15.3.1 Cholesky decomposition
If M is a square symmetric positive definite matrix, the Cholesky
decomposition is M=PTP, where P is a lower triangular matrix.
The cholesky command finds the matrix P.
-
cholesky takes
M, a square symmetric positive definite matrix.
- cholesky(M) returns a symbolic or numeric matrix
P given by the Cholesky decomposition.
Examples
|
| ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣ | | ⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ |
|
| | | | | | | | | | |
|
Remark.
If the matrix argument A is not a symmetric matrix,
cholesky(A) does not return an error, bu instead
uses the symmetric matrix B of the the quadratic form q
corresponding to the (non symmetric) bilinear form of the matrix A.
Example
cholesky([[1,-1],[-1,4]]) |
or: