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1. INTRODUCTION

Alonzo Church [CHR] and Alan Turing {TRN] proved in the middle
of the thirties that there cannot exist a general algorithm determining
whether a mathematical statement is true, false, or undecidable.

This at first sight negative result has eventually become one of the most
productive ones in the history of mathematics, at several levels.

At first, and this has been immediately noted, this result ensures the
durability of the mathematical job, which is not inconsiderable. No finite
“system,” in the broadest sense of the term, can potentially cover the whole
mathematical field. So it can be considered that Church and Turing have
proved that mathematicians will always be able to discover new playing
fields and their creativity will never die for lack of study areas.

Hilbert’s dream actually was a dream. But a new subject for research was
thus opened: studying what mathematical theories are in fact open to
algorithmic processes. A concrete example will help us to explain this
idea. Novikov proved the nonexistence of a general algorithm for solving
the word problem in a finitely presented group. But on the contrary
Tartakovskii proved that this problem is solvable for a large class of
groups; for example, Magnus had proved before Novikov’s work the
existence of a solution for a group with one relation. More explanations
and references can be found under “Free Groups” in [EDM].

This paper is devoted to such a result. Here it is proved that almost
every reasonable computability problem in homological algebra and
algebraic topology has a positive solution. There remains a unique limita-
tion, as frequently in algebraic topology: simple connectivity hypotheses
must often be satisfied; otherwise it is easy to find problems the noncom-
putability of which results from Novikov’s theorem. For example, there
does not exist a general algorithm allowing us to decide whether a finite
simplicial complex is simply connected.

After having stated this restriction, all the homotopy, homology,
K-theory, ..., groups that fill the algebraic topology books “could be”
computed on a machine and many others as well.
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In this connection, two earlier results have to be examined for com-
parison. Edgar Brown [BRW] proved the computability of the homotopy
groups of finite simply connected simplicial sets. He obtained this result by
programming Postnikov’s tower, but he encountered some difficulties
which we shall examine in due time (Section 9) because of the hugeness of
the K(=n, n)’s. Here these difficulties are overcome by a quite new method,
the functional coding method, which will be outlined later in this introduc-
tion, This method is so powerful that on one hand the class of the problems
with a computable solution is at once significantly enlarged and, on the
other hand, it is now quite sensible to get down to work and actually
program on a computer the algorithms whose existence is thus proved.

Sullivan’s so-called minimal mode! method [SLL] allows us to solve
many computability problems too; however, the computability problem of
the rorsion components remains unanswered. Various attempts have been
made to cover the torsion component case too, but as far as we know, no
general result has yet succeeded in finding the hoped for extension.

We obtain here a solution for this problem. Admittedly its nature is
strange, so strange that the professionals’ agreement seems hard won. We
explain in this paper how to assign to a simplicial set a finire object,
precisely one that can be coded as a finite bit string, and that contains its
whole homotopy type in an effective way. In fact this cannot be applied to
just any simplicial set. On one hand it must be simply connected (or satisfy
a nilpotency condition). On the other hand it must be a simplicial set with
effective homology. But we prove in Section 10 that every “reasonable”
simply connected simplicial set has effective homology. For example,
QUK(Z,, T)V P'H Y 2°5°)V/ §? is “reasonable”; it is a simplicial set
with effective homology and the object assigned to it is a finite bit string
allowing us to compute any one of its homotopy groups or Postnikov
invariants.

What is functional coding? This question brings us back to Church. In
order to prove the nonexistence of the algorithm hoped for by Hilbert,
Church had to create a very clever machine model, where the algorithms
are quite capable of working on algorithms in order to make algorithms,
and so on. This is the A-calculus. Church’s idea was to find a contradiction
of type “the liar’s paradox” similar to the one used by Géddel for his
incompleteness theorem.

Hence Church invented the A-calculus in order to prove a negative result,
probably without having any idea of the positive applications which would
be later obtained! Indeed some computer scientists of the sixties were
curious enough to examine whether Church’s model could give concrete
applications for actual machines. It was the time when McCarthy created
the Lisp programming language [MCR]. The A-calculus, as formal mathe-
matics, needs rerms whose length grows very quickly. McCarthy’s work
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therefore consisted in examining the construction details of the A-calculus
and overcoming this problem so as to get a concretely usable programming
language. At the beginning this work gave rise only to skepticism but even-
tually has been recognized as of the greatest relevance: today we cannot
keep count of the important if not essential applications of the Lisp
language. Thus it is by far the most used programming language in the
artificial intelligence field; for applications closer to traditional mathe-
matics, let us point out that very powerful symbolic computing software
such as Reduce, Macsyma, and Scratchpad rest on a Lisp base. The results
explained in this paper will perhaps expand the Lisp application field still
more.

Almost all the objects considered in this paper will be coded as algo-
rithms open to processing by other algorithms. The theoretical justification
consequently rests on Church’s work; and the assertion stated earlier about
the feasibility of these algorithms rests on Lisp programming experience. So
that we see that undoubtedly Church’s work for proving a negative result
will continue to give positive consequences.

Church and Turing will again be useful for examining another aspect of
the present work. Their contemporaries had the biggest difficulties in
admitting that systems as elementary as the Turing machine or the
A-caleulus could actually contain everything that is possible to do on any
machine. However, experience showed they had the right point of view. For
example, the existence of a universal machine, proved by Turing and which
greatly surprised the mathematicians of his time, results from this strategy.
And the whole of modern computer science rests on this idea; this story
proves that often simplicity = efficiency.

In so speaking we want to explain to the homological algebra profes-
sionals that they will find in this paper neither a new exact sequence with
magical properties nor a new super spectral sequence to be added to their
already rich (and wonderful!) toolbox. On the contrary it is a question of
reducing everything that is done in homological algebra to mechanisms as
elementary as possible. We will show that any task in homological algebra
is nothing other than a repeated application of two elementary operations:
adding to or removing from a chain complex an acyclic direct summand. See
the reduction notion in Section 6. For example, a homotopy equivalence is
the succession of such an addition and such a subtraction. We strip down
in this way all exact and spectral sequences of our folklore. Once this is
carried out, the computability results can be obtained very easily.

We must also explain that the techniques described in this paper
diminish in no way the importance of the “classical” work done otherwise.
They only supplement them in one direction: obtaining computing algo-
rithms from already existing techniques. All the existing exact and spectral
sequences remain useful and even essential.
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Since these results have been announced [SRG], the author has con-
stantly been asked whether he was able to find in this way new homol-
ogy or homotopy groups. This question is examined in more detail in
Section 10. Here we only recall the long time interval between the genesis
of Church and Turing’s works and the fantastic applications that are made
of them today. A little patience will therefore probably be needed, but
the field thus opened seems fascinating.

Several discussions with Claude Quitté, Julio Rubio and Martin Tangora
have been very useful and they are warmly thanked. The excellent book
[HDG] is highly recommended for the very interesting description which
is done about the birth of computer science with Turing of course and also
many others; special thanks are due to Yvon Siret (Computer Center at
Grenoble University) who called my attention to this marvelous book at
the best possible time'.

