension at a time. (For the actual algorithm, we use a different, “dual” version of
obstruction theory, where we lift maps from X through stages of a so-called Postnikov
system of Y .)

In a nutshell, at each stage, the extendability of a map from the (i − 1)-skeleton to
the i-skeleton is characterized by vanishing of a certain obstruction, which can, more
or less by known techniques, be evaluated algorithmically.

Textbook expositions may give the impression that obstruction theory is a general
algorithmic tool for testing the extendability of maps (this is actually what some of
the topologists we consulted seemed to assume). However, the extension at each step
is generally not unique, and extendability at subsequent steps may depend, in a non-
trivial way, on the choices made earlier. Thus, in principle, one needs to search an
infinitely branching tree of extensions. Brown’s result mentioned earlier, on comput-

11The i-skeleton of a simplicial complex X consists of all simplices of X of dimension at most i.
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ing [X,Y ] with the πk(Y )’s finite, is based on a complete search of this tree, where the
assumptions on Y guarantee the branching to be finite.

In our setting, we make essential use of the group structure on the set [X,Y ] (men-
tioned in Theorem 1.1), as well as on some related ones, to produce a finite encoding of
the set of all possible extensions at a given stage.
Semi-effective and fully effective Abelian groups. The description of our algo-
rithm has several levels. On the top level, we work with Abelian groups whose ele-
ments are homotopy classes of maps. On a lower level, the group operations and other
primitives are implemented by computations with concrete representatives of the homo-
topy classes; interestingly, on the level of representatives, the operations are generally
non-associative.

We need to be careful in distinguishing “how explicitly” the relevant groups are avail-
able to us. Specifically, we distinguish between semi-effective and fully effective Abelian
groups: For the former, we have a suitable way of representing the elements on a com-
puter and we can compute the various group operations (addition, inverse) on the level
of representatives. For the latter, we additionally have a list of generators and rela-
tions and we can express a given element in terms of the generators (see Section 3 for
a detailed discussion). A homomorphism f between two semi-effective Abelian groups
is called locally effective if there is an algorithm that, given a representative of an
element a, computes a representative of f(a).
Simplicial sets and objects with effective homology. All topological spaces in the
algorithm are represented as simplicial sets, which will be discussed in more detail
in Section 4.1. Suffice it here to say that a simplicial set is a purely combinatorial
description of how to build a space from simple building blocks (simplices), similar to a
simplicial complex, but allowing more general ways of gluing simplices together along
their faces, which makes many constructions much simpler and more conceptual.

For the purposes of our exposition we will occasionally talk about topological spaces
specified in other ways, most notably, as CW-complexes—e.g., in Sections 4.3 and 5.1.
However, we stress that in the algorithm, all spaces are represented as simplicial sets.

A finite simplicial set can be encoded explicitly on a computer by a finite bit string,
which describes a list of all (nondegenerate) simplices and the way of gluing them
together. However, the algorithm also uses a number of infinite simplicial sets in its
computation, such as simplicial Eilenberg–MacLane spaces discussed below. For these,
it is not possible to store the list of all nondegenerate simplices.

Instead, we use a general framework developed by Sergeraert et al. (as surveyed,
e.g., in [Rubio and Sergeraert 2012]), in which a possibly infinite simplicial set is rep-
resented by a black box or oracle (we speak of a locally effective simplicial set). This
means that we have a specified encoding of the simplices of the simplical set and a
collection of algorithms for performing certain operations, such as computing a specific
face of a given simplex. Similarly, a simplicial map between locally effective simplicial
sets is locally effective if there is an algorithm that evaluates it on any given simplex
of the domain; i.e., given the encoding of an input simplex, it produces the encoding of
the image simplex.

To perform global computations with a given locally effective simplicial set, e.g.,
compute its homology and cohomology groups of any given dimension, the black box
representation of these locally effective simplicial sets is augmented with additional
data structures and one speaks about simplicial sets with effective homology. Serg-
eraert et al. then provide algorithms that construct basic topological spaces, such as
finite simplicial sets or Eilenberg–MacLane spaces, as simplicial sets with effective
homology. More crucially, the auxiliary data structures of a simplicial set with effec-
tive homology are designed so that if we perform various topological operations, such
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as the Cartesian product, the bar construction, the total space of a fibration, etc., the
result is again a simplicial set with effective homology.
Postnikov systems. The target space Y in Theorem 1.1 enters the computation in
the form of a Postnikov system. Roughly speaking, a Postnikov system of a space Y is
a way of building Y from “canonical pieces”, called Eilenberg–MacLane spaces, whose
homotopy structure is the simplest possible, namely, they have a single non-trivial
homotopy group. The Eilenberg–MacLane spaces occurring in the algorithm will be
denoted by Ki and Li, and they depend only on the homotopy groups of Y .

A Postnikov system has stages P0, P1, . . ., where Pi reflects the homotopy properties
of Y up to dimension i; in particular, πj(Pi) ∼= πj(Y ) for all j ≤ i, while πj(Pi) = 0
for j > i. The isomorphisms of the homotopy groups for j ≤ i are induced by maps
ϕi : Y → Pi, which are also a part of the Postnikov system. Crucially, these maps also
induce bijections [X,Y ] → [X,Pi] whenever dimX ≤ i; in words, homotopy classes of
maps X → Y from any space X of dimension at most i are in bijective correspondence
with homotopy classes of maps X → Pi.

The last component of a Postnikov system are mappings k0, k1, . . ., where
ki−1 : Pi−1 → Ki+1 is called the (i−1)st Postnikov class. Together with the group πi(Y ),
it describes how Pi is obtained from Pi−1.

If Y is (d− 1)-connected, then for i ≤ 2d− 2, the Postnikov stage Pi can be equipped
with an H-group structure, which is, roughly speaking, an Abelian group structure
“up to homotopy” (this is where the connectivity assumption enters the picture). This
H-group structure on Pi induces, in a canonical way, an Abelian group structure on
[X,Pi], for every space X, with no restriction on dimX.

Now assuming dimX ≤ 2d − 2, we have the bijection [X,Y ] → [X,P2d−2] as men-
tioned above, and this can serve as the definition of the Abelian group structure on
[X,Y ] used in Theorem 1.1. Therefore, instead of computing [X,Y ] directly, we actually
compute [X,P2d−2], which yields an isomorphic Abelian group. (However, the elements
of [X,P2d−2] are not so easily related to continuous maps X → Y ; this is the cause
of the open problem, mentioned in the introduction, of effectively finding actual maps
X → Y as representatives of the generators.)

Thus, to prove Theorem 1.1, we first compute the stages P0, . . . , P2d−2 of a Postnikov
system of Y , and then, by induction on i, we determine [X,Pi], i ≤ 2d − 2. We return
the description of [X,P2d−2] as an Abelian group.

For the inductive computation of [X,Pi] we do not need any dimension restriction on
X anymore, which is important, because the induction will also involve computing, e.g.,
[SX,Pi−1], where SX is another simplicial set, the suspension ofX, with dimension one
larger than that of X.

The stages Pi of the Postnikov system are built as simplicial sets with a particular
property (they are Kan simplicial sets12), which ensures that every continuous map
X → Pi is homotopic to a simplicial map. In this way, instead of the continuous maps
X → Y , which are problematic to represent, we deal only with simplicial maps X → Pi
in the algorithm, which are discrete, and even finitely representable, objects.
Outline of the algorithm.

(1) As a preprocessing step, we compute, using the algorithm from [Čadek et al. 2012],
a suitable representation of the first 2d − 2 stages of a Postnikov system for Y .
We refer to Section 4.3 for the full specification of the output provided by this
computation; in particular, we thus obtain the isomorphism types of the first 2d−2
homotopy groups πi = πi(Y ) of Y , the Postnikov stages Pi and the Eilenberg–

12The term Kan complex is also commonly used in the literature.
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MacLane spaces Li and Ki+1, i ≤ 2d − 2, as locally effective simplicial sets, and
various maps between these spaces, e.g., the Postnikov classes ki−1 : Pi−1 → Ki+1,
as locally effective simplicial maps.

(2) Given a finite simplicial set X, the main algorithm computes [X,Pi] as a fully ef-
fective Abelian group by induction on i, i ≤ 2d − 2, and [X,P2d−2] is the desired
output.
The principal steps are as follows:
— We construct locally effective simplicial maps �i : Pi × Pi → Pi and �i : Pi → Pi,
i ≤ 2d−2 (Section 5). These induce a binary operation �i∗ and a unary operation
�i∗ on SMap(X,Pi) that correspond to the the group operations in [X,Pi] on the
level of representatives. This yields, in the terminology of Section 3, a semi-
effective representation for [X,Pi].

— It remains to convert this semi-effective representation into a fully effective one;
this is carried out in detail in Section 6. For this step, we use that [X,Li] and
[X,Ki+1] are straightforward to compute as fully effective Abelian groups since,
by basic properties of Eilenberg–MacLane spaces, they are canonically isomor-
phic to certain cohomology groups of X. Moreover, we assume that, inductively,
we have already computed [SX,Pi−1] and [X,Pi−1] as fully effective Abelian
groups, where SX is the suspension of X mentioned above.
These four Abelian groups, together with [X,Pi], fit into an exact sequence of
Abelian groups (see Equation (8) in Section 6.1), and this is then used to com-
pute the desired fully effective representation of [X,Pi]—see Section 6. Roughly
speaking, what happens here is that, among the maps X → Pi−1, we “filter out”
those that can be lifted to maps X → Pi (this corresponds to evaluating an ap-
propriate obstruction, as was mentioned at the beginning of this section), for
each map that can be lifted we determine all possible liftings, and finally, we
test which of the lifted maps are homotopic. Since there are infinitely many ho-
motopy classes of maps involved in these operations, we have to work globally,
with generators and relations in the appropriate Abelian groups of homotopy
classes.

Remarks.
Evaluating Postnikov classes. For Y fixed, the subroutines for evaluating the Postnikov
classes ki, i ≤ 2d − 2, could be hard-wired once and for all. In some particular cases,
they are given by known explicit formulas. In particular, for Y = Sd, kd corresponds
to the famous Steenrod square [Steenrod 1947; 1972] (more precisely, to the reduc-
tion from integral cohomology to mod 2 cohomology followed by the Steenrod square
Sq2), and kd+1 to Adem’s secondary cohomology operation. However, in the general
case, the only way of evaluating the ki we are aware of is using simplicial sets with
effective homology mentioned earlier. In this context, our result can also be regarded
as an algorithmization of certain higher cohomology operations (see, e.g., [Mosher and
Tangora 1968]), although our development of the required topological underpinning is
somewhat different and, in a way, simpler.13

13Let us also mention the paper by Gonzáles-Dı́az and Real [González-Dı́az and Real 2003], which provides
algorithms for calculating certain primary and secondary cohomology operations on a finite simplicial com-
plex (including the Steenrod square Sq2 and Adem’s secondary cohomology operation). But both their goal
and approach are different from ours. The algorithms in [González-Dı́az and Real 2003] are based on explicit
combinatorial formulas for these operations on the cochain level. The goal is to speed up the “obvious” way of
computing the image of a given cohomology class under the considered operation. In our setting, we have no
general explicit formulas available, and we can work only with the cohomology classes “locally,” since they
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Avoiding iterated suspensions. In order to compute [X,Pi], our algorithm recursively
computes all suspensions [SX,Pj ], d ≤ j ≤ i−1. In a straightforward implementation of
the algorithm, for computing [SX,Pi−1] we should also recursively compute [SSX,Pi−2]
etc., forming essentially a complete binary tree of recursive calls. We remark that by a
slightly more complicated implementation of the algorithm, this tree of recursive calls
can be truncated, since we do not really need the complete information about [SX,Pi−1]
to compute [X,Pi]. Essentially, we need only a system of generators of [SX,Pi−1] and
not the relations; see Remark 3.4. We stress, however, that this is merely a way to
speed up the algorithm, and only by a constant factor if d is fixed.
A remark on methods. From a topological point of view, the tools and ideas that we use
and combine to establish Theorem 1.1 have been essentially known.

On the one hand, there is an enormous topological literature with many beautiful
ideas; indeed, in our experience, a problem with algorithmization may sometimes be
an abundance of topological results, and the need to sort them out. On the other hand,
the classical computational tools have been mostly designed for the “paper-and-pencil”
model of calculation, where a calculating mathematician can, e.g., easily switch be-
tween different representations of an object or fill in some missing information by
clever ad-hoc reasoning. Adapting the various methods to machine calculation some-
times needs a different approach; for instance, a recursive formulation may be prefer-
able to an explicit, but cumbersome, formula (see, for example, [Rubio and Sergeraert
2002; Sergeraert ] for an explanation of algorithmic difficulties with spectral sequences,
a basic and powerful computational tool in topology).

We see our main contribution as that of synthesis: identifying suitable methods,
putting them all together, and organizing the result in a hopefully accessible way, so
that it can be built on in the future.

Some technical steps are apparently new; in this direction, our main technical con-
tribution is probably a suitable implementation of the group operation on Pi (Section 5)
and recursive testing of nullhomotopy (Section 6.4). The former was generalized and,
in a sense, simplified in [Čadek et al. 2013], and the latter was extended to a more
general situation in [Filakovský and Vokřı́nek 2013].

3. OPERATIONS WITH ABELIAN GROUPS
On the top level, our algorithm works with finitely generated Abelian groups. The
structure of such groups is simple (they are direct sums of cyclic groups) and well
known, but we will need to deal with certain subtleties in their algorithmic represen-
tations.

In our setting, an Abelian group A is represented by a set A, whose elements are
called representatives; we also assume that the representatives can be stored in a com-
puter. For α ∈ A, let [α] denote the element of A represented by α. The representation
is generally non-unique; we may have [α] = [β] for α 6= β.

We call A represented in this way semi-effective if algorithms for the following three
tasks are available:

(SE1) Provide an element o ∈ A representing the neutral element 0 ∈ A.
(SE2) Given α, β ∈ A, compute an element α � β ∈ A with [α � β] = [α] + [β] (where + is

the group operation in A).
(SE3) Given α ∈ A, compute an element �α ∈ A with [�α] = −[α].

are usually defined on infinite simplicial sets. That is, a cohomology class is represented by a cocycle, and
that cocycle is given as an algorithm that can compute the value of the cocycle on any given simplex.
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We stress that as a binary operation on A, � is not necessarily a group operation; e.g.,
we may have α� (β � γ) 6= (α� β)� γ, although of course, [α� (β � γ)] = [(α� β)� γ].

For a semi-effective Abelian group, we are generally unable to decide, for α, β ∈ A,
whether [α] = [β] (and, in particular, to certify that some element is nonzero).

Even if such an equality test is available, we still cannot infer much global informa-
tion about the structure of A. For example, without additional information we cannot
certify that A it is infinite cyclic—it could always be large but finite cyclic, no matter
how many operations and tests we perform.

We now introduce a much stronger notion, with all the structural information ex-
plicitly available. We call a semi-effective Abelian group A fully effective if it is finitely
generated and we have an explicit expression of A as a direct sum of cyclic groups.
More precisely, we assume that the following are explicitly available:

(FE1) A list of generators a1, . . . , ak of A (given by representatives α1, . . . , αk ∈ A) and a
list (q1, . . . , qk), qi ∈ {2, 3, 4, . . .}∪{∞}, such that each ai generates a cyclic subgroup
of A of order qi, i = 1, 2, . . . , k, and A is the direct sum of these subgroups.

(FE2) An algorithm that, given α ∈ A, computes a representation of [α] in terms of the
generators; that is, it returns (z1, . . . , zk) ∈ Zk such that [α] =

∑k
i=1 ziai.

