next up previous contents index
suivant: Integration by parts : monter: Integration précédent: Discrete summation: sum   Table des matières   Index


Riemann sum : sum_riemann

sum_riemann takes two arguments : an expression depending of two variables and the list of the name of these two variables.
sum_riemann(expression(n,k),[n,k]) returns in the neighboorhoud of n = + $ \infty$ an equivalent of $ \sum_{{k=1}}^{n}$expression(n, k) (or of $ \sum_{{k=0}}^{{n-1}}$expression(n, k) or of $ \sum_{{k=1}}^{{n-1}}$expression(n, k)) when the sum is looked as a Riemann sum associated to a continue function defined on [0,1] or returns "it is probably not a Riemann sum" when the resarch is unavailing.
Exercise 1
Suppose Sn = $\displaystyle \sum_{{k=1}}^{n}$$\displaystyle {\frac{{k^2}}{{n^3}}}$.
Compute $\displaystyle \lim_{{n \rightarrow +\infty}}^{}$Sn.
Input :
sum_riemann(k^2/n^3,[n,k])
Output :
1/3
Exercise 2
Suppose Sn = $\displaystyle \sum_{{k=1}}^{n}$$\displaystyle {\frac{{k^3}}{{n^4}}}$.
Compute $\displaystyle \lim_{{n \rightarrow +\infty}}^{}$Sn.
Input :
sum_riemann(k^3/n^4,[n,k])
Output :
1/4
Exercise 3
Compute $\displaystyle \lim_{{n \rightarrow +\infty}}^{}$($\displaystyle {\frac{{1}}{{n+1}}}$ + $\displaystyle {\frac{{1}}{{n+2}}}$ + ... + $\displaystyle {\frac{{1}}{{n+n}}}$).
Input :
sum_riemann(1/(n+k),[n,k])
Output :
log(2)
Exercise 4
Suppose Sn = $\displaystyle \sum_{{k=1}}^{n}$$\displaystyle {\frac{{32n^3}}{{16n^4-k^4}}}$.
Compute $\displaystyle \lim_{{n \rightarrow +\infty}}^{}$Sn.
Input :
sum_riemann(32*n^3/(16*n^4-k^4),[n,k])
Output :
2*atan(1/2)+log(3)



giac documentation written by Renée De Graeve and Bernard Parisse