Previous Up Next

13.8.2  Euler-Lagrange equations

The Euler-Lagrange equations for a Lagrangian function f(x,y,y′) are differential equations which must be satisfied by extrema of the functional F(y).

The euler_lagrange command finds the Euler-Lagrange equations for a Lagrangian f.

The degrees of these differential equations are kept as low as possible. If, for example, ∂ f/∂ y=0, the equation ∂ f/∂ y′=K is returned, where K∈ℝ is an arbitrary constant. Similarly, using the Hamiltonian

  H(x,y,y′)=y′ 
∂ y
 f(x,y,y′)−f(x,y,y′)

the Euler-Lagrange equation is simplified in the case n=1 and ∂ f/∂ t=0 to:

H(x,y,y′)=K,     (3)

since it can be shown that d/dx H(y,y′,x)=0. Therefore the Euler-Lagrange equations, which are generally of order two in y, are returned in a simpler form of order one in the aforementioned cases. If n=1 and ∂ f/∂ x=0, then both equations are returned, each of them being sufficient to determine y (one of the returned equations is usually simpler than the other).

Examples

Minimize the functional F for 0<a<b and f(x,y,y′)=x2 y′(x)2+y(x)2.

eq:=euler_lagrange(x^2*diff(y(x),x)^2+y^2)
     
d2
dx2
y
x
=
−2 
d
dx
y
x
x+y
x
x2
          

This can be solved by assuming y(x)=xr for some r∈ℝ.

solve(subs(eq,y(x)=x^r),r)
     



5
+1
2
,−
5
+1
2



          

The same pair of solutions is also returned by the kovacicsols command (see Section 13.4.3):

assume(x>=0):; kovacicsols(y''=(y-2x*y')/x^2,x,y)
     




x
5
−1
 
,
x
5
−1
 




          

You can conclude that y=C1 x−√5+1/2+C2 x5+1/2. The values of C1 and C2 are determined from the boundary conditions. Finally, to prove that f is convex:

convex(x^2*diff(y(x),x)^2+y^2,y(x))
     
true           

Therefore, y minimizes F on [a,b].

Find the function y in {yC1[1/2,1]:y(1/2)=−√3/2, y(1)=0} which minimizes the functional

  F(y)=
1


1/2
1+y′(x)2
x
 dx.

To obtain the corresponding Euler-Lagrange equation:

eq:=euler_lagrange(sqrt(1+diff(y(x),x)^2)/x)
     
d
dx
y
x
x 



d
dx
y
x



2



 
+1
=K2
          
sol:=dsolve(eq)
     



K32 x2+1
K3
+c0


          

The sought solution is the function of the above form which satisfies the boundary conditions.

y0,c:=sol[0],[K_3,c_0]:; v:=solve([subs(y0,x=1/2)=-sqrt(3)/2,subs(y0,x=1)=0],c)
     

10

          
y0:=normal(subs(y0,c,v[0])
     
x2+1
          

If the integrand in F(y) is convex, then y0(x)=−√1−x2 is a minimizer for F. Indeed:

convex(sqrt(1+y'^2)/x,y(x))
     

x≥ 0
          

You can similarly find the minimizer for

  F(y)=
π


0

2 sin(xy(x)+y′(x)2
 dx

where yC1[0,π] and y(0)=y(π)=0.

eq:=euler_lagrange(2*sin(x)*y(x)+diff(y(x),x)^2)
     
d2
dx2
y
x
=sinx
          
dsolve(eq and y(0)=0 and y(pi)=0,x,y)
     
sinx           

The above function is the sought minimizer as the integrand 2 sin(xy(x)+y′(x)2 is convex:

convex(2*sin(x)*y(x)+diff(y(x),x)^2,y(x))
     
true           

Minimize the functional F(y)=∫01(y′(x)4−4 y(x)) dx on C1[0,1] with boundary conditions y(0)=1 and y(1)=2.

First, solve the associated Euler-Lagrange equation:

eq:=euler_lagrange(y'^4-4y,x,y)
     












d
dx
y
x



4



 
+4 y
x
=K6,
d2
dx2
y
x
=−
1



d
dx
y
x



2



 









          
dsolve(eq[1] and y(0)=1 and y(1)=2,x,y)
     



3
4
 
x+1.52832425067
4
3
 
+2.32032831141


          

Next, check if the integrand in F(y) is convex:

convex(y'^4-4y,[x,y])
     
true           

Hence the minimizer is y0(x)=−3/4 (1.52832425067−x)4/3+2.32032831141, 0≤ x≤ 1.

Find Euler-Lagrange equations for a bivariate functional F:

euler_lagrange(sqrt(x'(t)^2+y'(t)^2),[x(t),y(t)])
     











d
dt
x
t



d
dt
x
t



2



 
+


d
dt
y
t



2



 
=K0,
d
dt
y
t



d
dt
x
t



2



 
+


d
dt
y
t



2



 
=K1










          

where K0,K1∈ℝ are arbitrary constants (note that these symbols are generated automatically).

It can be proven that if f is convex (as a function of three independent variables, see Section 13.7.8), then a solution y to the Euler-Lagrange equations minimizes the functional F.


Previous Up Next