2. MACHINE

In order to justify theoretically the functional coding technique, we need
a model for the notion of machine, such that there is no difference between
the notions of program and dara. This was carried out for the first time
during the thirties by some logicians (Church, Kleene, Rosser, ...) who then
invented what is now called the A-calculus. The basic reference for the
A-calculus is still [CHS]; a convenient and more recent reference is [HRM,
Sect. 317, which gives a fast survey of the essential ideas of the A-calculus.

In this text, very elementary notions about the A-calculus are quite
sufficient; they are explained now.

A machine (or automaton) is a triple (7, %, p) where:

T is a countable set, the set of rerms of the A-calculus;

% 1s a subset of 7 ; it is the set of terms in the A-calculus that are in
normal form;

p is a function: 7,=9 — % — 7, the elementary reduction operator of
the A-calculus.

The set J must be understood as the set of possible states of the
machine during a computation; and # is the set of final states. The

Y Note added in proof. Since this paper has been accepted (1990) for publication in
Advances in Mathematics, the Effective Homology theory has made much progress. On
one hand, the concrete programming work has been ended for homology groups of iterated
loop spaces and allowed us to reach new unknown homology groups. On the other hand,
the “perturbation lemma” has been recognized as the ideal tool to organize the effective
homology versions of the various spectral sequences. If interested, please ask the author for
preprints (E-mail address: sergerar@imag.fr).
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operator p defines an elementary step of machine operation; therefore p is
defined only on the set of non-final states ,. The set % can also be
considered as the set of machine objects (% means universe); in fact it is
later explained that the elements of # can be understood on one hand as
programs, and on the other hand as dara. Note that % is a subset of the
countable set .7, so that % is countable too.

The function p allows us to define another function p: 7 — (% 1 {?})
which describes the final state, when it is defined, of the machine when it
is started from the state t € 7; the function p is defined as follows: let te 7
be a term of the A-calculus; then one and only one event among both of the
following can happen:

(a) there exists an integer ne N such that for any any m<n,
p™te J,; furthermore p"te %; then we define pt = p"t; note that n can be
null, and in this case t=pre %,

(b) for every neN, p”t is defined and is an element of .7, ; in that
case we define pr=".

In case (a), the machine stops after » elementary steps; the final result
(output) of the computation is pi. In case (b) the computation will never
stop and the result must be considered as undefined.

The abovementioned logicians proved that it is possible to choose 7, #,
and p and define a theoretical machine which is equivalent in a natural
sense to any other one [CHS]. The construction of 7, %, and p is quite
simple (and very nice!) but too technical to be explained here; it will not
be used in this text. The essential benefit of this method is that in this way
there is no difference between programs and data; we shall even see that
any object in % can be considered as a program or as a datum on which
any program can work (but of course the final result could be undefined).
This is an important difference with respect to the other modeling methods
(see for instance [AHU, Chap. 1]).

More precisely if we want to consider an object p in % as a program
capable of working on a datum d (in % as well), we have to work as follows:
in general, if a, be 7, then (ab) denotes another element in 7 which is con-
structed from the terms @ and b in F by a very simple process. And now if
p and de %, p considered as a program and d as a datum, then the result of
the execution of the program p on the datum d is g(pd)e# [1{?}; of
course, this result must be considered as actually defined only if 5(pd)e %.
We say that d is the input of the program and p(pd) is the output.

More generally the result of the execution of pe % onthe data d|, ... d,, e ¥
is p(---((pd,) d,) ---d,) which is more simply denoted by p(pd, ---d,).

2.1. DEFINITION. A 1ype is a subset of %.
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Let TYPES denote the set of types so that TYPES = (). Here we
appreciably move away from the habits of the logicians and the computer
scientists; see for instance [STL, Chap. 4; GRR]; usually a type is in some
way a machine object (for a computer scientist) or some recursive object
(for a logician); on the contrary, here a type is a “mathematical” notion.

We have, and this is essential in this text, a binary operator “—” on
TYPES, defined as follows; let A, Be TYPES, then

—(A, B)={@pe¥U stVte A, p(pt)e B}.

We frequently denote —(A4, B) more simply by (4 — B) or even 4 —+ B
if there is no ambiguity. In other words, —(4, B)=(4 — B)=A — B is the
set of “programs” that if one gives them as input an element of 4, then they
return as output an element of B.

The following types are defined and can be used as usual:

Bool = {true, false} is a type with two elements that are the results of
the predicates.

Z is the countable set of machine objects used for coding the elements
of the mathematical Z; the usual operators +, —, *, ... ar¢ objects in %.

N c Z corresponds to the elements of N < Z.

List is a set of objects in % which represent the /ists (finite sequences)
of elements in %; some operators allow us to get the length of a list, its
elements, to construct a list with given elements, and so on. If x,, ..., x, are
objects in %, the list whose elements are x,,..x, is denoted by
[x,,..x,]; note that [x,, .., x,] is an element of % as well.

If 4,, 4,, ..., A, are types, the type A, x 4, x .-« x 4,, consists of the lists
whose length is » and whose i'" element is in A,. f xe A, x A, x --- x 4,
let mx=mn,(x)=p(n;x) denote the i™ element of x; note that
n;€ (List » % [ [?) because n;x is not defined if the list x is not long
enough. We have the rather strange relations ¥ x# x¥c¥,
(% — %) <%, and so on. In fact anything is included in % and this justifies
the choice of the letter % for universe. However, % is a coutable set.

3, CODING

3.1. DerFINITION., Let E be a (“mathematical”) set. A coding for E is a
pair (T, yg) where Tge TYPES is the coding set and yg: Ty — E is the
coding function.

If teTg and x=y(¢t)e E, it must be understood that r is the machine
coding of the element x of E. No special property is assumed about the
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coding function yg. In particular y can be non-injective. This will always
happen when coding is of functional type, that is, when Ty is a type
(A — B); then ¢ and ¢’ can be two different elements of Tg (two different
“programs”) but such that for any a € 4, the equality g(za)= p(t'a) holds;
in other words ¢ and ¢' always return the same output if the same input is
given; then, if yg(¢) is deduced from the function induced by ¢ from A4 to
B (of course this is the usual way), we get the relation yg(f) = xg(t'): two
distinct but equivalent programs code the same element of E.

Furthermore, yg can be non-surjective; this precisely allows us to define
very interesting new sets; if yg: Tg — E is a coding for the elements of E,
let E,; denote the subset im(yg) of E; it is the set of effective or recursive
elements of E for the coding yg.

For example, let us consider £= {f: N — N}. We can take as the coding
set Tg = —(N, N)= (N — N), in other words the set of those programs on
our machine such that if their input is an integer, or better the code of an
integer, the output is an integer too. Then the natural coding function
xe: Tg — E is neither injective nor surjective and its image E, is the set of
recursive functions of the logicians. Here, it is obvious that yg cannot be
surjective: whatever coding is chosen, the coding set Ty is a subset of %
which is countable whereas the set £ is not; this is a frequent situation.

Now the essential point which gives much interest to the “effective
homology” theory is that any element of %, even if it looks like a program
more than a datum, can be used by another program as input for
producing as output a new “program” which codes a new mathematical
object.

