
Equivariant normalization

Michel BRION

Institut Fourier, Université Grenoble Alpes

22 July 2024

Talk at XXIV Coloquio Latinoamericano de Álgebra



Notation and a preliminary result
Let k be an algebraically closed field of characteristic p ≥ 0.
I An algebra is a commutative, associative k-algebra with unit.
I A grading of an algebra A by an abelian group M is a decomposition

A =
⊕

m∈M Am, where A0 ⊃ k and Am · Am′ ⊂ Am+m′ for all
m,m′ ∈ M. The nonzero elements of Am are called homogeneous of
degree m.

I An affine domain is a finitely generated algebra without zero divisor.
I The normalization Ã of an affine domain A is the integral closure of

A in its fraction field. This is an affine domain, finitely generated as an
A-module.

Proposition
Let A be an affine domain, and Ã its normalization. Assume that A is
graded by a p-torsion-free abelian group M. Then this grading extends
uniquely to a grading of the normalization Ã.
This does not hold when M has p-torsion, as shown by the following :



Example
Let f ∈ k[x ] (the algebra of polynomials in the variable x) and consider the
algebra

A = k[x , y ]/(yp − f (x)).

The polynomial algebra k[x , y ] is graded by Z/pZ, where deg(x) = 0 and
deg(y) = 1 (mod p). Moreover, yp − f (x) is homogeneous of degree 0.
Thus, A has a Z/pZ-grading via

A =
p−1⊕
m=0

k[x ] ym.

The algebra A is an affine domain if f /∈ k[xp]. Then A has fraction field
K = k(x)[y ]/(yp − f (x)). It has a Z/pZ-grading as well :

K =
p−1⊕
m=0

k(x) ym.



Example (continued)
Proposition
If f ′ is nonconstant, then Ã 6= A.
If f has simple roots, then A is the largest Z/pZ-graded subspace of Ã.

Proof sketch :
We view X as the affine plane curve with equation yp = f (x).
Then Ã = A if and only if X is nonsingular.
By the Jacobian criterion, this is equivalent to f ′ having no zero, i.e.,
being constant.
Next, consider a homogeneous element g = g(x , y) ∈ Ã of degree m.
Then g ∈ Km = k(x)ym, i.e., g = h(x) ym for some h ∈ k(x) and some
integer m such that 0 ≤ m ≤ p − 1.
Moreover, we have gp ∈ Ãmp = Ã0.
But since A0 = k[x ] is integrally closed in K0, we obtain Ã0 = A0 and
hence gp ∈ k[x ].
As gp = h(x)p ymp = h(x)p f m, this forces h(x) ∈ k[x ] if f has simple
roots.



Gradings and derivations
Recall that a derivation of an algebra A is a linear map D : A→ A such
that D(ab) = D(a)b + aD(b) for all a, b ∈ A.
If p = 0 then every Z-grading A =

⊕
n∈Z An defines a derivation D such

that D(a) = na for any a ∈ An. Clearly, D is diagonalizable with integer
eigenvalues. Conversely, every diagonalizable derivation with integer
eigenvalues arises from a Z-grading of A.
If p > 0 then one obtains similarly a bijective correspondence between
Z/pZ-gradings of A and diagonalizable derivations D with eigenvalues
being integers mod p ; equivalently, Dp = D.
The following is a special case of a result of Seidenberg :

Proposition
If p = 0 then every derivation of an affine domain extends uniquely to its
normalization.
This fails if p > 0 in view of the above example (basically due to
Seidenberg).



Affine (group) schemes
Definition
I A (group) functor is a covariant functor from the category of

algebras to that of sets (resp. groups).
I An affine (group) scheme is a representable (group) functor.

Equivalently, a functor X is an affine scheme if there exists an algebra A
such that X (R) = Homalg(A,R) for any algebra R. Then A is unique ; we
write X = Spec(A) and A = O(X ). We say that X is an (affine) variety if
A is an affine domain.
For a group scheme G , the functorial group structure on each G(R)
corresponds to a Hopf algebra structure on O(G).

Examples
I The assignement R 7→ (R,+) yields a group functor Ga : the additive

group. It is represented by the algebra k[T ].
I Likewise, R 7→ (R×,×) yields a group functor Gm : the

multiplicative group. It is represented by the algebra k[T ,T−1].



Finite group schemes

Definition
An affine group scheme G is finite if the algebra O(G) is finite-dimensional
as a k-vector space.
The dimension of O(G) is then called the order of G , and denoted by |G |.

Example
Let G be a finite group of order N, and O(G) the algebra of k-valued
functions on G equipped with pointwise multiplication.
(This is the dual of the group algebra k[G ]).
Then G is a finite group scheme with Hopf algebra O(G) and order N.
Moreover, G(k) ' G via evaluation of functions.

The following is a special case of a theorem of Cartier :

Proposition
If p = 0 then every finite group scheme is a (genuine) finite group.



