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Abstract
The classical problem of algebraic models for homotopy

types is precisely stated here in terms of our ability to com-
pute with the models. Two different natural statements for this
problem are produced, the simplest one being entirely solved by
the notion of SSEH -structure, due to the authors. Other tenta-
tive solutions, Postnikov towers and E∞-chain complexes, are
considered and compared with the SSEH -structures. In partic-
ular, an imprecision in the usual definition of the k-“invariants”
is explained, which implies we seem far from a solution for the
ideal statement of our problem. On the positive side, the prob-
lem stated below in the framed quotation is solved.

As yet we are ignorant
of an effective method of computing

the cohomology of a Postnikov complex
from πn and kn+1 [11].

1. Introduction1,2,3.

Obtaining “algebraic” models for Z-homotopy types is a major problem in al-
gebraic topology. We explain in this article the importance of models which are
computable (or effective, constructive, . . . ).

The problem of the title can then be precisely stated in two different ways,
the hard problem (Problem 5 in Section 2) and the soft problem (Problem 8 in
Section 3). The notion of simplicial set with effective homology (SSEH), due to the
authors, is a complete solution for the soft problem, very simple from a theoretical
point of view, once the possibilities of functional programming are understood.
This solution has led to an interesting concrete computer work, the Kenzo program,
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demonstrated a little in the article to give to the reader some experimental evidence
that the stated results are correct.

Other solutions for the soft problem could be based on operadic techniques, and
they are now intensively looked for. The key point is the notion of E∞-operad; a
broad outline of the main results so obtained is given and compared with the SSEH

solution. The current result is that the SSEH solution is, for the soft problem, simple
and already implemented. The operadic structures are of course interesting, give
many useful informations, but can be regarded as by-products of SSEH -structures;
furthermore it is not clear how they could produce autonomous computable objects.
A good point of view for future work is probably a mixture of SSEH ’s and operadic
techniques, the last ones to be considered as good tools to better understand and
also to improve the computability results so easily obtained through SSEH ’s.

The hard problem is thus reduced to the problem of equivalence between sets of
k-invariants, a problem which, as far as we know, seems open: we explain why the
so-called k-invariants are not actual invariants so that finally the standard Postnikov
theory does not solve the hard problem.

2. An improved statement of the problem.

The construction of algebraic models for homotopy types is a “classical” problem
in Algebraic Topology. Most topologists should agree with the following statement
of our problem.

Problem 1. — Let H be the homotopy category. How to design an algebraic
category A and a functor F : H → A which is an equivalence of categories?

Instead of working in the categoryH, reputed to be a difficult category, you might
work in the category A, an algebraic category, hence probably a more convenient
workspace. The image F (X) of some homotopy type X would be an algebraic object,
for example a chain complex provided with a sufficiently rich structure to entirely
define a homotopy type. Problem 1 leads to an auxiliary problem.

Problem 2. — What is the definition of an algebraic category?

The following example should give a better understanding of this problem. Many
topologists consider a simplicial set not as an algebraic object. A simplicial set S
is a sequence of sets (Sn) combined with some sets of operators between these sets,
appropriate composites of these operators having to satisfy a few simple relations.
Most topologists consider a chain complex C∗ provided with a module structure
with respect to some (. . . algebraic!) operad O is an algebraic object. Such a chain
complex is a sequence of chain groups (Cn) combined with some sets of operators
between these chain groups and their tensor products, appropriate composites of
these operators having to satisfy a large set of sophisticated relations. Where is the
basic difference? This appreciation — an O-module is an algebraic object and a
simplicial set is not — is arbitrary. Furthermore a simplicial structure is simpler
than an O-module structure, so that a beginner in the subject would probably guess
the first structure type is “more” algebraic than the second one. Must we recall we
are working in mathematics, not in philosophy?
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Terminology 3. — In our current mathematical environment, the border between
algebraic objects and non-algebraic objects cannot be mathematically defined.

Let us continue our comparison between simplicial sets and chain complexes,
which will eventually lead to the right point of view. The simplest example of
an interesting result produced by Algebraic Topology is the Brouwer Fixed Point
theorem, a direct consequence of the following.

Theorem 4. — Let in : Sn−1 → Dn be the canonical inclusion of the (n−1)-sphere
into the n-ball. There does not exist a continuous map ρn : Dn → Sn−1 such that
the composite ρn ◦ in is the identity map of Sn−1.

In fact, if you apply the Hn−1-functor to the data, the statement is transformed
into: let i : Z→ 0 be the null morphism; there does not exist a morphism ρ : 0 → Z
such that the composite ρ ◦ i is the identity morphism of Z.

Most topologists think this process produces the result because the transformed
problem has an algebraic nature, but this is erroneous. The algebraic qualifier is
secondary; a better qualifier in fact is computable. The transformed problem is a
particular case of the following: let m, n and p be three non-negative integers, and
f : Zm → Zn and F : Zm → Zp be two Z-linear morphisms; does there exist a
morphism g : Zn → Zp satisfying g ◦ f = F? It is common to think of this problem
as an algebraic one, but in fact the important point for us is that there exists an
algorithm giving the solution: a Smith reduction of the Z-matrices representing f
and F quickly gives the solution; in the case of the Brouwer problem, the Smith
reduction is already done.

The previous considerations about simplicial sets gives us another idea. Because
a simplicial set is in fact as “algebraic” as a homology group or a chain complex,
why not work directly with simplicial models for Sn−1 and Dn? It is easy to give
simplicial models with two (resp. three) non-degenerate simplices for Sn−1 (resp.
Dn), models that are undoubtedly “algebraic”. But these models have an essen-
tial failing: they do not satisfy the Kan extension condition, so that they are not
appropriate for working in the homotopy category H. In general the Kan simpli-
cial models are highly infinite and cannot be directly used for computations: any
tentative solution using in an essential way the Kan simplicial sets raises hard com-
putability problems. We will see later that our solution for “algebraic” models for
homotopy types is a simple but subtle combination of simplicial sets most often not
of finite type with chain complexes of finite type.

There is a common fundamental confusion between the algebraic and computable
qualifiers, still present in the ordinary understanding of the very nature of Algebraic
Topology.