First we observe that, for full effectivity, it is enough to have A given by arbitrary
generators and relations. That is, we consider a semi-effective A together with a list
b1, . . . , bn of generators of A (again explicitly given by representatives) and an m × n
integer matrix U specifying a complete set of relations for the bi; i.e.,

∑n
i=1 zibi = 0

holds iff (z1, . . . , zn) is an integer linear combination of the rows of U . Moreover, we
have an algorithm as in (FE2) that allows us to express a given element a as a linear
combination of b1, . . . , bn (here the expression may not be unique).

LEMMA 3.1. A semi-effective A with a list of generators and relations as above can
be converted to a fully effective Abelian group.

PROOF. This amounts to a computation of a Smith normal form, a standard step in
computing integral homology groups, for example (see [Storjohann 1996] for an effi-
cient algorithm and references).

Concretely, the Smith normal form algorithm applied on U yields an expression D =
SUT with D diagonal and S, T square and invertible (everything over Z). Letting b =
(b1, . . . , bn) be the (column) vector of the given generators, we define another vector
a = (a1, . . . , an) of generators by a := T−1b. Then Da = 0 gives a complete set of
relations for the ai (since DT−1 = SU and the row spaces of SU and of U are the
same). Omitting the generators ai such that |dii| = 1 yields a list of generators as in
(FE1).

In the remainder of this section, the special form of the generators as in (FE1) will
bring no advantage—on the contrary, it would make the notation more cumbersome.
We thus assume that, for the considered fully effective Abelian groups, we have a list
of generators and an arbitrary integer matrix specifying a complete set of relations
among the generators.
Locally effective mappings. Let X,Y be sets. We call a mapping ϕ : X → Y locally
effective if there is an algorithm that, given an arbitrary x ∈ X, computes ϕ(x).

Next, for semi-effective Abelian groups A,B, with sets A,B of representatives, re-
spectively, we call a mapping f : A → B locally effective if there is a locally effective
mapping ϕ : A → B such that [ϕ(α)] = f([α]) for all α ∈ A. In particular, we speak of a
locally effective homomorphism if f is a group homomorphism.
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LEMMA 3.2 (KERNEL). Let f : A → B be a locally effective homomorphism of fully
effective Abelian groups. Then ker(f) = {a ∈ A : f(a) = 0} can be represented as fully
effective.

PROOF. This essentially amounts to solving a homogeneous system of linear equa-
tions over the integers.

Let a1, . . . , am be a list of generators of A and U a matrix specifying a complete set of
relations among them, and similarly for B, b1, . . . , bn, and V . For every i = 1, 2, . . . ,m,
we express f(ai) =

∑n
j=1 zijbj ; then them×nmatrix Z = (zji) represents f in the sense

that, for a =
∑m
i=1 xiai, we have f(a) =

∑n
j=1 yjbj with y = xZ, where x = (x1, . . . , xm)

and y = (y1, . . . , yn) are regarded as row vectors.
Since V is the matrix of relations in B,

∑n
j=1 yjbj equals 0 in B iff y = wV for an

integer (row) vector w. So ker f = {
∑
i xiai : x ∈ Zm,xZ = wV for some w ∈ Zn}.

Given a system of homogeneous linear equations over Z, we can use the Smith nor-
mal form to find a system of generators for the set of all solutions (see, e.g., [Schri-
jver 1986, Chapter 5]). In our case, dealing with the system xZ = wV , we can
thus compute integer vectors x(1), . . . ,x(`) such that the elements a′k :=

∑m
i=1 x

(k)
i ai,

k = 1, 2, . . . , `, generate ker f . By similar (and routine) considerations, which we omit,
we can then compute a complete set of relations for the generators a′k, and finally we
apply Lemma 3.1.

The next operation is the dual of taking a kernel, namely, factoring a given Abelian
group by the image of a locally effective homomorphism. For technical reasons, when
applying this lemma later on, we will need the resulting factor group to be equipped
with an additional algorithm that returns a “witness” for an element being zero.

LEMMA 3.3 (COKERNEL). Let A,B be fully effective Abelian groups with sets of rep-
resentatives A,B, respectively, and let f : A → B be a locally effective homomorphism.
Then we can obtain a fully effective representation of the factor group C := coker(f) =
B/ im(f), again with the set B of representatives. Moreover, there is an algorithm that,
given a representative β ∈ B, tests whether β represents 0 in C, and if yes, returns a
representative α ∈ A such that [f(α)] = [β] in B.

REMARK 3.4. As will become apparent from the proof, the assumption thatA is fully
effective is not really necessary. Indeed, all that is needed is that A be semi-effective and
that we have an explicit list of (representatives of) generators for A. In order to avoid
burdening the reader with yet another piece of of terminology, however, we refrain from
defining a special name for such representations.

PROOF OF LEMMA 3.3. As a semi-effective representation for C, we we simply
reuse the one we already have for B. That is, we reuse B (and the same algorithms
for (SE1–3)) to represent the elements of C as well. To distinguish clearly between el-
ements in B and in C, for β ∈ B, we use the notation b = [β] in B and b = [β] for the
corresponding element b+ im(f) in C.

For a fully effective representation of C, we need the following, by Lemma 3.1: first, a
complete set of generators for C (given by representatives); second, an algorithm as in
(FE2) that expresses an arbitrary element of C (given as β ∈ B) as a linear combination
of the generators; and, third, a complete set of relations among the generators.

For the first two tasks, we again reuse the solutions provided by the representation
for B. Suppose b1, . . . , bn (represented by β1, . . . , βn) generate B. Then b1, . . . , bn (with
the same representatives) generate C. Moreover, by assumption, we have an algorithm
that, given β ∈ B, computes integers zi such that [β] = z1b1 + . . . znbn in B; then
[β] = z1b1 + . . .+ znbn in C.
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A complete set of relations among the the generators of C is obtained as follows.
Let the matrix V specify a complete set of relations among the generators bj of B, let
a1, . . . , am be a complete list of generators for A, and let Z be an integer matrix repre-
senting the homomorphism f with respect to the generators a1, . . . , am and b1, . . . , bn
as in the proof of Lemma 3.2. Then

U :=

(
Z
V

)
specifies a complete set of relations among the bj in C. To see that this is the case,
consider an integer (row) vector y = (y1, . . . , yn) and b :=

∑n
j=1 yjbj . Then b = 0 in C

iff b :=
∑n
j=1 yjbj ∈ im(f), i.e., iff there exists an element a =

∑m
i=1 xiai ∈ A such that

b− f(a) = 0 in B. By definition of Z and by assumption on V , this is the case iff there
are integer vectors x and x′ such that y = xZ + x′V , an integer combination of rows of
U .

It remains to prove the second part of Lemma 3.3, i.e., to provide an algorithm that,
given β ∈ B, tests whether [β] = 0 in C, or equivalently, whether [β] ∈ im(f), and
if so, computes a preimage. For this, we express [β] =

∑n
j=1 yjbj as an integer linear

combination of generators ofB and then solve the system y = xZ+x′V of integer linear
equations as above (where we rely again on Smith normal form computations).

The last operation is conveniently described using a short exact sequence of Abelian
groups:

0 // A
f // B

g // C // 0 (1)

(in other words, we assume that f : A→ B is an injective homomorphism, g : B → C is
a surjective homomorphism, and im f = ker g). It is well known that the middle group
B is determined, up to isomorphism, by A,C, f , and g. For computational purposes,
though, we also need to assume that the injectivity of f is “effective”, i.e., witnessed
by a locally effective inverse mapping r, and similarly for the surjectivity of g. This is
formalized in the next lemma.

LEMMA 3.5 (SHORT EXACT SEQUENCE). Let (1) be a short exact sequence of
Abelian groups, where A and C are fully effective, B is semi-effective, f : A → B and
g : B → C are locally effective homomorphisms, and suppose that, moreover, the follow-
ing locally effective maps (typically not homomorphisms) are given:

(i) r : im f = ker g → A such that f(r(b)) = b for every b ∈ B with g(b) = 0.14

(ii) A map of representatives15 ξ : C → B (where B, C are the sets of representatives for
B,C, respectively) that behaves as a section for g, i.e., such that g([ξ(γ)]) = [γ] for
all γ ∈ C.

Then we can obtain a fully effective representation of B.

PROOF. Let a1, . . . , am be generators of A and c1, . . . , cn be generators of C, with
fixed representative γj ∈ C for each cj . We define bj := [ξ(γj)] for 1 ≤ j ≤ n.

14The equality f(r(b)) = b is required on the level of group elements, and not necessarily on the level of
representatives; that is, it may happen that ϕ(ρ(β)) 6= β, although necessarily [ϕ(ρ(β))] = [β], where ϕ
represents f and ρ represents r.
15For technical reasons, in the setting where we apply this lemma later, we do not get a well-defined map
s : C → B on the level of group elements, that is, we cannot guarantee that [γ1] = [γ2] implies [ξ(γ1)] =
[ξ(γ2)]. Because of the injectivity of f , this problem does not occur for the map r.
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Given an arbitrary element b ∈ B, we set c := g(b), express c =
∑n
j=1 zjcj , and let

b∗ := b −
∑n
j=1 zjbj. Since g(b∗) = g(b) −

∑n
j=1 zjg(bj) = 0, we have b∗ ∈ ker g, and

so a := r(b∗) is well defined. Then we can express a =
∑m
i=1 yiai, and we finally get

b =
∑m
i=1 yif(ai) +

∑n
j=1 zjbj .

Therefore, (f(a1), . . . , f(am), b1, . . . , bn) is a list of generators of B, computable in
terms of representatives, and the above way of expressing b in terms of generators
is algorithmic. Moreover, we have b = 0 iff g(b) = 0 and r(b) = 0, which yields equality
test in B.

It remains to determine a complete set of relations for the described generators (and
then apply Lemma 3.1). Let U be a matrix specifying a complete set of relations among
the generators a1, . . . , am in A, and V is an appropriate matrix for c1, . . . , cn.

Let (vk1, . . . , vkn) be the kth row of V . Since
∑n
j=1 vkjcj = 0, we have b∗k :=∑n

j=1 vkjbj ∈ ker g, and so, as above, we can express b∗k =
∑m
i=1 yikf(ai). Thus, we have

the relation −
∑m
i=1 yikf(ai) +

∑n
j=1 vkjbj = 0 for our generators of B.

Let Y = (yik) be the matrix of the coefficients yik constructed above. We claim that
the matrix (

−Y V
U 0

)
specifies a complete set of relations among the generators f(a1), . . ., f(am), b1, . . ., bn
of B. Indeed, we have just seen that the rows in the upper part of this matrix corre-
spond to valid relations, and the relations given by the rows in the bottom part are
valid because U specifies relations among the ai in A and f is a homomorphism.

Finally, let
x1f(a1) + · · ·+ xmf(am) + z1b1 + · · ·+ znbn = 0 (2)

be an arbitrary valid relation among the generators. Applying g and using g ◦ f = 0,
we get that

∑n
j=1 zjcj = 0 is a relation in C, and so (z1, . . . , zn) is a linear combination

of the rows of V .
Let (w1, . . . , wm) be the corresponding linear combination of the rows of−Y . Then we

have
∑m
i=1 wif(ai)+

∑n
j=1 zjbj = 0, and subtracting this from (2), we arrive at

∑m
i=1(xi−

wi)f(ai) = 0. Since f is an injective homomorphism, we have
∑m
i=1(xi −wi)ai = 0 in A,

and so (x1 − w1, . . . , xm − wm) is a linear combination of the rows of U . This concludes
the proof.

4. TOPOLOGICAL PRELIMINARIES
In this part we summarize notions and results from the literature. They are mostly
standard in homotopy theory and can be found in textbooks—see, e.g., Hatcher
[Hatcher 2001] for topological notions and May [May 1967] for simplicial notions (we
also refer to Steenrod [Steenrod 1972] as an excellent background text, although its
terminology differs somewhat from the more modern usage). However, they are per-
haps not widely known to non-topologists, and they are somewhat scattered in the
literature. We also aim at conveying some simple intuition behind the various notions
and concepts, which is not always easy to get from the literature.

On the other hand, in order to follow the arguments in this paper, for some of the
notions it is sufficient to know some properties, and the actual definition is never used
directly. Such definitions are usually omitted; instead, we illustrate the notions with
simple examples or with an informal explanation.

Even readers with a strong topological background may want to skim this part be-
cause of the notation. Moreover, in Section 4.3 we discuss an algorithmic result on the
construction of Postnikov systems, which may not be well known.
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CW-complexes. Below we will state various topological results. Usually they hold
for fairly general topological spaces, but not for all topological spaces. The appropriate
level of generality for such results is the class of CW-complexes (or sometimes spaces
homotopy equivalent to CW-complexes).

A reader not familiar with CW-complexes may either look up the definition (e.g., in
[Hatcher 2001]), or take this just to mean “topological spaces of a fairly general kind,
including all simplicial complexes and simplicial sets”. It is also good to know that,
similar to simplicial complexes, CW-complexes are made of pieces (cells) of various
dimensions, where the 0-dimensional cells are also called vertices. There is only one
place, in Section 5.1, where a difference between CW-complexes and simplicial sets
becomes somewhat important, and there we will stress this.

4.1. Simplicial sets
Simplicial sets are our basic device for representing topological spaces and their maps
in our algorithm. Here we introduce them briefly, with emphasis on the ideas and intu-
ition, referring to Friedman [Friedman 2012] for a very friendly thorough introduction,
to [Curtis 1971; May 1967] for older compact sources, and to [Goerss and Jardine 1999]
for a more modern and comprehensive treatment.

A simplicial set can be thought of as a generalization of simplicial complexes. Similar
to a simplicial complex, a simplicial set is a space built of vertices, edges, triangles, and
higher-dimensional simplices, but simplices are allowed to be glued to each other and
to themselves in more general ways. For example, one may have several 1-dimensional
simplices connecting the same pair of vertices, a 1-simplex forming a loop, two edges
of a 2-simplex identified to create a cone, or the boundary of a 2-simplex all contracted
to a single vertex, forming an S2.

However, unlike for the still more general CW-complexes, a simplicial set can be
described purely combinatorially.

Another new feature of a simplicial set, in comparison with a simplicial complex,
is the presence of degenerate simplices. For example, the edges of the triangle with a
contracted boundary (in the last example above) do not disappear—formally, each of
them keeps a phantom-like existence of a degenerate 1-simplex.
Simplices, face and degeneracy operators. A simplicial set X is represented as a
sequence (X0, X1, X2, . . .) of mutually disjoint sets, where the elements ofXm are called
the m-simplices of X. For every m ≥ 1, there are m + 1 mappings ∂0, . . . , ∂m : Xm →
Xm−1 called face operators; the meaning is that for a simplex σ ∈ Xm, ∂iσ is the
face of σ obtained by deleting the ith vertex. Moreover, there are m + 1 mappings
s0, . . . , sm : Xm → Xm+1 (opposite direction) called the degeneracy operators; the mean-
ing of siσ is the degenerate simplex obtained from σ by duplicating the ith vertex. A
simplex is called degenerate if it lies in the image of some si; otherwise, it is nondegen-
erate. There are natural axioms that the ∂i and the si have to satisfy, but we will not
list them here, since we won’t really use them (and the usual definition of a simplicial
set is formally different anyway, expressed in the language of category theory).

