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Abstract

In this article, we shall begin with an elementary introduction to the universal
Vassiliev invariant called the perturbative series expansion of the Chern-Simons

theory of links in euclidean space defined by means of configuration space inte-
grals. Whether this universal Vassiliev invariant coincides with the Kontsevich
integral is still open to mathematicians despite the substantial progress of Syl-
vain Poirier [22] who in particular reduced this question to the computation
of the anomaly of Bott, Taubes, Altschuler, Freidel and D. Thurston, which is
an element α of the space A(S1) of Jacobi diagrams. We shall give a short
survey of the Poirier work that allowed the author to define the isomorphism of
A which transforms the Kontsevich integral into the Poirier limit of the Chern-
Simons invariant of framed links, as an explicit function of α, and to prove the
algebraic property of the anomaly : The anomaly has two legs. We end up the
article by proving an additional geometric property of the anomaly that allowed
Poirier to compute the anomaly up to degree 6.
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1 Introduction

There are essentially two universal Vassiliev invariants of links, the Kontse-

vich integral, and the perturbative series expansion of the Chern-Simons theory

studied by Guadagnini Martellini and Mintchev [10], Bar-Natan [5], Axelrod
and Singer [2, 3], Kontsevich [11], Polyak and Viro [23], Bott and Taubes [8],
Altschuler and Freidel [1], D. Thurston [24], Yang, Poirier [22]... The question
that was first raised by Kontsevich in [11] whether the two invariants coin-
cide or not is still open to mathematicians despite the substantial progress of
Sylvain Poirier who in particular reduced this question to the computation of
the anomaly of Bott, Taubes, Altschuler, Freidel and D. Thurston, which is an
element α of the space of Jacobi diagrams A(S1).

In this article, we shall begin with an elementary introduction to the perturbative

series expansion of the Chern-Simons theory of links in euclidean space defined
by means of configuration space integrals in a natural and beautiful way. We
shall call this series the Chern-Simons series, and we shall denote it by ZCS .
Its physical interpretation will not be treated here and we refer the reader to
the survey [16] of Labastida for the interpretation of ZCS in the context of the
Chern-Simons gauge theory.

Then we shall give an introductory survey of the Poirier limit extension of the
configuration space integrals to a monoidal functor on the category of combina-
torial framed q -tangles. In particular, we shall review all the main properties
that are shared by the Kontsevich integral and the Poirier limit of the Chern-
Simons series. We shall call an invariant of framed links satisfying all these
properties a good monoidal functor from the category of framed q-tangles to

A. Then, we shall review the author’s refinement [20] of a theorem of Le and
Murakami [17, Theorem 8] inspired by Drinfeld and Kontsevich that could be
stated as follows: A good monoidal functor that varies like the Kontsevich in-

tegral ZK under a framing change must coincide with ZK on framed links.

Our refinement is stated in Theorem 9.3. Roughly speaking, we list the possi-
ble variations of good monoidal functors under framing changes and we define
some special type of isomorphisms of A, the Ψ(β), so that, when restricted to
framed links, any good monoidal functor is of the form Ψ(β) ◦ ZK .

This allows us to define the isomorphism of A which transforms the Kontsevich
integral into the Poirier limit [22] of the Chern-Simons series ZCS , as an explicit
function of the anomaly. This explicit relation and the Poirier estimates on
the denominators of ZCS allowed us to show that the denominators of the
degree n part of the Kontsevich integral of framed links divide into (2!3! . . . (n−

2



5)!)(n − 5)!32(3n − 4)!22n+2 for n ≥ 5 in [20]. These denominators have more
prime factors than the denominators (2!3! . . . n!)4(n + 1)! of Le [13] but they
are smaller. Another corollary is the algebraic property of the anomaly : The

anomaly has two legs. We end up the article by reviewing the known properties
of the anomaly and by proving an additional geometric property of the anomaly
that allowed Poirier to compute the anomaly up to degree 6.

I thank Stéphane Guillermou and Lucien Guillou for useful comments on these
notes. I also thank Tomotada Ohtsuki and Hitoshi Murakami for organizing
the very interesting Kyoto conference of September 2001 at the RIMS, and for
inviting me to participate.

2 Introduction to configuration space integrals: The

Gauss integrals.

In 1833, Carl Friedrich Gauss defined the first example of a configuration space

integral for an oriented two-component link. Let us formulate his definition in
a modern language. Consider a smooth (C∞) embedding

L : S1
1

∐

S1
2 →֒ R

3

of the disjoint union of two circles S1 = {z ∈ C s.t. |z| = 1} into R
3 . With

an element (z1, z2) of S1
1 × S1

2 that will be called a configuration, we associate
the oriented direction

Ψ((z1, z2)) =
1

‖
−−−−−−−→
L(z1)L(z2) ‖

−−−−−−−→
L(z1)L(z2) ∈ S2

of the vector
−−−−−−−→
L(z1)L(z2). Thus, we have associated a map

Ψ : S1
1 × S1

2 −→ S2

from a compact oriented 2-manifold to another one with our embedding. This
map has an integral degree deg(Ψ) that can be defined in several equivalent
ways. For example, it is the differential degree deg(Ψ, y) of any regular value y
of Ψ, that is the sum of the ±1 signs of the Jacobians of Ψ at the points of the
preimage of y [21, §5]. Thus, deg(Ψ) can easily be computed from a regular
diagram of our two-component link as the differential degree of a unit vector
−→v pointing to the reader or as the differential degree of (−−→v ).

deg(Ψ) = deg(Ψ,−→v ) = ♯
2 1

− ♯
1 2

= deg(Ψ,−−→v ) = ♯
1 2

− ♯
2 1
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It can also be defined as the following configuration space integral

deg(Ψ) =

∫

S1×S1

Ψ∗(ω)

where ω is the homogeneous volume form on S2 such that
∫

S2 ω = 1. Of course,
this integral degree is an isotopy invariant of L, and the reader has recognized
that deg(Ψ) is nothing but the linking number of the two components of L.

We can again follow Gauss and associate the following similar Gauss integral

I(K; θ) to a C∞ embedding K : S1 →֒ R
3 . Here, we consider the configuration

space C(K; θ) = S1×]0, 2π[, and the map

Ψ : C(K; θ) −→ S2

that maps (z1, η) to the oriented direction of
−−−−−−−−−−→
K(z1)K(z1e

iη), and we set

I(K; θ) =

∫

C(K;θ)
Ψ∗(ω).

Let us compute I(K; θ) in some cases. First notice that Ψ may be extended
to the closed annulus

C(K; θ) = S1 × [0, 2π]

by the tangent map K ′ of K along S1 × {0} and by (−K ′) along S1 × {2π}.
Then by definition, I(K; θ) is the algebraic area (the integral of the differential
degree with respect to the measure associated with ω) of the image of the
annulus in S2 . Now, assume that K is contained in a horizontal plane except
in a neighborhood of crossings where it entirely lies in vertical planes. Such a
knot embedding will be called almost horizontal. In that case, the image of the
annulus boundary has the shape of the following bold line in S2 .

In particular, the differential degree that extends to a constant function over S2

outside the image of the annulus boundary, extends to a map that is constant
on each hemisphere, and I(K; θ) is the average of the differential degree of two
regular points located at the two hemispheres. Thus, in this case, it can be
computed from a regular projection on the horizontal plane as

I(K; θ) =
deg(Ψ,−→v ) + deg(Ψ,−−→v )

2
= ♯ − ♯ .
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This number, that is called the writhe of the projection, can be changed with-
out changing the isotopy class of the knot by local modifications where
becomes or . In particular, I(K; θ) can reach any integral value
on a given isotopy class of knots, and since it varies continuously on such a
class, it can reach any real value on any given isotopy class of knots. Thus, this
Gauss integral is NOT an isotopy invariant.

However, we can follow Guadagnini, Martellini, Mintchev [10] and Bar-Natan [5]
and associate configuration space integrals to any embedding L of an oriented
one-manifold M and to any Jacobi diagram Γ on M without small loop like

.

Let us first recall what a Jacobi diagram on a one-manifold is.

3 Definitions of the spaces of Jacobi diagrams

Definition 3.1 Let M be an oriented one-manifold. A Jacobi diagram Γ
with support M is a finite uni-trivalent graph Γ such that every connected
component of Γ has at least one univalent vertex, equipped with:

(1) an isotopy class of injections i of the set U of univalent vertices of Γ also
called legs of Γ into the interior of M ,

(2) an orientation of every trivalent vertex, that is a cyclic order on the set
of the three half-edges which meet at this vertex.

Such a diagram Γ is represented by a planar immersion of Γ ∪ M where the
univalent vertices of Γ are identified with their images under i, the one-manifold
M is represented by solid lines, whereas the diagram Γ is dashed. The vertices
are represented by big points. The orientation of a vertex is represented by the
counterclockwise order of the three dashed half-edges that meet at that vertex.

Here is an example of a diagram Γ on the disjoint union M = S1
∐

S1 of two
circles:

The degree of such a diagram is half the number of all its vertices.

Let AQ
n (M) denote the rational vector space generated by the degree n dia-

grams on M , quotiented out by the following relations AS and STU:
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AS : + = 0 and STU : = −

Each of these relations relate diagrams which can be represented by immer-
sions that are identical outside the part of them represented in the pictures.
For example, AS identifies the sum of two diagrams which only differ by the
orientation at one vertex to zero.

Let An(M) = AR
n(M) = AQ

n (M) ⊗Q R and let

A(M) =
∏

n∈N

An(M)

denote the product of the An(M) as a topological vector space. A0(M) is equal
to R generated by the empty diagram.

4 The Chern-Simons Vassiliev invariant

Let M be an oriented one-manifold and let

L : M −→ R
3

denote a C∞ embedding from M to R
3 .

Let Γ be a Jacobi diagram on M without small loop like . Let U denote
the set of univalent vertices of Γ, and let T denote the set of trivalent vertices
of Γ.

A configuration of Γ is an embedding

c : U ∪ T →֒ R
3

whose restriction c|U to U may be written as L ◦ j for some injection

j : U →֒ M

in the given isotopy class [i] of embeddings of U into the interior of M . Denote
the set of these configurations by C(L; Γ),

C(L; Γ) =
{

c : U ∪ T →֒ R
3 ;∃j ∈ [i], c|U = L ◦ j

}

.

In C(L; Γ), the univalent vertices move along L(M) while the trivalent vertices
move in the ambient space, and C(L; Γ) is naturally an open submanifold of
MU × (R3)T .
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Denote the set of (dashed) edges of Γ by E = E(Γ), and fix an orientation for

these edges. Define the map Ψ : C(L; Γ)−→
(

S2
)E

whose projection to the S2

factor indexed by an edge from a vertex v1 to a vertex v2 is the direction of
−−−−−−→
c(v1)c(v2).

This map Ψ is again a map between two orientable manifolds that have the
same dimension, namely the number of (dashed) half-edges of Γ, and we can
write the configuration space integral:

I(L; Γ) =

∫

C(L;Γ)
Ψ∗(ΛEω).

Bott and Taubes have proved that this integral is convergent [8]. See also
Sections 6, 7 below. Thus, this integral is well-defined up to sign. In fact, the
orientation of the trivalent vertices of Γ provides I(L; Γ) with a well-defined
sign. Indeed, since S2 is equipped with its standard orientation, it is enough to
orient C(L; Γ) ⊂ MU × (R3)T in order to define this sign. This will be done by
providing the set of the natural coordinates of MU × (R3)T with some order up
to an even permutation. This set is in one-to-one correspondence with the set
of (dashed) half-edges of Γ, and the vertex-orientation of the trivalent vertices
provides a natural preferred such one-to-one correspondence up to some (even!)
cyclic permutations of three half-edges meeting at a trivalent vertex. Fix an
order on E , then the set of half-edges becomes ordered by (origin of the first
edge, endpoint of the first edge, origin of the second edge, . . . , endpoint of the
last edge), and this order orients C(L; Γ). The property of this sign is that the
product I(L; Γ)[Γ] ∈ A(M) depends neither on our various choices nor on the
vertex orientation of Γ.

Now, the perturbative series expansion of the Chern-Simons theory for one-

manifold embeddings in R
3 is the following sum running over all the Jacobi

diagrams Γ without small loops and without vertex orientation1:

ZChern−Simons(L) =
∑

Γ

I(L; Γ)

♯AutΓ
[Γ] ∈ A(M)

where ♯AutΓ is the number of automorphisms of Γ as a uni-trivalent graph with
a given isotopy class of injections of U into M , but without vertex-orientation
for the trivalent vertices.

1This sum runs over equivalence classes of Jacobi diagrams without small loops,
where two diagrams are equivalent if and only if they coincide except possibly for their
vertex orientation.
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When L is a knot K , the degree one part of ZCS is I(K;θ)
2 [θ] and therefore ZCS

is not invariant under isotopy. However, the evaluation Z0
CS at representatives

of knots with null Gauss integral is an isotopy invariant that is a universal
Vassiliev invariant of knots. (All the finite type knot invariants in the Vassiliev
sense (see [4]) factor through it.) This is the content of the following theorem,
due independently to Altschuler and Freidel [1], and to D. Thurston [24], after
the work of many people including Guadagnini, Martellini and Mintchev [10],
Bar-Natan [5], Axelrod and Singer [2, 3], Kontsevich [11], Bott and Taubes [8]...

Theorem 4.1 (Altschuler-Freidel, D. Thurston, 1995) If L = K1
∐

· · ·
∐

Kk

is a link, then ZCS(L) only depends on the isotopy class of L and on the Gauss
integrals I(Ki; θ) of its components. In particular, the evaluation

Z0
CS(L) ∈

∏

n∈N

An(
k
∐

i=1

S1
i )

at representatives of L whose components have zero Gauss integrals is an iso-
topy invariant of L. Furthermore, Z0

CS is a universal Vassiliev invariant of
links.

Recall that the normalized Kontsevich integral is also a universal Vassiliev knot
invariant that is valued in the same target A. (See [4, 19].) Thus, the still open
natural question raised by Kontsevich in [11] is:

Is the Kontsevich integral of a zero framed representative of a knot K equal to

Z0
CS(K)?

On one hand, this Chern-Simons series has a beautiful, very natural and com-
pletely symmetric definition. Furthermore, it has been shown to be rational2

by nature by Dylan Thurston [24]. See the end of Section 7.

On the other hand, the Kontsevich integral fits in with the framework of quan-
tum link invariants and it can be defined in this setting [17, 15]. Therefore, it
is explicitly known how to recover quantum link invariants from the Kontse-
vich integral [17]. Furthermore, the computation of the Kontsevich integral for
links can be reduced to the computation of small link pieces called elementary

q-tangles. In [22], Sylvain Poirier proved that the same can be done for the
Chern-Simons series. Let us begin a review of his results.

2For a link L , the degree n part Z0
CSn(L) of Z0

CS(L) belongs to AQ
n(
∐k

i=1 S1
i ).
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5 The Poirier extension of ZCS to tangles

A planar configuration is an embedding of a finite set X into the plane R
2 .

In the ambient space R
3 = {(x, y, z)}, the horizontal plane is the plane (z = 0),

whereas the blackboard plane is the plane (y = 0). The z -coordinate of a point
(x, y, z) ∈ R

3 is called its vertical projection.

A tangle is the intersection of the image of a link representative transverse to
R

2 ×{β, τ} with a horizontal slice R
2 × [β, τ ]. In particular, it is an embedded

cobordism between two planar configurations.

Let λ ∈]0, 1] and let hλ be the homeomorphism of R
3 that shrinks the hori-

zontal plane with respect to the formula

hλ(x1, x2, x3) = (λx1, λx2, x3).

Let L(M) be a tangle. Set

ZPoirier(L(M)) = lim
λ→0

ZCS(hλ ◦ L) ∈ A(M)

Sylvain Poirier proved that this limit exists [22].

Let K be an almost horizontal knot embedding, rotated by 90 degrees around
a horizontal axis, (so that it is almost contained in some vertical plane) such
that I(K; θ) = 0. Then I(hλ ◦ K; θ) = 0, for any λ > 0, and the Poirier limit
ZP is the limit of a constant map. Therefore, ZP is equal to the Chern-Simons
series we started with for these representatives.

In general, we can see that the limit of I(hλ ◦K; θ) depends on the differential
degree of Ψ near the equator of S2 . Assume that the height function (the third
coordinate) of K is a Morse function, (its second derivative does not vanish
when the first one does). Then all the horizontal tangent vectors correspond to
extrema of the height function. Identify the horizontal plane to C so that the
unit horizontal vector corresponding to an extremum e is of the form exp(iθe).
When λ approaches 0, all the non-horizontal tangent vectors approach the
poles, and the image of our annulus boundary becomes a family of straight
meridians intersecting the equator at directions exp(iθe), exp(i(θe + π)) corre-
sponding to extrema e. These meridians cut our sphere like an orange, and the
differential degree becomes constant on the boundaries of orange quarters and
makes integral jumps at meridians. Thus, it can be seen that

lim
λ→0

I(hλ ◦ K; θ) ≡
1

π





∑

e minimum

θe −
∑

e maximum

θe



mod Z
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In particular, this limit is an integer when the horizontal vectors are in the
blackboard plane, and does not vary under isotopies that keep the directions
of the horizontal vectors fixed. This motivates our next definition of framed
tangles.

