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Abstract

Combings of oriented compact 3-manifolds are homotopy classes of nowhere zero vector
fields in these manifolds. A first known invariant of a combing is its Euler class, that is
the Euler class of the normal bundle to a combing representative in the tangent bundle
of the 3-manifold M . It only depends on the Spinc-structure represented by the combing.
When this Euler class is a torsion element of H2(M ;Z), we say that the combing is a
torsion combing. Gompf introduced a Q-valued invariant θG of torsion combings of closed
3-manifolds that distinguishes all combings that represent a given Spinc-structure. This
invariant provides a grading of the Heegaard Floer homology ĤF for manifolds equipped
with torsion Spinc-structures. We give an alternative definition of the Gompf invariant
and we express its variation as a linking number. We also define a similar invariant p1

for combings of manifolds bounded by S2. We show that the Θ-invariant, that is the
simplest configuration space integral invariant of rational homology spheres, is naturally
an invariant of combings of rational homology balls, that reads (1

4p1 + 6λ) where λ is the
Casson-Walker invariant. The article also includes a mostly self-contained presentation of
combings.

Keywords: Spinc-structure, nowhere zero vector fields, first Pontrjagin class, Euler class,
homology 3–spheres, Heegaard Floer homology grading, Gompf invariant, Theta invariant,
Casson-Walker invariant, perturbative expansion of Chern-Simons theory, configuration space
integrals
MSC: 57M27 57R20 57N10

1 Introduction

1.1 General introduction

In this article, M is an oriented connected compact smooth 3-manifold. The boundary ∂M of
M is either empty or identified with the unit sphere S2 of R3. In this latter case, a neighborhood
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N(∂M) of ∂M in M is identified with a neighborhood of S2 in the unit ball of R3. The tangent
bundle of M is denoted by TM , and the unit tangent bundle of M is denoted by UM . Its
fiber is UmM = (TmM \ {0})/R∗+. All parallelizations of M are assumed to coincide with the
parallelization induced by the standard parallelization τs of R3 over N(∂M), and all sections of
UM are assumed to be constant with respect to this parallelization over N(∂M). Homotopies
of parallelizations or sections satisfy these assumptions at any time. When ∂M = ∅, the
parallelizations of M also induce the orientation of M .

A combing of M is a homotopy class of such sections of UM . According to Turaev [Tur97],
a Spinc-structure on M may be seen as an equivalence class of sections of UM , where two
sections are in the same class if and only if they are homotopic over the complement of a point
that sits in the interior of M .

For K = Z or Q, a K-sphere or (integral or rational) homology sphere (resp. a K-ball) is a
smooth, compact, oriented 3-manifold with the same K-homology as the sphere S3 (resp. as a
point).

In this mostly self-contained article, we study the combings of M , that are homotopy classes
of sections of UM . We describe their classification, and some of their invariants. We first
describe the first known homotopy invariant of a combing, that is the Euler class, in terms
of links. The Euler class of a combing is the Euler class of the normal bundle to a combing
representative in TM . It only depends on the Spinc-structure induced by the combing. When
this Euler class is a torsion element of H2(M,∂M ;Z), we say that the combing is a torsion
combing . We introduce a rational invariant p1 of torsion combings of M . When M is closed
(i.e. compact, without boundary), we show that the invariant p1 coincides with an invariant θG
defined by Gompf in [Gom98]. For a combing that extends to a parallelization, the invariant
p1 coincides with the Hirzebruch defect (or Pontrjagin number) of the parallelization, studied
in [Hir73, KM99, Les04a, Les12]. In general, we express the variation of p1 in terms of linking
numbers. We also give a homogeneous self-contained definition of an invariant Θ of combings
of rational homology balls from configuration spaces, and we show that this Θ-invariant reads
(1

4
p1+6λ) where λ is the Casson-Walker invariant normalized as in [AM90, Mar88] for Z-spheres

and as λW
2

for Q-spheres, where λW is the Walker normalization in [Wal92].

1.2 Conventions and notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented by the outward
normal first convention. Products are oriented by the order of the factors. More generally, unless
otherwise mentioned, the order of appearance of coordinates or parameters orients chains or
manifolds. The fiber Nx(A) of the normal bundle N(A) to an oriented submanifold A at x ∈ A
is oriented so that Nx(A) followed by the tangent bundle Tx(A) to A at x induces the orientation
of the ambient manifold. The orientation of Nx(A) is a coorientation of A at x. The transverse
preimage of a submanifold under a map f is oriented so that f preserves the coorientations.
The transverse intersection of two submanifolds A and B in a manifold M is oriented so that the
normal bundle to A∩B is (N(A)⊕N(B)), fiberwise. If the two manifolds are of complementary
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dimensions, then the sign of an intersection point is +1 if the orientation of its normal bundle
coincides with the orientation of the ambient space, that is if TxM = NxA⊕NxB (as oriented
vector spaces), this is equivalent to TxM = TxA⊕ TxB. Otherwise, the sign is −1. If A and B
are compact and if A and B are of complementary dimensions in M , their algebraic intersection
is the sum of the signs of the intersection points, it is denoted by 〈A,B〉M . The linking number
of two rationally null-homologous disjoint links in a 3-manifold is the algebraic intersection of
a rational chain bounded by one of the links and the other one.

1.3 Expanded introduction

Let us now be more explicit in order to state the main results precisely. The assertions below
will be justified in Subsections 2.1 and 2.2. Recall that any smooth compact oriented 3-manifold
M can be equipped with a parallelization τ :M ×R3 → TM . When such a parallelization τ of
M is given, two sections X and Y of UM induce a map (X, Y ):M → S2 × S2. Two sections
X and Y are said to be transverse if the induced maps (X, Y ) and (X,−Y ) are transverse to
the diagonal of S2 × S2, that is if their images are. This is generic and independent of τ . For
two transverse sections X and Y , let LX=Y be the preimage of the diagonal of S2 under the
map (X, Y ). Thus LX=Y is an oriented link in the interior of M . It is cooriented by the fiber
of the normal bundle to the diagonal of (S2)2.