Let us look again at the statement of Problem 1. In fact, we are looking for a
target category where automatic computations (pleonasm) can be undertaken. We
thus obtain a new statement for our problem.

Problem 5. (Hard Problem) — Let H be the homotopy category. How to design
a computable category C and a functor F : H → C which is an equivalence of
categories?
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With the satellite problem:

Problem 6. — What is the definition of a computable category?

We do not want to consider the details of the last subject, an interesting subject,
out of the scope of the present paper. Fundamentally different answers are possible,
mainly from the following point of view: do you intend to apply the “computable”
qualifier to the elements of an object in the category or to the objects themselves,
or both? To our knowledge, the relevant corresponding theory is not yet settled4.
The few examples given in this paper could be a guideline toward the most natural
solutions of this question.

In this paper, a computable category is a category having properties roughly
similar to those that are exhibited for our SSEH category, and this approximate
“definition” is here sufficient.

3. Three tentative solutions.

The current state of Algebraic Topology gives three main possibilities:

1. The Postnikov category;

2. The authors’ solution: the category SSEH ;

3. The operadic solutions.

In short, the first possibility is currently inadequate in the standard framework,
because of an essential lack of computability, see the framed title inscription, and
also because of the underlying classification problem which does not yet seem solved.
The SSEH category solves a subproblem, the “soft” problem stated a little later, and
furthermore makes the Postnikov category computable; a consequence is the fact
that the Postnikov category, when modelled as a satellite category of the SSEH

category, solves the same subproblem. It can be reasonably conjectured that the
third idea, using operadic techniques, should in finite time solve the same subprob-
lem, but we are still far from it, and this seems the challenge #1 for the operad
developers: how to organise the E∞-chain complexes as an autonomous computable
category? The impressive concrete results obtained by V. Smirnov [25], at least
when working with coefficients in a field Fp, indicate that the vast theoretical study
about E∞-chain complexes undertaken by this author could be a good guideline.

The gap about the classification problem remains present for the three techniques.
Once the theoretical and concrete possibilities of functional programming are

understood, the SSEH category is not too complicated, so that it has been possible
to write down a computer program implementing the SSEH category and to use it,
see [8] and Sections 5 and 7 of the present paper.

4For example, the interesting reference [19] is not sufficient for Problem 6; no tool is provided
there for the equality problem between objects of a category.
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3.1. The Postnikov category.

Restriction 7. — Unless otherwise stated, all our topological spaces are connected
and simply connected.

An object of the Postnikov category is a pair of sequences ((πn)n>2, (kn)n>3),
made of homotopy groups and “k-invariants” defining a Postnikov tower (Xn)n>2.
The first stage of the tower X2 is K(π2, 2), the first k-invariant k3 ∈ H4(X2, π3)
defines a fibration X3 ³ X2 the fiber being K(π3, 3), and so on. It is not hard
to define the valid morphisms between two towers, and so we have defined the
Postnikov category P. We know it is not a common opinion, but this category is
“algebraic”.

The so-called k-invariants are not invariants, for the following reason: different
k-invariants frequently give the same homotopy type. Identifying the corresponding
equivalence classes is a problem which, to our knowledge, is yet without any general
solution. Let us look at this simple example: what about the Postnikov towers with
only π2 = Zp, π5 = Z and the other πn’s are null. The only relevant k-invariant is
k5 ∈ H6(K(π2, 2), π5) = Cub(Zp,Z), the Z-module of the cubical forms over Zp;
making these cubical forms actual invariants amounts to being able to construct and
describe in a computational way the quotient set Cub(Zp,Z) / (linear equivalence).
We have questioned several arithmeticians and they did not know whether appropri-
ate references would allow a k-invariant user to solve this problem: the classification
problem does not seem to be solved by the “k-invariants” and our example is one
of the simplest ones5.

Let us quote certainly one of the best specialists in homotopy theory. Hans Baues
says in [4, p. 33]:

Here kn is actually an invariant of the homotopy type of X in the sense
that a map f : X → Y satisfies

(Pn−1f)∗knY = (πnf)∗knX

in Hn+1(Pn−1X, πnY ).

This is not strictly speaking the usual meaning of invariant ; the cohomology class
kn would be an actual invariant of the homotopy type if a homotopy equivalence
f : X ' Y implies knX = knY ; in fact the framed equal sign does not make sense:
the underlying cohomology groups are not the same, they are only, in the relevant
cases, isomorphic and two invariants should be considered as “equal” as soon as they
are in turn “isomorphic” in an obvious sense. Baues’ relation only shows the “k-
invariant” depends functorially on the data, but it is not an invariant ; the definition
would be acceptable if the isomorphism problem between the various possible k-
invariants in the same homotopy class had a (computable) solution, but the simple
example given before shows such a solution does not seem currently known. We

5We would like to thank Daniel Lazard for his study (private communication) which opens several
interesting research directions around this subject.
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will examine again this question in a more explicit way in Section 8, where another
classical reference about k-invariants [16] is also studied.

This is probably the reason why Hans Baues uses entirely different techniques to
obtain certainly the most interesting concrete results so far reached in the general
classification problem; see [4, Section 11] and Baues’ references in the same paper.

Let us consider the following subproblem of the hard one:

Problem 8. (Soft Problem) — How to design a computable category C and a
functor F : C → H such that any recursive homotopy type is in the image of F?

In fact the hard problem as it is stated in Problem 5 cannot have a solution: the
standard homotopy category H is much too rich to make it equivalent to a com-
putable category. This is a situation analogous to which is well known for example
for the real numbers. A computable real number is usually called a recursive real
number and the set of the recursive real numbers is countable, much smaller than
the set of “ordinary” real numbers, see [27]. In the same way:

Definition 9. — A recursive homotopy type is definedby a recursivePostnikov tower
((πn)n>2, (kn)n>3): the data of this tower are defined by an algorithm n 7→ (πn, kn).
In other words the recursive homotopy category is the image of the canonical functor
Pr → H if Pr is the category of the recursive Postnikov towers.