The very simple following example is typical of what it is very easy to
do in A-calculus: there exists a A-calculus object (in %) which can be
called comp capable of working on two elements f and g of (N — N) and
producing the composite A of f and g, so that comp belongs to
(((N—=N)x (N —N))— (N - N)) and codes the corresponding element of
(NN )NN x NN‘

Not many practical programming languages allow such work on a
machine concretely and easily. The most efficient one in this field is the
LISP language; there is a very simple explanation of this assertion: LISP
is directly inspired by the A-calculus, which in turn was invented for solving
such problems at a theoretical level. We suggest you read in [STL] how
carefully the problems of identifier scope have been studied in order to get
very elegant solutions for such programming problems (see Chapter 3); in
fact the example mentioned above of the object comp is used by Steele to
illustrate how simple and efficient Common-LISP is for constructing
algorithms that can construct algorithms and even algorithms that can
construct algorithms that can construct algorithms, and so on.
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4. A DipacTticaL EXaMPLE oF FuNcTiIONAL CODING

The usual coding of a simplicial complex consists in entering into the
machine the list of its vertices, of its edges, of its 2-simplices, and so on
with a structure allowing us to find the necessary information again for any
use. But of course it is impossible in this way to code simplicial complexes
with an infinite number of simplices.

The problem of coding in a machine such simplicial complexes even
seems so strange that it has probably not been studied yet. However, the
standard methods in algebraic topology commonly use such complexes, for
example, loop spaces, classifying spaces, homotopy fibers, .... Edgar Brown
met this problem in his famous study about the computability of homotopy
groups [BRW] and overcame it in the following way: he proved that the
infinite simplicial complexes which he had to work with could be replaced
by finite complexes with the same homotopy type up to some given dimen-
sion. This method is rather heavy at a theoretical level—it has never yet
been applied in other situations—and is definitely out of reach for practical
computations: Brown’s “finite” complexes are so bulky that it is of course
impossible to put them into any actual machine.

We present in this section an example which must be considered as
didactical: the machine coding of the loop space of a simplicial complex. It
will not be used later but we think it illustrates quite well the coding poten-
tial that is given by the functional technique. It can be proved that it is
possible to code in the same way the recursive simplicial sets and so to get
a simple and powerful method for proving the computability of many very
interesting homology and homotopy groups.

We slightly modify the notion of a simplicial complex in order to adapt
it to our machine situation.

4.1. DEFINITION. A simplicial complex is a pair K= (V, S) where V<%
and S is a set of finite subsets of V satisfying the following conditions:

(1) ifveV, then {v}esS;
(2) ifoeSand 6'ca, then g'eS.

V (resp. §) is the set of vertices (resp. simplices) of K.

We take the vertices of a simplicial complex among the objects of our
machine. Note that we de not ask that the set of vertices ¥ be finite; for
example, the simplex freely generated by % is the simplicial complex whose
vertex set is % (it is countable) and the simplex set is #,,(%) (countable
too); let us denote it by 4%, Therefore, in our setting, any other simplicial
complex is a subcomplex of 4%.
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Let SC be the set of all simplicial complexes. We now define a functional
coding for the elements of SC which will allow us, if K is a recursive simpli-
cial complex, to code its loop space as well. Better, we see the existence of
an object omegaec % capable of working on the code & of a recursive
simplicial complex K and producing a code g(omega k) for the loop space
of K. The author has an explicit and operational expression of omega in
Common-Lisp at any interested reader’s disposal; the construction of such
an operator is a simple exercise for a Lisp programmer.

We now define the functional coding for the elements of SC. Let SC be
the set of those elements t € (List — Bool) satisfying the following property:
if /; and /, e List, if /, =/, (this means that any element of /, is an element
of 1,), and if p(zl,)= true, then p(tl,)= true. There we have the essential
property of the vertex sets of a simplex in a simplicial complex.

Now we can naturally define the coding map y: (SC - SC). Let t be an
element of SC. Then a simplicial complex K, =(V,, S,) in SC can be
defined as

V.={ve¥stp(t[v])=true};
St= {{Ul, ey U,,} c 4 st ﬁ(l[vl, ey Un])z true}.

We recall (see Section 2) that [v,, .., v,] is the list object in % that codes
the list of objects of % consisting of the objects v, ..., v, of .

Therefore we define y(t)= K,; the function y is neither injective nor
surjective, and we write SC_,=im(y); it is the set of recursive simplicial
complexes (with respect to this coding). For example, the element id-true
in (List - Bool), which always replies true, codes A™: y(id-true)= A%
just as the element id-false codes the empty complex; the element
7, € (List — Bool) which replies true if and only if the argument list has less
than n + 2 different elements codes the n-skeleton of 4%. The finite simpli-
cial complexes of course all satisfy the recursiveness property.

The set SC is countable but SC is not, so that there are many non-
recursive simplicial complexes.

Let K=(V, S)e SC and v, e V. We are now going to define a new simpli-
cial complex (X, v,), a simplicial version of the loop space of K, that is,
(KX, vy) has the homotopy type of the usual loop space of the geometric
realization of K based in v,.

So we have to define Q(K, vy)=(V", S’).

At first V' cList is the set of those lists [vy, .., v,] satisfying {v,, v,},
{v1, 02} s {Vn_150,), {Uns o} €S. Let us now assume that /=
(v} U3 Js o Ly =[07, ., v ] are elements of V’; we have to decide
whether {/,,..,1,,}€S’; let us work as follows: let // be the sequence
L= (v)),en =(vg, v}, .., ), g, Vg, Vg, ...); then {/, .., [} €S’ if and only if
for any integer i>0, the relation {v! ,, v ,,..,v" vl 02, ., 0"}€S
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holds. The lists [, ..., [, are finite so that there are only a finite number of
tests to be done. It is easy to see that we have well defined a simplicial
complex (K, vy).

The intuitive understanding of this definition is not hard: a vertex loop
in Q(K, vy) is a mapping [0, co[ — K which runs through the edges of K
but stays at v, after some time. A finite set of such vertices spans a simplex
of Q(K, v,) if and only if the vertex loops can be interpolated by a barycen-
tric method.

It should now be clear that if we have an object 7€ SC coding K, we can
find another one 7’ coding (K, vy); in programming terms, this means
that if we have a program t capable of testing whether some list is an
element of .S, then it is possible to construct another program 1’ which will
tell you whether some list is an element of S’. In fact the transformation
T+ 7' can be programmed; in other words there exists an object omega e
((SC X %) — SC) (where SC X % = {(t,v) € SC X U st p(z[v]) = true})
which does the following work: if (1, vy} e SC X %, then p((omega 1) v,) is
a cading for Q(y(1), vy); so that the following diagram is commutative:

SC x I —2m54, §C

wl J

SCxuy —2 5 SC.

The low part of the diagram exists only at a mathematical level; on the
contrary, the high part can be entirely implemented into a machine; omega’
is the function defined by omega'(z, vy) = p((omega 1) v,); the vertical
arrows are coding maps.

This kind of result is conveniently expressed as follows:

PROPOSITION.  An algorithm can be constructed.

input:  (t,v); T is a simplicial complex and vy, one of its
vertices.

output: Q(t, v,), the loop space of 1 based in v,,.