We call X finite if it has finitely many nondegenerate simplices (every nonempty
simplicial set has infinitely many degenerate simplices).
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Examples. Here we sketch some basic examples of simplicial sets; again, we won’t
provide all details, referring to [Friedman 2012]. Let ∆n denote the standard n-
dimensional simplex regarded as a simplicial set. For n = 0, (∆0)m consists of a single
simplex, denoted by 0m, for every m = 0, 1, . . .; 00 is the only nondegenerate simplex.
The face and degeneracy operators are defined in the only possible way.

For n = 1, ∆1 has two 0-simplices (vertices), say 0 and 1, and in general there are
m+2 simplices in (∆1)m; we can think of the ith one as containing i copies of the vertex
0 and m+1− i copies of the vertex 1, i = 0, 1, . . . ,m+1. For n arbitrary, the m-simplices
of ∆n can be thought of as all nondecreasing (m + 1)-term sequences with entries in
{0, 1, . . . , n}; the ones with all terms distinct are nondegenerate.

In a similar fashion, every simplicial complex K can be converted into a simplicial
set X in a canonical way; however, first we need to fix a linear ordering of the vertices.
The nondegenerate m-simplices of X are in one-to-one correspondence with the m-
simplices of K, but many degenerate simplices show up as well.

Finally we mention a “very infinite” but extremely instructive example, the singu-
lar set, which contributed significantly to the invention of simplicial sets—as Steenrod
[Steenrod 1972] puts it, the definition of a simplicial set is obtained by writing down
fairly obvious properties of the singular set. For a topological space Y , the singular set
S(Y ) is the simplicial set whose m-simplices are all continuous maps of the standard
m-simplex into Y . The ith face operator ∂i : S(Y )m → S(Y )m−1 is given by the composi-
tion with a canonical mapping that sends the standard (m− 1)-simplex to the ith face
of the standard m-simplex. Similarly, the ith degeneracy operator is induced by the
canonical mapping that collapses the standard (m+1)-simplex to its ithm-dimensional
face and then identifies this face with the standard m-simplex, preserving the order of
the vertices.
Geometric realization. Similar to a simplicial complex, each simplicial set X de-
fines a topological space |X| (the geometric realization of X), uniquely up to home-
omorphism. Intuitively, one takes disjoint geometric simplices corresponding to the
nondegenerate simplices of X, and glues them together according to the identifica-
tions implied by the face and degeneracy operators (we again refer to the literature,
especially to [Friedman 2012], for a formal definition).
k-reduced simplicial sets. A simplicial set X is called k-reduced if it has a sin-
gle vertex and no nondegenerate simplices in dimensions 1 through k. Such an X is
necessarily k-connected.

A similar terminology can also be used for CW-complexes; k-reduced means a single
vertex (0-cell) and no cells in dimensions 1 through k.
Products. The productX×Y of two simplicial sets is formally defined in an incredibly
simple way: we have (X × Y )m := Xm × Ym for every m, and the face and degeneracy
operators work componentwise; e.g., ∂i(σ, τ) := (∂iσ, ∂iτ). As expected, the product of
simplicial sets corresponds to the Cartesian product of the geometric realizations, i.e.,
|X × Y | ∼= |X| × |Y |.16 The simple definition hides some intricacies, though, as one
can guess after observing that, for example, the product of two 1-simplices is not a
simplex—so the above definition has to imply some canonical way of triangulating the
product. It indeed does, and here the degenerate simplices deserve their bread.
Cone and suspension. Given a simplicial set X, the cone CX is a simplicial set
obtained by adding a new vertex ∗ to X, taking all simplices of X, and, for every m-
simplex σ ∈ Xm and every i ≥ 1, adding to CX the (m + i)-simplex obtained from

16To be precise, the product of topological spaces on the right-hand side should be taken in the category of
k-spaces; but for the spaces we encounter, it is the same as the usual product of topological spaces.
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σ by adding i copies of ∗. In particular, the nondegenerate simplices of CX are the
nondegenerate simplices of X plus the cones over these (obtained by adding a single
copy of ∗). We skip the definition of face and degeneracy operators for CX as usual. The
definitions are discussed, e.g., in [Goerss and Jardine 1999, Chapter III.5], although
there they are given in a more abstract language, and later (in Section 6.3 below) we
will state the concrete properties of CX that we will need.

We will also need the suspension SX; this is the simplicial set CX/X obtained from
CX by contracting all simplices of X into a single vertex. The following picture illus-
trates both of the constructions for a 1-dimensional X:

X CX SX

Topologically, SX is the usual (unreduced) suspension ofX, which is often presented as
erecting a double cone over X (or a join with an S0). This would also be the “natural”
way of defining the suspension for a simplicial complex, but the above definition for
simplicial sets is combinatorially different, although topologically equivalent. Even if
X is a simplicial complex, SX is not. For us, the main advantage is that the simplicial
structure of SX is particularly simple; namely, for m > 0, the m-simplices of SX are in
one-to-one correspondence with the (m− 1)-simplices of X.17

Simplicial maps and homotopies. Simplicial sets serve as a combinatorial way of
describing a topological space; in a similar way, simplicial maps provide a combinato-
rial description of continuous maps.

A simplicial map f : X → Y of simplicial sets X,Y consists of maps fm : Xm → Ym,
m = 0, 1, . . ., that commute with the face and degeneracy operators. We denote the set
of all simplicial maps X → Y by SMap(X,Y ).18

It is useful to observe that it suffices to specify a simplicial map f : X → Y on the
nondegenerate simplices of X; the values on the degenerate simplices are then deter-
mined uniquely. In particular, if X is finite, then such an f can be specified as a finite
object.

A simplicial map f : X → Y induces a continuous map |f | : |X| → |Y | of the geometric
realizations in a natural way (we again omit the precise definition). Often we will take

17Let us also remark that in homotopy-theoretic literature, one often works with reduced cone and suspen-
sion, which are appropriate for the category of pointed spaces and maps. For example, the reduced suspen-
sion ΣX is obtained from SX by collapsing the segment that connects the apex of CX to the basepoint of X.
For CW-complexes, ΣX and SX are homotopy equivalent, so the difference is insignificant for our purposes.
18There is a technical issue to be clarified here, concerning pointed maps. We recall that a pointed space
(X,x0) is a topological space X with a choice of a distinguished point x0 ∈ X (the basepoint). In a CW-
complex or simplicial set, we will always assume the basepoint to be a vertex. A pointed map (X,x0) →
(Y, y0) of pointed spaces is a continuous map sending x0 to y0. Homotopies of pointed maps are also meant
to be pointed; i.e., they must keep the image of the basepoint fixed. The reader may recall that, for example,
the homotopy groups πk(Y ) are really defined as homotopy classes of pointed maps.

If X,Y are simplicial sets, X is arbitrary, and Y is a 1-reduced (thus, it has a single vertex, which is the
basepoint), as will be the case for the targets of simplicial maps in our algorithm, then every simplicial map
is automatically pointed. Thus, in this case, we need not worry about pointedness.

A topological counterpart of this is that, if Y is a 1-connected CW-complex, then every map X → Y is
(canonically) homotopic to a map sending x0 to y0, and thus [X,Y ] is canonically isomorphic to the set of all
homotopy classes of pointed maps X → Y .
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the usual liberty of omitting | · | and not distinguishing between simplicial sets and
maps and their geometric realizations.

Of course, not all continuous maps are induced by simplicial maps. But the useful-
ness of simplicial sets for our algorithm (and many other applications) stems mainly
from the fact that, if the target Y has the Kan extension property, then every continuous
map ϕ : |X| → |Y | is homotopic to a simplicial map f : X → Y .19

The Kan extension property is a certain property of a simplicial set (and the sim-
plicial sets having it are called Kan simplicial sets), which need not be spelled out
here—it will suffice to refer to standard results to check the property where needed. In
particular, every simplicial group is a Kan simplicial set, where a simplicial group G is
a simplicial set for which everyGm is endowed with a group structure, and the face and
degeneracy operators are group homomorphisms (we will see examples in Section 4.2
below).

Homotopies of simplicial maps into a Kan simplicial set can also be represented
simplicially. Concretely, a simplicial homotopy between two simplicial maps f, g : X →
Y is a simplicial map F : X × ∆1 → Y such that F |X×{0} = f and F |X×{1} = g; here,
as we recall, ∆1 represents the geometric 1-simplex (segment) as a simplicial set, and,
with some abuse of notation, {0} and {1} are the simplicial subsets of ∆1 representing
the two vertices. Again, if Y is a Kan simplicial set, then two simplicial maps f, g into
Y are simplicially homotopic iff they are homotopic in the usual sense as continuous
maps.
Locally effective simplicial sets and simplicial maps. Unsurprisingly, there is a
price to pay for the convenience of representing all continuous maps and homotopies
simplicially: a Kan simplicial set necessarily has infinitely many simplices in every
dimension (except for some trivial cases); thus we need nontrivial techniques for rep-
resenting it in a computer. Fortunately, the Kan simplicial sets relevant in our case
have a sufficiently regular structure and can be handled; suitable techniques were de-
veloped and presented in [Sergeraert 1994; Rubio and Sergeraert 2002; Romero et al.
2006; Rubio and Sergeraert 2005; 2012].

For algorithmic purposes, a simplicial set X is represented in a black box or oracle
manner, by a collection of various algorithms that allow us to access certain informa-
tion about X. Specifically, let X be a simplicial set, and suppose that some encoding
for the simplices of X by strings (finite sequences over some fixed alphabet, say {0, 1})
has been fixed.

We say thatX is locally effective if we have algorithms for evaluating the face and de-
generacy maps, i.e., i.e., given (the encoding of) a d-simplex σ of X and i ∈ {0, 1, . . . , d},
we can compute the simplex ∂iσ, and similarly for the degeneracy operators si.

A simplicial map f : X → Y is called locally effective if there is an algorithm that,
given (an encoding of) a simplex σ of X, computes (the encoding of) the simplex f(σ).

4.2. Eilenberg–MacLane spaces and cohomology

Cohomology. We will need some terminology from (simplicial) cohomology, such as
cochains, cocycles, and cohomology groups. However, these will be mostly a convenient
bookkeeping device for us, and we won’t need almost any properties of cohomology.

For a simplicial complex X, an integer n ≥ 0, and an Abelian group π, an n-
dimensional cochain with values in π is an arbitrary mapping cn : Xn → π, i.e., a label-

19The reader may be familiar with the simplicial approximation theorem, which states that for every con-
tinuous map ϕ : |K| → |L| between the polyhedra of simplicial complexes, there is a simplicial map of a
sufficiently fine subdivision of K into L that is homotopic to ϕ. The crucial difference is that in the case of
simplicial sets, if Y has the Kan extension property, we need not subdivide X at all!
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ing of the n-dimensional simplices of X with elements of π. The set of all n-dimensional
cochains is (traditionally) denoted by Cn(X;π); with componentwise addition, it forms
an Abelian group.

For a simplicial set X, we define Cn(X;π) to consist only of cochains in which all
degenerate simplices receive value 0 (these are sometimes called normalized cochains).

Given an n-cochain cn, the coboundary of cn is the (n+ 1)-cochain dn+1 = δcn whose
value on a τ ∈ Xn+1 is the sum of the values of cn over the n-faces of τ (taking orienta-
tions into account); formally,

dn+1(τ) =

n+1∑
i=0

(−1)icn(∂iτ).

A cochain cn is a cocycle if δcn = 0; Zn(X;π) ⊆ Cn(X;π) is the subgroup of all
cocycles (Z for koZyklus), i.e., the kernel of δ. The subgroup Bn(X;π) ⊆ Cn(X;π) of
all coboundaries is the image of δ; that is, cn is a coboundary if cn = δbn−1 for some
(n− 1)-cochain bn−1.

The nth (simplicial) cohomology group of X is the factor group

Hn(X;π) := Zn(X;π)/Bn(X;π)

(for this to make sense, of course, one needs the basic fact δ ◦ δ = 0).
Eilenberg–MacLane spaces as “simple ranges”. The homotopy groups πk(Y ) are
among the most important invariants of a topological space Y . The group πk(Y ) col-
lects information about the “k-dimensional structure” of Y by probing Y with all pos-
sible maps from Sk. Here the sphere Sk plays a role of the “simplest nontrivial” k-
dimensional space; indeed, in some respects, for example concerning homology groups,
it is as simple as one can possibly get.

However, as was first revealed by the famous Hopf map S3 → S2, the spheres are
not at all simple concerning maps going into them. In particular, the groups πk(Sn)
are complicated and far from understood, in spite of a huge body of research devoted to
them. So if one wants to probe a spaceX with maps going into some “simple nontrivial”
space, then spaces other than spheres are needed—and the Eilenberg–MacLane spaces
can play this role successfully.

Given an Abelian group π and an integer n ≥ 1, an Eilenberg–MacLane spaceK(π, n)
is defined as any topological space T with πn(T ) ∼= π and πk(T ) = 0 for all k 6= n. It is not
difficult to show that a K(π, n) exists (by taking a wedge of n-spheres and inductively
attaching balls of dimensions n + 1, n + 2, . . . to kill elements of the various homotopy
groups), and it also turns out that K(π, n) is unique up to homotopy equivalence.20

The circle S1 is (one of the incarnations of) aK(Z, 1), andK(Z2, 1) can be represented
as the infinite-dimensional real projective space, but generally speaking, the spaces
K(π, n) do not look exactly like very simple objects.
Maps into K(π, n). Yet the following elegant fact shows that the K(π, n) indeed
constitute “simple” targets of maps.

LEMMA 4.1. For every n ≥ 1 and every Abelian group π, we have

[X,K(π, n)] ∼= Hn(X;π),

where X is a simplicial complex (or a CW-complex).

This is a basic and standard result (e.g., [May 1967, Lemma 24.4] in a simplicial
setting), but nevertheless we will sketch an intuitive geometric proof, since it explains

20Provided that we restrict to spaces that are homotopy equivalent to CW-complexes.
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why maps into K(π, n) can be represented discretely, by cocycles, and this is a key step
towards representing maps in our algorithm.

PROOF SKETCH. For simplicity, let X be a finite simplicial complex (the argument
works for a CW-complex in more or less the same way), and let us consider an arbitrary
continuous map f : |X| → K(π, n), n ≥ 2.

First, let us consider the restriction of f to the (n − 1)-skeleton X(n−1) of X. Since
by definition, K(π, n) is (n − 1)-connected, f |X(n−1) is homotopic to the constant map
sending X(n−1) to a single point y0 (we can imagine pulling the images of the simplices
to y0 one by one, starting with vertices, continuing with 1-simplices, etc., up to (n− 1)-
simplices). Next, the homotopy of f |X(n−1) with this constant map can be extended to
a homotopy of f with a map f̃ defined on all of X (this is a standard fact known as the
homotopy extension property of X, valid for all CW-complexes, among others). Thus,
f̃ ∼ f sends X(n−1) to y0.

Next, we consider an n-simplex σ of X. All of its boundary now goes to y0, and so
the restriction of f̃ to σ can be regarded as a map Sn → K(π, n) (since collapsing
the boundary of an n-simplex to a point yields an Sn). Thus, up to homotopy, f̃ |σ is
described by an element of πn(K(π, n)) = π. In this way, f̃ defines a cochain cn = cn

f̃
∈

Cn(X;π). The following picture captures this schematically:

σ2

σ0σ1
f

f(σ2) f(σ0)

f(σ1)

K(π, n)

cn(σ2) cn(σ0)

cn(σ1)

f̃

y0

The target space K(π, n) is illustrated as having a hole “responsible” for the nontrivi-
ality of πn.

We note that f̃ is not determined uniquely by f , and cn
f̃

may also depend on the

choice of f̃ .
Next, we observe that every cochain of the form cn

f̃
is actually a cocycle. To this end,

we consider an (n + 1)-simplex τ ∈ Xn+1. Since f̃ is defined on all of τ , the restric-
tion f̃ |∂τ to the boundary is nullhomotopic. At the same time, f̃ |∂τ can be regarded
as the sum of the elements of πn(K(π, n)) represented by the restrictions of f̃ to the
n-dimensional faces of τ .

Indeed, for any space Y the sum [f ] of two elements [f1], [f2] ∈ πn(Y ) can be rep-
resented by contracting an (n − 1)-dimensional “equator” of Sn to the basepoint, thus
obtaining a wedge of two Sn’s, and then defining f to be f1 on one of these and f2 on
the other, as indicated in the picture below on the left (this time for n = 2). Similarly,
in our case, the sum of the maps on the facets of τ can be represented by contracting
the (n− 1)-skeleton of τ to a point, and thus obtaining a wedge of n+ 2 n-spheres.
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f1

f2
Sn

Therefore, we have (δcn)(τ) = 0, and cn = cn
f̃
∈ Zn(X;π) as claimed.

Conversely, given any zn ∈ Zn(X;π), one can exhibit a map f̃ : X → K(π, n) with
cn
f̃

= zn. Such an f̃ is build one simplex of X at a time. First, all simplices of dimension
at most n − 1 are sent to y0. For every σ ∈ Xn, we choose a representative of the
element zn(σ) ∈ πn(K(π, n)), which is a (pointed) map Sn → K(π, n), and use it to
map σ. Then for τ ∈ Xn+1, f̃ can be extended to τ , since f̃ |∂τ is nullhomotopic by the
cocycle condition for zn. Finally, for a simplex ω of dimension larger than n + 1, the f̃
constructed so far is necessarily nullhomotopic on ∂ω because πk(K(π, n)) = 0 for all
k > n, and thus an extension to ω is always possible.

We hope that this may convey some idea where the cocycle representation of maps
intoK(π, n) comes from. By similar, but a little more complicated considerations, which
we omit here, one can convince oneself that two maps f, g : X → K(π, n) are homotopic
exactly when the corresponding cocycles cn

f̃
and cng̃ differ by a coboundary. In particular,

for a given f , the cocycle cn
f̃

may depend on the choice of f̃ , but the cohomology class
cn
f̃

+Bn(X;π) does not. This finishes the proof sketch.

A Kan simplicial model of K(π, n). The Eilenberg–MacLane spaces K(π, n) can be
represented as Kan simplicial sets, and actually as simplicial groups, in an essentially
unique way; we will keep the notation K(π, n) for this simplicial set as well.

Namely, the set of m-simplices of K(π, n) is given by the amazing formula

K(π, n)m := Zn(∆m;π).

More explicitly, an m-simplex σ can be regarded as a labeling of the n-dimensional
faces of the standard m-simplex by elements of the group π; moreover, the labels must
add up to 0 on every (n+ 1)-face. There are

(
m+1
n+1

)
nondegenerate n-faces of ∆m, and so

an m-simplex σ ∈ K(π, n)m is determined by an ordered
(
m+1
n+1

)
-tuple of elements of π.

It is not hard to define the face and degeneracy operators for K(π, n), but we omit
this since we won’t use them explicitly (see, e.g., [May 1967; Rubio and Sergeraert
2012]). It suffices to say that the degenerate σ are precisely those labelings with two
facets of ∆m labeled identically and zero everywhere else.

In particular, for every m ≥ 0, we have an m-simplex in K(π, n) formed by the zero
n-cochain, which is nondegenerate for m = 0 and degenerate for m > 0, and which we
write simply as 0 (with the dimension understood from context). It is remarkable that
the zero n-cochain on ∆0 is the only vertex of the simplicial set K(π, n) for n > 0.

We won’t prove that this is indeed a simplicial model of K(π, n). Let us just note that
K(π, n) is (n− 1)-reduced, and its n-simplices correspond to elements of π (since an n-
cocycle on ∆n is a labeling of the single nondegenerate n-simplex of ∆n by an element
of π). Thus, each n-simplex of K(π, n) “embodies” one of the possible ways of mapping
the interior of ∆n into K(π, n), given that the boundary goes to the basepoint. The
(n+ 1)-simplices then “serve” to get the appropriate addition relations among the just
mentioned maps, so that this addition works as that in π, and the higher-dimensional
simplices kill all the higher homotopy groups.
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The (elementwise) addition of cochains makes K(π, n) into a simplicial group, and
consequently, K(π, n) is a Kan simplicial set.
The simplicial sets E(π, n). The m-simplices in the simplicial Eilenberg–MacLane
spaces as above are all n-cocycles on ∆m. If we take all n-cochains, we obtain another
simplicial set called E(π, n). Thus, explicitly,

E(π, n)m := Cn(∆m;π).

As a topological space, E(π, n) is contractible, and thus not particularly interesting
topologically in itself, but it makes a useful companion to K(π, n). Obviously, K(π, n) ⊆
E(π, n), but there are also other, less obvious relationships.

Since an m-simplex σ ∈ E(π, n) is formally an n-cochain, we can take its coboundary
δσ. This is an (n + 1)-coboundary (and thus also cocycle), which we can interpret as
an m-simplex of K(π, n+ 1). It turns out that this induces a simplicial map E(π, n)→
K(π, n+ 1), which is (with the usual abuse of notation) also denoted by δ. This map is
actually surjective, since the relevant cohomology groups of ∆m are all zero and thus
all cocycles are also coboundaries.
Simplicial maps intoK(π, n) andE(π, n). We have the following “simplicial” coun-
terpart of Lemma 4.1:

LEMMA 4.2. For every simplicial complex (or simplicial set) X, we have

SMap(X,K(π, n)) ∼= Zn(X;π) and SMap(X,E(π, n)) ∼= Cn(X;π).

We refer to [May 1967, Lemma 24.3] for a proof; here we just describe how the iso-
morphism21 works, i.e., how one passes between cochains and simplicial maps. This
is not hard to guess from the formal definition—there is just one way to make things
match formally.

Namely, given a cn ∈ Cn(X;π), we want to construct the corresponding simplicial
map s = s(cn) : X → E(π, n). We consider an m-simplex σ ∈ Xm. There is exactly one
way of inserting the standard m-simplex ∆m to the “place of σ” into X; more formally,
there is a unique simplicial map iσ : ∆m → X that sends the m-simplex of ∆m to σ
(indeed, a simplicial map has to respect the ordering of vertices, implicit in the face
and degeneracy operators). Thus, for every such σ, the cochain cn defines a cochain
i∗σ(cn) on ∆m (the labels of the n-faces of σ are pulled back to ∆m), and that cochain is
taken as the image s(σ).

For the reverse direction, i.e., from a simplicial map s to a cochain, it suffices to look
at the images of the n-simplices under s: these are n-simplices of E(π, n) which, as
we have seen, can be regarded as elements of π—thus, they define the values of the
desired n-cochain.
Simplicial homotopy in SMap(X,K(π, n)). Now that we have a description of sim-
plicial maps X → K(π, n), we will also describe homotopies (or equivalently, simplicial
homotopies) among them. It turns out that the additive structure (cocycle addition) on
SMap(X,K(π, n)) ∼= Zn(X;π) reduces the question of whether two maps represented
by cocycles c1 and c2 are homotopic to the question whether their difference c1 − c2 is
nullhomotopic (homotopic to a constant map).

21Both sets carry an Abelian group structure, and the bijection between them preserves these. For the
set Zn(X;π) of cocycles, the group structure is given by the usual addition of cocycles. For the set
SMap(X,K(π, n)) of simplicial maps, the group structure is given by the fact that K(π, n) is a simplicial
Abelian group, so simplicial maps into it can be added componentwise (simplexwise).
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LEMMA 4.3. Let cn1 , cn2 ∈ Zn(X;π) be two cocycles. Then the simplicial maps s1, s2 ∈
SMap(X,K(π;n)) represented by cn1 , c

n
2 , respectively, are simplicially homotopic iff c1

and c2 are cohomologous, i.e., c1 − c2 ∈ Bn(X;π).

We refer to [May 1967, Theorem 24.4] for a proof. We also remark that a simplicial
version of Lemma 4.1 is actually proved using Lemmas 4.2 and 4.3.

4.3. Postnikov systems
Now that we have a combinatorial representation of maps from X into an Eilenberg–
MacLane space, and of their homotopies, it would be nice to have similar descriptions
for other target spaces Y . Expressing Y through its simplicial Postnikov system comes
as close to fulfilling this plan as seems reasonably possible.

Postnikov systems are somewhat complicated objects, and so we will not discuss
them in detail, referring to standard textbooks ([Hatcher 2001] in general and [May
1967] for the simplicial case) instead. First we will explain some features of a Postnikov
system in the setting of topological spaces and continuous maps; this part, strictly
speaking, is not necessary for the algorithm. Then we introduce a simplicial version
of a Postnikov system, and summarize the properties we will actually use. Finally, we
will present the subroutine used to compute Postnikov systems.
Postnikov systems on the level of spaces and continuous maps. Let Y be a
CW-complex. A Postnikov system (also called a Postnikov tower) for Y is a sequence of
spaces P0, P1, P2, . . ., where P0 is a single point, together with maps ϕi : Y → Pi and
pi : Pi → Pi−1 such that pi ◦ ϕi = ϕi−1, i.e., the following diagram commutes:

...
P2

P1

P0Y

p2

p1

ϕ2

ϕ1

ϕ0

Informally, the Pi, called the stages of the Postnikov system, can be thought of as
successive stages in a process of building Y (or rather, a space homotopy equivalent to
Y ) “layer by layer” from the Eilenberg–Mac Lane spaces K(πi(Y ), i).

More formally, it is required that for each i, the mapping ϕi induces an isomorphism
πj(Y ) ∼= πj(Pi) of homotopy groups for every j ≤ i, while πj(Pi) = 0 for all j > i. These
properties suffice to define a Postnikov system uniquely up to homotopy equivalence,
provided that Y is 0-connected and the Pi are assumed to be CW-complexes; see, e.g.,
Hatcher [Hatcher 2001, Section 4.3].

For the rest of this paper, we will abbreviate πi(Y ) to πi.
One usually works with Postnikov systems with additional favorable properties,

sometimes called standard Postnikov systems, and for these to exist, more assump-
tions on Y are needed—in particular, they do exist if Y is 1-connected. In this case, the
first two stages, P0 and P1, are trivial, i.e., just one-point spaces.

Standard Postnikov systems on the level of topological spaces are defined using the
notion of principal fibration, which we do not need/want to define here. Let us just
sketch informally how Pi is built from Pi−1 and K(πi, i). Locally, Pi “looks like” the
product Pi−1 × K(πi, i), in the sense that the fiber p−1

i (x) of every point x ∈ Pi−1 is
(homotopy equivalent to) K(πi, i). However, globally Pi is usually not the product as
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above; rather, it is “twisted” (technically, it is the total space of the fibration K(πi, i)→
Pi

pi→ Pi−1). A somewhat simple-minded analogue is the way the Möbius band is made
by putting a segment “over” every point of S1, looking locally like the product S1 ×
[−1, 1] but globally, of course, very different from that product.

The way of “twisting” the K(πi, i) over Pi−1 to form Pi is specified, for reasons that
would need a somewhat lengthy explanation, by a mapping ki−1 : Pi−1 → K(πi, i + 1).
As we know, each such map ki−1 can be represented by a cocycle in Zi+1(Pi−1;πi), and
since it really suffices to know ki−1 only up to homotopy, it is enough to specify it by
an element of the cohomology group Hi+1(Pi−1;πi). This element is also commonly
denoted by ki−1 and called the (i− 1)st Postnikov class22 of Y .

The beauty of the thing is that Pi, which conveys, in a sense, complete information
about the homotopy of Y up to dimension i, can be reconstructed from the discrete data
given by π2, k2, π3, k3, . . . , ki−1, πi.

For our purposes, a key fact, already mentioned in the outline section, is the follow-
ing:

PROPOSITION 4.4. If X is a CW-complex of dimension at most i, and Y is a 1-
connected CW-complex, then there is a bijection between [X,Y ] and [X,Pi] (which is
induced by composition with the map ϕi).

Simplicial Postnikov systems. To use Postnikov systems algorithmically, we rep-
resent the objects by simplicial sets and maps (this was actually the setting in which
Postnikov originally defined them). Concretely, we will use the so-called pullback rep-
resentation (as opposed to some other sources, where a twisted product representation
can be found—but these representations can be converted into one another without
much difficulty).

We let K(π, n) and E(π, n) stand for the particular simplicial sets as in Section 4.2.
The i-th stage Pi of the Postnikov system for Y is represented as a simplicial subset of
the product Pi−1 × Ei ⊆ E0 × E1 × · · · × Ei, where Ej := E(πj , j). An m-simplex of Pi
can thus be written as (σ0, . . . , σi−1, σi), where σj ∈ Cj(∆m, πj) is a simplex of Ej . It
will also be convenient to write (σ0, . . . , σi−1) ∈ Pi−1 as σ and thus write a simplex of
Pi in the form (σ, σi).

We will introduce the following convenient abbreviations for the Eilenberg–MacLane
spaces appearing in the Postnikov system (the first of them is quite standard):

Ki+1 := K(πi, i+ 1),

Li := K(πi, i).

The simplicial version of (a representative of) the Postnikov class ki−1 is a simplicial
map

ki−1 ∈ SMap(Pi−1,Ki+1).

Since Ki+1 is an Eilenberg–MacLane space, we can, and will, also represent ki−1 as a
cocycle in Zi+1(Pi−1, πi).

In this version, instead of “twisting”, ki−1 is used to “cut out” Pi from the product
Pi−1 × Ei, as follows:

Pi := {(σ, σi) ∈ Pi−1 × Ei : ki−1(σ) = δσi}, (3)
where δ : Ei → Ki+1 is given by the coboundary operator, as was described above after
the definition of E(π, n). The map pi : Pi → Pi−1 in this setting is simply the projection
forgetting the last coordinate, and so it need not be specified explicitly.

22In the literature, Postnikov factor or Postnikov invariant are also used with the same meaning.
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A:26 M. Čadek et al.

We remark that this describes what the simplicial Postnikov system looks like, but
it does not say when it really is a Postnikov system for Y . We won’t discuss the appro-
priate conditions here; we will just accept a guarantee of the algorithm in Theorem 4.5
below, that it computes a valid Postnikov system for Y , and in particular, such that it
fulfills Proposition 4.4.

We also state another important property of the stages Pi of the simplicial Postnikov
system of a simply connected Y : they are Kan simplicial sets (see, e.g. [Brown (jun.)
1957]). Thus, for any simplicial set X, there is a bijection between the set of simplicial
maps X → Pi modulo simplicial homotopy and the set of homotopy classes of continu-
ous maps between the geometric realizations. Slightly abusing notation, we will denote
both sets by [X,Pi].
Computing Postnikov systems. Let Y be a 1-connected locally effective simplicial
set. For our purposes, we shall say that Y has a locally effective (truncated) Postnikov
system with n stages if the following are available:

— The homotopy groups πi = πi(Y ), 2 ≤ i ≤ n (provided with a fully effective represen-
tation).23

— The stages Pi and the Eilenberg–MacLane spaces Ki+1 and Li, i ≤ n, as locally
effective simplicial sets.

— The maps ϕi : Y → Pi, pi : Pi → Pi−1, and ki−1 : Pi−1 → Ki+1, i ≤ n, as locally
effective simplicial maps.24

As a preprocessing step for our main algorithm, we need the following result:

THEOREM 4.5 ([ČADEK ET AL. 2012, THEOREM 1.2]). There is an algorithm that,
given a 1-connected simplicial set Y with finitely many nondegenerate simplices (e.g., as
obtained from a finite simplicial complex) and an integer n, computes a locally effective
Postnikov system with n stages for Y .

REMARKS 4.6.

(1) In the case with π2 through πn all finite, each Pi, i ≤ n, has finitely many simplices
in the relevant dimensions, and so a locally effective Postnikov system can be repre-
sented simply by a lookup table. Brown [Brown (jun.) 1957] gave an algorithm for
computing a simplicial Postnikov system in this restricted setting.

(2) The algorithm for proving Theorem 4.5 combines the basic construction of Brown
with the framework of objects with effective homology (as explained, e.g., in [Rubio
and Sergeraert 2012]). We remark that the algorithm works under the weaker as-
sumption that Y is a simplicial set with effective homology, possibly with infinitely
many nondegenerate simplices.25

(3) In [Čadek et al. 2012], it is shown that for fixed n, the construction of the first n
stages of a Postnikov system for Y can actually carried out in time polynomial in

23For our algorithm, it suffices to have the πi represented as abstract Abelian groups, with no meaning
attached to the elements. However, if we ever wanted to translate the elements of [X,Pi] to actual maps
X → Y , we would need the generators of each πi represented as actual mappings, say simplicial, Si → Y .
24As explained above, the map ki−1 is represented by an (i + 1)-dimensional cocycle on Pi−1; thus, we
assume that we have an algorithm that, given an (i+ 1)-simplex σ ∈ Pi−1, returns the value ki−1(σ) ∈ πi.
Let us also remark that, by unwrapping the definition, we get that the input σ ∈ Pi−1 for ki−1 means a
labeling of the faces of ∆i+1 of all dimensions up to i−1, where j-faces are labeled by elements of πj . Readers
familiar with obstruction theory may see some formal similarity here: the (i − 1)st obstruction determines
extendability of a map defined on the i-skeleton to the (i+ 1)-skeleton, after possibly modifying the map on
the interiors of the i-simplices.
25We also note that, for Y with only finitely many nondegenerate simplices, the maps ϕi : Y → Pi can be
represented by finite lookup tables, so we do not need to require specifically that they be locally effective.
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the size (number of nondegenerate simplices) of Y . The (lengthy) analysis, and even
the precise formulation of this result, involve some technical subtleties and depend
on the notions locally polynomial-time simplicial sets and objects with polynomial-
time homology, which refine the framework of locally effective simplicial sets and
of objects with effective homology and were developed in [Krčál et al. 2013; Čadek
et al. 2012]. We refer to [Čadek et al. 2012] for a detailed treatment.

An example: the Steenrod square Sq2. The Postnikov classes ki are not at all sim-
ple to describe explicitly, even for very simple spaces. As an illustration, we present an
example, essentially following [Steenrod 1947], where an explicit description is avail-
able: this is for Y = Sd, d ≥ 3, and it concerns the first ki of interest, namely, kd. It
corresponds to the Steenrod square Sq2 in cohomology, which Steenrod [Steenrod 1947]
invented for the purpose of classifying all maps from a (d+ 1)-dimensional complex K
into Sd—a special case of the problem treated in our paper.

For concreteness, let us take d = 3. Then k3 receives as the input a labeling of the 3-
faces of ∆5 by elements of π3(S3), i.e., integers (the lower-dimensional faces are labeled
with 0s since πj(S3) = 0 for j ≤ 2), and it should return an element of π4(S3) ∼= Z2.
Combinatorially, we can thus think of the input as a function c :

({0,1,...,5}
4

)
→ Z, and

the value of k3 turns out to be ∑
σ,τ

c(σ)c(τ) (mod 2),

where the sum is over three pairs of 4-tuples σ, τ as indicated in the following picture
(σ consists of the circled points and τ of the points marked by squares—there is always
a two-point overlap):

0 1 5. . . 0 1 5. . . 0 1 5. . .

This illustrates the nonlinearity of the Postnikov classes.

5. DEFINING AND IMPLEMENTING THE GROUP OPERATION ON [X,PI ]

We recall that the device that allows us to handle the generally infinite set [X,Y ] of
homotopy classes of maps, under the dimension/connectedness assumption of Theo-
rem 1.1, is an Abelian group structure. We will actually use the group structure on the
sets [X,Pi], d ≤ i ≤ 2d− 2. These will be computed inductively, starting with i = d (this
is the first nontrivial one).

Such a group structure with good properties exists, and is determined uniquely, be-
cause Pi may have nonzero homotopy groups only in dimensions d through 2d−2; these
are standard topological considerations, which we will review in Section 5.1 below.

However, we will need to work with the underlying binary operation �i∗ on the level
of representatives, i.e., simplicial maps in SMap(X,Pi). This operation lacks some of
the pleasant properties of a group—e.g., it may fail to be associative. Here considerable
care and attention to detail seem to be needed, and for an algorithmic implementation,
we also need to use the Eilenberg–Zilber reduction, a tool related to the methods of
effective homology.

5.1. An H-group structure on a space

H-groups. Let P be a CW-complex. We will consider a binary operation on P as a
continuous map µ : P ×P → P . For now, we will stick to writing µ(p, q) for the result of
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applying µ to p and q; later on, we will call the operation � (with a subscript, actually)
and write it in the more usual way as p� q.

The idea of H-groups is that the binary operation µ satisfies the usual group axioms
but only up to homotopy. To formulate the existence of an inverse in this setting, we
will also need an explicit mapping ν : P → P , continuous of course, representing inverse
up to homotopy.

We thus say that

(HA) µ is homotopy associative if the two maps P × P × P → P given by (p, q, r) 7→
µ(p, µ(q, r)) and by (p, q, r) 7→ µ(µ(p, q), r) are homotopic;

(HN) a distinguished element o ∈ P (basepoint, assumed to be a vertex in the simplicial
set representation) is a homotopy neutral element if the maps P → P given by
p 7→ µ(o, p) and p 7→ µ(p, o) are both homotopic to the identity idP ;

(HI) ν is a homotopy inverse if the maps p 7→ µ(ν(p), p) and p 7→ µ(p, ν(p)) are both
homotopic to the constant map p 7→ o;

(HC) µ is homotopy commutative if µ is homotopic to µ′ given by µ′(p, q) := µ(q, p).

An Abelian H-group thus consists of P , o, µ, ν as above satisfying (HA), (HN), (HI),
and (HC).

Of course, every Abelian topological group is also an Abelian H-group. A basic ex-
ample of an H-group that is typically not a group is the loop space ΩY of a topological
space Y (see, e.g. [Hatcher 2001, Section 4.3]). For readers familiar with the defini-
tion of the fundamental group π1(Y ), it suffices to say that ΩY is like the fundamental
group but without factoring the loops according to homotopy.

We also define an H-homomorphism of an H-group (P1, o1, µ1, ν1) into an H-group
(P2, o2, µ2, ν2) in a natural way, as a continuous map h : P1 → P2 with h(o1) = o2 and
such that the two maps (x, y) 7→ h(µ1(x, y)) and (x, y) 7→ µ2(h(x), h(y)) are homotopic.
A group structure on homotopy classes of maps. For us, an H-group structure
on P is a device for obtaining a group structure on the set [X,P ] of homotopy classes of
maps. In a similar vein, an H-homomorphism P1 → P2 yields a group homomorphism
[X,P1]→ [X,P2]. Here is a more explicit statement:

FACT 5.1. Let (P, o, µ, ν) be an Abelian H-group, and let X be a space. Let µ∗, ν∗ be
the operations defined on continuous maps X → P by pointwise composition with µ, ν,
respectively (i.e., µ∗(f, g)(x) := µ(f(x), g(x)), ν∗(f)(x) := ν(f(x))). Then µ∗, ν∗ define an
Abelian group structure on the set of homotopy classes [X,P ] by [f ]+[g] := [µ∗(f, g)] and
−[f ] := [ν∗(f)] (with the zero element given by the homotopy class of the map sending
all of X to o).

If h : P1 → P2 is an H-homomorphism of Abelian H-groups (P1, o1, µ1, ν1) and
(P2, o2, µ2, ν2), then the corresponding map h∗, sending a continuous map f : X → P1 to
h∗(f) : X → P2 given by h∗(f)(x) := h(f(x)), induces a homomorphism [h∗] : [X,P1] →
[X,P2] of Abelian groups.

This fact is standard, and also entirely routine to prove. We will actually work mostly
with a simplicial counterpart (which is proved in exactly the same way, replacing topo-
logical notions with simplicial ones everywhere). Namely, if X is a simplicial set, P
is a Kan simplicial set, and µ, ν are simplicial maps, then by a composition as above,
we obtain maps µ∗ : SMap(X,P ) × SMap(X,P ) → SMap(X,P ) and ν∗ : SMap(X,P ) →
SMap(X,P ), which induce an Abelian group structure on the set [X,P ] of simplicial
homotopy classes. Similarly, if h : P1 → P2 is a simplicial H-homomorphism (with ev-
erything else in sight simplicial), then h∗ : SMap(X,P1) → SMap(X,P2) defines a ho-
momorphism [h∗] : [X,P1]→ [X,P2].
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Moreover, if µ, ν are locally effective (i.e., given σ, τ ∈ P , we can evaluate µ(σ, τ)
and ν(σ)) and X has finitely many nondegenerate simplices, then µ∗, ν∗ are locally
effective as well. Indeed, as we have remarked, simplicial maps X → P are finitely
representable objects, and we will have them represented by vectors of cochains.

Thus, under the above conditions, we have the Abelian group [X,Pi] semi-effectively
represented, where the set of representatives is SMap(X,P ). Similarly, if h : P1 →
P2 is locally effective and X is has finitely many nondegenerate simplices, then
h∗ : SMap(X,P1)→ SMap(X,P2) is locally effective, too.
A canonical H-group structure from connectivity. In our algorithm, the exis-
tence of a suitable H-group structure on Pi follows from the fact that Pi has nonzero
homotopy groups only in the range from d to i, i ≤ 2d− 2.

LEMMA 5.2. Let d ≥ 2 and let P be a (d − 1)-reduced CW complex with dis-
tinguished vertex (basepoint) o, and with nonzero πi(P ) possibly occurring only for
i = d, d + 1, . . . , 2d − 2. Then there are µ and ν such that (P, o, µ, ν) is an Abelian H-
group, and moreover, o is a strictly neutral element, in the sense that µ(o, p) = µ(p, o) = p
(equalities, not only homotopy).

Moreover, if µ′ is any continuous binary operation on P with o as a strictly neutral
element, then µ′ ∼ µ by a homotopy stationary on the subspace P ∨ P := (P × {o}) ∪
({o}×P ) (and, in particular, every such µ′ automatically satisfies (HA), (HC), and (HI)
with a suitable ν′).

This lemma is essentially well-known, and the necessary arguments appear, e.g.,
in Whitehead [Whitehead 1978]. We nonetheless sketch a proof, because we are not
aware of a specific reference for the lemma as stated, and also because it sheds some
light on how the assumption of (d− 1)-connectedness of Y in Theorem 1.1 is used.

The proof is based on the repeated application of the following basic fact (which is a
baby version of obstruction theory and can be proved by induction of the dimension of
the cells on which the maps or homotopies have to be extended).

FACT 5.3. Suppose that X and Y are CW complexes, A ⊆ X is a subcomplex, and
assume that there is some integer k such that all cells in X \A have dimension at least
k and that πi(Y ) = 0 for all i ≥ k − 1. Then the following hold:

(i) If f : A→ Y is a continuous map, then there exists an extension f ′ : X → Y of f (i.e.,
f ′|A = f ).

(ii) If f ∼ g : A → Y are homotopic maps, and if f ′, g′ : X → Y are arbitrary extensions
of f and of g, respectively, then f ′ ∼ g′ (by a homotopy extending the given one on A).

PROOF OF LEMMA 5.2. This proof is the only place where it is important that we
work with CW-complexes, as opposed to simplicial sets. This is because the product of
CW-complexes is defined differently from the product of simplicial sets. In the product
of CW-complexes, an i-cell times a j-cell yields an (i+j)-cell (and nothing else), while in
products of simplicial sets, simplices of problematic intermediate dimensions appear.

Let ϕ : P ∨ P → P be the folding map given by ϕ(o, p) := p, ϕ(p, o) := p, p ∈ P . Thus,
the strict neutrality of o just means that µ extends ϕ, and we can employ Fact 5.3.

Namely, all cells in (P × P ) \ (P ∨ P ) have dimension at least 2d, and πi(P ) = 0 for
i ≥ 2d − 1. Thus, ϕ can be extended to some µ : P × P → P , uniquely up to homotopy
stationary on P ∨ P .

From the homotopy uniqueness we get the homotopy commutativity (HC) imme-
diately (for free). Indeed, if we define µ′(p, q) := µ(q, p), then the homotopy unique-
ness applies and yields µ′ ∼ µ. The homotopy associativity (HA) is also simple. Let
ψ1, ψ2 : P 3 → P be given by ψ1(p, q, r) := µ(µ(p, q), r) and ψ2(p, q, r) := µ(p, µ(q, r)). Then
ψ1 = ψ2 on the subspace P ∨P ∨P := (P ×{o}×{o})∪ ({o}×P ×{o})∪ ({o}×{o}×P ).
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Since all cells in (P × P × P ) \ (P ∨ P ∨ P ) are of dimension at least 2d, Fact 5.3 gives
ψ1 ∼ ψ2.

The existence of a homotopy inverse is not that simple, and actually, we won’t need
it (since we will construct an inverse explicitly). For a proof, we thus refer to the liter-
ature: every 0-connected CW-complex with an operation satisfying (HA) and (HN) also
satisfies (HI); see, e.g., [Whitehead 1978, Theorem X.2.2, p. 461].

5.2. A locally effective H-group structure on the Postnikov stages
Now we are in the setting of Theorem 1.1; in particular, Y is a (d − 1)-connected sim-
plicial set. Let Pi, i ≥ 0, denote the ith stage of a locally effective simplicial Postnikov
system for Y , as in Section 4; we will consider only the first 2d − 2 stages. Since Y is
(d−1)-connected, P0 through Pd−1 are trivial (one-point), and each Pi is (d−1)-reduced.
We will occasionally refer to the Pd, Pd+1, . . . , P2d−2 as the stable stages of the Postnikov
system.

By Lemma 5.2, we know that the stable stages possess a (canonical) H-group struc-
ture. But we need to define the underlying operations on Pi concretely as simplicial
maps and, mainly, make them effective. Since Pi is typically an infinite object, we will
have just local effectivity, i.e., the operations can be evaluated algorithmically on any
given pair of simplices.

From now on, we will denote the “addition” operation on Pi by �i, and use the infix
notation σ �i τ . Similarly we write �iσ for the “inverse” of σ. For a more convenient
notation, we also introduce a binary version of �i by setting σ �i τ := σ �i (�iτ ).
Preliminary considerations. We recall that an m-simplex of Pi is written as
(σ0, σ1, . . . , σi), with σi ∈ Ci(∆m;πi(Y )). Thus, its components are cochains. One po-
tential source of confusion is that we already have a natural addition of such cochains
defined; they can simply be added componentwise, as effectively as one might ever
wish.

However, this cannot be used as the desired addition �i. The reason is that the Post-
nikov classes ki−1 are generally nonlinear, and thus ki−1 is typically not a homomor-
phism with respect to cochain addition. In particular, we recall that Pi was defined as
the subset of Pi−1×Ei “cut out” by ki−1, i.e., via ki−1(σ) = δσi, where σ = (σ0, . . . , σi−1).
Therefore, Pi is usually not even closed under the cochain addition.