In fact, in the standard context, this definition poses a problem: the required
algorithm must be able to compute the Hn+1(Xn−1, πn) to allow it to “choose” the
next kn, and classical Algebraic Topology does not solve this question [11]. To our
knowledge, there are currently only two solutions for this problem, independantly
and simultaneously found by Rolf Schön [20] and the present authors [21, 18,
23]. We will see later that our SSEH category allows us in particular to compute
the cohomology groups Hn+1(Xn−1, πn) when the previous data are available, so
recursively defining where the kn is to be chosen. In this way our category SSEH

makes applicable Definition 9 and, then only, the Postnikov category becomes an
obvious solution for the soft problem. In fact we will also see the SSEH category
directly gives a solution for the soft problem.

It should be clear now that in the statement of the hard problem, the category H
must obviously be replaced by the category of the recursive homotopy types. Up
to a finite dimension, this amounts only to requiring that the homotopy groups πn

are of finite type, but if the situation is considered without any dimension limit, the
requirement is much stronger.

Restriction 10. — From now on, all our categories are implicitely limited to
recursive objects and recursive morphisms.

3.2. The operadic solutions.
Many interesting works have been and are currently undertaken to reach op-

eradic solutions for the hard and for the soft problem. Probably the most advanced
one is due to Michael Mandell [14], usually considered as a “terminal” solution.
See also [13] for a p-adic environment. Of course we do not intend to reduce the
interest of this essential work, but in Mandell’s article the computability question is
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not considered, and the proposed solution invokes numerous layers of sophisticated
techniques, so that the computational gap is not insignificant. In fact the interesting
next problem raised by Mandell’s paper is the following: is it possible to “naturally”
extend Mandell’s results to obtain the corresponding effective statements, or, on the
contrary, is it necessary to add something which is essentially new and/or different?
A solution is probably reachable in characteristic p, but if it was possible to obtain
the same result with respect to the ground ring Z, then crucial computability prob-
lems in arithmetic would be solved, problems which cannot be directly reduced to
Zp-problems, see the discussion in Section 8.1.

The operadic techniques raise other essential difficulties: it seems extremely dif-
ficult to make computable the relevant categories. The challenge is the following:
the ordinary constructions of algebraic topology — loop spaces, classifying spaces,
fibrations for example — should have a translation in the chosen category. The now
standard methods of closed model categories give many possibilities, give frequently
elegant theoretical solutions for these translations, but the computational satellite
problems are seldom studied. Let us note for example the difficulties met by the
topologists when they iterate the Cobar construction.

However, as already observed, an entirely combinatorial translation of Smirnov’s
or Mandell’s operadic techniques could be the right direction. Another research
direction could consist in combining SSEH -structures and operadic structures; this
question will be examined in Section 9.

4. The category SSEH.

Restriction 11. — All the chain complexes considered from now on are implicitly
assumed to be free Z-complexes, not necessarily of finite type.

The notion of reduction6 is well known.

Definition 12. — A reduction ρ : C∗⇒⇒⇒D∗ between two chain complexes C∗
and D∗ is a triple ρ = (f, g, h) where:

1. The first component f is a chain complex morphism f : C∗ → D∗;

2. The second component g is a chain complex morphism g : D∗ → C∗;

3. The third component h is a homotopy operator (degree = +1) h : C∗ → C∗;

4. These components satisfy the relations:

(a) f ◦ h = 0;
(b) h ◦ g = 0;
(c) h ◦ h = 0;
(d) idD∗ = f ◦ g
(e) idC∗ = g ◦ f + dC∗ ◦ h + h ◦ dC∗ .

These relations express in an effective way how the “big” chain complex C∗ is
the direct sum of the “small” one D∗ and an acyclic one, namely the kernel of f .

6Often called contraction or SDR data or . . .
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Definition 13. — A strong chain equivalence (or simply an equivalence):

ε : C∗⇐⇐⇐⇒⇒⇒D∗

is a pair of reductions ε = (ρ`, ρr) where:

C∗
ρ`

⇐⇐⇐ Ĉ∗
ρr

⇒⇒⇒ D∗

with Ĉ∗ some intermediate chain complex.

Definition 14. — A simplicial set with effective homology is a 4-tuple

XEH = (X, C∗X,ECX
∗ , εX)

where:
1. The first component X is a locally effective simplicial set;
2. The second component C∗X is the locally effective chain complex canonically

associated to X;
3. The third component ECX

∗ is an effective chain complex;
4. The last component εX is a strong chain equivalence εX : C∗X⇐⇐⇐⇒⇒⇒ECX

∗ .

An effective chain complex is an ordinary object, no surprise; it is an algorithm
n 7→ (Cn, dn) where, for every integer n, the corresponding chain group Cn is a free
Z-module of finite type, and dn is a Z-matrix describing the boundary operator dn :
Cn → Cn−1. Elementary algorithms then allow us to compute the homology groups
of such a complex. The third component ECX

∗ of a simplicial set with effective
homology is of this sort.

A locally effective chain complex is quite different. It is an algorithm:

n 7→ (χn, dn)

to be interpreted as follows.
1. The first component χn of a result is also an algorithm χn : U → {>,⊥}

where U (universe) is the set of all the machine objects, so that for every
machine object ω, the algorithm χn returns χn(ω) ∈ {>,⊥}, that is, true
or false, true if and only if ω is a generator of the n-th chain group of the
underlying chain complex.

2. The second component dn of a result is again an algorithm: if χn(ω) = >,
then dn(ω) is defined and is the boundary of the generator ω, therefore a
finite Z-combination of generators of degree n− 1.

The set U , for any reasonable machine model, is countably infinite, so that a
locally effective chain complex in general is not of finite type. The adverb locally has
the following meaning: if someone produces some (every!) generator ω of degree n,
then the dn-component is able to compute the boundary dn(ω). The terminology
generator-wise effective chain complex would be more precise but a little unwieldy.

A non-interesting but typical example of a locally effective chain complex would
be produced by χn(ω) = > if and only if ω ∈ N, independently of n, and dn(ω) = 0
for every n ∈ Z and ω ∈ N. In other words the underlying chain complex would be
the periodic one Cn = Z(N) with a null boundary.
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Standard logic shows in general the homology groups of a locally effective chain
complex are not computable; this is an avatar of the Gödel-Turing-Church-Post
theorems about incompleteness. More generally, global information in general can-
not be deduced from a locally effective object. The second component C∗X of a
simplicial set with effective homology is of this sort.