This kind of statement asks the reader for the interpretation given
earlier. From now on we use this kind of statement without giving its trans-
lation, which is a simple exercise without any particular interest. The situa-
tion is quite similar to Bourbaki’s at the end of the book “Set theory”: at
this time it is understood that every correct mathematical statement and
every correct mathematical proof must be translatable into “formal mathe-
matics” but of course this translation is not given anymore! However, there
exists a real difference: we claim that it is actually possible to carry out the
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algorithms whose existence is stated, in order to compute mathematical
objects unknown until now; so that after the mathematician here the
programmer has to work; we hope that the example of the machine coding
of the functor “loop space,” very easy to carry out, will persuade the reader
that this aim is quite realistic.

5. EFFECTIVE MODULES AND CHAIN COMPLEXES?

S.1. DEFINITION. An effective set is an element of Ens = (% — Bool); if
ec Ens, we define yg, (€)= {xe ¥ st plex)=true}.

This definition should be interpreted as follows: first the classical notion
of ser is redefined; from now on a set must be a subset of #. Let ENS
denote the set of such sets; a coding is then defined for ENS; the coding
set is Ens and the coding map is yy,; we read in this definition that a set
e is an algorithm capable of answering the question, “Is x an element of ?”
by true or false; in other words a set is coded by its characteristic function.
This kind of translation, always easy to carry out, will not be given from
now on. The functional coding technique will be often used in what follows;
in such a situation, it is convenient to denote simply by e(x) the element
of % that should be theoretically denoted by plex).

5.2. DEFINITION. An effective module is an element of Mod = (% — Bool).
If m e Mod, we define ypq4(m) as the free Z-module generated by yg..(m).

Some important differences with mathematical habits must be noted.
Here a module will always be a free Z-module; this point is fundamental;
if effective homology is to be compared with classical homological algebra,
we may say that effective homology consists in reconstructing classical
homological algebra after having forbidden any torsion module. Indeed, it
is well known that most of the difficulties encountered in homological
algebra are due to the torsion components in the various groups to be used
or computed. These difficulties arise in particular in computability: the
usual “computing methods” (exact sequences and spectral sequences) of
course already give many very interesting results, but very often leave their
users stopped in front of extension problems, for which new methods must
always be invented. We shall see that overcoming this prohibition from
using torsion modules is not actually hard and on the contrary we thus
obtain very interesting applications. Here let us say only that mechanisms
known as rather complicated, such as spectral sequences, get in effective
homology a much simpler look and that furthermore all the computability
problems are solved at once, without fatigue.

2 Note added in proof. This terminology has been modified in more recent papers: “effec-
tive” is now “locally effective” and “computable” is now “effective”.
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Another difference with the usual modules is that here modules are
equipped with an explicit base whose elements are machine objects (e%);
this is important for computability problems. Finally, we only consider
modules with respect to the ring Z, but this is quite inessential: all that is
explained in this text can be easily extended to modules over effective rings;
we do not study this question here, but the particular case of Z,,, the ring
of the integers localized at the prime p, has many applications.

5.3. DEFINITION. Let M be an effective module. Let us define the type
El-Mod(M) as follows; first Mon(M)=17Z x M, the set of monomials in M,
is the set of pairs having the first element in Z, the second in the canonical
base of M; the set of monomials in M is therefore the union of the axes of
M; then El-Mod(M) = List(Mon(M)) naturally is the set of expressions of
the elements of the module M as Z-linear combinations in the canonical
base, in the form of monomial lists. Note that such an expression is not
unique and the coding map is never injective; on the contrary it is always
surjective.

5.4. DerINITION. Let M, N e Mod. We define
Morph(M, N)= (M — EI-Mod(N)).

In other words a morphism with M as source and N as target is coded
as an algorithm which, if a generator of M is given as input, returns as
output an element of N in the form explained above.

There exists a universal operator which is able to compute the composite
of two morphisms. Indeed, any module is a sub-module of the maximal
module # (coded as the function that always returns zrue), and it is easy
to construct an object (a program) comp-morph in

({((% — EL-Mod(%)) x (% — EV-Mod(%))) - (% — El-Mod(%)))
= ((Mor(%, %) x Mor(%, %)) - Mor(%, %))
capable of computing the composite of two morphisms given as input. By
restriction, if 4, B, C are three elements in Mod, comp-morph can be also
considered as an element of ((Mor(A, B)x Mor(B, C)) — Mor(A4, C)) able
to carry out the composition operation.

Note that the natural coding map defined on Mor(A4, B) is never
injective and is surjective if and only if the module A is finite dimensional.

5.5. DEFINITION. An effective chain complex C is an element
Ce (N — (% x %)) satisfying the following conditons:

(a} if neN, then n,(C(n))=m,(p(Cn))eMod,
(b) if neN, then n,C(n) e Morph(n,(C(n)), n,(C(n—1)));
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(c) if neN and n> 1, then the composite of the morphisms coded
by n,C(n) and n,C(n— 1) is the null morphism. This amounts to saying
that p(comp-morph, [n,C(n), n,C(n — 1)]) = comp-morph([n,C(n),
7, C(n—1)]) codes the null morphism from 7, C(n) to =, C(n—2).

Let Ch-Comp denote the type whose elements are the effective chain
complexes.

We find in this definition the usual properties of chain complexes. Note
that it is possible to code in this way, theoretically and practically, chain
complexes that are quite enormous; the following example is interesting: if
IT is an effective abelian group (we leave to the reader the definition), then
an object C K(I1,n)e% can be easily constructed, that codes the chain
complex of the standard simplicial model of the Eilenberg—-MaclLane space
K(m, n). Better, there exists an object C, K in % which gives C, K(II, n) as
output if an effective abelian group /7 and an integer » are given as input.

5.6. DEFINITION. A finite module is a non-negative integer. Let Fin-Mod
denote the type whose elements are the finite modules so that Fin-
Mod = N; the coding map is defined as follows: if » is a non-negative
INteger, ¥rin-moal??) 18 the free Z-module generated by the integers 1, .., n
and therefore is canonically isomorphic to Z”". Note that Fin-Med is not
a subtype of Med. However, there exists a conversion operator able to
convert an element of Fin-Mod into an element of Mod.

There does not exist any algorithm capable of deciding whether a
module in Mod is finite dimensional; this amounts to saying there does not
exist any algorithm capable of deciding whether a set defined by its charac-
teristic function is finite or not (or even empty!); the negative answer to
this question is well known to the logicians. Therefore it is impossible to
construct an algorithm dime (Mod — (N[] {0 })) with the hoped-for
property. On the contrary there exists of course dim € (Fin-Mod — N) with
this property; it is simply the identity algorithm! We see that the two
coding types are very different.

5.7. DEFINITION. A computable chain complex is an element C in
(N — (% x %)) satisfying conditions similar to those earlier stated, with a
difference: now, for every ne N, n,C(n) must be an element in Fin-Mod
and the other parts of the definition are modified accordingly.

This definition is justified by the following observation. If » is a natural
number, it is easy to construct—and the author has actually constructed—
an element H, in % which, if a computable chain complex C is given as
input, returns the »'™ homology group of C as output. Indeed, the data
allow us to find the dimensions of the useful chain groups and the rest is
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classical algorithmic theory. A similar assertion is of course quite false for
effective chain complexes, because for such a complex it is impossible to
decide whether some chain group is null or not!

From now on, it seems useless to continue to give statements, defini-
tions, and proofs with so many algorithmic details. The translation into
this kind of language is a simple exercise without any particular difficulty
provided that the essential difference between both possible codings of a
set, a module base, and so on, is not forgotten: the first one consists in
giving an element list (it is an extension definition), the second one consists
in giving a characteristic property of an element (understanding definition).