Definition 5.1 A framed tangle is represented by a C∞ embedding T of a
compact one-manifold M into a horizontal slice R

2 × [β, τ ] of R
3 such that

the only horizontal tangent vectors of T occur for interior points of M and are
parallel to the blackboard plane, and T (∂M) = T (M) ∩ R

2 × {β, τ}. Such a
T is considered up to the isotopies which fix ∂M and which satisfy the above
hypotheses at any time, and up to a rescaling of the height parameter, that
is a composition by 1R2 × h where h is an increasing diffeomorphism from
[β, τ ] to another interval of R. The projection onto R

2 of T (M) ∩ R
2 × {β} is

called the bottom configuration of the tangle whereas the projection onto R
2 of

T (M) ∩ R
2 × {τ} is called the top configuration of the tangle.

It is more convenient to work with unoriented tangles. Therefore, we shall
discuss tangle orientations in order to forget them forever afterwards.

When assigning a sign to a configuration space integral I(L(M); Γ), we can re-
place the datum of a global orientation of M by the datum of a local orientation
of M near the image under i of every given univalent vertex (that will orient the
coordinate in M corresponding to this vertex in C(L; Γ)). Then I(L(M); Γ)
will be multiplied by −1 if the local orientation of one vertex is modified. The
datum of such a local orientation at (v ∈ U) is equivalent to the datum of a
cyclic order of the three half-edges of M ∪U Γ meeting at v . Namely, we agree
that the cyclic order v (without any specified orientation on the solid line)
represents the local orientation v . A diagram on a non-necessarily oriented

one-manifold M is now a diagram as before equipped with a cyclic order called
orientation at all its univalent vertices, and we define AQ

n (M) as the rational
vector space generated by these degree n diagrams quotiented by AS and STU,
with

AS : + = 0 and + = 0

STU : = −

The linear map that maps a diagram (modulo relations) on an oriented manifold
M as before to the diagram obtained by giving each univalent vertex the orien-
tation matching the global orientation of M is a natural isomorphism from the
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former AQ
n (M) to the new one. With this definition, the product I(L(M); Γ)[Γ]

is well-defined for an unoriented M .

When the top configuration of a tangle T1 coincides with the bottom config-
uration of a tangle T2 , these tangles can be composed by stacking T2 above

T1 . The product of two such framed tangles T1 = T1(M1) and T2 = T2(M2)
is defined as the tangle T = T1T2 = T (M) such that T , T1 and T2 are rep-
resented by embeddings T , T1 and T2 such that there exists a regular value
γ of the vertical projection of the embedding T : M −→ R

2 × [β, τ ] where
M1 = T−1(R2 × [β, γ]), M2 = T−1(R2 × [γ, τ ]), and where T1 and T2 are the
restrictions of T to M1 and M2 , respectively.

Now, let us define a product of diagrams corresponding to this composition
of tangles. Assume that a one-manifold M is decomposed as a union M =
M1 ∪ M2 of two one-manifolds with disjoint interiors. Then, we define the
product associated to this decomposition:

A(M1) ×A(M2) −→ A(M)

as the continuous bilinear map which maps ([Γ1], [Γ2]) to [Γ1
∐

Γ2], if Γ1 is
a diagram with support M1 and if Γ2 is a diagram with support M2 , where
Γ1
∐

Γ2 denotes their disjoint union. (Of course, the needed isotopy class of
injections is naturally induced by the two former ones.) In the particular case
where M1 and M2 are disjoint, this product is sometimes denoted by ⊗.

Let I = [0, 1] be the compact oriented interval. Another particular case is the
case where M is an ordered union of p intervals which are seen as vertical

M = . . . = {1, 2, . . . , p} × [0, 1]

Then if we naturally identify M to M1 = {1, 2, . . . , p} × [0, 1/2], and to M2 =
{1, 2, . . . , p} × [1/2, 1], the above process turns A(M) into an algebra where
the elements with degree zero part 1 admit an inverse and a unique square root
whose degree zero part is 1.

With each choice of a connected component C of M and of an orientation
of C , we associate an A(I)-module structure on A(M), that is given by the
continuous bilinear map:

A(I) ×A(M) −→ A(M)

such that if Γ is a diagram with support I and if Γ′ is a diagram with support
M , then ([Γ], [Γ′]) is mapped to the diagram obtained by inserting (I ∪ Γ)
along C outside the vertices of Γ′ , according to the given orientation. The
obtained class is independent of the choice of the insertion locus. (See [4, Proof
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of Lemma 3.1].) In particular, A(I) is a commutative algebra. The morphism
from A(I) to A(S1) induced by the identification of the two endpoints of I is
an isomorphism from A(I) to A(S1). (See [4, Lemma 3.1].)

In [22], Sylvain Poirier proved that his limit ZP is a functorial invariant of
framed tangles. More precisely, he proved that his limit is invariant under the
framed isotopies that fix T (∂M) up to translations and homotheties with a
positive ratio. The homotheties with a positive ratio will be called dilatations.
Furthermore, he proved that ZP is multiplicative with respect to the product
of tangles. Graphically, this reads

ZP





T2

T1



 =
ZP (T2)

ZP (T1)

In other words, he proved that his limit process kills the configurations where
two univalent vertices of some dashed connected component of a diagram Γ
sit in different horizontal slices. The idea of considering this limit is natural
and was considered before, but the proof that it is a well-defined and well-
behaved isotopy invariant of tangles requires a deep understanding of configu-
ration spaces and of their compactifications that are similar to those presented
in [14, 8, 24]. Therefore, we shall make a short trip inside these spaces following
their presentation by Poirier [22, Subsection 10.1].

6 Compactifications of configuration spaces

Let X = {ξ1, ξ2, . . . , ξp} be a finite set of cardinality p ≥ 2, let k denote a posi-
tive integer. Let C0(X; Rk) (resp. C(X; Rk)) denote the set of injections (resp.
of non-constant maps) f from X to R

k , up to translations and dilatations.
C0(X; Rk) is the quotient of

{(x1 = f(ξ1), x2 = f(ξ2), . . . , xp = f(ξp)) ∈ (Rk)p;xi 6= xj if i 6= j}

by the translations which identify (x1, x2, . . . , xp) to (x1 + T, x2 + T, . . . , xp +
T ) for all T ∈ R

k and by the dilatations which identify (x1, x2, . . . , xp) to
(λx1, λx2, . . . , λxp) for all λ > 0.

Examples 6.1 1. For example, C0(X; R) has p! connected components cor-
responding to the possible orders of the set X . Each of its components can
be identified with the interior {(x2, x3, . . . , xp−1) ∈ R

p−2; 0 < x2 < x3 < · · · <
xp−1 < 1} of a (p − 2) simplex.
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2. As another example, C({1, 2}; Rk) = C0({1, 2}; R
k) is homeomorphic to the

sphere Sk−1 .

In general, the choice of a point ξ ∈ X provides a homeomorphism

φξ : C(X, Rk) −→ Skp−k−1

f 7→
(

x 7→ f(x)−f(ξ)
‖
∑p

i=1(f(ξi)−f(ξ))‖

)

where Skp−k−1 is the unit sphere of
(

R
k
)p−1

. These homeomorphisms equip
C(X, Rk) with an analytic (Cω ) structure and make clear that C(X, Rk) is
compact. There is a natural embedding

i : C0(X; Rk) →֒
∏

A⊂X;♯A≥2 C(A; Rk)

cX 7→ (cX|A)A⊂X;♯A≥2

where cX|A denotes the restriction of cX to A. Define the compactification

C(X; k) of C0(X; Rk) as

C(X; k) = i(C0(X; Rk)) ⊂
∏

A⊂X;♯A≥2

C(A; Rk)

In words, in C(X; k), some points of X are allowed to collide with each other,
or to become infinitely closer to each other than they are to other points, but
the compactification provides us with the magnifying glasses C(A; Rk) that
allow us to see the infinitely small configurations at the scales of the collisions.

Observe that the elements (cA)A⊂X;♯A≥2 of C(X; k) satisfy the following con-
dition (⋆).

(⋆) : If B ⊂ A, then the restriction cA|B of cA to B is either constant or equal
to cB .

Indeed, the above condition holds for elements of i(C0(X; Rk)), and it can
be rewritten as the following condition that is obviously closed. For any two

sets A and B such that B ⊂ A, if x ∈ B , the two vectors of (Rk)B\{x} ,

(cA|B(y)− cA|B(x))y∈B\{x} and (cB(y)− cB(x))y∈B\{x} , are colinear, and their

scalar product is non negative.