A locally effective simplicial set is defined in the same way; the simplices are
defined through characteristic algorithms χn, and instead of computing boundaries,
a set of appropriate operators computes faces and degeneracies.

The second component C∗X of a simplicial set with effective homology is redun-
dant: a simple algorithm can construct it from the locally effective simplicial set X;
and strictly speaking, we could forget it in the presentation. But the key points in
an object with effective homology are:

1. The main components are two Z-free chain complexes C∗X and ECX
∗ , the

first one being a direct consequence of the underlying object X, the second
one describing the homology of this object, reachable through an elementary
algorithm;

2. The component C∗X is locally effective allowing it to be of non-finite type,
with the drawback that in general its homology is not computable;

3. The component ECX
∗ is effective, therefore of finite type with computable

homology;

4. The equivalence εX is the key connection between the locally effective object
C∗X and the effective one ECX

∗ .

and it is hoped the nature of this organization is better explained in the notation
(X,C∗X, ECX

∗ , εX).
This notation is in fact a little misleading. A subtle difficulty is here which needs

a constructivist viewpoint instead of the standard one – Zermelo-Fraenkel – to be
understood. The locally effective subobject X which is the first component of an
object with effective homology does not effectively determine the “mathematical”
underlying object X, because of the standard incompleteness theorems. Only very
partial — “local” — information is reachable through such an object; if free colors
were available in the text-processing system used when preparing this text, a very
pale color should have been chosen for this symbol X, to clearly recall this sub-object
is not X, but a new kind of object rarely considered in standard mathematics, an
object of the third type [23].

Theorem 15. — The category SSEH is a solution for the soft problem.

It is not possible in the framework of this paper to give a proof of Theorem 15,
we will give only a demonstration. We apologize for the poor joke: “demonstration”
has two different meanings in our context, it can be a mathematical proof, and it can
be also a machine (computer) demonstration. It is expected in this case a machine
demonstration should give the reader a strong conviction that the Kenzo program
contains a proof of Theorem 15. This is the aim of Sections 5 and 7.



Homology, Homotopy and Applications, vol. 7(2), 2005 148

5. A small machine demonstration.

This section uses a small machine demonstration to explain how, thanks to the
powerful computer language Common Lisp, the Kenzo program [8] makes the ob-
jects and morphisms of the SSEH category concretely available to the topologist.

Let us consider the following space:

X = Ω(Ω(P∞(R)/P 3(R)) ∪4 D4) ∪2 D3

The infinite real projective space stunted to begin at dimension 4, P∞(R)/P 3(R),
is firstly considered; its loop space is constructed and the homotopy of this loop space
begins with π3 = Z; so that attaching a 4-cell by a map ∂D4 → S3 of degree 4 makes
sense and this is done. The loop space functor is again applied to the last space and
finally a 3-cell is attached by a map of degree 2. This artificial space X is chosen
because it is not too complicated, yet it accumulates the main known obstacles to
the theoretical and concrete computation of homology groups in small dimensions.

The space X is an object of the category SSEH , so that the Kenzo program can
construct it as such an object. The standard simplicial model of P∞(R)/P 3(R) has
exactly one simplex in dimensions 0, 4, 5, . . . : it is a simplicial set of finite type in
any dimension; so that installing this space as an object of SSEH is straightforward.
Kenzo knows this fact, and the predefined r-proj-space function implements it.

Now, using Theorem 15, more precisely Theorem 17 in the next section, the space
X can be constructed as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (progn

(setf P4 (r-proj-space 4))

(setf OP4 (loop-space P4))

(setf attach-4-4

(list (loop3 0 4 4) (loop3) (loop3) (loop3) (loop3)))

(setf DOP4 (disk-pasting OP4 4 ’D4 attach-4-4))

(setf ODOP4 (loop-space DOP4))

(setf attach-3-2

(list (loop3 0 (loop3 0 4 1) 2) (loop3) (loop3) (loop3)))

(setf X (disk-pasting ODOP4 3 ’D3 attach-3-2))) z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We cannot explain the technical details of the construction, but most of the state-
ments are self-explanatory. Each object is located by a symbol and the assignment is
set through a setf Lisp statement. For example the initial stunted projective space
is assigned to the symbol P4. An object such as attach-4-4 describes an attach-
ing map as a simplicial map ∂∆4 → OP4 and this description is then used by the
Lisp function disk-pasting which constructs the desired space by attaching a cell
according to the descriptor attach-4-4. The same for the end of the construction.

When this statement is executed, Lisp returns:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

(setf X (disk-pasting ODOP4 3 ’D3 attach-3-2))) z
[K17 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A maltese cross z means the Lisp statement is complete, the read stage of the
read-eval-print Lisp cycle is finished, the eval stage starts for an execution of the
just read Lisp statement, it is the stage where the machine actually works, evaluating
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the statement. Most often, an object is returned (printed), it is the result of the
evaluation process, in this case the simplicial set #K17, located through the X symbol.
This object X is a (machine) version with effective homology of the topological space
X.

So we can ask for the effective homology of X; it is reached by the function efhm

(effective homology) and assigned to the symbol SCE (strong chain equivalence):
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf SCE (efhm X)) z
[K268 Equivalence K17 <= K256 => K258]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Kenzo program returns a (strong) equivalence (Definition 13) between the
chain complexes #K17 and #K258. Usually it is understood that a simplicial set pro-
duces an associated chain complex, but we may conversely consider that a simplicial
set is nothing but a chain complex where a simplicial structure is added, compatible
with the differential; for us, this is the right point of view and Kenzo follows this
idea. Please compare with the discussion after Problem 2: a simplicial set is itself
a chain complex with a further algebraic (!) structure. In other words, if you are
only looking for an algebraic model for a homotopy type, the notion of simplicial
set is a simple definitive solution, already given fifty years ago by Eilenberg and
MacLane [9, 10]; this is the reason why a computability requirement is necessary
to state a relevant problem.