The Spinc-structures ofM form an affine space S(M) with translation groupH2(M,∂M ; π2(S2)).
The Poincaré duality isomorphism P :H2(M,∂M ;Z) → H1(M ;Z) identifies the translation
group of S(M) with H1(M ;Z). Let [X]c denote the Spinc-structure of M represented by a
section X of UM . Then, for any two transverse sections X and Y of UM , the difference
([X]c − [Y ]c) ∈ H1(M ;Z) is the class of LX=−Y in H1(M ;Z).

The Euler class of a combing [X] represented by a section X, is the Euler class of the
normal bundle TM/RX. It is denoted as e(X⊥), it belongs to H2(M ;Z) (here, H2(M ;Z) =
H2(M,∂M ;Z)) and satisfies

P (e(X⊥)) = [X]c − [−X]c

so that for two combings [X] and [Y ],

P (e(X⊥)− e(Y ⊥)) = 2([X]c − [Y ]c).

A torsion combing ofM is a combing whose Euler class is a torsion element ofH2(M,∂M ;Z).
A torsion section of UM is a section that represents a torsion combing.

There is a natural transitive action of π3(S2) = Z on the combings of M that belong to a
given Spinc-structure. This action is free for torsion Spinc-structures , that are Spinc-structures
represented by torsion combings. In general, the action of π3(S2) induces a free transitive action
of Z/〈e(X⊥), H2(M,∂M ;Z)〉 on the combings of M that belong to a given Spinc-structure [X]c.

We prove the following theorem in Subsection 3.2, with elementary arguments.

Theorem 1.1. Let X be a fixed section of UM . Two sections Y and Y ′ of UM transverse to X
represent the same Spinc-structure if and only if the links LY=−X and LY ′=−X are homologous.
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If X is a torsion section, then a section Y of UM transverse to X is a torsion section if
and only if the links LY=−X and LY=X are rationally null-homologous in M .

If X is a torsion section, then two torsion sections Y and Y ′ of UM transverse to X
represent the same combing if and only if the links LY=−X and LY ′=−X are homologous, and
lk(LY=−X , LY=X) = lk(LY ′=−X , LY ′=X).

This theorem is a variant of a Pontrjagin theorem recalled in Subsection 2.1 that treats the
case when X extends to a parallelization. It might be already known. I thank Patrick Massot
for pointing out to me that Dufraine proved similar results in [Duf05].

The first Pontrjagin class induces a canonical map p1 from the set of parallelization homo-
topy classes of M to Z. When ∂M = ∅, the map p1, denoted as δ(M, .), is studied by Hirzebruch
in [Hir73, §3.1], and Kirby and Melvin study p1 under the name Hirzebruch defect in [KM99],
and they denote it as h, there. This map p1 is studied in [Les04a, Les12] when M is a Q-ball.
The definition of p1 and some of its properties are recalled in Subsection 4.1.

The main original result of this article is the following theorem that is proved in Subsec-
tion 4.2.

Theorem 1.2. There exists a unique map

p1: {Torsion combings of M} → Q

such that

• if the combing [X] extends as a parallelization τ , then p1([X]) = p1(τ), and

• for any two transverse torsion sections X and Y of UM ,

p1([Y ])− p1([X]) = 4lk(LX=Y , LX=−Y ).

The map p1 satisfies the following properties:

• For any combing [X], p1([X]) = p1([−X]).

• The restriction of p1 to any torsion Spinc-structure is injective.

The variation of p1 under simple operations on torsion combings is presented in Subsec-
tion 4.4.

The image of p1 is determined by the following theorem that is proved in Subsection 4.2.
Let `: Torsion(H1(M ;Z)) → Q/Z denote the self-linking number (the linking number of a

representative and one of its parallels). View an element a of Q/Z as its class (a+ Z) in Q so
that 4`(Torsion(H1(M ;Z)) is a subset of Q, invariant by translation by 4.

Theorem 1.3. Let τ be a parallelization of M inducing a combing X. For any torsion combing
Y ,

p1(Y ) ∈ (p1(τ)− 4`([LY=−X ])).

p1({Torsion combings}) = p1(τ)− 4`(Torsion(H1(M ;Z)).
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Here p1(τ) is an integer whose parity is determined in Theorem 4.3. Note that the image
of p1 is not an affine space in general.

In Subsection 4.3, we prove that the invariant p1 coincides with the Gompf invariant when
∂M = ∅. The Gompf invariant is denoted by θ in [Gom98], and it is denoted by θG in this
article to prevent confusion with Θ.

In [OS04, Section 2.6], Ozsváth and Szabó associate a Spinc-structure with a generator x

of the Heegaard Floer homology ĤF . Gripp and Huang refine this process in [GH11] in order
to associate a combing g̃r(x) with such a generator x, and they relate the Gompf invariant
to the absolute Q-grading gr of Ozsváth and Szabó for the Heegaard Floer homology of 3-
manifolds equipped with torsion Spinc structures in [OS06]. According to [GH11, Corollary

4.3], gr(x) = 2+θG(g̃r(x))
4

.
The work of Witten [Wit89] pioneered the introduction of many Q-sphere invariants, and

Witten’s insight into the perturbative expansion of Chern-Simons theory led Kontsevich to
outline a construction of invariants associated with graph configuration spaces in [Kon94]. In
[KT99], G. Kuperberg and D. Thurston applied the Kontsevich scheme to show the existence of
such an invariant ZKKT of Q-spheres that is equivalent to the LMO invariant of Le, Murakami
and Ohtsuki [LMO98] for integral homology spheres. This invariant ZKKT is in fact a graded
invariant of parallelized Q-balls M . Its degree one part is called the Θ-invariant. Let us denote
it by ΘKKT . For a Q-ball M equipped with a parallelization τ , the invariant ΘKKT (M, τ) is the

sum of 6λ(M) and p1(τ)
4

, where λ is the Casson-Walker invariant, according to a Kuperberg-
Thurston theorem [KT99] generalized to rational homology spheres in [Les04b, Theorem 2.6
and Section 6.5].

In Section 5, we give a self-contained homogeneous definition of an invariant Θ of combings
[X] in a Q-sphere M from an algebraic intersection in a two-point configuration space. This

invariant satisfies the same variation formula as 1
4
p1 so that Θ(M,X) − p1([X])

4
only depends

on the Q-sphere M . Furthermore, when X is the first vector of a trivialization τ , it is easy to
see that the definition of Θ(M,X) agrees with the definition of ΘKKT (M, τ) as an algebraic
intersection of three chains in a two-point configuration space that can be found in [Les04b,
Section 6.5] and in [Les11, Theorem 2.14] so that

Θ(M,X) = 6λ(M) +
1

4
p1(X).