Lemma 6.2 The set C(X; k) has a natural structure of an analytic manifold
with corners3 and

C(X; k) = {(cA) ∈
∏

A⊂X;♯A≥2

C(A; Rk); (cA) satisfies (⋆)}

3Every point c of C(X ; k) has a neighborhood diffeomorphic to [0,∞[r×Rn−r , and
the transition maps are analytic.
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Proof Set

C̃(X; k) = {(cA) ∈
∏

A⊂X;♯A≥2

C(A; Rk); (cA) satisfies (⋆)}

We have already proved that C(X; k) ⊂ C̃(X; k). In order to prove the reverse
inclusion, we first study the structure of C̃(X; k). Let (c0

A)A⊂X;♯A≥2 ∈ C̃(X; k).

Given this point (c0
A), we construct the rooted tree τ((c0

A)), with oriented edges,
whose vertices are some subsets of X with cardinality greater than 1, in the
following way. The root is X . The edges starting at a vertex A ⊂ X are in
one-to-one correspondence with the maximal subsets B of A with ♯B ≥ 2,
such that c0

A|B is constant. The edge corresponding to a subset B goes from
A to B . Note that the tree structure can be recovered from the set of vertices.
Therefore, we identify the tree τ0 = τ((c0

A)) with its set of vertices. τ0 is a set
of subsets of X .

Now, we construct a chart of C̃(X; k) near (c0
A). Assign a parameter λB ∈ [0, ε]

to the edge arriving at B . This parameter λB will measure the ratio of the
scale in B by the scale in the smallest set in τ0 that contains it.

Let Cτ0(B; Rk) be the subspace of C(B; Rk) made of maps from B to R
k such

that two elements of B have the same image in R
k if and only if they belong

to a common endpoint (subset of X ) of an edge starting at B . ( Note that
Cτ0(B; Rk) is naturally homeomorphic to C0(Bτ0 ; Rk) where Bτ0 is the set
obtained from B by identifying two elements of B that belong to a common
strict subset of B in τ0 .) Let V ⊂

∏

B∈τ0 Cτ0(B; Rk) be an open neighborhood
of (c0

B)B∈τ0 in
∏

B∈τ0 Cτ0(B; Rk). Let ε > 0. When V and ε are small enough,
we define the map

F : [0, ε[τ
0\{X}×V −→

∏

D⊂X;♯D≥2 C(D; Rk)
(

P = (λB)B∈τ0\{X}, (cB)B∈τ0

)

7→ (F (P )D)D⊂X;♯D≥2

where F (P )D is equal to F (P )A|D if A ∈ τ0 is the smallest element of τ0 that
contains D , and F (P )A is represented by the map

F̃ (P )A : A −→ R
k

that maps an element (x ∈ A) to the vector that admits the following recursive
definition. Let B1 ⊂ B2 ⊂ · · · ⊂ Bm ⊂ Bm+1 = A be the sequence of vertices
of τ0 such that B1 is the smallest element of τ0 that contains x, and Br+1 is
the smallest element of τ0 that contains Br . Fix a point ξ(B) in any subset
B ∈ τ0 so that if B′ ∈ τ0 and if ξ(B) ∈ B′ ⊂ B , then ξ(B′) = ξ(B) (the ξ(B)
depend on τ0 that is fixed). Then F̃ (P )B1(x) = φξ(B1)(cB1)(x) and

F̃ (P )Bk+1
(x) = φξ(Bk+1)(cBk+1

)(x) + λkF̃ (P )Bk
(x)

14



When V and ε are small enough F (P )D is never constant and F is well-defined.
Furthermore, F is then a homeomorphism onto its image that is an open subset
of C̃(X; k). Also notice that the tree (or its vertices set) corresponding to
a point in the image of F ((λB)B∈τ0\{X}, (cB)B∈τ0) is obtained from τ0 by

removing the subsets B such that λB > 0. The points of i
(

C0(X; Rk)
)

are the
points whose tree is reduced to its root X . In particular, the point we started
with is in the closure of F (]0, ε[B∈τ0\{X}×V ) ⊂ i(C0(X; Rk)). This finishes
proving that C(X; k) ⊂ C̃(X; k). Furthermore, F and its inverse, that can
be defined on an open subset of

∏

D⊂X;♯D≥2 C(D; Rk), are analytic. Therefore
the above local homeomorphisms provide C(X; k) with the structure of a Cω

manifold with corners.

C(X; k) is also provided with a partition by the associated trees of the above
proof. Note that the part F (τ) corresponding to a given tree τ is an open
submanifold of dimension

(

dim(C0(X; Rk)) − (♯τ − 1)
)

that is homeomorphic
to
∏

B∈τ Cτ (B; Rk). In particular, the boundary of C(X; k) has a partition
into open faces, corresponding to trees τ with ♯τ > 1, of codimension (♯τ − 1).

Example 6.3 Let us again consider the case where k = 1. Let us fix one order
on X and let us study the corresponding component C<(X; 1) of C(X; 1).
Here the trees that provide non-empty faces are those which are made of subsets
containing consecutive elements, and all the faces are homeomorphic to open
balls. When X = {1, 2, 3}, C<(X; 1) is an interval whose endpoints correspond
to the two trees {X, {1, 2}} and {X, {2, 3}}. For X = {1, 2, . . . , p}, we find
a Stasheff polyhedron that is a polyhedron whose maximal codimension faces
are points that can be described as non-associative words as in the following
definition.

Definition 6.4 A non-associative word or n.a. word w in the letter · is an
element of the free non-associative monoid generated by ·. The length of such
a w is the number of letters of w . Equivalently, we can define a non-associative

word by saying that each such word has an integral length ℓ(w) ∈ N, the only
word of length 0 is the empty word , the only word of length 1 is ·, the product
w′w′′ of two n.a. words w′ and w′′ is a n.a. word of length (ℓ(w′) + ℓ(w′′)),
and every word w of length ℓ(w) ≥ 2 can be decomposed in a unique way as
the product w′w′′ of two n.a. words w′ and w′′ of nonzero length.

Example 6.5 The unique n.a. word of length 2 is (··). The two n.a. words of
length 3 are ((··)·) and (·(··)). There are five n.a. words of length 4 drawn in
the following picture of C<({1, 2, 3, 4}; 1).
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A n.a. word corresponds to the binary tree of subsets of points between match-
ing parentheses.

In particular, C<({1, 2, 3, 4}; 1) is the following well-known pentagon, where
the edges are labeled by the element of the corresponding τ \ {{1, 2, 3, 4}}.

b b

b

b

b

((··)(··))

(·(·(··)))(((··)·)·))

(·((··)·))((·(··))·)

{3, 4}{1, 2}

{2, 3, 4}{1, 2, 3}

{2, 3}

As another example, the reader can recognize that C({1, 2, 3}; 2) is diffeomor-
phic to the exterior of a 3-component Hopf link in S3 (made of three Hopf
fibers).

7 Back to configuration space integrals for links

We can use these compactifications to study the configuration space integrals
defined in Section 4. Indeed, there is a natural embedding

i : C(L; Γ) →֒ MU × (S3 = R
3 ∪∞)T × C(U ∪ T ; 3).

Define the compactification C(L; Γ) of C(L; Γ) as the closure of i(C(L; Γ))
in this compact space. As before, the compactification can be provided with a
structure of a C∞ manifold with corners, with a stratification that will again be
given by trees recording the different relative collapses of points.4 Furthermore,
since Ψ is defined on C(U ∪ T ; 3) as the projection on

∏

E C(E; 3) where an

4There are two main differences with the already studied case, due to the one-
manifold embedding L . First, the univalent vertices vary along L , and when they ap-
proach each other, their direction that makes sense in the compactification approaches
the direction of the tangent vector to L at the point where they meet. Second, there is a
preferred observation scale namely the scale of the ambient space where the embedding
lies.
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edge E is seen as the pair of its endpoints ordered by the orientation, Ψ extends
to C(L; Γ). This extension is smooth, and we have

I(L; Γ) =

∫

C(L;Γ)
Ψ∗(ΛEω).

In particular, this shows the convergence of the integrals of Section 4. The
variation of I(L; Γ) under a C∞ isotopy

L : M × I −→ R
3

(m, t) 7→ Lt(M)

is computed with the help of the Stokes theorem. Since Ψ∗(ΛEω) is a closed
form defined on ∪t∈IC(Lt; Γ), the variation (I(L1; Γ) − I(L0; Γ)) is given by
the sum over the codimension one faces F (τ)(L; Γ) of the

V (F (τ)(L; Γ)) =

∫

∪t∈IF (τ)(Lt;Γ)
Ψ∗(ΛEω).

The Altschuler-Freidel proof and the Thurston proof that Z0
CS provides a link

invariant now rely on a careful analysis of the codimension one faces, and of
the variations that they induce. See [1, 24, 22]. This analysis was successfully
started by Bott and Taubes [8]. It shows that the faces that indeed contribute
in the link case, where M =

∐k
i=1 S1

i , are of four possible forms.

(1) Two trivalent vertices joined by an edge collide with each other.

(2) Two univalent vertices consecutive on M collide with each other.

(3) A univalent vertex and a trivalent vertex that are joined by an edge collide
with each other.

(4) The anomalous faces where some connected component of the dashed
graph Γ collapses at one point.

The algebraic STU and AS relations imply the following IHX relation in the
vector spaces An(M).

IHX : + + = 0

The STU and IHX relation make the first three kinds of variations cancel.
Let us see roughly how it works for the first kind of faces. Such a face is
homeomorphic to the product of the sphere S2 by the configuration space of
the graph obtained from Γ by identifying the two colliding points (which become
a four-valent vertex), where S2 is the configuration space of the two endpoints
of the infinitely small edge. Let Γ1 , Γ2 and Γ3 be three graphs related by an
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IHX relation as above so that [Γ1] + [Γ2] + [Γ3] = 0. Let τi be the tree made
of U ∪ T and the visible edge of Γi . Then V (F (τi)(L; Γi)) is independent of i.
Therefore,

V (F (τ1)(L; Γ1))[Γ1] + V (F (τ2)(L; Γ2))[Γ2] + V (F (τ3)(L; Γ3))[Γ3] = 0.

Thus, the sum5 of these variations plugged into the Chern-Simons series is zero.
The STU relation makes the variations of the second kind and the third kind
of faces cancel each other in a similar way.

For the anomalous faces, we do not have such a cancellation. But, we are about
to see that we have a formula like

∂

∂t
(ZCS(Lt)) =

(

1

2

k
∑

i=1

∂

∂t
I(Ki; θ)α♯i

)

ZCS(Lt).

where α is the anomaly that is the constant of A(R) that is defined below, and
♯i denotes the A(R)-module structure on A(

∐k
i=1 S1

i ) by insertion on the ith

component.

Let us define the anomaly. Let v ∈ S2 . Let Dv denote the linear map

Dv : R −→ R
3

1 7→ v

Let Γ be a Jacobi-diagram on R. Define C(Dv; Γ) and Ψ as in Section 4. Let
Ĉ(Dv; Γ) be the quotient of C(Dv; Γ) by the translations parallel to Dv and
by the dilatations. Then Ψ factors through Ĉ(Dv ; Γ) that has two dimensions
less. Now, allow v to run through S2 and define Ĉ(Γ) as the total space of
the fibration over S2 where the fiber over v is Ĉ(Dv ; Γ). The map Ψ becomes
a map between two smooth oriented manifolds of the same dimension. Indeed,
Ĉ(Γ) carries a natural smooth structure and can be oriented as follows. Orient
C(Dv; Γ) as before, orient Ĉ(Dv ; Γ) so that C(Dv; Γ) is locally homeomorphic
to the oriented product (translation vector (0, 0, z) of the oriented line, ratio of
homothety λ ∈]0,∞[) ×Ĉ(Dv ; Γ) and orient Ĉ(Γ) with the (base(= S2)⊕fiber)
convention6. Then we can again define

I(Γ) =

∫

Ĉ(Γ)
Ψ∗(ΛEω).

5To make this sketchy proof work, to avoid thinking of the (1/♯AutΓ) factor and
to make sure that all the variations cancel, it is better to deal with the labeled graphs

that are described at the end of the section.
6This can be summarized by saying that the S2 -coordinates replace (z, λ).
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Now, the anomaly is the following sum running over all connected Jacobi dia-
grams on the oriented lines (again without vertex-orientation and without small
loop):

α =
∑ I(Γ)

♯AutΓ
[Γ] ∈ A(R)

Its degree one part is

α1 =

[ ]

.

Then the formula

∂

∂t
(ZCS(Lt)) =

(

k
∑

i=1

∂

∂t

I(Ki; θ)

2
α♯i

)

ZCS(Lt)

expresses the following facts. Let Γ be a connected dashed graph on the circle.
The set U = {u1, u2, . . . , uk} of its univalent vertices is cyclically ordered, and
the anomalous faces for Γ correspond to the different total orders (which are
visible at the scale of the collision) inducing the given cyclic order. Assume
that u1 < u2 < · · · < uk = u0 is one of them. Denote the Jacobi diagram on
R obtained by cutting the circle between ui−1 and ui by Γi . The group of
automorphisms of Γi is isomorphic to the subgroup Aut0(Γ) of Aut(Γ) made

of the automorphisms of Γ that fix U pointwise. The quotient Aut(Γ)

Aut0(Γ)
is a

subgroup of the cyclic group of the permutations of U that preserve the cyclic
order of U , of order k

p
, for some integer p that divides into k ; and Γi is

isomorphic to Γi+p , for any integer i ≤ (k − p).

The contribution of the collapse that orders U like Γi to the variation (I(K1; Γ)−
I(K0; Γ)) during a knot isotopy ((z, t) 7→ Kt(z)) is proportional to the area cov-

ered by the unit derivative of K on S2 during the isotopy, that is I(K1;θ)−I(K0;θ)
2 .

More precisely, it is
I(K1; θ) − I(K0; θ)

2
I(Γi).

Therefore, the contribution to the variation (I(K1;Γ)−I(K0;Γ))

♯Aut(Γ)
of the anomalous

faces is
p
∑

i=1

I(K1; θ) − I(K0; θ)

2♯Aut(Γi)
I(Γi)

In general, one must multiply the infinitesimal variation due to the collapse of
one connected component of the dashed graph by the contributions of the other
connected components of the dashed graphs.
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The integration of the above formula shows the Altschuler and Freidel formula:

ZCS(L) = exp(
I(K1; θ)

2
α)♯1 exp(

I(K2; θ)

2
α)♯2 . . . exp(

I(Kk; θ)

2
α)♯kZ0

CS(L).

The fact that Z0
CS is a universal Vassiliev invariant is far easier to obtain than

its invariance. It almost follows from the definition of Vassiliev invariants that
will not be given here. See [24, p.10] for example.

As it has been first noticed by Dylan Thurston in [24], Z0
CS is rational. This

means that for any integer n, and for any link L whose components have zero
Gauss integrals, the degree n part Z0

CSn(L) of Z0
CS(L) is in AQ

n (
∐k

i=1 S1
i ).

Indeed, if L is almost horizontal, Z0
CSn(L) may be interpreted as the following

differential degree.

Let en be a number of edges greater or equal than the number of edges of degree
n diagrams that might contribute with a non zero integral to the Chern-Simons
series. For n ≥ 3, en = 3n − 3 works, see [22]. We wish to interpret Z0

CSn(L)
as the differential degree of a map to

(

S2
)en . We first modify the configuration

space C(L; Γ) of a degree n diagram Γ whose set of edges is E(Γ) by

Ĉ(L; Γ) = C(L; Γ) ×
(

S2
)en−♯E(Γ)

.

Next, in order to be able to map it to
(

S2
)en , we label Γ, that is we orient

the edges of Γ and we define a bijection from E(Γ) ∪ {1, 2, . . . , en − ♯E(Γ)} to
{1, 2, . . . , en}. This bijection transforms the map

Ψ × Identity(
(

S2
)en−♯E(Γ)

) : Ĉ(L; Γ) −→
(

S2
)E(Γ)

×
(

S2
)en−♯E(Γ)

into a map
Ψ̂ : Ĉ(L; Γ) −→

(

S2
)en

For a given degree n diagram Γ, there are 2♯E(Γ)en!
♯Aut(Γ)

labeled diagrams. Now,

ZCSn(L) =
∑

Γ labeled diagram of degree n

1

2♯E(Γ)en!

∫

Ĉ(L;Γ)
Ψ̂∗(Λenω)[Γ]

Define the differential degree deg(Ψ, x) of Ψ over the formal union

∪Γ labeled diagram of degree n
1

2♯E(Γ)en!
[Γ]Ĉ(L; Γ)

as follows for a regular7 point x ∈ (S2)en :

deg(Ψ, x) =
∑

Γ labeled diagram of degree n

1

2♯E(Γ)en!
deg(Ψ|Ĉ(L;Γ), x)[Γ]

7Here, regular means regular with respect to all the Ψ|Ĉ(L;Γ) .
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where deg(Ψ|Ĉ(L;Γ), x) is a usual differential degree. Then D. Thurston proved

that deg(Ψ, x) does not vary across the images of the codimension one faces of
the Ĉ(L; Γ) See also [22]. In other words, the above weighted union of config-
uration spaces behaves as a closed 2en -dimensional manifold from the point of
view of the differential degree theory. In particular, ω can be replaced by any
volume form of S2 with total volume 1. Computing Z0

CSn as the degree of a

generic point of
(

S2
)en shows that Z0

CSn belongs to the lattice of AQ
n (
∐k

i=1 S1
i )

generated by the (en−♯E(Γ))!

2♯E(Γ)en!
[Γ], where the Γ’s are the degree n graphs that

may produce a nonzero integral. This interpretation is more convenient for
computational purposes.

8 Further properties of the Poirier limit

8.1 The Poirier connection

In order to prove the isotopy invariance and the functoriality of his limit, Poirier
considered the (2♯E+1) configuration space viewed as the closure of the image8

of ∪λ∈]0,1]C(hλ◦L(M); Γ) inside the compact space [0, 1]×MU ×(S3)T ×C(U∪
T ; 3) where the first interval receives the parameter λ. He interpreted his limit
as the integral over the intersection Cℓ(L(M); Γ) of the above closure with {0}×
MU ×(S3)T ×C(U∪T ; 3). He studied the stratification of Cℓ(L(M); Γ); and he
proved that the only non-vanishing contributions come from limit configurations
of graphs Γ where any connected component Γc is at some height hc (that can
be recovered from the coordinates in MU ). Furthermore, the restriction to the
set Uc of univalent vertices of Γc of such a limit configuration projects (by
forgetting the height coordinate of points) to the planar configuration lying at
the intersection of the image of L with the horizontal plane R

2 × {hc}.

More precisely, he described his limit as follows for braids, that will be seen as
paths γ : [β, τ ] −→ C0(X; R2).

Let f : X →֒ R
2 represent a planar configuration. Let Γ be a diagram on X×R.

Let C(f × 1R; Γ) be the configuration space associated with the embedding

f × Identity(R) : X × R →֒ R
3

as in Section 4. The quotient Ĉ(f ; Γ) of C(f×1R; Γ) by the vertical translations
is a (2♯E − 1)-manifold with corners. Furthermore, the fibered space over
C0(X; R2) whose fiber over f is Ĉ(f ; Γ) is also a smooth manifold equipped

8In fact, he used a less separating compactification for technical reasons.
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with the (2♯E)-form Ψ∗ΛEω . Integrating this form along the fiber provides a
one-form9

ΩP (Γ) : T (C0(X; R2)) −→ R.

Then the Poirier connection is

ΩP =
∑

Γ connected diagram on X×R

1

♯Aut(Γ)
ΩP (Γ)[Γ] ∈ Ω1(C0(X; R2);A(X×R))

Sylvain Poirier proved that his limit for a braid, that is seen as a path γ :
[β, τ ] −→ C0(X; R2) is the Chen holonomy of ΩP along this path.

ZP (γ) =

∑

n∈N

∫

β≤h1≤h2≤...≤hn≤τ

ΩP (γ′(h1))ΩP (γ′(h2)) . . . ΩP (γ′(hn))dh1dh2 . . . dhn

Sylvain Poirier proved that, unlike the complex Knizhnik-Zamolodchikov con-
nection that provides a similar definition of the Kontsevich integral for braids,
the holonomy of his real connection converges without any regularisation for
paths reaching limit planar configurations. Thus, when restricting his invariant
of tangles to the framed q-tangles introduced in [17] that are framed cobordisms
between two limit configurations on the real line of R

2 = C, he got a functor
from the category of framed q-tangles to A that satisfies the expected natural
properties that are described below.

8.2 The Poirier functor on q-tangles

Definition 8.1 A framed q-tangle is a triple (T (M); b, t) where b and t are two
non-associative words and T is a C∞ embedding of a compact one-manifold
M into a horizontal slice R

2 × [β, τ ] of R
3 such that:

T (M) ∩ (R2 × {β, τ}) = T (∂M) ⊂ R × {0} × {β, τ},

the set of letters of b and t are in natural one-to-one correspondences induced
by the order of R with T−1(R × (0, β)) and T−1(R × (0, τ)), respectively,
and the only horizontal tangent vectors of M occur for interior points of M
and are parallel to the blackboard plane. T is considered up to the isotopies
which satisfy these hypotheses at any time and up to a rescaling of the height

9The sign of this form is defined by letting the tangent vector replace the vertical
translation parameter.
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parameter. The letters b and t stand for the bottom word and the top word ,
respectively.

Here, framed q-tangles will be simply called tangles.

Examples 8.2 Tangles are unambiguously defined by the data of a regular
projection of the involved embedding onto the blackboard plane, together with
the bottom and top words. Since there is only one n. a. word of length 0, 1 or
2, these words do not need to be specified. Here is an example of a q-tangle:

=
(

; ∅, (··)
)

6=

The bottom and top words are sometimes shown in pictures by the relative
positions of the bottom (or top) points. For example,

=
(

; ((··)·), (·(··)
)

=
(

; ((··)(··)), ∅
)

The product of two q-tangles T1 = (T1(M1); b1, t1) and T2 = (T2(M2); b2, t2) is
defined as soon as t1 = b2 by stacking T2 above T1 as before. For example,

( ) ( )

=

By definition, ZP is multiplicative with respect to the product.

8.3 Monoidality

The tensor product of two tangles T1 = (T1(M1); b1, t1) and T2 = (T2(M2); b2, t2)
is defined as the tangle T = T1⊗T2 = (T1⊗T2(M1

∐

M2); b1b2, t1t2) by putting

T2 on the right-hand side of T1 . In order to construct the embedding T , choose
representatives of T1 and T2 which embed M1 and M2 into [0, 1] × R × [0, 1]
and [2, 3] × R × [0, 1], respectively, and define T as their disjoint union. For
example,

⊗ =
(

; ((··)(··)), ((··)(··))
)

The intuitive meaning of this tensor product is that the strands of T1 are
infinitely closer to each other than they are to strands of T2 . This allows to
make the interactions of T1 and T2 vanish and this allowed Poirier to prove
that his functor is monoidal (i.e. that ZP respects the tensor product).

ZP (T1 ⊗ T2) = ZP (T1) ⊗ ZP (T2).

Graphically, this reads

ZP

(

T2T1

)

= ZP (T2)ZP (T1) .
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8.4 Behaviour under duplication

The duplication of a component C ⊂ M of a tangle T (M) consists in replacing
T (C) by two closed parallel copies T (C1) and T (C2) of T (C) so that, up to
homotopy with fixed boundary, the section in the normal unit bundle of T (C1)
induced by T (C2) coincides with one of the two sections given, thanks to the
condition on horizontal tangencies, by ”the intersection with the blackboard
plane”. Every letter of the top and bottom words corresponding to a (possible)
boundary point of C is replaced by the two-letter word (··). The resulting tangle
is denoted by (2 × C)(T ). For example, duplicating the unique component of

yields . As another example, duplicating a knot T (C) amounts to
replace it by two parallel copies of T (C) whose linking number is w(T (C)).

Let us describe the map corresponding to the duplication of tangles at the level
of diagrams.

Define (2×C)(M) from M by replacing C by two copies C1 and C2 of C . Let
Γ be a diagram with support M . Let UC denote the preimage of C under i.
To a subset U1 of UC , we associate the diagram ΓU1 on (2×C)(M), obtained
from Γ by changing i into ĩ so that ĩ = i outside UC , ĩ|U1

= ι1 ◦ i|U1
, and

ĩ|U2=UC\U1
= ι2 ◦ i|U2

where ιj is the identification morphism from C to Cj

which also carries the local orientations of the vertices of Uj .

The duplication map (2 × C)∗ from A(M) to A((2 × C)(M)) is the (well-
defined!) morphism of topological vector spaces which maps [Γ] to

(2 × C)∗([Γ]) =
∑

U1

∅ ⊆ U1 ⊆ UC

[ΓU1 ].

Locally, this reads:
(2× )∗
7→ C1 C2

+ C1 C2

A functor is said to be compatible with the duplication of a regular component if
for any component C of a tangle T which can be represented without horizontal
tangent vector, we have

Z((2 × C)(T )) = (2 × C)∗(Z(T ))

The functor ZP is compatible with the duplication of a regular component.
Indeed, intuitively, the two components remain parallel so that they describe a
constant path in C({1, 2}; 2), and they are infinitely closer to each other than
they are to other components so that both of them interact in the same way
with the other components.
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8.5 Behaviour under deletion

The deletion of a component C of M consists in forgetting about C , removing
the possible letters of the top and bottom words corresponding to the boundary
points of C and removing the unneeded parentheses. The tangle obtained from
T = T (M ; b, t) by deleting C will be denoted by T \ C . The corresponding
operation at the level of diagrams is the natural continuous linear map OC from
A(M) to A(M \ C) such that:

OC([Γ]) = [Γ] if Γ is a diagram without any leg on C and OC([Γ]) = 0 for the
other diagrams.

A functor Z is said to respect deletion if for any component C of a tangle T ,
we have

Z(T \ C) = OC(Z(T ))

It is clear that ZP respects deletion.

The functor ZP also respects the symmetries that have not been broken by the
limit process.

9 Linking the Poirier functor to the Kontsevich in-

tegral

Set

AC
n(M) = AQ

n (M) ⊗Q C and AC(M) =
∏

n∈N

AC
n(M).

The above properties of the Poirier functor can be summarized by saying that
it is a real good functor with respect to the following definition.

Definition 9.1 A functor from the category of q-tangles to AC is a map
Z which associates an element Z(T (M); b, t) ∈ AC(M) to any q-tangle T =
(T (M); b, t) so that Z is compatible with the products, and the degree 0 part
of Z(T (M)) is one. Such a functor Z is said to be good if it is monoidal and if
it satisfies the following additional properties:

(1) Z is compatible with the duplication of regular components.

(2) Z is compatible with the deletion of components.

(3) Z is invariant under the 180 degree rotation rv around the vertical axis.
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(4) Let sh be the orthogonal symmetry with respect to the horizontal plane
and let sv be the orthogonal symmetry with respect to the blackboard
plane. Let σv and σh be the two endomorphisms of the topological vector
spaces A(S1) such that σv(z[Γ]) = (−1)dz[Γ] and σh(z[Γ]) = (−1)dz[Γ],
where z is a complex number and [Γ] is the image of a degree d diagram
Γ in A(S1). Then, for any framed knot K(S1),

Z ◦ sv(K) = σv ◦ Z(K)

and
Z ◦ sh(K) = σh ◦ Z(K)

(5) The element aZ ∈ A(S1) such that aZ
0 = 0 and

Z
( )

= exp(aZ)Z
( )

has a nonzero degree one part

aZ
1 6= 0.

In [17], Thang Le and Jun Murakami proved that the Kontsevich integral ZK

is a good functor such that

aZK =
1

2
.

See also [19]. They also proved that any good functor such that aZ = aZK

coincides with the Kontsevich integral on framed links. The already mentioned
properties of ZP make clear that ZP is a good functor such that

aZP =
1

2
α.

Therefore, Sylvain Poirier obtained the following corollary.

Theorem 9.2 (Poirier) If the anomaly α vanishes in degree greater than one,
then the Chern-Simons series Z0

CS of links is equal to the Kontsevich integral
of zero framed links.

Say that an element β = (βn)n∈N in A(S1) is a two-leg element if, for any
n ∈ N, βn is a combination of diagrams with two univalent vertices.

Let β be a two-leg element. Forgetting S1 from β gives rise to a unique series
βs of diagrams with two distinguished univalent vertices v1 and v2 , such that
βs is symmetric with respect to the exchange of v1 and v2 . The series βs is
well-defined thanks to the diagrammatic Bar-Natan version [4] of the Poincaré-
Birkhoff-Witt theorem.
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A chord diagram on a one-manifold M is a diagram without trivalent vertices.
Its (dashed connected) components are just chords. The degree n chord dia-
grams generate An(M).

If Γ is a chord diagram, define Φ(β)([Γ]) by replacing each chord by βs . Φ(β)
is a well-defined morphism of topological vector spaces from A(M) to A(M)
for any one-manifold M , and Φ(β) is an isomorphism as soon as β1 6= 0. See
[20]. The following result is proved in [20].

Theorem 9.3 If Z is a good monoidal functor as above, then aZ is a two-
leg element of A(S1), such that for any integer i, aZ

2i = 0 and aZ
2i+1 is a

combination of diagrams with real coefficients, and, for any framed link L,

Z(L) = Φ(2aZ)(ZK(L))

where ZK denotes the Kontsevich integral of framed links (denoted by Ẑf in
[17] and by Z in [19]).

Corollary 9.4 The anomaly α is a two-leg element of A(S1). For any framed
link L, the Poirier limit integral ZP (L) is equal to Φ(α)(ZK(L)).

Thus, we have obtained an algebraic constraint on the anomaly. Since, con-
versely, any functor of the form Φ(α)(ZK(L)), for a real odd two-leg element
α, is a good functor, nothing more can be obtained from algebra. We are now
going to try to compute the low degree terms of the anomaly geometrically.

10 Some geometric properties of the anomaly

Poirier showed that the anomaly can be defined from the logarithm of the
holonomy of his connexion for the two strand braid . This is restated in the

following proposition.

Let Γ be a Jacobi diagram on {1, 2} × R. Let (x, y) ∈ R
2 . Let

f(x,y) : {1, 2} × R −→ R
3

(1, t) 7→ (0, 0, t)
(2, t) 7→ (x, y, t)

Let θ ∈ [0, 2π]. Let Cθ(Γ) denote the quotient of C(f(cos(θ),sin(θ)); Γ) by the
translations by some (0, 0, z), with z ∈ R. And let C(Γ) = ∪θ∈[0,2π]Cθ(Γ).
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Orient C(Γ) by letting the θ -coordinate θ ∈ [0, 2π] replace10 the translation
parameter z ∈ R.

Define the two-strand anomaly

α̃ =
∑

Γ connected diagram on {1,2}×R

1

♯Aut(Γ)

∫

C(Γ)
Ψ∗(ΛE(Γ)ω)[Γ]

Let i : A( ) −→ A(R) be the linear continuous map induced by the inclusion

from {1, 2} ×R = to = . The map i sends a Jacobi diagram Γ to the
diagram with the same dashed graph equipped with the same orientations at
trivalent vertices where the embedding of univalent vertices is composed by the
above inclusion that also carries the local orientations at univalent vertices.

Proposition 10.1 (Poirier)

α = −i(α̃)

This definition of the anomaly is easier to handle with. Instead of searching for
configurations where the univalent vertices are on a common unknown line, we
look for configurations where the univalent vertices have the same horizontal
coordinates.

Proposition 10.2 Let n be an integer greater than 2. If Γ is a degree n
connected Jacobi diagram on {1, 2} × R, that has less than three vertices on
some strand, then

I(Γ) =

∫

C(Γ)
Ψ∗(ΛE(Γ)ω) = 0.

In particular, the two-strand anomaly α̃n in degree n is a combination of con-
nected diagrams with at least 3 vertices on each strand.

Proof Let Γ be a diagram as in the above statement. Let U2 denote the
set of its univalent vertices which are on {2} × R. We shall prove that if U2

contains less than 3 elements, then I(Γ) = 0. This will be sufficient to conclude
by symmetry.

10This means that if the quotient Cθ(Γ) is oriented so that C(f(cos(θ),sin(θ)); Γ) is
oriented by the (fiber ⊕ base) convention where the base is Cθ(Γ) and the fiber is the
oriented vertical translation factor R of R3 , then C(Γ) is oriented with the (base=
[0, 2π] ⊕ fiber = Cθ(Γ) ) convention.
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If U2 is empty, then all (2♯E(Γ) − 1)-manifolds Cθ(Γ) are the same. Thus

Ψ(C(Γ)) is the image under Ψ of one of them, and its volume in
(

S2
)E(Γ)

is
zero.

In order to study the two remaining cases where U2 contains one or two ele-
ments, we replace C(Γ) by a slightly larger smooth configuration space Ĉ(Γ)
in which C(Γ) is dense, where Ψ extends so that we shall have

I(Γ) =

∫

Ĉ(Γ)
Ψ∗(ΛE(Γ)ω).

Fix one vertex u0 on {1} × R, and let C0(f(x,y); Γ) denote the subset of
C(f(x,y); Γ) made of the configurations that map u0 to the origin of R

3 . Orient
it as the quotient of C(f(x,y); Γ) by the vertical translations with the ((fiber

(= R)) ⊕ base) convention. Let Ĉ(Γ) denote the (2♯E(Γ))-dimensional quo-
tient of

P (Γ) = ∪(x,y)∈R2C0(f(x,y); Γ)

by the dilatations with a ratio λ ∈]0,∞[. The map Ψ is well-defined on this
space which contains the additional configurations corresponding to (0, 0) that
constitute a codimension 2 subspace of Ĉ(Γ) that will therefore not contribute
to the integral.

The orientation of Ĉ(Γ) is obtained as follows. Orient P (Γ) with the convention
(base = R

2) ⊕ (fiber). Then the orientation of Ĉ(Γ) is defined by the (fiber =
]0,∞[) ⊕ (base) convention.