Our approach to define a suitable operation �i is inductive. Suppose that we have
already defined �i−1 on Pi−1. Then we will first define �i on special elements of Pi
of the form (σ, 0), by just adding the σ’s according to �i−1 and leaving 0 in the last
component.

Another important special case of �i is on elements of the form (σ, σi) �i (0, τ i). In
this case, in spite of the general warning above against the cochain addition, the last
components are added as cochains: (σ, σi) �i (0, τ i) = (σ, σi + τ i). The main result
of this section constructs a locally effective �i that extends the two special cases just
discussed.

Let us remark that by definition, �i and �i, as simplicial maps, operate on simplices
of every dimension m. However, in the algorithm, we will be using them only up to
m ≤ 2d − 2, and so in the sequel we always implicitly assume that the considered
simplices satisfy this dimensional restriction.
The main result on �i,�i. The following proposition summarizes everything about
�i,�i we will need.

PROPOSITION 5.4. Let Y be a (d − 1)-connected simplicial set, d ≥ 2, and let
Pd, Pd+1, . . . , P2d−2 be the stable stages of a locally effective Postnikov system with 2d−2
stages for Y . Then each Pi has an Abelian H-group structure, given by locally effec-
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tive simplicial maps �i : Pi × Pi → Pi and �i : Pi → Piwith the following additional
properties:

(a) (σ, σi) �i (0, τ i) = (σ, σi + τ i) for all (σ, σi) ∈ Pi and τ i ∈ Li (we recall that Li =
K(πi, i).)

(b) �i(0, σi) = (0,−σi) for all σi ∈ Li.
(c) The projection pi : Pi → Pi−1 is a strict homomorphism, i.e., pi(σ �i τ ) = pi(σ) �i−1

pi(τ ) and pi(�iσ) = �i−1pi(σ) for all σ, τ ∈ Pi.
(d) If, moreover, i < 2d − 2, then the Postnikov class ki : Pi → Ki+2 is an H-

homomorphism (with respect to �i on Pi and the simplicial group operation +,
addition of cocycles, on Ki+2).

As was announced above, the proof of this proposition proceeds by induction on i.
The heart is an explicit and effective version of (d), which we state and prove as a
separate lemma.

LEMMA 5.5. Let Pi be a (d − 1)-connected simplicial set, and let 0,�i,�i be an
Abelian H-group structure on Pi, with �i,�i locally effective. Let ki : Pi → Ki+2 be
a simplicial map, where i < 2d − 2. Then there is a locally effective simplicial map
Ai : Pi → Ei+1 such that, for all simplices σ, τ of equal dimension, Ai(σ,0) = Ai(0, τ ) =
0, and

ki(σ �i τ ) = ki(σ) + ki(τ ) + δAi(σ, τ ).

We recall that δ : Ei+1 → Ki+2 is the simplicial map induced by the coboundary
operator, and that a simplicial map f : Pi → Ki+2 is nullhomotopic iff it is of the form
δ ◦ F for some F : Pi → Ei+1 (see Lemma 4.3). Therefore, the map Ai is an “effective
witness” for the nullhomotopy of the map (σ, τ ) 7→ ki(σ �i τ )− ki(σ)− ki(τ ), and so it
shows that ki is an H-homomorphism.

We postpone the proof of the lemma, and prove the proposition first.

PROOF OF PROPOSITION 5.4. As was announced above, we proceed by induction on
i. As an inductive hypothesis, we assume that, for some i < 2d−2, locally effective sim-
plicial maps �i,�i providing an H-group structure on Pi have been defined satisfying
(a)–(c) in the proposition.

This inductive hypothesis is satisfied in the base case i = d: in this case we have
Pd = Ld, and �d and �d are the addition and additive inverse of cocycles (under which
Ld is even a simplicial Abelian group). Then (a),(b) obviously hold and (c) is void.

In order to carry out the inductive step from i to i+ 1, we first apply Lemma 5.5 for
Pi, �i, and ki, which yields a locally effective simplicial map Ai : Pi × Pi → Ei+1 with
Ai(σ,0) = Ai(0, τ ) = 0 and ki(σ �i τ ) = ki(σ) + ki(τ ) + δAi(σ, τ ), for all σ, τ . As was
remarked after the lemma, this implies that ki is an H-homomorphism with respect
to �i.

Next, using Ai, we define the operations �i+1,�i+1 on Pi+1. We set

(σ, σi+1) �i+1 (τ , τ i+1) := (σ �i τ , ω
i+1), where ωi+1 := σi+1 + τ i+1 +Ai(σ, τ ). (4)

Why is �i+1 simplicial? Since �i is simplicial, it suffices to consider the last compo-
nent, and this is a composition of simplicial maps, namely, of projections, Ai, and the
operation + in the simplicial group Ei+1. Clearly, �i+1 is also locally effective.

We also need to check that Pi+1 is closed under this �i+1. We recall that, for
σ ∈ Pi, the condition for (σ, σi+1) ∈ Pi+1 is ki(σ) = δσi+1. Using this condition
for (σ, σi+1), (τ , τ i+1) ∈ Pi+1, together with σ �i τ ∈ Pi (inductive assumption),
and the property of ki above, we calculate ki(σ �i τ ) = ki(σ) + ki(τ ) + δAi(σ, τ ) =
δσi+1 + δτ i+1 + δAi(σ, τ ) = δωi+1, and thus (σ, σi+1) �i+1 (τ , τ i+1) ∈ Pi+1 as needed.
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A:32 M. Čadek et al.

Part (a) of the proposition for �i+1 follows from (4) and the property Ai(0, τ ) = 0 =
Ai(σ,0). In particular, (0, 0) is a strictly neutral element for �i+1.

Moreover, as a continuous map, �i+1 fulfills the assumptions on µ′ in Lemma 5.2,
and thus it satisfies the axioms of an Abelian H-group operation.

Next, we define the inverse operation �i+1 by

�i+1(σ, σi+1) := (�iσ,−σi+1 −Ai(σ,�iσ)).

It is simplicial for the same reason as that for �i+1, and by a computation similar to
the one for �i+1 above, we verify that Pi+1 is closed under �i+1.

To verify that this �i+1 indeed defines a homotopy inverse to �i+1, we check that it
actually is a strict inverse. Inductively, we assume σ �i σ = 0 for all σ ∈ Pi, and from
the formulas defining �i+1 and �i+1, we check that (σ, σi+1) �i+1 (σ, σi+1) = (0, 0).
Another simple calculation yields (b) for �i+1.

Part (c) for �i+1 and �i+1 follows from the definitions and from Ai(0,0) = 0. This
finishes the induction step and proves the proposition.

PROOF OF LEMMA 5.5. Here we will use (“locally”) some terminology concerning
chain complexes (e.g., chain homotopy, homomorphism of chain complexes), for which
we refer to the literature (standard textbooks, say [Hatcher 2001]).

First we define the nonadditivity map ai : Pi × Pi → Ki+2 by

ai(σ, τ ) := ki(σ �i τ )− ki(σ)− ki(τ ).

(Thus, the map ai measures the failure of ki to be strictly additive with respect to �i.)
We want to show that ai = δAi for a locally effective Ai.

Let us remark that the existence of Ai can be proved by an argument similar to the
one in Lemma 5.2. That argument works for CW-complexes, and as was remarked in
the proof of that lemma, it is essential that the product of an i-cell and a j-cell is an
(i+ j)-cell and nothing else. For simplicial sets the product is defined differently, and if
we consider Pi×Pi as a simplicial set, we do get simplices of “unpleasant” intermediate
dimensions there.

We will get around this using the Eilenberg–Zilber reduction (which is also one of
the basic tools in effective homology—but we won’t need effective homology directly);
here, we follow the exposition in [Gonzalez-Diaz and Real 2005] (see also [Rubio and
Sergeraert 2012, Sections 7.8 and 8.2]). Loosely speaking, it will allow us to convert the
setting of the simplicial set Pi × Pi to a setting of a tensor product of chain complexes,
where only terms of the “right” dimensions appear.

We note that Ai is defined on an infinite object, so we cannot compute it globally—we
need a local algorithm for evaluating it, yet its answers have to be globally consistent
over the whole computation.

First we present the Eilenberg–Zilber reduction for an arbitrary simplicial set P
with basepoint (and single vertex) o. The reduction consists of three locally effective
maps26 AW, EML and SHI that fit into the following diagram:

C∗(P )⊗ C∗(P ) C∗(P × P ) SHI

EML

AW

26The acronyms stand for the mathematicians Alexander and Whitney, Eilenberg and Mac Lane, and Shih,
respectively.
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Here C∗(·) denotes the (normalized) chain complex of a simplicial set, with integer
coefficients (so we omit the coefficient group in the notation). For brevity, chains of all
dimensions are collected into a single structure (whence the star subscript), and ⊗ is
the tensor product. Thus, (C∗(P ) ⊗ C∗(P ))n =

⊕
i+j=n Ci(P ) ⊗ Cj(P ). The operators

AW and EML are homomorphisms of chain complexes, while SHI is a chain homotopy
operator raising the degree by +1. Thus, for each n, we have AWn : Cn(P × P ) →
(C∗(P ) ⊗ C∗(P ))n, EMLn : (C∗(P ) ⊗ C∗(P ))n → Cn(P × P ), and SHIn : Cn(P × P ) →
Cn+1(P × P ).

We refer to [Gonzalez-Diaz and Real 2005, pp. 1212–1213] for explicit formulas for
AW and EML in terms of the face and degeneracy operators. We give only the formula
for SHI, since Ai will be defined using SHIi+1, and we summarize the properties of
AW,EML,SHI relevant for our purposes.

The operator SHIn operates on n-chains on P ×P . The formula given below specifies
its values on the “basic” chains of the form (σn, τn); here σn, τn are n-simplices of P ,
but (σn, τn) is interpreted as the chain with coefficient 1 on (σn, τn) and 0 elsewhere.
The definition then extends to arbitrary chains by linearity.

Let p and q be non-negative integers. A (p, q)-shuffle (α, β) is a partition

{α1 < · · · < αp} ∪ {β1 < · · · < βq}
of the set {0, 1, . . . , p+ q − 1}. Put

sig(α, β) =

p∑
i=1

(αi − i+ 1).

Let γ = {γi, . . . , γr} be a set of integers. Then sγ denotes the compositions of the de-
generacy operators sγ1 . . . sγr (the sm are the degeneracy operators of P , and ∂m are its
face operators). The operator SHI is defined by

SHI(σ0, τ0) = 0,

SHI(σm, τm) =
∑
T (m)

(−1)ε(α,β)(sβ̄+m̄∂m−q+1 · · · ∂mσm, sα+m̄∂m̄ · · · ∂m−q−1τ
m),

where T (m) is the set of all (p+ 1, q)-shuffles such that 0 ≤ p+ q ≤ m− 1,

m̄ = m− p− q, ε(α, β) = m̄− 1 + sig(α, β),

α+ m̄ = {α1 + m̄, . . . , αp+1 + m̄}, β̄ + m̄ = {m̄− 1, β1 + m̄, . . . , βq + m̄}.
The above formula shows that SHIn is locally effective, in the sense that, if a chain
cn ∈ Cn(P × P ) is given in a locally effective way, by an algorithm that can evaluate
the coefficient for each given n-simplex of P × P , then a similar algorithm is available
for the (n+ 1)-chain SHIn(cn) as well.

The first fact we will need is that for every n, the maps satisfy the following identity
(where ∂ denotes the boundary operator in C∗(P × P )):

idCn(P×P )−EMLn ◦AWn = SHIn−1 ◦ ∂ + ∂ ◦ SHIn. (5)

This identity says that SHIn is a chain homotopy between EMLn◦AWn and the identity
on Cn(P × P ).

The second fact, which follows directly from the formulas in [Gonzalez-Diaz and Real
2005], is that the operators EML and SHI behave well with respect to the basepoint o
and its degeneracies, in the following sense: For every n and for every (nondegenerate)
n-dimensional simplex τn of P (regarded as a chain),

EMLn(o⊗ τn) = ±(on, τn), EMLn(τn ⊗ o) = ±(τn, on), (6)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.
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where on is the (unique) n-dimensional degenerate simplex obtained from o. The im-
ages in (6) lie in the subgroup Cn(P ∨ P ) ⊆ Cn(P × P ). Moreover, the operator SHIn
maps Cn(P ∨P ) into Cn+1(P ∨P ), i.e., the chains SHI(on, τn) and SHI(τn, on) are linear
combinations of simplices of the form (on+1, σn+1) and (σn+1, on+1), respectively, where
σn+1 ranges over certain (n+ 1)-dimensional simplices of P .

We now apply this to P = Pi (with basepoint 0). We consider the nonadditivity map ai
as an (i+2)-cocycle on Pi×Pi, which can be regarded as a homomorphism ai : Ci+2(Pi×
Pi) → πi+1. If we compose this homomorphism ai on the left with both sides of the
identity (5), for n = i+ 2, we get

ai ◦ idCi+2(P×P )−ai ◦ EMLi+2 ◦AWi+2 = ai ◦ SHIi+1 ◦ ∂ + ai ◦ ∂ ◦ SHIi+2. (7)

Now ai ◦ ∂ = 0 since ai is a cocycle. Moreover, every basis element of C∗(Pi) ⊗ C∗(Pi)
in degree i + 2 < 2d is of the form 0 ⊗ τ i+2 or τ i+2 ⊗ 0 (since Pi has no nondegenerate
simplices in dimensions 1, . . . , d−1). Such elements are taken by EML into Ci+1(P ∨P ),
on which ai vanishes because 0 is a strictly neutral element for �i. Thus, ai ◦EMLi+2 =
0 for i+ 2 < 2d.

Therefore, (7) simplifies to ai = ai ◦ SHIi+1 ◦ ∂. Thus, if we set Ai := ai ◦ SHIi+1, then
ai = δAi, as desired (since applying δ to a cochain α corresponds to the composition α◦∂
on the level of homomorphisms from chains into πi+1). Finally, the property Ai(0, ·) =
Ai(·,0) = 0 follows because the corresponding property holds for ai and SHIi+1 maps
Ci+1(Pi ∨ Pi) to Ci+2(Pi ∨ Pi).

5.3. A semi-effective representation of [X,Pi]

Now letX be a finite simplicial complex or, more generally, a simplicial set with finitely
many nondegenerate simplices (as we will see, the greater flexibility offered by simpli-
cial sets will be useful in our algorithm, even if we want to prove Theorem 1.1 only for
simplicial complexes X).

Having the locally effective H-group structure on the stable Postnikov stages Pi, we
obtain the desired locally effective Abelian group structure on [X,Pi] immediately.

Indeed, according to the remarks following Fact 5.1, a simplicial map s : P → Q
of arbitrary simplicial sets induces a map s∗ : SMap(X,P ) → SMap(X,Q) by compo-
sition, i.e., by s∗(f)(σ) = (s ◦ f)(σ) for each simplex σ ∈ P . If P and Q are Kan,
we also get a well-defined map [s∗] : [X,P ] → [X,Q]. Moreover, if s is locally ef-
fective, then so is s∗ (since X has only finitely many nondegenerate simplices). In
particular, the group operations on [X,Pi] are represented by locally effective maps
�i∗ : SMap(X,Pi)× SMap(X,Pi)→ SMap(X,Pi) and �i∗ : SMap(X,Pi)→ SMap(X,Pi).
The cochain representation. However, we can make the algorithm considerably
more efficient if we use the special structure of Pi and work with cochain representa-
tives of the simplicial maps in SMap(X,Pi).