In our equivalence describing the effective homology of X, the right chain complex
#K258 is effective, the left one #K17 is not:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (basis (K 258) 4) z
(<<AlLp[4 <<AlLp[5 6]>>]>> <<AlLp[2 <<AlLp[3 4]>>][2 <<AlLp[3 4]>>]>>)

> (length *) z
2

> (basis (K 17) 4) z
Error: attempt to call ‘:LOCALLY-EFFECTIVE’ which is an undefined function.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The basis in dimension 4 of the chain complex #K258 is computed; it is a list of
length 2 (‘*’ = the last returned object). The elements of the basis themselves are
“algebraic loops” (AlLp), elements of some appropriate cobar constructions.

You see it is not possible to obtain the basis in dimension 4 of the chain complex
#K17 = C∗X; the necessary functional object is in fact the keyword :locally-effective

which generates an error.
A homology group of X can be computed:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology X 5) z
Homology in dimension 5 :

Component Z/4Z

Component Z/2Z

Component Z

---done---
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which means H5X = Z4⊕Z2⊕Z. It is in fact the homology of #K258 in dimension
5.



Homology, Homotopy and Applications, vol. 7(2), 2005 150

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology (K 258) 5) z
Homology in dimension 5 :

Component Z/4Z

Component Z/2Z

Component Z

---done---
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The strong chain equivalence #K268 contains three chain complexes and two
reductions, therefore four chain complex morphisms and two homotopy operators. In
particular there is in the right reduction ρr : K256⇒⇒⇒K258 a right g : K258 → K256

reachable by means of a rg function in the program; in the same way the left
reduction ρ` : K17⇐⇐⇐K256 contains a left f : K256 → K17 reachable thanks to
a lf function. The Kenzo program can use these maps for arbitrary generators or
combinations. For example the next Lisp statements play to verify the composite
of the left f and the right g is compatible with the differentials.

We assign to the symbol gen the first generator of #K258 in dimension 4, we
apply the right g (rg) to this generator, then the left f (lf), finally the differential
of #K17:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf gen (first (basis (K 258) 4))) z
<<AlLp[4 <<AlLp[5 6]>>]>>

> (rg SCE 4 gen) z
----------------------------------------------------------------------{CMBN 4}

<-1 * <BcnB <TnPr <<AlLp[4 <<Loop[2-1 4][4-3 4]>>]>> <TnPr ... ...

<1 * <BcnB <TnPr ... ...

------------------------------------------------------------------------------

> (lf SCE *) z
----------------------------------------------------------------------{CMBN 4}

<-2 * <<Loop[1-0 <<Loop[4]>>][3-2 <<Loop[4]>>]>>>

<2 * <<Loop[2-0 ...

[... Lines deleted...]

------------------------------------------------------------------------------

> (? (K 17) *) z
----------------------------------------------------------------------{CMBN 3}

<-2 * <<Loop[<<Loop[3 4][5]>>]>>>

------------------------------------------------------------------------------
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result is a combination of degree 3 with a unique monomial, the coefficient is
−2 and the generator is a “loop of loops”, more precisely a simplex in the Kan model
of Ω2(P∞R/P 3R) ⊂ X. Large parts of the intermediate results are not shown. A
result between two dash lines ‘---’ labeled for example {CMBN 3} is a combination
of degree 3 of integer coefficients and generators, one term per line.

The other path consists in applying to the same generator first the differential
of #K258 and then the same maps:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (? (k 258) 4 gen) z
----------------------------------------------------------------------{CMBN 3}

<2 * <<AlLp[3 <<AlLp[4 5]>>]>>>

------------------------------------------------------------------------------

> (rg sce *) z
----------------------------------------------------------------------{CMBN 3}

<2 * <BcnB <TnPr <<AlLp[3 <<Loop[3 4][5]>>]>> <TnPr <<Loop>> <<Loop>>>>>>

<-2 * <BcnD <<AlLp[3 <BcnB <TnPr <<AlLp[4 5]>> <TnPr 0 <<Loop>>>>>]>>>>

<2 * <BcnD <<AlLp[3 <BcnD <<AlLp[4 5]>>>]>>>>

------------------------------------------------------------------------------

> (lf sce *) z
----------------------------------------------------------------------{CMBN 3}

<-2 * <<Loop[<<Loop[3 4][5]>>]>>>

------------------------------------------------------------------------------
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The results are the same. We will have more to say in Section 7.

6. The fundamental theorem of Effective Homology.

The classical spectral sequences (Serre, Eilenberg-Moore, Adams, . . . ) are not
algorithms. See for example [17, Section 1.1], in particular the comments following
the unique theorem of the quoted section: most often, the available input for a
spectral sequence does not determine the higher differentials. Something more is
necessary for this essential problem, and it happens the category SSEH is from
this point of view a perfect solution; moreover it is a simple solution, once the
possibilities of functional programming are understood.

Meta-Theorem 16. — Let

χ : (Xi)16i6n 7→ Y

be a “reasonable” construction of the Algebraic Topology world producing Y from
the Xi’s. Then an algorithm χEH can be written down which is a version with
effective homology of the construction χ:

χEH : ((Xi)EH)16i6n 7→ YEH

Most often the Xi’s and Y are topological spaces. A construction is “reasonable”
if it leads to some classical spectral sequence giving topologists the feeling that if
the homology (for example) of the Xi’s is known, then the homology of Y might be
“deduced”.

A typical and important situation of this sort is the case where X is a simply
connected space and χ = Ω is the loop space functor: Y = ΩX. The Eilenberg-
Moore spectral sequence gives interesting relations between H∗X and H∗ΩX, but
this spectral sequence is not an algorithm computing H∗ΩX from H∗X, for a simple
reason: it is possible that H∗X = H∗X ′ and H∗ΩX 6= H∗ΩX ′. More precisely,
the cobar construction [1] gives the homology of the first loop space when some
coproduct is available on H∗X, but the cobar construction does not give a coproduct
on H∗ΩX, so that the process cannot be iterated; this is Adams’ problem: how
to iterate the cobar construction? More than twenty years after Adams, Baues
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succeeded in a beautiful work [3] in iterating one time the cobar construction,
giving the homology of the second loop space Ω2X in reasonable situations, but
Baues’ method cannot be extended for the homology of Ω3X.

The category SSEH gives at once a complete and simple solution for Adams’
problem; it is a consequence of the following particular case of Meta-Theorem 16.

Theorem 17. — An algorithm ΩEH can be written down:

ΩEH : XEH 7→ (ΩX)EH

producing a version with effective homology of the loop space ΩX when a version
with effective homology of the initial simply connected space X is given.