6. HomotorY EQUIVALENCES AND CONES

We recall that all chain complexes here considered are free Z-module
complexes.

In classical homological algebra, the notion of homotopy equivalence,
sometimes called chain equivalence, between chain complexes is very often
used. This section is devoted to this notion, in order to redefine it in a fairly
different although equivalent way, so that solutions for computability
problems become much easier.

Let C, and C} be two effective chain complexes; usually a homotopy
equivalence between C, and C is defined as a pair (f, g) where fis a
morphism f: C, — C, g a morphism g: C, - C,, such that there exist a
homotopy operator # on C, and a homotopy operator 4’ on C,, satisfying
id—gof=hod+dochand id—fog=hod+d-h'.

The topologists have known for a long time that in such a situation
it is much better to include the homotopy operators in the homotopy
equivalence data. But this is not enough to overcome frequent difficulties.
We now give a simple and typical example of such a difficulty.

Let us consider the following situation. Let 4, and B, be two chain
complexes, and let ¢: A, — B, be a complex morphism. Then one defines
the cone chain complex of ¢, denoted by C(¢), as follows: its #'™ chain
group C(¢), is the direct sum A4, @ B, and the boundary operator
d: C(¢),— C(@),_ is defined by the matrix [ {* 27. Now let us suppose
we have a homotopy equivalence (f, g) between A4, and another complex
A,. Then we should like to deduce from these data a homotopy
equivalence between C(¢) and the cone C(¢') of ¢’ =¢@og: A, - B,. But
there is already a problem in defining a morphism from C(¢@) to C(g)’; the
definition of such a morphism needs a homotopy operator /4 between id ,
and g<f, and this is already a good reason to include such an operator in
the homotopy equivalence data; then the desired morphism from the cone
of ¢ to that of ¢’ if F=[,/, %] But the difficulties are not ended; we

dn
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have another morphism in the other direction which of course if a
homotopic inverse of the previous one: G =[§ .} 1; the problem is now to
exhibit homotopy operators that prove (F, G) actually is a homotopy
equivalence; no simple computation can give the solution. Usually one
manages in the following way: one looks at both exact sequences of the
cones ¢ and ¢’, applies the five lemma in order to prove that £ induces an
isomorphism between the homology groups, and a general result [DLD,
[1.4.3] then implies that F is actually a homotopy equivalence.

This mechanism is clumsy and not at all convenient for any actual
computations. We give now another homotopy equivalence definition, very
natural, but that solves this kind of problem.

6.1. DEFINITION. A reduction of the complex 4, to the complex A, is
a triple p = (f, g, h) where:

(a) fis a morphism A, — A4,

(b) g is a morphism A, —» 4,;

(c) his a homotopy operator (i.e., with degree 1) on 4, ;
(d) £, g, and h satisfy the relations:

(d1) fog=idy;

(d2) foh=0;

(d3) hog=0;

(d4) id,—gef=hod,+d, o h;
(d5) hoh=0.

The intuitive interpretation of this relation set will help to understand it.
These relations express that A, is the direct sum of A} and a contractible
(acyclic) complex with a given contraction. This decomposition is simply
A,=kerf@Img.

Indeed (d1) expresses that Im g is a direct summand in 4,, (d2) and
(d3) say that 4 is a homotopy operator defined on the canonical comple-
ment ker f, and (d4) and (d5) say that this operator is a contraction for
ker f.

This relation set can seem awkward; however, in all the situations where
reductions from complexes to smaller complexes naturally take place, it is
always possible to get such relations. A typical example is the Brown
theorem also known as the “twisted Eilenberg-Zilber theorem™ [BRX]:
Weishu Shih gave complete and explicit formulas for the reduction
operator from the chain complex of a simplicial geometric fibration to the
complex of the corresponding algebraic fibration. It is probably one of the
most complicated reduction operators that have ever been constructed. But

607/104/1-2
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this operator just satisfies all the relations (d1) to (d5) (see [SHHT, p. 115,
Theorem 1]).

6.2. DEFINITION. A homotopy equivalence between the complexes A,
and A4, is a triple (A, p, p') where:

{a) A, i1s a chain complex;
(b) p is a reduction from /i* to A,
(c) p’ 15 a reduction from /i* to A.

It is clear that these hypotheses allow us to find very easily a homotopy
equivalence between A, and A, again in the usual sense. The converse is
true as well; the proof is a rather tedious exercise similar to those in
[DLD, 11.4]. But we do not need the equivalence between both definitions,
so that we prefer to leave it as an excercise for the interested reader.

Of course this definition is to be compared with the Grothendieck
operator that associates to a projective module its stable isomorphism
class; this operator leads to the definition of the object K, of the base
ring; it is enough to translate projective module — chain complex, free
module — acyclic complex. So it would be interesting to know whether the
other K; of the algebraic K-theory can have applications in this situation.

63. LemMma.  Let A, and B, he complexes, h a contraction of B, (in
other words, h defines a reduction of B, to the null complex), and ¢ a
morphism A, — B, (or B, — A,). Then there is a canonical reduction of
Cl) (the cone of @) to A.

This lemma would be trivial if ¢ was the null morphism; the knowledge
of & allows us to solve the general case easily.

6.4. LEMMA. - Let (f. g, ) be a reduction of A, on A,. Then the cones of
fand g are canonically contractible.

6.5. PROPOSITION.  Let (/i*, p, p') be a homotopy equivalence between A,

and B, and (B,, 0, 6') a homotopy equivalence between B, and C,. Then
these data induce a canonical homotopy equivalence between A, and C,.

A, B,
A, B, C,.

Proof. Among other things we have a reduction f: 4, — B, and a
reduction g: B* — B, . By adding to g the null morphism whose source is
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1§* and target is fi*, we get a morphism g’ E* - C(f). Let D, be the cone
of g'. Applying both previous lemmas gives a reduction of D, to é*, and
then considering the reduction of B, to C, and the obvious transitivity
of the reduction relation, we obtain a canonical reduction of D, to C,.
But the construction of D, is quite symmetric so that D, can be also
considered as the cone of f": A, — C(g) constructed in a similar way.
Therefore we also obtain a canonical reduction of D, to 4. |}

Now we examine why the difficulties about the mapping cones explained
earlier are cleared up.

6.6. PROPOSITION. Let @: A, — B, be a chain complex morphism,
(/i*, p, p') a homotopy equivalence between A, and A, and (B,,0,6') a
homotopy equivalence between B, and B,. Then there exists a canonical
homotopy equivalence berween the cone of ¢ and that of the morphism
" A, = B, which is induced by these data.

Proof. First we construct from ¢ a morphism ¢: fi* — B, by adding to
A, the complementary acyclic complex in A,, and adding to ¢ a null
morphism. It is easy to define a reduction of C(¢) to C(¢). Furthermore
we have a reduction (f, g, h) of /i* to A, and by using it, it is possible
to construct a reduction of the cone C(®) of ¢ to that of ¢’ = @-g; this
reduction (F, G, H) is defined by the formulas

[ xf O [+g © [h O
F_[iq)h id]’ G‘[o id]’ H'[o 0]'

Then the same procedure gives a homotopy equivalence between the
cone of ¢’ and that of ¢”: 4, — B/,. But the homotopy equivalence relation
is (effectively) transitive and the proof is complete. |}

7. HomoLoGY GROUPS: A NEw DEFINITION

7.1. DEFINITION. Let 4, be an effective chain complex. The effective
homology of A, is a pair (more precisely a two element list in %) [HA,,, k]
where:

(a) HA, is a computable chain complex;

(b) 4 is a homotopy equivalence between 4, and HA,.