2 Combings

2.1 Generalization of a Pontrjagin construction in dimension 3

Lemma 2.1. Combings are generically transverse. For two transverse sections X and Y of
UM , the homology classes of LX=Y and LX=−Y only depend on the Spinc-structures [X]c and
[Y ]c represented by X and Y .
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Proof: When X extends as a parallelization, this parallelization identifies UM with M × S2,
then Y may be seen as a map from M to S2, and a homotopy of Y is a map from [0, 1] ×M
to S2, for which X is a regular value, generically. In particular, the preimage of X under such
a homotopy h yields a cobordism from LY0=X and LY1=X , and the homology class of LY=X

only depends on the homotopy class of Y , when X is fixed. Since any X locally extends as
a parallelization, the local transversality arguments hold for any X so that the above proof
may be adapted to any X by using a homotopy (Yt, X) valued in S2 × S2 (with respect to
some reference trivialization) and the preimage of the diagonal under this homotopy. Similarly,
the homology class of LY=−X only depends on the homotopy classes of X and Y . Since the
homology classes of LY=−X and LY=X are unchanged under a modification of X or Y supported
in a ball, they only depend on [X]c and [Y ]c. �

Let X be a section of UM . Equip M with a Riemannian structure (all of them are homo-
topic). These two assumptions hold for the rest of the subsection.

Let NL be the normal bundle to a link L in M . Let S(NL, (−X)⊥) denote the space
of homotopy classes of sections of the S1–bundle over L whose fiber over x is the space of
orientation-preserving linear isometries from the fiber NxL = (TxL)⊥ ∼= TxM/TxL of NL to
(−X(x))⊥ ∼= TxM/R(−X(x)).

Definition 2.2. An X–framing of L is an element of S(NL, (−X)⊥).

Any section Y of UM transverse to X yields an X–framing

σ(Y,X) ∈ S(NLY=−X , (−X)⊥)

of LY=−X that is naturally induced by the restriction to LY=−X of the tangent map to Y :M →
UM . (The tangent map to Y at x ∈ LY=−X maps TxM to TxM ⊕UxM . Since its composition
with the projection onto UxM maps TxLY=−X to RX(x), this composition induces a map from
NxLY=−X to TxM/R(−X(x)). This map is orientation-preserving and it is therefore homotopic
to a unique X-framing.)

Definition 2.3. Conversely, a section X of UM and a link L of M equipped with an X–
framing σ induce a section C(X,L, σ) of UM defined as follows (up to homotopy). Let N(L)
be a tubular neighborhood of L. A fiber D2 of N(L) at x is seen as {uv;u ∈ [0, 1], v ∈ NxL}.
Let [−X(x), X(x)]σ(v) denote the geodesic arc of UxM ∼= S2 from (−X(x)) to X(x) through
σ(v) ∈ (−X(x))⊥. Then [−X(x), C(X,L, σ)(uv)] is the subarc of [−X(x), X(x)]σ(v) of length
uπ starting at −X(x). This defines C(X,L, σ) on N(L), and C(X,L, σ) coincides with X
outside N(L).

Lemma 2.4. Let X and Y be two transverse sections of UM . Then Y is homotopic to
C(X,LY=−X , σ(Y,X)). Furthermore, the Spinc-structure of Y is determined by [X]c and
LY=−X .

6



Proof: Outside LY=−X , there is a homotopy from Y to X. When Y (m) 6= −X(m), there is a
unique geodesic arc [Y (m), X(m)] with length (` ∈ [0, π[) from Y (m) to X(m). For t ∈ [0, 1],
let Yt(m) ∈ [Y (m), X(m)] be such that the length of [Y (m) = Y0(m), Yt(m)] is t`. Let D2

be the unit disk of C. Write N(LY=−X) as D2 × LY=−X , and let χ be a smooth increasing
bijective function from [0, 1] to [0, 1] whose derivatives vanish at 0 and 1. Set Ỹt(m) = Yt(m) if

m /∈ N(LY=−X) and Ỹt(v ∈ D2, ` ∈ LY=−X) =

{
Yχ(|v|)t(v, `) if v 6= 0
Y (0, `) if v = 0.

Then Ỹ1 is homotopic to Y , and when N(L) is small enough, it is easy to see that Ỹ1 is
homotopic to C(X,LY=−X , σ(Y,X)), too.

Let us prove that [Y ]c = [C(X,LY=−X , σ(Y,X))]c does not depend on the X-framing
σ(Y,X) of LY=−X . Two representatives σ1 and σ2 of any two X–framings of a link may
be assumed to coincide over the link except over one little interval for each link component.
Thus, the associated C(X,LY=−X , σ1) and C(X,LY=−X , σ2) coincide outside a finite union of
balls that embeds in a larger ball. Then [Y ]c is determined by X and LY=−X . Now, changing
X inside its homotopy class or changing X over a ball does not affect [Y ]c. �

Let (−X)⊥ also denote the pull-back of (−X)⊥ under the natural projection from [0, 1]×M
to M . Let Σ be a properly embedded surface in [0, 1] ×M . Let S(NΣ, (−X)⊥) denote the
space of homotopy classes of sections of the S1–bundle over Σ whose fiber over x is the space
of orientation-preserving linear isometries from the fiber NxΣ = Tx([0, 1] ×M)/TxΣ of NΣ to
(−X(x))⊥. An X–framing of Σ is an element of S(NΣ, (−X)⊥).

Two X–framed links L and L′ are X–framed cobordant if and only if there exists an X–
framed cobordism Σ (that is a cobordism equipped with an X-framing) properly embedded in
[0, 1]×M , from {0} × L to {1} × L′ that induces the X–framings of L and L′.

Theorem 2.5. Let X be a section of UM . Two sections Y and Z of UM transverse to X are
homotopic if and only if (LY=−X , σ(Y,X)) and (LZ=−X , σ(Z,X)) are X-framed cobordant.

Proof: View a homotopy Yt from Y = Y0 to Z = Y1 as a section Yt of the pull-back of UM
under the natural projection from [0, 1] ×M to M , and assume without loss that (Yt,−X) is
transverse to the diagonal of S2×S2 (with respect to some parallelization). Then the preimage
Σ of the diagonal is a cobordism from LY=−X and LZ=−X that is canonically X–framed by an
X-framing that induces those of LY=−X and LZ=−X .