The algorithm ΩEH not only can be written down, but it is written down; the al-
gorithm ΩEH is certainly the most important component of the Kenzo program [8],
a program which currently is the most detailed description of the nature of Theo-
rem 17, a description not very convenient for an ordinary reader7.

The data type of the output (ΩX)EH is exactly the same as the data type of the
input XEH , so that the algorithm ΩEH can be trivially iterated.

Theorem 18. (Solution of Adams’ problem8) — An algorithm ICB (iterated
cobar) can be written down:

ICB : (XEH , n) 7→ (ΩnX)EH

which produces a version with effective homology of the n-th loop space ΩnX when
a version with effective homology of the initial space X, assumed to be n-connected,
is given.

When XEH = (X, C∗X,ECX
∗ , εX) is given, the algorithm ICB produces a 4-

tuple (ΩnX)EH = (ΩnX,C∗ΩnX,ECΩnX
∗ , εΩnX), where the “n-th cobar” of ECX

∗
is the third component ECΩnX

∗ . This n-th cobar cannot be constructed from ECX
∗

only; the first cobar needs the coproduct of C∗X and the n-th cobar needs much
more supplementary informations hidden in X and εX as indicated by V. Smirnov,
M. Mandell and J. Smith9; these objects X and εX are locally effective and model
mathematical objects which are infinite; yet X and εX are finite machine objects
(pleonasm), namely finite bit strings actually created, processed and used by the
Kenzo program; this process works thanks to functional programming.

The further components ΩnX and εΩnX in the result would allow us to undertake
other calculations starting from ΩnX.

7. A small machine demonstration [sequel].

Let us consider again the space X of Section 5. The Kenzo program had con-
structed a version with effective homology of this space, allowing in particular the
computation of its homology groups. Much more important, because of Theorem 17,

7See [22] for a survey which gives the plan and the main ideas of the proof of Theorem 17.
8This theorem is also a solution for Carlsson’s and Milgram’s problem [6, p. 545, Section 6].
9See also [2] for an analogous problem with respect to Lie algebras structures.
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the machine object ΩEH of the same program can be applied to produce a version
with effective homology of the loop space ΩX:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf OX (loop-space X)) z
[K273 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kenzo10 returns a new locally effective simplicial group, the Kan model of ΩX
and its effective homology:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf SCE2 (efhm OX)) z
[K405 Equivalence K273 <= K395 => K391]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with which exactly the same experiences which were tried with the effective ho-
mology of X in Section 5 could be repeated. In particular the right chain complex
#K391 is effective and allows a user to compute a homology group:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology OX 5) z
Component Z16

Component Z8

...

...

Component Z2

Component Z2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where we have deleted 21 lines, for the result is in fact:

H5(Ω(Ω(Ω(P∞(R)/P 3(R)) ∪4 D4) ∪2 D3)) = Z16 ⊕ Z8 ⊕ Z23
2 .

This is the corresponding homology group of #K391.
To our knowledge, the Kenzo program is the only object, human or not, currently

able to reach this result. See also [20, 26] for two other interesting theoretical
solutions which unfortunately have not yet led to concrete machine programs.

8. The category SSEH and the Postnikov category.

A rough “definition” of the Postnikov category was given in Section 3.1, but we
must now be more precise to obtain a correct relation between the category SSEH

and the Postnikov category.

Definition 19. (non-standard) — An Abelian group of finite type π is a direct sum
π = Z/d1Z⊕ · · · ⊕Z/dnZ where every di is a non-negative integer and di−1 divides
di. We denote by Π the set of these groups.

The set Π is designed for having exactly one group isomorphic to every Abelian
group of finite type. For example the group H5X in Section 5 is isomorphic to the
element of Π defined by the integer triple (2, 4, 0), that is, the group Z2 ⊕ Z4 ⊕ Z,
but there are 128 different isomorphisms.

10The Kenzo function loop-space follows the modern rules of Object Oriented Program-
ming (OOP): if the argument is a simplicial set, then the Kan model of the loop space is con-
structed, and if furthermore the argument contains the effective homology of the initial simplicial
set, then the loop-space function constructs also the effective homology of the loop space.
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Definition 20. — A Postnikov tower is a pair of sequences ((πn)n>2, (kn)n>3)
where πn ∈ Π and kn ∈ Hn+1(Xn−1, πn), where Xn is the n-th stage of the Post-
nikov tower constructed by the standard process.

Because πn is some precise group, the standard Eilenberg-MacLane process gives
a precise K(πn, n), a Kan simplicial set, producing in turn a precise n-th Postnikov
stage Xn and with the next πn+1 a precise cohomology group Hn+2(Xn, πn+1) where
the kn+1 must be “chosen”. A Postnikov tower so produces in a deterministic way
a realization X. A morphism f : (πn, kn) → (π′n, k′n) between two Postnikov towers
is a collection (fn : πn → π′n) of group homomorphisms compatible with the kn’s
and k′n’s, that is, satisfying Baues’ relation, and we have so defined the Postnikov
category P. The isomorphism problem consists in deciding whether two Postnikov
towers (πn, kn) and (π′n, k′n) produce realizations with the same homotopy type, that
is, because of the context, that are isomorphic. Of course the condition πn = π′n
is required for every n, but simple examples show that the condition kn = k′n on
the contrary is not necessarily required. This is the reason why the kn’s are not
invariants of the homotopy type.

The computable category SSEH makes the realization process computable.

Theorem 21. — An algorithm PR (Postnikov realization) can be written down:

PR : P → SSEH

implementing the realization process.

In fact the situation is significantly more complex. Before being. . . true, the state-
ment of this theorem must make sense, so that a machine implementation of the
category P must be available, at least from a theoretical point of view. This is
obtained thanks to the category SSEH itself: a component kn must be a machine
object, so that the data type Hn+1(Xn−1, πn) where kn is to be picked up must be
previously defined, which is possible only if a calculation of this cohomology group
can be undertaken. And again it is the category SSEH which gives this possibility.
It is an amusing situation where a category, the category SSEH , is simultanously
used to give sense to the statement of a theorem, and synchronously finally to prove
it.