As usual in this kind of situation, we also say briefly that HA4, is the
effective homology of A, ; the homotopy equivalence between 4, and HA,
is then underlying.
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7.2. DEFINITION. A chain complex with effective homology is a triple
[(A,, HA,, h] where 4, is an effective chain complex and [HA,, #] is its
effective homology.

No algorithm can compute the effective homology of every effective
chain complex, which is furthermore not generally defined (think of
finiteness problems). The goal of the previous definitions is not at all of
this kind; the question is to define a framework where, if one knows the
homology of two objects and if one constructs with these objects a third
one, then an algorithm is capable of deducing the homology of the new
object. Now we state such a result; it is a simple corollary of the propositions
in the previous section.

7.3. THEOREM. An algorithm can be constructed:

input:  (A,, HA,, B, HB,, ¢); A, and B, are effective chain
complexes, HA, and HB_ are their respective effective
homology, and ¢ is a morphism A, — B,.

output: HC (@), the effective homology of the cone C(g).

We see that in this way we have a strictly defined framework where the
computability problem of the homology of a mapping cone is completely
solved. Of course the direct scope of this result is limited; it has been given
at the outset in order to explain in a simple situation the precise nature of
some techniques which indeed we want to apply in much more interesting
situations, when the “classical” situation uses the spectral sequence method.
In fact we shall see that the effective homology version of spectral sequence
techniques can be obtained by simple recursive use of the previous theorem
about cones.

We claim that the object type “chain complex with effective homology”
thus constructed affords many advantages:

(a) Thanks to functional coding, the effective chain complex compo-
nent allows us to overcome all the difficulties related to the natural
appearance of highly infinite complexes (loop spaces, classifying spaces, ...).

(b) The computable chain complex component allows us, if someone
actually wants it, and of course it is the motivation of all this work, to
obtain the ordinary homology groups of the complexes under considera-
tion.

(c) The homotopy equivalence component establishes a kind of
telephone line between both complexes allowing, if one works inside one of
them, to ask the other for some information not available in the first one
because of its nature.
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(d) This organization is stable; we want thus to explain that every
“classical” construction process for a new chain complex can be fairly easily
reorganized so that, if the data have the format described above, then it
produces an object with the same format. We think that Theorem 7.3 which
describes the computation of the effective homology of a mapping cone, if
the effective homology of the components is available, explains this
phenomena in a simple case.

(e) In spite of the richness of information in this object type, such an
object is still an element of % and therefore can be coded on an abstract
or actual machine as a finite bit string.

Functional coding, because of its very nature, uses very little memory.
Thus by this organization, the classical problems of the algebraic
topologists will enter a machine as more or less big sets of functions which
will naturally exploit the classical programming techniques, in particular
subprograms and recursiveness; what is quite original is that this program
set is itself created by other programs created by other programs, and so
on. As far as we know, it is the first time an “ordinary” mathematical
theory uses in an essential way and in a very concrete situation the
A-calculus techniques which were invented by Church for a highly theoreti-
cal reason: proving the nonexactness of the Hilbert conjecture about the
existence of a general algorithm deciding whether a statement is true, false,
or undecidable.

8. CoMPLEX TOWERS AND SPECTRAL SEQUENCES

In this section we want to explain what the spectral sequence notion
becomes in effective homology. Here we collect the benefits of the little
painful work carried out before:

(a) The spectral sequence mechanism will become completely algo-
rithmic, in other words, any “classical” spectral sequence (Leray, Serre,
Eilenberg-Moore, ...) becomes an algorithm which, if some complexes with
effective homology are given as input, returns as output the hoped-for
chain complex with effective homology.

(b) The so-called spectral sequence theory will practically disappear!
Indeed we explain that the spectral sequence algorithm in this new
framework is nothing further than a recursive application of the “cone”
algorithm explained in Section 6.
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8.1. DEFINITION. A complex tower is a sequence (translate: an algorithm
N - NCL, f7, Th), e v Where:

(a) C% is an effective chain complex;
(b) f” is a morphism f”:C4,—T2"' of degree p—1, that is,

fr:Ct— Tf;;,l and those f7 commute with boundary operators;

(¢) T$=C$ and T% is the cone of f7 graded so that the inclusion
T: '<T% is of degree 0.

The index p must be understood as a filtration degree. Now we give two
characteristic examples.

8.2. DEFINITION. An effective bicomplex is a sequence (C4,[f7),cn
where:

(a) C% is an effective chain comples;
(b) f7 is a morphism f7: C4— CL ' satisfying [~ 'cf7=0.

It is easy to associate a complex tower to a bicomplex: take T0=Cy,
consider the canonical inclusion from C2~ " into T2~ ', and deduce from f*
a morphism from C% to 7%~ ' which can be called /7 as well.

8.3. DEFINITION.  An effective multicomplex is a system (C7,f7"), , .o
where:

(a) C7 is an effective module;

(b) frr:C?—Cl. 7 | is a module morphism;

(C) ZOSsSr :;&v;ri<Avof:"v=0 fOI' every p, 4, r€ N.

A bicomplex is a particular case of multicomplex. Furthermore, a com-
plex tower ban be canonically associated to any multicomplex and vice
versa so that both notions in fact are equivalent. If (C/, f"), , ,cn is @
multicomplex and p fixed, (CZ f£°) is a complex and the S for r>1
allow us to construct a morphism C% — 75~ !; as always, some sign precau-
tions are needed. The construction of a multicomplex from a complex
tower is not harder.

The three previous definitions can be enriched or modified according to
the circumstances. For example, the complexes in a complex tower, or a
bicomplex, or a multicomplex can be required to be computable, or with
effective homology. These adaptations do not create any particular
difficulty.

The geometric example now described is at the origin of the Serre spec-
tral sequence. Let n: E — B be a simplicial fibration [MAY, Sect. 20]; then
7 defines a filtration on the chain complex of E; if ¢ is a simplex in E, its
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filtration degree is p if n(g)e B is a simplex which is the degeneracy of a
non-degenerate p-simplex. Then C7 is defined as the free Z-module
generated by the (p + g)-simplices of E with filtration degree p, and, if
oce Cr, f"(0) is the sum of the o faces with filtration degree p —r and the
right signs. It is easy to see that a multicomplex is thus well defined or, as
you like, a complex tower.

8.4. DermNITION. Let T=(CL,f*, T),.n be a complex tower and
(CP. /77, 4 ren the associated multicomplex; the totalization of T is the
complex T, defined by:

(a) Tp=20$r$ﬁ'cf7’;
(b) fp:Cp_’cp;lzzosp'szoﬂng' /f;:?"

This process defines what is sometimes called the hyperhomology of a
bicomplex. Furthermore this definition allows us to interpret a complex
tower as a filtration of the totalized complex.