We recall from Section 4 that simplicial maps into K(π, n) and E(π, n) are canoni-
cally represented by cocycles and cochains, respectively. Simplicial maps X → Pi are,
in particular, maps into the product E0 × · · · × Ei, and so they can be represented by
(i+ 1)-tuples of cochains c = (c0, . . . , ci), with cj ∈ Cj := Cj(X;πj).

The “simplicial” definition of �i∗,�i∗ can easily be translated to a “cochain” defini-
tion, using the correspondence explained after Lemma 4.2. For simplicity, we describe
the result concretely for the unary operation �i∗; the case of �i∗ is entirely analogous,
it just would require more notation.

Thus, to evaluate (d0, . . . , di) := �i∗c, we need to compute the value of dj on each
j-simplex ω of X, j = 0, 1, . . . , i. To this end, we first identify ω with the standard j-
simplex ∆j via the unique order-preserving map of vertices. Then the restriction of
(c0, . . . , ci) to ω (i.e., a labeling of the faces of ω by the elements of the appropriate
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Abelian groups) can be regarded as a j-simplex σ of Pi. We compute τ := �jσ, again a
j-simplex of Pi. The component τ j of τ is a j-cochain on ∆j , i.e., a single element of πj ,
and this value, finally, is the desired value of dj(ω). For �i∗ everything works similarly.

We also get that 0 ∈ SMap(X,Pi), the simplicial map represented by the zero
cochains, is a strictly neutral element under �i∗.

We have made [X,Pi] into a semi-effectively represented Abelian group in the sense
of Section 3. The representatives are the (i+ 1)-tuples (c0, . . . , ci) of cochains as above.
However, our state of knowledge of [X,Pi] is rather poor at this point; for example, we
have as yet no equality test.

A substantial amount of work still lies ahead to make [X,Pi] fully effective.

6. THE MAIN ALGORITHM
In order to prove our main result, Theorem 1.1, on computing [X,Y ], we will prove the
following statement by induction on i.

THEOREM 6.1. Let X be a simplicial set with finitely many nondegenerate sim-
plices, and let Y be a (d − 1)-connected simplicial set, d ≥ 2, for which a locally ef-
fective Postnikov system with 2d − 2 stages P0, . . . , P2d−2 is available. Then, for every
i = d, d + 1, . . . , 2d − 2, a fully effective representation of [X,Pi] can be computed, with
the cochain representations of simplicial maps X → Pi as representatives.

Two comments on this theorem are in order. First, unlike in Theorem 1.1, there is no
restriction on dimX (the assumption dimX ≤ 2d− 2 in Theorem 1.1 is needed only for
the isomorphism [X,Y ] ∼= [X,P2d−2]). Second, as was already mentioned in Section 5.3,
even if we want Theorem 1.1 only for a simplicial complex X, we need Theorem 6.1
with simplicial sets X, because of recursion.

First we will (easily) derive Theorem 1.1 from Theorem 6.1.

PROOF OF THEOREM 1.1. Given a Y as in Theorem 1.1, we first obtain a fully effec-
tive Postnikov system for it with 2d− 2 stages using Theorem 4.5. Then we compute a
fully effective representation of [X,P2d−2] by Theorem 6.1. Since Y is (d− 1)-connected
and dimX ≤ 2d−2, there is a bijection between [X,Y ] and [X,P2d−2] by Proposition 4.4.

It remains to implement the homotopy testing. Given two simplicial maps f, g : X →
Y , we use the locally effective simplicial map ϕ2d−2 : Y → P2d−2 (which is a part of a
locally effective simplicial Postnikov system), and we compute the cochain representa-
tions c,d of the corresponding simplicial maps ϕ2d−2 ◦f, ϕ2d−2 ◦g : X → P2d−2. Then we
can check, using the fully effective representation of [X,P2d−2], whether [c] − [d] = 0
in [X,P2d−2]. This yields the promised homotopy testing algorithm for [X,Y ] and con-
cludes the proof of Theorem 1.1.

6.1. The inductive step: An exact sequence for [X,Pi]

Theorem 6.1 is proved by induction on i. The base case is i = d (since P0, . . . , Pd−1

are trivial for a (d − 1)-connected Y ), which presents no problem: we have Pd = Ld =
K(πd, d), and so

[X,Pd] ∼= Hd(X;πd).

This group is fully effective, since it is the cohomology group of a simplicial set with
finitely many nondegenerate simplices, with coefficients in a fully effective group. (Al-
ternatively, we could start the algorithm at i = 0; then it would obtain [X,Pd] at stage
d as well.)

So now we consider i > d, and we assume that a fully effective representation of
[X,Pi−1] is available, where the representatives of the homotopy classes [f ] ∈ [X,Pi−1]
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are (cochain representations of) simplicial maps f : X → Pi−1. We want to obtain a
similar representation for [X,Pi].

Let us first describe on an intuitive level what this task means and how we are going
to approach it.

As we know, every map g ∈ SMap(X,Pi) yields a map f = pi∗(g) = pi ◦ g ∈
SMap(X,Pi−1) by projection (forgetting the last coordinate in Pi). We first ask the
question of which maps f ∈ SMap(X,Pi−1) are obtained as such projections; this is
traditionally called the lifting problem (and g is called a lift of f ). Here the answer
follows easily from the properties of the Postnikov system: liftability of a map f de-
pends only on its homotopy class [f ] ∈ [X,Pi−1], and the liftable maps in [X,Pi−1] are
obtained as the kernel of the homomorphism [k(i−1)∗] induced by the Postnikov class.
This is very similar to the one-step extension in the setting of obstruction theory, as
was mentioned in the introduction. This step will be discussed in Section 6.2.

Next, a single map f ∈ SMap(X,Pi−1) may in general have many lifts g, and we
need to describe their structure. This is reasonably straightforward to do on the level
of simplicial maps. Namely, if c = (c0, . . . , ci−1) is the cochain representation of f and
g0 is a fixed lift of f , with cochain representation (c, ci0), then it turns out that all
possible lifts g of f are of the form (again in the cochain representation) (c, ci0 + zi),
zi ∈ Zi(X,πi) ∼= SMap(X,Li). Thus, all of these lifts have a simple “coset structure”.

This allows us to compute a list of generators of [X,Pi]. We also need to find all
relations of these generators, and for this, we need to be able to test whether two maps
g1, g2 ∈ SMap(X,Pi) are homotopic. This is somewhat more complicated, and we will
develop a recursive algorithm for homotopy testing in Section 6.4.

Using the group structure, it suffices to test whether a given g ∈ SMap(X,Pi) is null-
homotopic. An obvious necessary condition for this is nullhomotopy of the projection
f = pi ◦ g, which we test recursively. Then, if f ∼ 0, we �i∗-add a suitable nullho-
motopic map to g, and this reduces the nullhomotopy test to the case where g has a
cochain representation of the form (0, zi), zi ∈ Zi(X,πi) ∼= SMap(X,Li).

Now (0, zi) can be nullhomotopic, as a map X → Pi, by an “obvious” nullhomotopy,
namely, one “moving” only the last coordinate, or in other words, induced by a null-
homotopy in SMap(X,Li). But there may also be “less obvious” nullhomotopies, and it
turns out that these correspond to maps SX → Pi−1, where SX is the suspension of
X defined in Section 4.1. Thus, in order to be able to test homotopy of maps X → Pi,
we also need to compute [SX,Pi−1] recursively, using the inductive assumption, i.e.,
Theorem 6.1 for i− 1.
The exact sequence. We will organize the computation of [X,Pi] using an exact
sequence, a basic tool in algebraic topology and many other branches of mathematics.
First we write the sequence down, including some as yet undefined symbols, and then
we provide some explanations. It goes as follows:

[SX,Pi−1]
[µi] // [X,Li]

[λi∗] // [X,Pi]

[pi∗]

��
[X,Pi−1]

[k(i−1)∗]
// [X,Ki+1]

(8)

This is a sequence of Abelian groups and homomorphisms of these groups, and exact-
ness means that the image of each of the homomorphisms equals the kernel of the
successive one.

We have already met most of the objects in this exact sequence, but for convenience,
let us summarize them all.
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— [SX,Pi−1] is the group of homotopy classes of maps from the suspension into the one
lower stage Pi−1; inductively, we may assume it to be fully effective.

— [µi] is a homomorphism appearing here for the first time, which will be discussed
later.

— [X,Li] ∼= Hi(X;πi) consists of the homotopy classes of maps into the Eilenberg–
MacLane space Li = K(πi, i), and it is fully effective.

— [λi∗] is the homomorphism induced by the mapping λi : Li → Pi, the “insertion to the
last component”; i.e., λi(σi) = (0, σi). In terms of cochain representatives, λi∗ sends
zi to (0, zi).

— [X,Pi] is what we want to compute, [pi∗] is the projection (on the level of homotopy),
and [X,Pi−1] has already been computed, as a fully effective Abelian group.

— [k(i−1)∗] is the homomorphism induced by the composition with the Postnikov class
ki−1 : Pi−1 → Ki+1 = K(πi, i+ 1).

— [X,Ki+1] ∼= Hi+1(X,πi) are again maps into an Eilenberg–MacLane space.

Let us remark that the exact sequence (8), with some [µi], can be obtained by stan-
dard topological considerations from the so-called fibration sequence for the fibration
Li → Pi → Pi−1; see, e.g., [Mosher and Tangora 1968, Chap. 14].27 However, in order to
have all the homomorphisms locally effective and also to provide the locally effective
“inverses” (as required in Lemma 3.5), we will need to analyze the sequence in some
detail; then we will obtain a complete “pedestrian” proof of the exactness with only a
small extra effort. Thus, the fibration sequence serves just as a background.
The algorithm for computing [X,Pi] goes as follows.

(1) Compute [X,Pi−1] fully effective, recursively.
(2) Compute Ni−1 := ker [k(i−1)∗] ⊆ [X,Pi−1] (so Ni−1 consists of all homotopy classes

of liftable maps), fully effective, using Lemma 3.2 and Theorem 4.5.
(3) Compute [SX,Pi−1] fully effective, recursively.
(4) Compute the factor group Mi := coker [µi] = [X,Li]/ im [µi] using Lemma 3.3, fully

effective and including the possibility of computing “witnesses for 0” as in the
lemma.

(5) The exact sequence (8) can now be transformed to the short exact sequence

0→Mi
`i−→ [X,Pi]

[pi∗]−−−→ Ni−1 → 0

27Let us consider topological spaces E and B with basepoints and a pointed map p : E → B. If p has the
so-called homotopy lifting property (which is the case for our pi) it is called a fibration and the preimage F

of the base point in B is called the fibre of p. The sequence of maps F
i
↪→ E

p−→ B can be prolonged into the
fibration sequence

· · · → ΩF
Ωi−−→ ΩE

Ωp−−→ ΩB
µ−→ F

i−→ E
p−→ B

of pointed maps, where, for a pointed space Y , ΩY is the space of loops starting at the base point. For spaces
X and Y with base points, let Map(X,Y )∗ denote the set of all continuous pointed maps, and let [X,Y ]∗ be
the set of (pointed) homotopy classes of these maps. Then the fibration sequence yields the sequence

· · · → Map(X,ΩF )∗ → Map(X,ΩE)∗ → Map(X,ΩB)∗ → Map(X,F )∗ → Map(X,E)∗ → Map(X,B)∗.

As it turns out, on the level of homotopy classes we get even the long exact sequence

· · · → [X,ΩF ]∗ → [X,ΩE]∗ → [X,ΩB]∗ → [X,F ]∗ → [X,E]∗ → [X,B]∗.

There is a natural bijection between [ΣX,E]∗ and [X,ΩE]∗, where ΣX is the reduced suspension of X, and
so we get the long exact sequence

· · · → [ΣX,F ]∗ → [ΣX,E]∗ → [ΣX,B]∗ → [X,F ]∗ → [X,E]∗ → [X,B]∗.

For CW-complexes, the difference between SX and ΣX does not matter, and for the sequence Pi → Pi−1 →
Ki+1, which can be considered as a fibration, we arrive at (8).
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(where `i is induced by exactly the same mapping λi∗ of representatives as [λi∗] in
the original exact sequence (8)). Let Ni−1 := {f ∈ SMap(X,Pi−1) : [k(i−1)∗(f)] = 0}
be the set of representatives of elements in Ni−1. Implement a locally effective
“section” ξi : Ni−1 → SMap(X,Pi) with [pi∗ ◦ ξi] = id and a locally effective “inverse”
ri : im [λi∗] → Mi with `i ◦ ri = id, as in Lemma 3.5, and compute [X,Pi] fully
effective using that lemma.

We will now examine steps 2,4,5 in detail, and simultaneously establish the exact-
ness of (8).
Convention. It will be notationally convenient to let maps such as pi∗, k(i−1)∗, λi∗,
which send simplicial maps to simplicial maps, operate directly on the cochain repre-
sentations (and in such case, the result is also assumed to be a cochain representation).
Thus, for example, we can write pi∗(c, c) = c, λi∗(zi) = (0, zi), etc. We also write [c] for
the homotopy class of the map represented by c.

6.2. Computing the liftable maps
Here we will deal with the last part of the exact sequence (8), namely,

[X,Pi]
[pi∗]−−−→ [X,Pi−1]

[k(i−1)∗]
−−−−−→ [X,Ki+1].

First we note that, since the projection map pi is an H-homomorphism by Propo-
sition 5.4(c), the (locally effective) map pi∗ : SMap(X,Pi) → SMap(X,Pi−1) indeed
induces a well-defined group homomorphism [X,Pi] → [X,Pi−1] (Fact 5.1). Simi-
larly, the H-homomorphism ki−1 (Proposition 5.4(d)) induces a group homomorphism
[k(i−1)∗] : [X,Pi−1]→ [X,Ki+1] ∼= Hi+1(X;πi).

LEMMA 6.2 (LIFTING LEMMA). We have im [pi∗] = ker [k(i−1)∗]. Moreover, if we set
Ni−1 := {f ∈ SMap(X,Pi−1) : [k(i−1)∗(f)] = 0}, then there is a locally effective mapping
ξi : Ni−1 → SMap(X,Pi) such that pi∗ ◦ ξi is the identity map (on the level of simplicial
maps).

PROOF. Let us consider a map f ∈ SMap(X,Pi−1) with cochain representation c.
Every cochain (c, ci) with ci ∈ Ci(X;πi) represents a simplicial map X → Pi−1 × Ei,
and this map goes into Pi iff the condition

k(i−1)∗(c) = δci (9)

holds. Thus, f has a lift iff k(i−1)∗(c) is a coboundary, or in other words, iff [k(i−1)∗(c)] =
0 in [X,Ki+1]. Hence im [pi∗] = ker [k(i−1)∗] indeed.

Moreover, if k(i−1)∗(c) is a coboundary, we can compute some ci satisfying (9) and set
ξi(f) := (c, ci). This involves some arbitrary choice, but if we fix some (arbitrary) rule
for choosing ci, we obtain a locally effective ξi as needed. The lemma is proved.

REMARK 6.3. In the previous proof as well as in a few more situations below, we
will need to make some arbitrary choice of a particular solution to a system of linear
equations over the integers. We refrain from specifying any particular such rule, but
typically, such a rule will be built into any particular Smith normal form algorithm
that we use as a subroutine to solve the system of integer linear equations (9).