Conversely, an X–framed cobordism Σ from (LY=−X , σ(Y,X)) to (LZ=−X , σ(Z,X)) induces
a section C(X,Σ) of the pull-back of UM under the natural projection from [0, 1] ×M to M
that is defined as C(X,L, σ) in Definition 2.3 so that the restriction Ct of C(X,Σ) on {t}×M
defines a homotopy from D0 = C(X,LY=−X , σ(Y,X)) to D1 = C(X,LZ=−X , σ(Z,X)), and,
according to Lemma 2.4, Y and Z are homotopic. �

Remark 2.6. In [Lau76, 1.4], François Laudenbach proves a similar result for nowhere zero
sections of a cotangent bundle of a manifold of arbitrary dimension. This result can easily
be adapted to any other real bundle over a manifold of the same dimension. Again, I thank
Patrick Massot for pointing out this reference to me.
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Corollary 2.7. Let X be a section of UM . The Spinc–structure of a section Y of UM trans-
verse to X is determined by [X]c and by the homology class [LY=−X ] of LY=−X in H1(M ;Z).

�
A framing of a link L of M is a homotopy class of sections of the unit normal bundle to

L. Pushing L in the direction of such a section yields a parallel L‖ of L up to isotopy of L‖ in
N(L)\L, where N(L) is a tubular neighborhood of L. This isotopy class of parallels induced by
the framing determines the framing. Thus, a framing of L is such an isotopy class of parallels
of L.

Remark 2.8. Let L be a linkX–framed by some [σ] ∈ S(NL, (−X)⊥) represented by σ:N(L)→
(−X)⊥. (See Definition 2.2.) Let σN be a unit section of N(L) that induces a parallel L‖ of
L, up to isotopy. Set Z(σ, σN)(x) = σ(x)(σN(x)). Then Z(σ, σN) is a section of (−X)⊥. Note
that [σ] is determined by the homotopy classes of σN and Z(σ, σN), where the homotopy class
of σN may be replaced by the isotopy class of L‖. Thus elements of S(NL, (−X)⊥) can be
thought of as pairs (L‖, Z(σ, σN)) up to simultaneous twists of L‖ and Z(σ, σN).

A parallelization τ with X as first vector identifies X-framings of links with framings of links
as follows: The second vector X2 of τ is a section of (−X)⊥, and τ identifies an X–framing
[σ] ∈ S(NL, (−X)⊥) represented by σ with the isotopy class of parallels L‖ of L induced by
the section σ−1(X2). Set

C(τ, L, L‖) = C(X,L, [σ]).

A framed cobordism from (L,L‖) to (L′, L′‖) is a cobordism Σ from {0} × L to {1} × L′ in

[0, 1] ×M equipped with a unit normal section to TΣ in T ([0, 1] ×M), up to homotopy, that
induces the given framings of L and L′. Two framed links are framed cobordant if and only if
their exists a framed cobordism from one to the other one.

As above, a parallelization τ with X as first vector identifies X-framings of cobordisms to
framings of cobordisms.

This allows us to state the following Pontrjagin theorem [Mil97, Section 7, Theorem B] as
a corollary of Theorem 2.5.

Theorem 2.9 (Pontrjagin construction). Let τ be a parallelization of M . Any section of UM is
homotopic to C(τ, L, L‖) for a framed link (L,L‖) of the interior of M . Two sections C(τ, L, L‖)
and C(τ, L′, L′‖) are homotopic if and only if (L,L‖) and (L′, L′‖) are framed cobordant.

�
Pontrjagin proved generalizations of this theorem to every dimension. See [Mil97, Section

7].
Let ΣM be an embedded cobordism from a link L to a link L1 in M . The graph of a Morse

function f from ΣM to [0, 1] such that f−1(0) = L and f−1(1) = L1 yields a proper embedding
Σ of ΣM into [0, 1]×M . The positive normal to ΣM in M at m seen in T(f(m),m){f(m)} ×M
frames Σ. This framing of Σ identifies the X-framings Σ with homotopy classes of sections
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of (−X)⊥ over Σ. When ΣM is connected, and when K is a boundary component of Σ, any
X-framing defined on ∂Σ\K extends as an X-framing of Σ, and the extension of the X-framing
over K is determined by the restriction of the X-framing to ∂Σ \K.

Embed a sphere S with three holes in M , the 3 boundary components of S are 3 knots K1,
K2 and −K1]bK2 of M that are framed by the embedding of S.

S

K1]bK2

K1 K2

Then K1]bK2 is a framed band sum of K1 and K2, it is framed cobordant to the union of K1

and K2. Note that any X–framed link is X–framed cobordant to an X–framed knot by such
band sums. Similarly, any framed link is framed cobordant to a framed knot.

Lemma 2.10. Two framed links (L,L‖) and (L′, L′‖) in a Z-sphere or in a Z-ball are framed

cobordant if and only if lk(L,L‖) = lk(L′, L′‖).

Proof: When the framed links are framed cobordant, lk(L,L‖) = lk(L′, L′‖), since lk(L,L‖)

is the algebraic intersection of two 2-chains bounded by L× {0} and L‖ × {0} in [−1, 0]×M .
Conversely, let (L,L‖) and (L′, L′‖) be two framed links such that lk(L,L‖) = lk(L′, L′‖). They

are respectively framed cobordant to framed knots (K,K‖) and (K ′, K ′‖) such that lk(K,K‖) =

lk(L,L‖) and lk(K ′, K ′‖) = lk(L′, L′‖), so that lk(K,K‖) = lk(K ′, K ′‖). There is a connected
cobordism from K to K ′ that may be equipped with a framing that extends the framing induced
by K‖, and that therefore induces a framing of K ′ corresponding to a parallel K ′1 of K ′ such
that lk(K,K‖) = lk(K ′, K ′1). Thus lk(K ′, K ′1) = lk(K ′, K ′‖) and K ′1 is isotopic to K ′‖, so that

(K ′, K ′‖) is framed cobordant to (K,K‖). �

2.2 More details about the introductions

Let us finish justifying the claims of the introductions.