There is only one difference from the usual definitions: here, since an
effective module is free and equipped with a base, many difficulties are
automatically avoided; for example, the graded complex associated to a
filtration allows us to recover the original filtered complex.

We prefer to keep things simple so that we shall not give a general
spectral sequence theory; indeed it is well known (?) that too often
general = incomprehensible; in this section we only give a little restricted
version but it is typical of what is possible to carry out in this framework.
We quickly explain in the following section what is to be added in order
to get the effective homology versions of Serre and Eilenberg-Moore
spectral sequences; it is a matter of details wihtout any interest and which
would have obscured the essential points.

8.5. THEOREM. An algorithm can be constructed.

input: T, a complex tower with effective homology;

output: HT,_, the effective homology of T,, the complex
constructed by totalizing T.

Therefore, the tower T not only contains the data defined in 8.1, but also
the effective homology of every constituent complex.

Proof. Let HCZ be the computable chain complex to which the p™
effective complex CZ is homotopically equivalent. By induction on p, we
construct a tower HT = (HC}, Hf?, HT}, h”),.~ where the additional
information 4” is a homotopy equivalence between T4 and HT%. Of course
HTJ=HC{ and h° is one of the known homotopy equivalences. Let us
assume HT is constructed up to the filtration degree p — 1; then we have:
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(a) a morphism /7. CL—> T2 1,
(b) a homotopy equivalence h” ' between T2 ' and HT, ™ ';

(c) a homotopy equivalence (given effective homology) between C,
and HCY.

So we can apply Proposition 6.6; we obtain a morphism Hf”:
HC4— HTZ ' and a homotopy equivalence 47 between the cone T% of /7
and the one HTZ of Hf”.

Once this work is done, by totalizing the towers T and HT, we obtain
a homotopy equivalence between the effective chain complex 7, and the
computable one HT .

In short the tower with effective homology 7 allows us to construct a
computable tower HT and the homotopy equivalences given between chain
complexes allow us to construct a homotopy equivalence between the
totalized complexes of 7"and HT. ||

In the usual spectral sequence process, the arrows /%" can only be
defined at the level E”” (usually the notation £7 is preferred). The process
described in the above theorem must be understood as a transition from
E*°to E*'; as already often explained, the fact that any appearance of
torsion modules is forbidden implies that all the arrows Hf?" can be
properly “installed” between the modules E?'=HC?; but the E>' are
finite-dimensional so that ir is useless continuing the process towards
E*2 E*3 ... By simple totalization, we immediately obtain the com-
putable complex which was desired. We shall see that in the Serre spectral
sequence, two reduction steps will be needed to arrive at a tower of com-
putable complexes E™?; we have preferred in this section to set aside these
kinds of details so as to keep only the essential points of the described
technique.

9. THE EFFECTIVE HOMOLOGY VERSIONS OF THE SERRE, EILENBERG—-MOORE,
AND ADAMS SPECTRAL SEQUENCES

We only give the statements of these versions and some brief information
about what is to be added to Theorem 8.5 to get a proof of them;
these complements are quite inessential and have a nature well known
elsewhere.

9.1. THEOREM. An algorithm can be constructed.
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input:  (F, B, E, n, HF, HB) where:
(a) =n: E— B is a simplicial fibration with fibre F and
simply connected base space B,
(b) HF and HB are the respective effective homologies
of F and B,

output: HE, the effective homology of E.

Interpretation. F, B, and E are effective simplicial sets, therefore ceded
in a functional ways as explained in Section 4 about simplicial complexes.
The simplicial morphism n and the various objects and operators
describing the fiber structure are also coded in a functional way. A functor,
which is easy to program, assigns to an effective simplicial set the
effective associated chain complex. The data HF and HB are the effective
homologies of these complexes. The same applies for the result HE.

Proof. The data allow us to construct a filtration on C, E, the chain
complex of E, by the process due to Jean-Pierre Serre. For the simplicial
version, see [ MAY, pp. 146-147]. As explained in Section 8, this filtration
allows us to organize C,E as a tower T°. Brown’s theorem ([BRX] or
[MAY, Sect. 31]) gives another tower 7° where the p'" complex C% = E%-°
is nothing other than the tensor product C,B® C, F. By applying purely
and simply Theorem 8.5, this tower is homotopic to a tower T' whose p"
complex EZ' is the tensor product C,B® H, F where H,F is the com-
putable complex describing the effective homology of the fiber F. This
description of E¥'' favours the verticals. On the contrary if we favour the
horizontals, we obtain a tower whose p™ line is the complex C, B® H »F.
In fact the tower notion must be generalized, for the arrows this time go
from the line of index p to the lines of index p— 1, p+ 1, p+ 2, and so on,
whereas they went before from the column p to the columns p—1, p—2, ....
But this does not create essential difficulties. In the same way, we construct
a similar tower where the p™ line is now H,B® H,F. But this tower is
computable, so that by totalization we obtain a computable chain complex
H E which describes the effective homology of E. |

We see the spectral sequence mechanism has been stopped at the level
E¥ ? just as in Theorem 8.5 we had stopped it at the level £} .

9.2. THEOREM. An algorithm can be constructed:
input: (F, B, E, n, HB, HE);
output: HF;,

with the same interpretations and the same kind of hypotheses, in particular
about the simple connectivity of B, as in Theorem9.1.
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Proof. FEilenberg and Moore proved [ELM] that the {(ordinary)
homology of the fiber Fis a Cotor,

H, F= CotorC‘B(Z, C.E),

where the fibration projection n allows us to consider C,E as a C,B-
comodule.

More precisely there exists a canonical homotopy equivalence between
C, F and the totalization of a bicomplex where the p™ column is

Er’=(C,B)®*®C,E;

here, C,B is the complex of B whose degree 0 component has been
removed.

The vertical differentials in this bicomplex come from the boundary
operators of C, B and C, E; the horizontal differentials defined from EZ°
to EZ*"° come from the comodule structure of C, E with respect to C, B;
the last ones are of cobar type. The mechanism for computing the effective
homology of a bicomplex (Theorem 8.5) is then applied; there is a small
difference, but a simple one: the arrows leaving the column p go to the
columns p+1, p+2,.. but the simple connectivity of B nevertheless
ensures the convergence of the process as in a “second quadrant” spectral
sequence. So we get a homotopy equivalence between EF'° and a tower
E¥ ' where

E,'=(H,B)®*"QH E;

We have also used the very elementary fact, but it has to be pointed out,
that if we have homotopy equivalences 4 ~ 4" and B~ B’, then we have
a homotopy equivalence A® B~ A'® B so that the usual Kiinneth
difficulties are absent.

The tower E} ' is computable, and the theorem is proved. |

The family of Eilenberg—-Moore spectral sequences is fairly large; in
addition to the one studied above, another can be used to get information
about the homology of the base space of a fibration, and others work in
cohomology. The method explained applies as well in these cases so as to
get algorithmic techniques.

9.3. THEOREM. Let X be an n-connected (nz=1) simplicial set with
effective homology. Then a system (X ,,, fX) with m, k = n can be constructed
such that:

(a) each X, is an m-connected simplicial set with effective homology;
(b) each fX is a chain complex morphism f*: CoX,, = C. X, x of
degree —1;
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(c) those f% organize the C,X,, as a complex tower whose ordinary
homology groups are the homotopy groups of X.