We have thus proved exactness of the sequence (8) at [X,Pi−1]. Step 2 of the algo-
rithm can be implemented using Lemma 3.2. We have also prepared the section ξi for
Step 5.
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6.3. Factoring by maps from SX

We now focus on the initial part

[SX,Pi−1]
[µi]−−→ [X,Li]

[λi∗]−−−→ [X,Pi]

of the exact sequence (8), and explain how the suspension comes into the picture. We
remark that [λi∗] is a well-defined homomorphism, for the same reason as [pi∗] and
[k(i−1)∗]; namely, λi is an H-homomorphism by Proposition 5.4(a).

The kernel of [λi∗] describes all homotopy classes of maps X → Li that are nullho-
motopic as maps X → Pi. To understand how they arise as images of maps SX → Pi−1,
we first need to discuss a representation of nullhomotopies as maps from the cone.
Maps from the cone. A map X → Y between two topological spaces is nullhomotopic
iff it can be extended to a map CX → Y on the cone over X; this is more or less
a reformulation of the definition of nullhomotopy. The same is true in the simplicial
setting if the target is a Kan simplicial set, such as Pi.

We recall that the n-dimensional nondegenerate simplices of CX are of two kinds:
the n-simplices of X and the cones over the (n − 1)-simplices of X. In the language of
cochains, this means that, for any coefficient group π, we have

Cn(CX;π) ∼= Cn−1(X;π)⊕ Cn(X;π),

and thus a cochain b ∈ Cn(CX;π) can be written as (e, c), with e ∈ Cn−1(X;π) and
c ∈ Cn(X;π). We also write c = b|X for the restriction of b to X. The coboundary
operator Cn(CX;π)→ Cn+1(CX, ;π) then acts as follows:

δ(e, c) = (−δe+ c, δc).

Rephrasing Lemma 4.3 in the language of extensions to CX, we get the following:

COROLLARY 6.4. A map f ∈ SMap(X,Li), represented by a cocycle ci ∈ Zi(X;πi), is
nullhomotopic iff there is a cocycle b ∈ Zi(CX;π) ∼= SMap(CX,Li) such that b|X = c.

This describes the homotopies in SMap(X,Li), which induce the “obvious” homo-
topies in imλi∗. Let us now consider an element in the image of λi∗, i.e., a map
g : X → Pi with a cochain representation (0, ci). By the above, a nullhomotopy of g
can be regarded as a simplicial map G : CX → Pi whose cochain representation (b, bi)
satisfies (b|X , bi|X) = (0, ci) (here b|X = (b0|X , . . . , bi−1|X) is the componentwise re-
striction to X). Thus, the projection F := pi∗ ◦G ∈ SMap(CX,Pi−1) is represented by b
with b|X = 0, and hence it maps all of the “base” X in CX to 0.

Recalling that SX is obtained from CX by identifying X to a single vertex, we can
see that such F exactly correspond to simplicial maps SX → Pi−1 (here we use that
Pi−1 has a single vertex 0). Thus, maps in SMap(SX,Pi−1) give rise to nullhomotopies
of maps in imλi∗.

After this introduction, we develop the definition of µi and prove the exactness of
our sequence (8) at [X,Li].
The homomorphism µi. Since the nondegenerate (i + 1)-simplices of SX are in
one-to-one correspondence with the nondegenerate i-simplices of X, we have the iso-
morphism of the cochain groups

Di : C
i+1(SX;πi)→ Ci(X;πi).

Moreover, this is compatible with the coboundary operator (up to sign):
δDi(c) = −Di(δc).

Alternatively, if we identify the (i + 1)-cochains on SX with those (i + 1)-cochains b =
(e, c) ∈ Ci+1(CX;πi) for which b|X = c = 0, then the isomorphism is given by Di(e, 0) =
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e. The coboundary formula δ(e, c) = (−δe + c, δc) for CX indeed gives Di(δ(e, 0)) =
Di(−δe, 0) = −δe = −δDi(e, 0).

Because of the compatibility with δ, Di restricts to an isomorphism
Zi+1(SX;πi) → Zi(X;πi) (which we also denote by Di). This induces an isomor-
phism [Di] : H

i+1(SX;πi)→ Hi(X;πi).
Translating from cochains to simplicial maps, we can also regard Di as an isomor-

phism SMap(SX,Ki+1) → SMap(X,Li), (where, as we recall, Ki+1 = K(πi, i + 1) and
Li = K(πi, i)), and [Di] as an isomorphism [SX,Ki+1]→ [X,Li].

Now we define µi : SMap(SX,Pi−1)→ SMap(X,Li) by

µi := Di ◦ k(i−1)∗.

That is, given F ∈ SMap(SX,Pi−1), we first compose it with ki−1, which yields a map
in SMap(SX,Ki+1) represented by a cocycle in Zi+1(SX;πi). Applying Di means re-
interpreting this as a cocycle in Zi(X;πi) representing a map in SMap(X,Li), which we
declare to be µi(F ). This, clearly, is locally effective, and [µi] is a well-defined homomor-
phism [SX,Pi−1]→ [X,Li] (since [Di] and [k(i−1)∗] are well-defined homomorphisms).

The connection of this definition of µi to the previous considerations on nullhomo-
topies may not be obvious at this point, but the lemma below shows that µi works.

LEMMA 6.5. The sequence (8) is exact at [X,Li], i.e., im [µi] = ker [λi∗].

PROOF. First we want to prove the inclusion im [µi] ⊆ ker [λi∗]. To this end, we con-
sider F ∈ SMap(SX,Pi−1) arbitrary and want to show that [λi∗(µi(F ))] = 0 in [X,Pi].

As was discussed above, we can view F as a map F : CX → Pi−1 that is zero on X.
Let b be the cochain representation of F ; thus, b|X = 0.

Let zi ∈ Zi(X;πi) be the cocycle representing µi(F ). Then (0, zi) ∈ Ci−1(X;πi) ⊕
Ci(X;πi) represents a map CX → Ei, and (b, (0, zi)) represents a map G : CX →
Pi−1 × Ei.

We claim that G actually goes into Pi, i.e., is a lift of F . For this, we just need to
verify the lifting condition (9), which reads k(i−1)∗(b) = δ(0, zi).

By the coboundary formula for the cone, we have δ(0, zi) = (zi, 0), while k(i−1)∗(b) =

(zi, 0) by the definition of µi(F ). So G ∈ SMap(CX,Pi) is indeed a lift of F . At the same
time, (b, (0, zi))|X = (0, zi), and so G is a nullhomotopy for the map represented by
(0, zi), which is just λi∗(µi(F )).

To prove the reverse inclusion im [µi] ⊇ ker [λi∗], we proceed similarly. Suppose that
zi ∈ Zi(X;πi) represents a map f ∈ SMap(X,Li) with [λi∗(f)] = 0 in [X,Pi]. Then λi∗(f)
has the cochain representation (0, zi), and there is a nullhomotopy G ∈ SMap(CX,Pi)
for it, with a cochain representation (b, (ai−1, zi)), where b|X = 0.

Since b|X = 0, b represents a map F ∈ SMap(CX,Pi−1) zero on X, which can also
be regarded as F ∈ SMap(SX,Pi−1). Let z̃i represent µi(F ). Since G is a lift of F , the
lifting condition k(i−1)∗(b) = δ(ai−1, zi) holds. We have k(i−1)∗(b) = (z̃i, 0), again by the
definition of µi, and δ(ai−1, zi) = (−δai−1 + zi, δzi) by the coboundary formula for the
cone. Hence z̃i − zi = δai−1, which means that [zi] = [z̃i]. Thus [f ] = [µi(F )] ∈ im [µi],
and the lemma is proved.

Having [µi] defined as a locally effective homomorphism, we can employ Lemma 3.3
and implement Step 4 of the algorithm.

6.4. Computing nullhomotopies
The next step is to prove the exactness of the sequence (8) at [X,Pi].

LEMMA 6.6. We have im [λi∗] = ker [pi∗].
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PROOF. The inclusion im [λi∗] ⊆ ker [pi∗] holds even on the level of simplicial maps,
i.e., imλi∗ ⊆ ker pi∗. Indeed, pi∗(λi∗(zi)) = pi∗(0, z

i) = 0.
For the reverse inclusion, consider (c, ci) ∈ SMap(X,Pi) and suppose that

[pi∗(c, c
i)] = [c] = 0 ∈ [X,Pi−1]. We need to find some zi ∈ Zi(X;πi) with [(0, zi)] =

[(c, ci)] in [X,Pi].
A suitable zi can be constructed by taking a nullhomotopy CX → Pi−1 for c and

lifting it. Namely, let b represent a nullhomotopy for c, i.e., b|X = c, and let (b, bi) be
a lift of b (it exists because CX is contractible and thus every map on it can be lifted).
We set

zi := ci − (bi|X).

We need to verify that zi is a cocycle. This follows from the lifting conditions
k(i−1)∗(c) = δci and k(i−1)∗(b) = δbi, and from the fact that k(i−1)∗(b)|X = k(i−1)∗(b|X) =
k(i−1)∗(c) (this is because applying k(i−1)∗ really means a composition of maps, and
thus it commutes with restriction). Indeed, we have δzi = δci − δ(bi|X) = k(i−1)∗(c) −
k(i−1)∗(c) = 0.

It remains to to check that [(c, ci)] = [(0, zi)]. We calculate [(c, ci)] − [(0, zi)] =
[(c, ci) �i∗ (0, zi)] = [(c, ci − zi)] = [(c, bi|X)] = [(b|X , bi|X)] = 0, since (b, bi) is a nullho-
motopy for (b|X , bi|X).

Defining the inverse for λi∗. Now we consider the cokernel Mi = [X,Li]/ im [µi] as
in Step 4 of the algorithm, and the (injective) homomorphism `i : Mi → [X,Pi] induced
by [λi∗].

The last thing we need for applying Lemma 3.5 in Step 5 is a locally effective map
ri : im `i →Mi with `i ◦ ri = id.

Let Ri be the set of representatives of the elements in im `i = im [λi∗]; by the above,
we can write Ri = {(c, ci) ∈ SMap(X,Pi) : [c] = 0}.

For every (c, ci) ∈ Ri we set

ρi(c, c
i) := zi,

where zi is as in the above proof of Lemma 6.6 (i.e., zi = ci − (bi|X), where (b, bi) is a
lifting of some nullhomotopy b for c). This definition involves a choice of a particular b
and bi, which we make arbitrarily (see above) for each (c, ci).

LEMMA 6.7. The map ρi induces a map ri : im [λi∗]→ [X,Li] such that `i ◦ ri = id.

PROOF. In the proof of Lemma 6.6 we have verified that [λi∗(ρi(c, c
i))] = [(c, ci)], so

λi∗ ◦ ρi acts as the identity on the level of homotopy classes. It follows that ri is well-
defined, since `i is injective and thus the condition `i◦ri = id determines ri uniquely.

We note that, since we assume [X,Pi−1] fully effective, we can algorithmically test
whether [c] = 0, i.e., whether c represents a nullhomotopic map—the problem is in
computing a concrete nullhomotopy b for c.

We describe a recursive algorithm for doing that. For more convenient notation, we
will formulate it for computing nullhomotopies for maps in SMap(X,Pi), but we note
that, when evaluating ρi, we actually use this algorithm with i − 1 instead of i. Some
of the ideas in the algorithm are very similar to those in the proof of the exactness at
[X,Pi] (Lemma 6.6 above), so we could have started with a presentation of the algo-
rithm instead of Lemma 6.6, but we hope that a more gradual development may be
easier to follow.
The nullhomotopy algorithm. So now we formulate a recursive algorithm
NullHom(c, ci), which takes as input a cochain representation of a nullhomotopic map
in SMap(X,Pi) (i.e., such that [(c, ci)] = 0), and outputs a nullhomotopy (b, bi) for (c, ci).
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The required nullhomotopy (b, bi) will be �i∗-added together from several nullhomo-
topies; this decomposition is guided by the left part of our exact sequence (8). Namely,
we recursively find a nullhomotopy for c and lift it, which reduces the original prob-
lem to finding a nullhomotopy for a map in imλi∗, of the form (0, zi), as in the proof
of Lemma 6.6. Then, using the fact that `i is an isomorphism, we find nullhomotopies
witnessing that [zi] = 0 in Mi. Here we need the assumption that the representation
of Mi allows for computing “witnesses of zero” as in Lemma 3.3.

For this to work, we need the fact that if b1 is a nullhomotopy for c1 and b2 is a
nullhomotopy for c2, then b1 �i∗ b2 is a nullhomotopy for c1 �i∗ c2. This is because
�i∗ operates on mappings by composition, and thus it commutes with restrictions—we
have already used the same observation for ki∗.

The base case of the algorithm is i = d. Here, as we recall, Pd = Ld = K(πd, d),
and a nullhomotopic cd means that cd ∈ Zd(X;πd) is a coboundary. We thus compute
e ∈ Zd−1(X;πd) with cd = δe, and the desired nullhomotopy is (e, δe) (indeed, (e, δe)
specifies a valid map CX → Ld since, by the coboundary formula for the cone, it is a
cocycle).

Now we can state the algorithm formally.
Algorithm NullHom(c, ci).

A. (Base case) If i = d, return (b, bd) = (0, (e, δe)) as above and stop.
B. (Recursion) Now i > d. Set b0 := NullHom(c), and let (b0, b

i
0) be an arbitrary lift

of b0.
C. (Nullhomotopy coming from SX) Set zi := ci−(bi0|X), and use the representation of

Mi to find a “witness for [zi] = 0 in Mi”. That is, compute F ∈ [SX,Pi−1] such that
[zi] = [z̃i] in [X,Li], where z̃i is the cocycle representing µi(F ). Let a be the cochain
representation of the map F ∈ SMap(CX,Pi−1) corresponding to F .

D. (Nullhomotopy in [X,Li]) Compute e ∈ Zi−1(X;πi) with z̃i − zi = δe. (Then, as in
the base case i = d above, (e, δe) is a nullhomotopy for z̃i − zi, and thus (0, (e, δe))
is a nullhomotopy for (0, z̃i − zi).)

E. Return

(b, bi) := (b0, b
i
0) �i∗

(
(a, (0, z̃i)) �i∗ (0, (e, δe))

)
.

PROOF OF CORRECTNESS. First we need to check that zi in Step C indeed repre-
sents 0 in Mi. This is because, as in the proof of Lemma 6.6, [(0, zi)] = [λi∗(z

i)] = 0, and
since `i is injective, we have [zi] = 0 in Mi as claimed. So the algorithm succeeds in
computing some (b, bi), and we just need to check that it is a nullhomotopy for (c, ci).

All three terms in the formula in Step E are valid representatives of maps CX → Pi
(for (b0, b

i
0) this follows from the inductive hypothesis, for (a, (0, z̃i)) we have checked

this in the first part of the proof of Lemma 6.5, and for (0, (e, δe)) we have already
discussed this). So (b, bi) also represents such a map, and all we need to do is to check
that (b|X , bi|X) = (c, ci):

(b|X , bi|X) = (b0|X , bi0|X) �i∗
(

(a|X , z̃i) �i∗ (0, δe)
)

= (c, bi0|X) �i∗
(

(0, z̃i) �i∗ (0, zi − z̃i)
)

= (c, bi0|X + z̃i + zi − z̃i) = (c, bi0|X + (ci − (bi0|X))) = (c, ci).

Thus, the algorithm correctly computes the desired nullhomotopy.

As we have already explained, the algorithm makes ρi locally effective, and so Step 5
of the main algorithm can be implemented. This completes the proof of Theorem 6.1.
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M. Čadek, M. Krčál, J. Matoušek, L. Vokřı́nek, and U. Wagner. 2013. Extendability of continuous maps is

undecidable. Discr. Comput. Geom. (2013). To appear. Preprint arXiv:1302.2370.
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