Lemma 2.11. For any two transverse sections X and Y of UM , LY=−X = −LX=−Y . For
three pairwise transverse sections X, Y and Z of UM , [LZ=−X ] = [LZ=−Y ] + [LY=−X ] in
H1(M ;Z).

Proof: For two sections X and Z of UM , transverse to Y , up to homotopy, we can assume
that LX=−Y and LZ=−Y are disjoint, and pick disjoint tubular neighborhoods N(LX=−Y ) and
N(LZ=−Y ) of LX=−Y and LZ=−Y , respectively. Then, according to Lemmas 2.1 and 2.4 we can
assume that Z = C(Y, LZ=−Y , σ(Z, Y )) and that X = C(Y, LX=−Y , σ(X, Y )) so that Z = Y
outside N(LZ=−Y ) and X = Y outside N(LX=−Y ). Then LZ=−X = LZ=−Y

∐
LY=−X . �
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Lemma 2.12. There is a canonical free transitive action of H1(M ;Z) on the set S(M) of
Spinc-structures of M such that for any two transverse sections Y and Z of UM ,

[LZ=−Y ][Y ]c = [Z]c.

Proof: Let Y be a section of UM and let [K] ∈ H1(M ;Z). Represent [K] by a knot K
and equip K with an arbitrary Y -framing σ. Define [K][Y ]c as [Z]c with Z = C(Y,K, σ).
According to Definition 2.3, K = LZ=−Y and, according to Corollary 2.7, [Z]c is determined
by [Y ]c and [K]. According to Lemma 2.1, if [K][Y ]c = [Z]c, then K is homologous to LZ=−Y .
Lemma 2.11 ensures that this defines an action of H1(M ;Z). This action is obviously transitive
since [Z]c = [LZ=−Y ][Y ]c and it is free. �

Corollary 2.13. This action equips S(M) with an affine structure with translation group
H1(M ;Z). With respect to this structure, for any two transverse sections X and Y of UM ,

[Y ]c − [X]c = [LY=−X ].

Classically, S(M) is rather equipped with an affine structure with translation groupH2(M,∂M ;Z),
and ([Y ]c − [X]c)2 ∈ H2(M,∂M ; π2(S2) = Z) is the obstruction to homotoping a section Y of
UM to another such X over a two-skeleton of M .

Below, we confirm that the two structures are naturally related by the Poincaré duality
isomorphism P :H2(M,∂M ;Z)→ H1(M ;Z).

Lemma 2.14. For two transverse sections X and Y of UM ,

P (([Y ]c − [X]c)2) = [Y ]c − [X]c = [LY=−X ].

Proof: Up to homotopy, assume Y = C(X,LY=−X , σ(Y,X)) as in Lemma 2.4. Let S be
a 2–chain transverse to LY=−X . We may assume that X and Y coincide outside open disks
around S ∩ LY=−X . Extend X to a parallelization on the closure of these disks, and see Y as
a map from D2/∂D2 to S2 on each of these disks. The sum of the degrees of these maps is the
algebraic intersection of LY=−X and S. By definition, this is also the evaluation of a cochain
that represents ([Y ]c − [X]c)2 ∈ H2(M,∂M ;Z) on S. This shows that LY=−X is Poincaré dual
to ([Y ]c − [X]c)2. �

The Euler class e(X⊥) is the obstruction to the existence of a nowhere zero section of X⊥.
It lives in H2(M ;Z). In particular, X extends as a parallelization if and only if e(X⊥) = 0. We
shall not give a more precise definition for the standard Euler class, since Lemmas 2.15 below
can be used as a definition in our cases.

Lemma 2.15. Let X and Y be two homotopic transverse sections of UM , then LY=X is
Poincaré dual to e(X⊥). Therefore, P (e(X⊥)) = [X]c − [−X]c.
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Proof: For a section of X⊥, X may be pushed slightly in the direction of the section. If Y
denotes the obtained combing, then LY=X is the vanishing locus of the section that is Poincaré
dual to e(X⊥). �

Lemma 2.16. Let X and Y be two transverse sections of UM ,

2[LX=Y ] = P (e(X⊥) + e(Y ⊥))

and 2[LX=−Y ] = P (e(X⊥) − e(Y ⊥)). In particular, for two transverse torsion sections X and
Y of UM , LX=Y and LX=−Y represent torsion elements in H1(M ;Z).

Proof: [LX=Y ] = [X]c−[−Y ]c = [Y ]c−[−X]c so that 2([LX=Y ]) = [X]c−[−X]c+[Y ]c−[−Y ]c =
P (e(X⊥) + e(Y ⊥)). �

Lemma 2.17. Let X and Y be two transverse torsion sections of UM , then lk(LX=Y , LX=−Y )
only depends on the homotopy classes of X and Y .

Proof: Fix a trivialization of UM so that sections become functions from M to S2. Let us
prove that lk(LX=Y , LX=−Y ) does not vary under a generic homotopy of X. Such a homotopy
induces two homotopies h+ and h− from [0, 1]×M to S2×S2 where h±(t,m) = (Xt(m),±Y (m)).
Without loss, assume that h+ and h− are transverse to the diagonal. There exists a finite
sequence 0 = t0 < t1 < t2 < . . . < tk = 1 of times such that the projections on M of the
preimages of the diagonal under h+|[ti,ti+1]×M and h−|[ti,ti+1]×M are disjoint so that they yield
two disjoint cobordisms in M , one from LXti=Y

to LXti+1=Y , and the other one from LXti=−Y

to LXti+1=−Y showing that lk(LXti=Y
, LXti=−Y ) = lk(LXti+1=Y , LXti+1=−Y ). �

Lemma 2.18. Let X be a section of UM that extends as a parallelization τ . The homotopy
class of a torsion section Y transverse to X is determined by X, by the homology class [LY=−X ]
of LY=−X in H1(M ;Z), and by the linking number lk(LY=−X , LY=X).