Proof (indications only). Let us define a simplicial set X, as
X,=K(H(X),n)xKH, (X),n+1)x --..

It is well known there is a canonical map from X to X, whose homotopy
fiber Y, is “Hurewicz’s error.” The process can be resumed from Y, and
gives X, ., Y, ., X, 2, ... If a suitable model is chosen for X, a canoni-
cal morphism f): H, X=n,X,—n, Y, (connection morphism in the
Serre exact homotopy sequence) can be constructed where H X is the
effective homology of X, and =, Y, is the “effective homotopy” of Y, which
has to be defined. But Y, is a simplicial set with effective homology;
this homology is the effective homotopy of X, ., (definition) and a suitable
version of the Serre exact sequence defines the effective homotopy of Y,
as the effective homology of the cone of the connection morphism
N X, 1> _Y,, where n, Y, is the effective homotopy of ¥, |
which has to be defined. But Y,, is m-connected so that this definition
converges. |

The last theorem is the effective homology version of Adams’ spectral
sequence.

10. COMPUTABILITY IN ALGEBRAIC TOPOLOGY

The results obtained in Sections 7 and 9 allow us to find many far-
reaching computability results in algebraic topology and homological
algebra. Roughly speaking, lots of computations carried out in algebraic
topology can be reduced to successive applications of cone exact sequences
and Serre and Eilenberg—Moore spectral sequences. With the techniques
explained in this paper, these “computation” methods become actual
algorithms open to theoretical (computability) and concrete applications
{finding on machines homology or homotopy groups unknown until now).
In this section we give some examples of applications in computability.

10.1. TuEOREM. If Il is an abelian group of finite type, and if n is a
positive integer, it is possible to construct a simplicial set with effective
homology K(I1, n).

Proof. This is very easy if n=1 By successive application of the
effective homology version of the Eilenberg-Moore spectral sequence, the
required K(I71, n) can be constructed. |
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Here we must point out that this proof is written essentially in the same
way in Henri Cartan’s famous paper [CRT] which gives the general
solution for the computation problem of the homology groups of K(/1, n)s.
Indeed Cartan organizes the work as follows. To every K(/1, n), he assigns
a complex T(I1, n), a tensor product of elementary complexes so that the
following properties hold:

(a) the complex T(/1, n) is computable; it is a finite tensor product of
actually elementary, in the usual sense, complexes;

(b) if K(II,n) and T(/I, n) are known, then an automatic process
constructs T(/I,n+1): this organization is stable; the process is of
Eilenberg-Moore type and the stability property thus obtained leads to the
direct description of T(I1, n) with the help of admissible sequences;

(c) the effective simplicial set property for K(I7, n) is obvious.

Hence Theorem 10.1 is due to Henri Cartan who actually invented
effective homology theory thirty years ago.

10.2. THEOREM. An algorithm can be constructed:

input:  (n, X) where X is a simply connected simplicial set with
effective homology and n is an integer.

output: 7,(X), the n'® homotopy group of X.

Proof. Repeatedly applying effective homology versions of Serre and
Eilenberg-Moore spectral sequences, we can indeed construct on our
machine the Whitehead and Postnikov towers of X and compute at the
same time its Postnikov invariants. ||

Edgar Brown [BRW] proved 10.2 for finite simplicial sets. The result
obtained here gives progress in two directions. On one hand the class of
simplicial sets with effective homology is much larger than the class of finite
simplicial sets; a quite artificial but characteristic example was explained in
the Introduction. Let us say simply here that, starting from finite simplicial
sets, any “classical” construction and even any sequence of “classical”
constructions (pushouts, homotopic fibers, spaces with equivariant
homology, ...) always produce simplicial sets with effective homology,
however, with a restriction: frequently simple connectivity (or nilpotency)
properties must hold.

On the other hand, it is quite reasonable to try programming on actual
machines the algorithms whose existence is thus proved. There are no
specific difficulties in carrying out the explained functional programming
methods, only that nothing has been done in this direction until now and
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that all is yet to be done. Frequently the author is questionned about new
homotopy groups of spheres. There is no good reason to be especially
optimistic about this point: effective homology theory only solves extension
problems set by the classical methods but of course cannot in any way
replace the specific techniques which have been patiently worked out to go
still further in the marvelous world of homotopy groups of spheres (cf.
[RVN]).

On the contrary, just as Jean-Pierre Serre succeeded in computing new
homotopy groups of spheres thanks to his spectral sequence, it is quite
sensible to think that the methods explained here may allow us to compute
on a machine the first homotopy groups of complicated spaces such as the
one of the Introduction. But an important programming effort will be
needed; it seems very attractive.

10.3. THEOREM. An algorithm can be constructed:

input: (X, n) where X is a simply connected simplicial set with
effective homology and n is an integer;

output: the effective homology of the null component of the n'
loop space of X.

Proof. First we climb up the Postnikov tower in order to find X, the
space X whose n first homotopy groups have been killed. The null compo-
nent under consideration is the »'™ loop space of X,,. Then applying n times
the effective homology version of the Eilenberg-Moore spectral sequence is
suffucient.

Note that the cobar construction [ADM ] does not solve this problem
when the connectivity of X is less than n + 1.

10.4. THEOREM. An algorithm can be constructed.

input: (G, K) where X is a connected simplicial set with effec-
tive homology and G is a connected simplicial group
with effective homology acting on K;

output: Bor(G, K), the space with equivariant homology of X
with respect to the G-action, viewed in the form of a
simplicial set with effective homology.

Let us recall that, if EG — BG is the universal G-fibration, Bor(G, X)
(Borel construction) is the quotient space of X' x £EG under the natural
G-action.
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Here as well the result is obtained by applying the Eilenberg-Moore
spectral sequence.

A special case is important: Bor(S!, QX) where QX is the free loop space
of X and where S! acts on the parametrization by translation. This special
case occurs naturally in the study of closed geodesics on a Riemannian
manifold (see [HNG]).

10.5. THEOREM. Let G be a (discrete) perfect group whose classifying
space BG is a simplicial set with effective homology. Then BG™ is a simpli-
cial set with effective homology.

10.6. COROLLARY. If the same hypotheses hold, the K, (Z[G]) are
computable.

Proof. Quillen’s “+”-construction essentially does not change
homology groups and this property holds in effective homology as well.

Now let us point out a surprising but nevertheless elementary fact; it
does not seem to have yet been remarked; however, its consequences
should be interesting. On one hand there does not exist any general
algorithm capable of deciding whether a space is simply connected; this is
an easy consequence of the undecidability of the word problem in group
theory. On the other hand most of the results in algebraic topology hold
only when they are applied to simply connected spaces. We might as well
say that from the computability point of view the situation is far from
being ideal! Consequently a natural question arises: Do there exist general
algorithms which always compute something so that, if the input is simply
connected, something is a correct output, for example, some homotopy
group? Note that you will not be able to know whether the hypothesis is
satisfied but however the question makes sense! If such algorithms do exist
we get a new problem: if the input does not satisfy the connectivity
hypothesis, what is computed by such an algorithm? Now it is easy to see
that in this way it is possible to obtain a very natural definition of Quillen’s
K-theory groups which does not seem to have yet been given. This point
of view will be developed in detail in another paper.
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