Finite group schemes (continued)

In characteristic p > 0, there are additional examples :
I The group functor R 7→ {t ∈ R | tp = 0} is represented by a finite

group scheme αp such that O(αp) = k[t]/(tp).
Moreover, αp is the (schematic) kernel of the Frobenius endomorphism

F : Ga −→ Ga, t 7−→ tp.

I The group functor R 7→ {t ∈ R× | tp = 1} is represented by a finite
group scheme µp such that
O(µp) = k[t, t−1]/(tp − 1) ' k[t]/(tp − 1).
Moreover, µp is the kernel of the Frobenius endomorphism of Gm.

Both αp and µp have order p. One can show that every finite group
scheme of order p is isomorphic to Z/pZ, αp or µp.
Also, αp(k) = {0} and µp(k) = {1}. We say that αp and µp are
infinitesimal.



Actions of affine group schemes
Let G be an affine group scheme, and X an affine scheme. An action of G
on X is an action of the group G(R) on the set X (R) for any algebra R,
which is functorial in R.
The action is free if G(R) acts freely on X (R) for all R.
A morphism of affine schemes f : X → Y is G-equivariant if
f (R) : X (R)→ Y (R) is G(R)-equivariant for all R.
If X = Spec(A), then the G-actions on X correspond bijectively to the
G-actions on A by algebra automorphisms (given for any algebra R by an
action of G(R) on the R-algebra A⊗k R, functorial in R).
Proposition
I The actions of αp on an affine scheme X = Spec(A) correspond

bijectively to the derivations D of A such that Dp = 0.
I The actions of µp on X correspond bijectively to the derivations D of

A such that Dp = D.

Thus, the µp-actions on X correspond bijectively to the Z/pZ-gradings of
A = O(X ).



Quotients by finite group schemes

Let G be a finite group scheme acting on an affine scheme X = Spec(A).
Consider the subalgebra of invariants

AG = {f ∈ A | f (g · x) = f (x) for all R, g ∈ G(R), x ∈ X (R)}.

The inclusion AG ⊂ A corresponds to a morphism of affine schemes

π : X −→ Y = X/G ,

the (categorical) quotient by G .
If A is finitely generated, then AG is finitely generated as well. If in addition
G is a genuine finite group and X is a variety, then

AG = {f ∈ A | f (g · x) = f (x) for all g ∈ G(k), x ∈ X (k)}

and X/G is a variety.



G-normal varieties
Let G be a finite group scheme. A G-variety is a variety X equipped with
a G-action.
We say that an affine G-variety X = Spec(A) is G-normal, if A is the
largest G-stable subalgebra of its normalization. This is equivalent to the
following geometric definition (which makes sense for a possibly non-affine
G-variety X ) :
For any G-variety Y , every G-equivariant finite birational morphism
Y → X is an isomorphism.

Proposition
Let X be a G-variety.
I Then X admits a G-normalization X ′ → X, unique up to unique

G-equivariant isomorphism.
I If X is G-normal, then the quotient variety X/G is normal.
I Conversely, if X/G is normal and G acts freely on X, then X is

G-normal.



Example (continued)

Let again A = k[x , y ]/(yp − f (x)), where f /∈ k[xp], and X = Spec(A).
Then αp acts on X via

t · (x , y) = (x , y + t).

This action is free, and the corresponding derivation is the partial
derivative ∂y . The quotient is x : X → A1.
Also, µp acts on X via

t · (x , y) = (x , ty).

This action is free away from the points (x , 0), where f (x) = 0. The
corresponding derivation is y∂y . The quotient is again x : X → A1.
Since αp acts freely on X and the quotient variety A1 is normal, X is
αp-normal.
Also, we have seen that X is µp-normal if f has simple roots.
Yet X is nonnormal if f ′ is nonconstant.



Reduction to infinitesimal group schemes

The following classical result reduces somehow the structure of finite group
schemes to the infinitesimal case :

Proposition
Let G be a finite group scheme, and G(k) its group of k-points.
Then G has a largest infinitesimal normal subgroup scheme G0.
Moreover, G = G0 o G(k).

There is a similar reduction for equivariantly normal varieties :

Theorem
Let G be as above, and X a G-variety. Then X is G-normal if and only if it
is G0-normal.

In particular, if G is a genuine finite group then G-normality is equivalent
to normality (this is easily checked directly).



Equivariantly normal curves

A function field of one variable is a separable, finitely generated field
extension K/k of transcendence degree 1.
Equivalently, K is the field of rational functions k(X ), where X is a curve.
Moreover, X may be taken normal (or equivalently, smooth) and projective.
For instance, k(A1) = k(P1) is the field of rational functions k(t), where
P1 denotes the projective line.
Classically, the assignement X 7→ k(X ) yields an anti-equivalence of
categories between normal projective curves and function fields of one
variable. This can be generalized as follows :

Theorem
Let G be a finite group scheme. Then the above assignement yields an
anti-equivalence of categories between G-normal projective curves and
function fields of one variable equipped with a (functorial) G-action.