Proof: After a homotopy, Y reads C(τ, LY=−X , LY=X2) where X2 is the second vector of τ ,
and, LY=X and LY=X2 are parallel knots as in Theorem 2.9. According to Theorem 2.9, the
combing [Y ] is determined by the framed cobordism class of LY=−X , that is determined by
[LY=−X ] and by lk(LY=−X , LY=X2) since LY=−X is rationally null-homologous. After another
homotopy that makes Y transverse to X2 and X, lk(LY=−X , LY=X2) = lk(LY=−X , LY=X). �

2.3 Action of π3(S
2) on combings

Notation 2.19. See B3 as the quotient of [0, 2π] × S2 where the quotient map identifies
{0} × S2 with a point. Then the map from B3 to the group SO(3) of orientation-preserving
linear isometries of R3 that maps (θ ∈ [0, 2π], x ∈ S2) to the rotation ρ(θ, x) with axis directed
by x and with angle θ is denoted by ρ. It induces the standard double covering map ρ̃ from
S3 = B3/∂B3 to SO(3) that orients SO(3).
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The image of the first basis vector pS2 :SO(3)→ S2 induces an isomorphism from π3(SO(3)) =
Z[ρ̃] to π3(S2). Let γ be the image of [ρ̃] under this isomorphism. Let X be a combing. Ex-
tend X to a parallelization (X, Y, Z) on a 3-ball B identified with B3, and see ρ as a map
ρ: (B, ∂B) → (SO(X, Y, Z), Id). Define γkX as the section that coincides with X outside B
and such that, for any m ∈ B,

γkX(m) = (ρ(m))k(X)

on B. Note that [γkX] is independent of the chosen parallelization. Since M is connected,
any two small enough balls may be put inside a bigger one and [γkX] is independent of B.
Set γk[X] = [γkX]. Note that γk+k′ [X] = γk(γk

′
[X]). Let X and Y be two sections of UM

that are homotopic except over a 3-ball B3. Up to homotopy, we may assume that they are
identical outside B3. On B3, X extends to a parallelization and Y reads as a map from
(B3, ∂B3) to (S2, X). It therefore defines an element γk of π3(S2), and [Y ] = γk[X]. Thus,
π3(S2) acts transitively on the combings that represent a given Spinc-structure. In particular
it acts transitively on the combings of a Z-sphere.

A positive (or oriented) meridian of some knot K in M is the boundary of a disk that
intersects K once with positive sign.

Lemma 2.20. Let τ be a parallelization of M and let [X(τ)] denote the induced combing.

Let (U,U−) be the negative Hopf link (lk(U,U−) = −1). Then, with the notation before
Theorem 2.9, [γX(τ)] = [C(τ, U, U−)].

Proof: First note that [C(τ, U, U−)] reads [γkX(τ)] for an integer k that does not depend
on (M, τ). We prove k = 1 when M = B3, when τ is the standard parallelization, and when
X = X(τ) is the constant upward vector field, with the help of Lemma 2.18, by showing that

lk(LγX(τ)=X′ , LγX(τ)=−X′) = lk(U,U−) = −1.

for some constant field X ′ near X. Let N be the North pole of S2, (pS2 ◦ρ)−1(N) intersects the
interior of B3 as the vertical axis oriented from South to North while (pS2 ◦ρ)−1(−N) intersects
B3 as π× (−E), where E is the equator oriented as a positive meridian of (pS2 ◦ρ)−1(N). Then
for N ′ near N , lk((pS2 ◦ ρ)−1(N ′), (pS2 ◦ ρ)−1(−N ′)) = −1. �

Corollary 2.21. Let τ be a parallelization of M , let (L,L‖) be a framed link of L, let (U,U−)
be the negative Hopf link in a ball of M disjoint from L, and let (U,U+) be the positive Hopf

link in a ball of M disjoint from L. Then [γC(τ, L, L‖)] = [C(τ, L ∪ U,L‖ ∪ U−)] and
[γ−1C(τ, L, L‖)] = [C(τ, L ∪ U,L‖ ∪ U+)].

If L is non-empty, let L‖,−1 (resp. L‖,+1) be a parallel of L obtained from L‖ by adding a
negative (resp. positive) meridian of L, homologically in N(L)\L, then [C(τ, L∪U,L‖∪U−)] =
[C(τ, L, L‖,−1)] and [C(τ, L ∪ U,L‖ ∪ U+)] = [C(τ, L, L‖,+1)].

Proof: Note that (L,L‖,±1) is framed cobordant to (L∪U,L‖ ∪U±) by band sum. Thus, the
second formula can be deduced from the fact that the disjoint union of two oppositely framed
unknots is framed cobordant to the empty link. �
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Corollary 2.22. Let X be a torsion section of UM , let k ∈ Z and let Y be a section of UM
that represents [γkX]. Then lk(LY=X , LY=−X) = −k.

Proof: We already know that the linking number lk(LY=X , LY=−X) does not depend on the
transverse representatives of [X] and [Y ]. Furthermore, by Theorem 2.9, [X] can be represented

as C(τ, L, L‖) as in Corollary 2.21. Assume k 6= 0. Let (∪|k|i=1U
(i),∪|k|i=1U

(i)
ε ) denote the union

of |k| Hopf links with sign ε = −k/|k| contained in disjoint balls Bi, for i = 1, . . . , k. Let

Y be obtained from C(τ, L ∪ ∪|k|i=1U
(i), L‖ ∪ ∪|k|i=1U

(i)
ε ) by a small perturbation, induced by the

parallelization τ outside N(L ∪ ∪|k|i=1U
(i)) so that it is transverse to X, very close to X, and

distinct from ±X outside N(L ∪ (∪|k|i=1U
(i))). Then LY=−X is a parallel of ∪|k|i=1U

(i) and

lk(LY=X , LY=−X) =

|k|∑
i=1

lk(LY=X ∩Bi, LY=−X ∩Bi) =

|k|∑
i=1

lk(U (i), U (i)
ε ) = −k.

�

Proposition 2.23. Let [X]c be a Spinc structure. Then the set of combings that belong to
[X]c is an affine space over Z/〈e(X⊥), H2(M ;Z)〉, where the translation by the class of 1 is the
action of γ.

Proof: Again, fix a parallelization τ of M , and an induced combing Y . This identifies the set
S(M) of Spinc structures with H1(M ;Z) by mapping [X]c to the homology class [LX=Y ]. Any
framed link is framed cobordant to a framed knot. According to the Pontrjagin characterization
of the combings (Theorem 2.9), the combings that belong to the Spinc structure ξ(τ, [K])
corresponding to a given class [K] of H1(M ;Z) is the set of framed links homologous to [K] up
to framed cobordism. Let K be a knot that represents [K], then all framed links homologous
to [K] are framed cobordant to K equipped with some framing, and the combings of ξ(τ, [K])
are the equivalence classes of framings of K up to framed cobordism.