Now, let us get rid of the case where U2 = {u}, by defining a free smooth action
of ]0,∞[ on Ĉ(Γ) that does not change the image of a configuration under Ψ, so
that Ψ will again factor through a map from a (2♯E − 1)-dimensional manifold
to (S2)E and define a zero integral. Since Γ is connected, and since its degree
is greater than 1, the other end of the edge of u is a trivalent vertex t. Let
µ ∈]0,∞[. Let c ∈ P (Γ). Define µ.c(x) = x if x 6= u and µ.c(u) = c(t) +
µ(c(u) − c(t)). This action is compatible with the dilatations, Ψ(µ.c) = Ψ(c),
and we are finished with this case.

Let us study the remaining case, U2 = {u1, u2}. Denote the trivalent vertex
connected by an edge to u1 by t1 , and denote the trivalent vertex connected
by an edge to u2 by t2 . The vertices t1 and t2 may coincide. We shall use the
symmetry11 σ that maps a configuration c ∈ P (Γ) to the configuration σ(c)
defined by:

11This symmetry resembles the Bott and Taubes symmetry that allowed them to
prove that the faces corresponding to a collapsing part of a diagram that contains a
trivalent vertex and exactly two of its three adjacent vertices do not contribute to the
variation of the Chern-Simons series under a link isotopy.
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σ(c)(x) = c(x) if x /∈ U2

σ(c)(u1) = c(t1) + c(t2) − c(u2)
σ(c)(u2) = c(t1) + c(t2) − c(u1)

as shown in the picture below.

σ maps c(t1)
c(t2)

c(u2)

c(u1)

to σ(c)(t1)
σ(c)(t2)

σ(c)(u2)

σ(c)(u1)

.

This symmetry factors through the dilatations and reverses the orientation of
Ĉ(Γ). Furthermore, Ψ(σ(c)) is obtained from Ψ(c) by reversing the two unit
vectors corresponding to the edges containing u1 and u2 and by exchanging

them, that is, by a composition by a diffeomorphism of
(

S2
)E(Γ)

that preserves

ΛE(Γ)ω . This proves that I(Γ) vanishes and this finishes the proof of the
proposition.

As a corollary, αn is a combination of Jacobi diagrams with 6 legs when n ≥ 2.
Unfortunately, unlike the previous two-leg condition, this condition is not very
restrictive. Nevertheless, this provides another proof12 of the Poirier and Yang
result that α3 = 0. There is no connected degree 3 diagram with at least 6
univalent vertices. Recall that for any integer n, α2n = 0. Therefore, the
next interesting degree is 5. The connected degree 5 diagrams with at least 6
univalent vertices are necessarily trees and their dashed parts have one of the
two forms:

or

Now, observe that if Γ is a Jacobi diagram on {1, 2} × R, with two univa-
lent vertices that are connected to the same trivalent vertex, and that lie on

the same vertical line, like in , then I(Γ) vanishes. Indeed the two cor-
responding edges and the vertical vector are coplanar. Therefore, the image

of Ψ must lie inside a codimension one subspace of
(

S2
)E(Γ)

. This additional

12Note that with this two-strand definition all configuration space integrals vanish
whereas with the one-strand original definition, the different integrals cancel each other
witout being zero individually. See [22, Section 7].
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remark determines the distribution of the univalent vertices of the above graphs
on the two vertical lines. Then Sylvain Poirier computed α̃5 with the differ-
ential degree methods outlined at the end of Section 7, and with the help of
Maple, and he found that α5 = 0 thanks to AS and STU. As a corollary, all
coefficients of the HOMFLY polynomial properly normalized that are Vassiliev
invariants of degree less than seven can be explicitly written as combinations
of the configuration space integrals of Section 4.

Thus, the following Bar-Natan theorem generalizes to any canonical 13 Vassiliev
invariant of degree less than 7.

Theorem 10.3 (Bar-Natan [5], 1990) Let ∆ denote the symmetrized Alexan-
der polynomial. For any knot K ,

∆′′(K)(1)

2
= −

1

3
I(K; ) +

1

4
I(K; ) +

1

24
.

This particular coefficient, that is the degree 2 invariant which can be extracted
from the Chern-Simons series, has been further studied in [23].

11 Questions

The first question here is of course:

1. Prove or disprove the physicist conjecture:

αi = 0 for any i > 1.

After the articles of Axelrod, Singer [2, 3], Bott and Cattaneo [6, 7, 9], Greg
Kuperberg and Dylan Thurston have constructed a universal finite type invari-
ant for homology spheres as a series of configuration space integrals similar to
Z0

CS , in [12]. Their construction yields two natural questions:

2. Find a surgery formula for the Kuperberg-Thurston invariant in terms of the
above Chern-Simons series.

3. Compare the Kuperberg-Thurston invariant to the LMO invariant [18].

13Here, canonical can be understood as explicitly recovered from the Kontsevich
integral like all the quantum invariants.

31



References

[1] D. Altschuler and L. Freidel, Vassiliev knot invariants and Chern-Simons

perturbation theory to all orders, Comm. Math. Phys. 187 no. 2 (1997) 261-287

[2] S. Axelrod and I. M. Singer, Chern-Simons perturbation theory, Proceedings
of the XXth International Conference on Differential Geometric Methods in
Theoretical Physics, Vol. 1, 2 (New York, 1991), World Sci. Publishing, River
Edge, NJ (1992) 3-45

[3] S. Axelrod and I. M. Singer, Chern-Simons perturbation theory. II, J. Dif-
ferential Geom. 39, no. 1 (1994) 173-213

[4] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472

[5] D. Bar-Natan, Perturbative Chern-Simons Theory, Journal of Knot Theory
and its Ramifications 4-4 (1995) 503-548

[6] R. Bott and A. S. Cattaneo, Integral invariants of 3-manifolds. J. Differ-
ential Geom. 48, no. 1 (1998) 91-133

[7] R. Bott and A. S. Cattaneo, Integral invariants of 3-manifolds. II. J. Dif-
ferential Geom. 53 no. 1 (1999) 1-13

[8] R. Bott and C. Taubes, On the self-linking of knots, Jour. Math. Phys. 35
(10) (1994) 5247-5287

[9] A. S. Cattaneo, Configuration space integrals and invariants for 3-manifolds

and knots. Low-dimensional topology (Funchal, 1998), Contemp. Math., 233,
Amer. Math. Soc., Providence, RI, (1999) 153-165

[10] E. Guadagnini, M. Martellini & M. Mintchev, Chern-Simons field theory

and link invariants, Nucl.Phys B330 (1990) 575-607

[11] M. Kontsevich, Vassiliev’s knot invariants, Adv. in Sov. Math 16(2) (1993)
137-150

[12] G. Kuperberg, D. P., Thurston, Perturbative 3-manifold invariants by cut-

and-paste topology, preprint, math.GT/9912167

[13] T. Q. T. Le, On denominators of the Kontsevich integral and the universal

perturbative invariant of 3-manifolds, Invent. Math., 135 no. 3 (1999) 689-722

[14] W. Fulton, R. MacPherson, A compactification of configuration spaces. Ann.
of Math. (2) 139, no. 1 (1994) 183-225

[15] C. Kassel, Quantum groups. Graduate Texts in Mathematics, Springer-Verlag,
New York (1995)

[16] J. M. F. Labastida, Chern-Simons gauge theory: ten years after. Trends in
theoretical physics, II (Buenos Aires, 1998), AIP Conf. Proc., 484, Amer. Inst.
Phys., Woodbury, NY, (1999) 1-40

[17] T. Q. T. Le and Jun Murakami, The universal Vassiliev-Kontsevich invari-

ant for framed oriented links, Compositio Mathematica 102 (1996) 41-64

32



[18] T. T. Q. Le, J. Murakami, T. Ohtsuki, On a universal perturbative invari-

ant of 3-manifolds, Topology 37 no. 3 (1998) 539-574

[19] C. Lescop, Introduction to the Kontsevich Integral of Framed Tangles, June
1999, Summer School in Grenoble, http://www-fourier.ujf-grenoble.fr/ l̃escop/

[20] C. Lescop, About the uniqueness and the denominators of the Kontsevich in-

tegral, math.GT/0004094, to appear in Journal of Knot Theory and its Ramifi-
cations

[21] J. W. Milnor, Topology from the differentiable viewpoint. Based on notes by
David W. Weaver. The University Press of Virginia, Charlottesville (1965)

[22] S. Poirier, The configuration space integral for links and tangles in R3 ,

preprint, math.GT/0005085

[23] M. Polyak and O. Viro, On the Casson knot invariant, Knots in Hellas ’98,
3 (Delphi). J. Knot Theory Ramifications 10, no. 5 (2001) 711-738

[24] D. P. Thurston, Integral Expressions for the Vassiliev Knot Invariants,

math.QA/9901110
and more in Dror Bar-Natan’s bibliography on Vassiliev invariants at
http://www.ma.huji.ac.il/˜drorbn.

33