Combining Theorem 21 with the appropriate particular cases of Meta-Theorem 16,
we see the problem implicitly stated in the framed title inscription is now solved.
In particular, the Kenzo program allows a Postnikov user to undertake many com-
putations of this sort.

It is not possible, with the currently available tools, to make the categories P
and SSEH effectively equivalent, of course up to the homotopy relation.

Theorem 22. — An algorithm SP can be written down:

SP : SSEH → P × I : X 7→ (πn, kn, In)n>2

where the component In is some isomorphism In : πn(X) ∼= πn ∈ Π = the set of
“canonical” models of Abelian groups of finite type; the k-invariants kn are unam-
biguously defined only when the In’s are chosen.
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The algorithm SP is essentially non-unique, for the choice of the component In is
arbitrary, and the various choices of these isomorphisms will produce all the possible
collections of k-“invariants” (!). Unfortunately the group GL(p,Z) for example is
infinite for p > 1, so that it is a non-trivial arithmetical problem to determine
whether two collections of k-invariants correspond to the same homotopy type or
not. For example the problem has an obvious solution up to arbitrary dimensions
if every πn is finite, but as soon as a πn is not finite, we are in front of interesting
but difficult problems of arithmetic, to our knowledge not yet solved in general11.

In conclusion, thanks to the computable category SSEH , the category P becomes
also a computable category. There are “good” but non-canonical correspondances
between these categories. Both categories solve the soft problem and from this point
of view give equivalent results. Both categories would solve the hard problem if the
equivalence problem between systems of k-“invariants” was effectively solved.

It is easier now to understand the common confusion about the nature of the
k-invariants. We follow exactly here [16, §25], up to obvious slight differences of
notations. If X is a topological space, we can start with a minimal Kan model
of X, “unique” up to numerous different isomorphisms in general; the Postnikov
stages Xn−1 and Xn are then canonical quotients of X. There is also a canonical
fibration between Xn and Xn−1, the fiber space of which being the canonical space
K(πn(X), n), defining unambiguously a

kn ∈ Hn+1(Xn−1, πn(X)) = Hn+1(X/ ∼n−1, πn(X)).

It is then clear that a claimed invariant living in Hn+1(Xn−1, πn) with πn ∈ Π
depends on an isomorphism πn

∼= πn(X), which is essentially the g correctly con-
sidered at [16, Theorem 25.7]. But if you think that Xn−1 comes only from the
previous data π2, π3, k3, . . . , πn−1, kn−1 and not from X itself, you can freely apply
a self-equivalence of Xn−1 to change (!) the invariant, the fibration Xn → Xn−1 is
changed, but on the contrary the homotopy type of Xn remains unchanged: different
invariants correspond to equal homotopy types. The group of all the self-equivalences
of Xn−1 must be considered, of course in general a serious question. One way to
cancel this ambiguity consists in choosing a well defined partial equivalence be-
tween X and Xn−1, which amounts to choosing some isomorphisms πi

∼= πi(X) for
2 6 i < n.

11Compare with [20, pp. 54-59]; the possible equivalence of kn and k′n with respect to some
automorphism of the last πn is there proved decidable, which is relatively easy. But this does
not seem to be sufficient, because the possible automorphisms of all the previous πm, m 6 n,
must be considered. The example of a Postnikov tower where only π2 = Zp and π5 = Z given in
Section 3.1 shows the main problem for the equivalence of k-invariants is in the automorphisms
of π2, because the group of automorphisms is GL(p,Z), leading to an arithmetical problem which
seems open. In a later preprint, not published, Rolf Schön considers again the problem, solves it in
the case where all the πn’s are finite, and announces a general solution which “takes considerable
work”. The authors have not succeeded in getting in touch with Rolf Schön for several years,
and any indication about his current location would be welcome. Note that these comments in
particular cancel the assertion in [23, Section 5.4] about the classification problem, which assumed
the correctness of Schön’s paper: the solutions called JS, SRH and SRG in [23] solve only the soft
problem; an essential gap remains present for the hard problem.
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Maybe it is useful to recall an invariant with respect to any notion must be
chosen in a “fixed” world independent of the object the invariant of which is being
defined. Otherwise the definitively simplest complete invariant for the homotopy
type of X is X itself. Not very interesting. In [16, Theorem 25.7] the definition
kn ∈ Hn+1(Xn−1, πn) (p. 113, line 19) and the notation πn = πn(X, ∅) (line 14)
contain two illegal occurrences of X when defining an invariant: an elementary rule
of formal logic is not satisfied. It is the reason why, in the statement of Theorem 22,
πn is not equal to πn(X), they are only isomorphic through some isomorphism which
plays an essential role.

The classical example of the minimal polynomial of a matrix is helpful; if the
ground field K is given, then the minimal polynomial can be chosen once and for
all in K[λ], a set of polynomials independent of the particular considered matrix.
So that if two matrices are conjugate, more generally if two endomorphisms of two
finite-dimensional K-vector spaces are conjugate, their minimal polynomials are
equal, not mysteriously “isomorphic”; this is the reason why the miminal polynomial
is a correct conjugation invariant.

8.1. Localization.
Another natural idea must also be considered. It is usual to split a topological

problem P into a rational problem P0 and p-problems (Pp)p∈P for p running the
prime numbers P. Then a solution for every problem Pp including p = 0 theoretically
produces a solution for the initial problem P . Let us take again our fetish example of
the Postnikov towers with only π2 = Zk and π2n−1 = Z where the k2n−1-invariant is
χ ∈ Sn

k , the Z-module of the homogeneous Z-polynomials of degree n with respect
to k variables. The localization method produces a localized Postnikov tower Tp for
every element p ∈ {0} ∪P. We are then in front of a list of problems.

Problem 23. — Let χ and χ′ be two polynomials defining Postnikov towers T
and T ′, producing in turn families of Postnikov towers (Tp) and (T ′p).

1. Let p be an element of {0} ∪P; can the mapping T 7→ Tp be made effective?

2. Can the isomorphism problem between Tp and T ′p be effectively solved?

3. Does there exist an integer p0 and an argument allowing us to be exempt from
this study for p > p0?

4. If the isomorphism problem between Tp and T ′p has a positive effective solution
for every p, does there exist an effective process allowing the construction of
an isomorphism between T and T ′?