For two parallels K ′ and K ′′ of K on the boundary ∂N(K) of a tubular neighborhood N(K)
of K, the homology class of K ′′ −K ′ in ∂N(K) reads lkN(K)(K

′′ −K ′, K)m(K) where m(K)
is the oriented meridian of K. The integer lkN(K)(K

′′ −K ′, K) measures the difference of the
framings induced by K ′ and K ′′.

When [K] is a torsion element of H1(M ;Z), the self-linking number lk(K ′, K) makes sense,
and it is a complete invariant of framings of K, up to framed cobordism. This shows that the
action of π3(S2) on the set of combings in a torsion Spinc-structure is free, and that this set is
an affine space over Z.

In general, let B be a cobordism from 0×K ′ to 1×K ′′ in [0, 1]×N(K). Then lkN(K)(K
′′−

K ′, K) = 〈[0, 1]×K,B〉[0,1]×M . Let C be a framed cobordism from 0×K to 1×K in [0, 1]×M ,
and let C ′ be obtained from C by pushing C in the direction of the framing. Assume that
∂C ′ = 1×K ′′ − 0×K ′ so that C is a framed cobordism from (K,K ′) to (K,K ′′) and

0 = 〈C,C ′〉[0,1]×M = 〈[0, 1]×K + (C − [0, 1]×K), B + (C ′ −B)〉[0,1]×M .
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Since (C−[0, 1]×K) and (C ′−B) are 2-cycles in [0, 1]×M , 〈(C−[0, 1]×K), (C ′−B)〉[0,1]×M = 0,
and since they are homologous 〈[0, 1] × K, (C ′ − B)〉[0,1]×M = 〈(C − [0, 1] × K), B〉[0,1]×M , so
that

lkN(K)(K
′′ −K ′, K) = −2〈[0, 1]×K, (C ′ −B)〉[0,1]×M .

In particular, the framing difference induced by C only depends on the homology class of the
projection S of C in M , and it is −2〈K,S〉M . Thus if the framings induced by K ′ and K ′′

are framed cobordant, lkN(K)(K
′′ − K ′, K) is in 〈2K,H2(M ;Z)〉M . Conversely, for any class

S of H2(M ;Z), there exists an embedded connected cobordism C that projects on S. Any
framing on 0 × K can be extended to C, and it induces a framing on 1 × K, such that the
framing difference is −2〈K,S〉M . Since the Euler class of ξ(τ, [K]) is Poincaré dual to 2[K],
the conclusion follows. �

3 Towards the variation formulae

3.1 The key proposition

In this subsection that will be useful in our study of the invariant Θ in Section 5, we prove the
following proposition that is the key to the extension of the map p1 in Section 4.

Proposition 3.1. Let X, Y and Z be three pairwise transverse torsion sections of UM ,

lk(LX=Y , LX=−Y ) + lk(LY=Z , LY=−Z) = lk(LX=Z , LX=−Z).

Consider the 6-manifold [0, 1] × UM . Recall that UM is homeomorphic to M × S2. Let
(Si)i=1,...,β1(M) be β1(M) surfaces in the interior of M that represent a basis of H2(M ;Q). For a
section Z of UM , let Z(Si) denote the image in UM of the graph of the restriction of Z to Si.
Let [S] denote the homology class of the fiber of UM in H2(UM ;Q), oriented as the boundary
of a unit ball of TxM .

H2(UM ;Q) = Q[S]⊕
β1(M)⊕
i=1

Q[Z(Si)].

Lemma 3.2. If Y and Z are two transverse sections of UM , then

[Z(Si)]− [Y (Si)] = 〈LZ=−Y , Si〉M [S]

in H2(UM ;Q) (and in H2([0, 1]× UM ;Q)).

Proof: Fix a trivialization of UM so that both Y and Z become functions from M to S2,
then [Z(Si)] − [Y (Si)] = (deg(Z|Si

) − deg(Y|Si
))[S]. If X is a section of UM induced by the

trivialization, then deg(Z|Si
) = 〈LZ=−X , Si〉M . Conclude with Lemma 2.11. �

In particular, according to Lemma 2.16, the subspace HT of H2([0, 1]× UM ;Q) generated
by the [Z(Si)] for torsion combings Z is canonical. Set H(M) = H2([0, 1]×UM ;Q)/HT . Then
H(M) = Q[S].
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Let X and Y be two sections of UM . Let X(M) abusively denote the graph of X in
UM . Let ∂(X, Y ) be the following codimension 2 submanifold of ∂([0, 1] × UM). If ∂M = ∅,
∂(X, Y ) = {1}×Y (M)−{0}×X(M). If ∂M = S2, let V (X) and V (Y ) be the elements of S2

such that X = V (X) and Y = V (Y ) on ∂M . Recall that τs identifies UM|∂M with S2 × ∂M .
Let P = P (X, Y ) be a 1–chain in [0, 1]× S2 such that ∂P = {1} × V (Y )− {0} × V (X). Then
∂(X, Y ) = ∂(X, Y, P ) = {1} × Y (M)− {0} ×X(M)− P × ∂M .

Lemma 3.3. For two transverse sections X and Y of UM such that ([Y ]c − [X]c) vanishes
in H1(M ;Q), ∂(X, Y ) is rationally null-homologous in [0, 1]×UM . It bounds a rational chain
F (X, Y ) transverse to ∂([0, 1] × UM) that is well-determined, up to the addition of a chain
Σ× ∂M for a 2–chain Σ of [0, 1]× S2, up to the addition of a combination of {ti}×UM|Si

for
distinct ti, and up to cobordism.

Proof: H3([0, 1] × UM ;Q) ∼= H1(M ;Q) ⊗ H2(S2;Q) when ∂M = S2. The direct factor
Q[X(M)] should be added when ∂M = ∅. The class of a 3–submanifold of [0, 1]×UM vanishes
in H3([0, 1] × UM ;Q) if and only if its algebraic intersection with the [0, 1] × Z(Si) vanishes,
for all i, when ∂M = S2, for some combing Z. For ∂(X, Y ), this algebraic intersection reads

〈[0, 1]× Z(Si), ∂(X, Y )〉M = 〈Si, LZ=Y − LZ=X〉 = 〈Si, [Z]c − [−Y ]c − ([Z]c − [−X]c)〉
= 〈Si, [Y ]c − [X]c〉 = 0.