Examples
Let K be a function field in one variable, and Kp ⊂ K the subfield of pth
powers. Then there exists t ∈ K such that

K =
p−1⊕
m=0

Kp tm

(this is equivalent to K being separable algebraic over k(t)).
The above decomposition is a Z/pZ-grading of K , and hence corresponds
to a µp-action. The corresponding derivation D is uniquely determined by
the condition that D(t) = t, i.e., D = t d

dt .
The data of K and t yield a unique µp-normal projective curve X such that
k(X ) = K . If the geometric genus of X is at least 2, then X is non-normal
(since a smooth projective curve of genus g ≥ 2 has no nonzero global
vector fields).
One can show that every projective µp-normal curve is obtained via this
construction. Likewise, every projective αp-normal curve arises from a
derivation of the form d

dt for t as above.



A G-normality criterion for curves
Theorem
Let G be an infinitesimal group scheme, and X a G-curve.
Then X is G-normal if and only if the largest G-stable ideal of the local
ring OX ,x is principal for any x ∈ X.

We may then see each OX ,x as a G-discrete valuation ring.

Corollary
Let G be infinitesimal of order p, and X a G-curve.
Then X is G-normal if and only if it satisfies the following conditions :
X/G is smooth and X is smooth at every G-fixed point.

Example
Let f ∈ k[x , y ] be homogeneous of degree p, and not a pth power. Let
X ⊂ P2 the curve with homogeneous equation zp − f (x , y) = 0.
Then µp acts on X via t · (x , y , z) = (x , y , tz). The quotient is the
projection (x , y) : X → P1 and the fixed points are exactly the (x , y , 0),
where f (x , y) = 0. So X is µp-normal if and only if f has simple roots.



A further G-normality criterion
Let again G be a finite group scheme.
Then G is a subgroup scheme of a smooth connected algebraic group G#.
For example, we may take G# = GL(O(G)) in which G embeds via the
regular representation.
Given a G-variety, we may form the “induced” variety X# = (G# × X )/G ,
where G acts on G# × X via g · (h, x) = (hg−1, g · x).
This is indeed a variety, equipped with an action of G# via left
multiplication on itself.

Proposition
X is G-normal if and only if X# is normal.
If X is a curve, this is equivalent to X# being smooth.
The projection G# × X → X gives a morphism ϕ : X# → G#/G
which is G#-equivariant, faithfully flat, and has fiber X at the base point.
This yields :

Corollary
Every G-normal curve X is a local complete intersection.



A Hurwitz formula for G-normal curves
A finite group scheme G is linearly reductive if every representation of G
is semi-simple.
This is equivalent to the infinitesimal part G0 being a product of µpr ’s, and
the order of G(k) being prime to p.

Theorem
Let G be linearly reductive, X a G-normal curve, and π : X → Y = X/G
the quotient. Then

ωX = π∗(ωY )(
∑

(nx − 1)G · x),

where the sum runs over the G-orbits G · x, x ∈ X (k), and nx denotes the
order of the stabilizer Gx .
Here ωX denotes the dualizing sheaf of X (which exists since X is a local
complete intersection).
If G is a genuine finite group, then X is smooth and hence ωX = Ω1

X .
We then recover the Hurwitz formula for tamely ramified Galois covers of
smooth curves. But if G is infinitesimal, then π is purely inseparable.



G-normal curves and smooth projective surfaces
Let E be an elliptic curve, and G ⊂ E a finite subgroup scheme. Given a
projective G-normal curve X , the quotient

S = (E × X )/G

is a smooth projective surface equipped with an action of E .
One can show that every smooth projective surface whose automorphism
group contains an elliptic curve is obtained by this construction.
The quotient π : X → Y = X/G defines a morphism

f : S −→ Y = S/E ,

which is an elliptic fibration with general fiber E .
If G is linearly reductive, then the Hurwitz formula for ωX yields a version
of the canonical bundle formula for this elliptic fibration, due to Bombieri
and Mumford.
The geometry of these elliptic surfaces has been recently investigated by
Fong and Maccan. Their canonical ring satisfies R(S) = R(X )G , where
R(X ) =

⊕∞
m=0 H0(X , ω⊗m

X ).



Example

Consider again the curve X ⊂ P2 with homogeneous equation
zp − f (x , y) = 0, where f ∈ k[x , y ] is homogeneous of degree p
with simple roots.
Recall that X is G-normal for the action of G = µp via
t · (x , y , z) = (x , y , tz). Moreover, X/G = P1.
Also, X is rational, and singular if p ≥ 3. We have ωX = OX (p − 3).
Let E be an ordinary elliptic curve. Then E contains a unique copy of G .
The smooth projective surface S = (E × X )/G comes with two fibrations :
the elliptic fibration f : S → X/G = P1, and ϕ : S → E/G with fiber X .
If p = 2 then ϕ is a ruling ; in particular, κ(S) = −∞.
If p ≥ 3 then S is covered by rational curves (the fibers of ϕ) and none of

them is smooth. We have κ(S) =
{
0 if p = 3,
1 if p ≥ 5.
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