Subproblems 1 and 2 of Problem 23 probably are “exercises”, but the subprob-
lems 3 and 4 seem serious. Notice again a general solution for Problem 23 would
solve at once the problem of the Z-linear equivalence between elements of Sn

k for
every n, while the arithmeticians currently know the solution only for n = 2, a
non-trivial problem [7]. From this point of view, it would be interesting to translate
the known solution which is available for n = 2 into a solution of Problem 23.
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9. The category SSEH and the E∞-algebras.

We had briefly mentioned in Section 3.2 the possibility of other solutions for
the hard problem based on E∞-operads. Exactly as in the previous section, the
p-localized versions [13] of these operads can be considered, or if it is preferred
directly the Z-version [14]. These versions lead to a correspondance problem analo-
gous to Problem 23. The resulting classification problem in this framework consists
in determining whether some quasi-isomorphism of E∞-chain complexes can be in-
stalled between two such given chain complexes. Taking account of the numerous
tensor products involved in the usual descriptions of E∞-operads, we see we are
again in front of some sophisticated linear equivalence problems between general-
ized polynomials: the nature of our hard problem, when expressed in this setting,
seems exactly the same.

A particularly interesting E∞-operad is the surjection operad S defined and
studied in [5], a work undertaken to make completely explicit some results12 of
Mandell’s paper [14] already quoted in Section 3.2. The so-called surjection operad
and its action on a simplicial set can be understood as a “complete” generalization
of the Steenrod operations, and we therefore propose to call it the Steenrod operad,
which furthermore allows us to keep the same notation S.

Theorem 24. — A functorial algorithm SSC (simplicial sets to Steenrod chain
complexes) can be written down:

SSC : SSEH → CCS
where CCS is the category of the free Z-chain complexes of finite type provided with
a CBS-operadic structure.

An appropriate bar construction can be applied to the operad S to produce a
cooperad BS; then an analogous cobar construction can in turn be applied to this
cooperad to produce a new operad denoted by CBS, another model for an E∞-
operad which has the following advantage13: let f : C∗ → D∗ be a chain equivalence
between two free Z-chain complexes; then every CBS-structure on C∗ induces such
a structure on D∗.

Definition 25. — A Steenrod chain complex is a free Z-chain complex provided
with an S-structure or with a CBS-structure.

Let X be an object of SSEH , that is, a simplicial set with effective homology. The
article [5] explains how the initial definition by Steenrod of his famous cohomological
operations can be naturally used to install a canonical S-structure on the chain
complex C∗X; the strong chain equivalence εX : C∗X⇐⇐⇐⇒⇒⇒ECX

∗ then allows us to
install a CBS-structure on ECX

∗ , and this is enough to define the functor SSC.
Taking account of Mandell’s article [14], the following problems are natural.

12The considerations of Section 8.1 can again be applied when comparing the surjection operad S,
a Z-operad, and the “abstract” p-localized operads of Mandell.
13We would like to thank Tornike Kadeishvili for his clear and useful explanations about this
process.
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Problem 26. — Does there exist an algorithm R (realizability):

R : CCS × N→ Bool = {>,⊥}
allowing us to decide whether some object C∗ ∈ CCS corresponds or not to some
topological object up to some given dimension?

Because of the Characterization Theorem [13, p. 2], a solution for this problem
is probably a “simple” exercise, simple in theory but the operad CBS is rather
sophisticated, so that a concrete solution seems a nice challenge. Furthermore the
Characterization Theorem is stated and proved in characteristic p and obtaining
the analogous result with respect to the ground ring Z could be a little difficult.

Problem 27. — Does there exist an algorithm SHT (same homotopy type):

SHT : CC′S × CC′S × N→ Bool

allowing us to decide whether two CCS-objects obtained through the SSC-algorithms,
therefore certainly corresponding to actual recursive simplicial sets, have the same
homotopy type or not, of course up to some given dimension?

The authors are not sufficiently experienced in operadic techniques to estimate
the difficulty of this question. The Main Theorem of [13, p. 1] seems to imply that
the same considerations as for Problem 26 could be applied; but as already observed,
an effective solution of Problem 27 would indirectly solve crucial computability
problems in arithmetic, problems which seem to raise essential obstacles confronting
the professionals.

If the operadic methods become unavoidable, it seems terribly difficult to design
directly the category CCS as a computable category. We think it would be more
sensible to work simultaneously with the categories SSEH and CCS : it is frequent
in mathematics in general, and in computer science in particular, that it is not
a good idea to give up too early information which looks redundant. This is well
known for example by the theoreticians in homotopy theory: it is much better to
work with an explicit homotopy equivalence than only with the existence of such an
object, and it is still better to keep also the various maps which describe how this
homotopy equivalence actually is one, and so on. This is nothing but the philosophy
always underlying work with E∞-operads.

In our situation, Theorem 24 implies a simplicial set with effective homology
XEH contains in an effective way a Steenrod chain complex; and we do not need
any realizability criterion, an object of SSEH certainly corrresponds to a genuine
topological space. Therefore good objects to work with in Algebraic Topology could
be the pairs (XEH ,ΣX

S ) where the second component ΣX
S is the CBS-structure

induced on ECX
∗ by the canonical Steenrod structure on C∗X. Then, when a new

object is constructed from such objects, the ingredients present in the second com-
ponents could facilitate the computation of some parts of the constructed object,
but others would certainly be obtained much more easily, thanks to the first com-
ponents.

In a sense the success of the category SSEH is already of this sort: instead of
working only with a chain complex ECX

∗ describing the homology of X, certainly



Homology, Homotopy and Applications, vol. 7(2), 2005 159

in general not sufficient for the planned computations, it is much better to work
with X itself under its locally effective form, the only form which can be processed
on a machine when X is not of finite type. The amazing fact is that this is sufficient
to solve many computability problems, though this version of X does not effectively
define the mathematical object X, because of Gödel and his friends, see [23, Sec-
tion 5.3]. The same people, helped by Matiyasevich [15], have also made impossible
a universal solver of systems of polynomial Z-equations, and after all, the hard
problem is equivalent to a problem about such equations, so that we cannot even
be sure, up to further information, a solution of the hard problem exists.
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