When ∂M = ∅, the algebraic intersection with [0, 1] × UM|{x} must vanish, too. This is
easily verified. Thus, ∂(X, Y ) bounds a rational chain F (X, Y ), and since H4(UM ;Q) =⊕β1(M)

i=1 Q[UM|Si
], the second assertion follows. �

Lemma 3.4. For any two transverse torsion sections X and Y of UM , for any two-cycle C of
[0, 1]×UM , the class of C in H(M) is 〈C,F (X, Y )〉[0,1]×UM [S] for a F (X, Y ) as in Lemma 3.3.

Proof: First note that 〈C,F (X, Y )〉[0,1]×UM [S] only depends on the homology class of C, for a
given F (X, Y ), and that 〈[S], F (X, Y )〉 = 1. Now, it suffices to prove that 〈[Z(Si)], F (X, Y )〉 =
0 for any torsion combing Z, and for any i. Since 〈[Z(Si)], F (X, Y )〉 = 〈[Z(Si)], X(M)〉UM =
〈[Z(Si)], Y (M)〉UM , 〈[Z(Si)], F (X, Y )〉 does not depend on the torsion combings X and Y . In
particular, 〈[Z(Si)], F (X, Y )〉 = 〈[Z(Si)], F (−Z,−Z)〉 = 0. �

Definition 3.5. In this article, blowing up a submanifold A means replacing it by its unit
normal bundle. Let c be the codimension of A. The total space of the normal bundle to A
locally reads Rc × U for an open subspace U of A. It embeds into the ambient manifold as
a tubular neighborhood of A. Its fiber Rc reads {0} ∪ (]0,∞[×Sc−1) where the unit sphere
Sc−1 of Rc is the fiber of the unit normal bundle to A. Then the blow-up replaces (0 ∈ Rc)
by Sc−1 so that the blown-up manifold locally reads ([0,∞[×Sc−1 × U). (In particular, unlike
the blow-ups in algebraic geometry, our differential blow-ups create boundaries.) Topologically,
this blow-up amounts to removing an open tubular neighborhood of A (thought of as infinitely
small), but the process is canonical, so that the created boundary is the unit normal bundle to
A and there is a canonical projection from the blown-up manifold to the initial manifold.
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Proposition 3.6. Let X and Y be two transverse torsion sections of UM . For any F (X, Y )
and F (−X,−Y ) as in Lemma 3.3, such that the 1–chains P (X, Y ) and P (−X,−Y ) are disjoint,
the class of F (X, Y ) ∩ F (−X,−Y ) in H(M) is

lk(LX=Y , LX=−Y )[S].

Proof: Let us first prove that the class of F (X, Y )∩F (−X,−Y ) is well-determined in H(M).
When F (X, Y ) is changed to F (X, Y ) + (Σ × ∂M) for a two-chain Σ of [0, 1] × S2 transverse
to P (−X,−Y ), (Σ × ∂M) ∩ F (−X,−Y ) is added to F (X, Y ) ∩ F (−X,−Y ). Now, (Σ ×
∂M)∩ F (−X,−Y ) is a union of (tj, Vj)× ∂M that bounds since the parallelization τs extends
to M . Thus, the class of F (X, Y ) ∩ F (−X,−Y ) in H(M) in unchanged. Since the class of
{ti} × UM|Si

∩ F (−X,−Y ) is in HT , the class of F (X, Y ) ∩ F (−X,−Y ) is well-determined in
H(M).

Now, we construct an explicit F (X, Y ) by using the homotopy of Lemma 2.4 that we recall.
Assume M is Riemannian. When X(m) 6= −Y (m), there is a unique geodesic arc [X(m), Y (m)]
with length (` ∈ [0, π[) from X(m) to Y (m). For t ∈ [0, 1], let Xt(m) ∈ [X(m), Y (m)] be such
that the length of [X0(m) = X(m), Xt(m)] is t`. This defines Xt on (M \ LX=−Y ).

Observe that this definition naturally extends to the boundary of the manifold M(LX=−Y )
obtained from M by blowing up LX=−Y : Indeed, X induces an orientation-preserving map
from the normal bundle NxLX=−Y to LX=−Y in M at x to (−Y (x))⊥. Then for a unit element
n of NxLX=−Y , Xt(n) describes the half great circle from X(x) to Y (x) through the image of
n under the above map. In particular, the whole sphere is covered with degree 1 by the image
of ([0, 1]× (NxLX=−Y /R∗+)). Let Gh be the closure of

(
∪t∈[0,1]sXt (M \ LX=−Y )

)
.

Gh = ∪t∈[0,1]Xt(M(LX=−Y )).

Define the 3–cycle of UM

p(∂(X, Y )) = Y (M)−X(M)− [V (X), V (Y )]× ∂M

where [V (X), V (Y )] is the shortest geodesic path from V (X) to V (Y ) in the fiber of UM over
∂M that is identified with S2 by τs. Then

∂Gh − p(∂(X, Y )) = ∪t∈[0,1]Xt(−∂M(LX=−Y )) = UM|LX=−Y

because it is oriented like ∪t∈[0,1]Xt(∂N(LX=−Y )). Let ΣX=−Y be a two-chain transverse to
LX=Y and bounded by LX=−Y in M . Set G = Gh −

(
UM|ΣX=−Y

)
so that ∂G = p(∂(X, Y )).

Let ι be the endomorphism of UM over M that maps a unit vector to the opposite one. Set

F (X, Y ) = [0, 1/3]×X(M) +{1/3} ×G +[1/3, 1]× Y (M)
and F (−X,−Y ) = [0, 2/3]× (−X)(M) +{2/3} × ι(G) +[2/3, 1]× (−Y )(M).

Then

F (X, Y )∩F (−X,−Y ) = [1/3, 2/3]×Y (LY=−X)−{1/3}×(−X)(ΣX=−Y )+{2/3}×(Y )(ΣX=−Y ).
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Using Lemma 3.4 with F (X,X) = [0, 1]×X(M) to evaluate the class of (F (X, Y )∩F (−X,−Y ))
in H(M) finishes the proof. �
Proof of Proposition 3.1: Compute lk(LX=Z , LX=−Z) by computing the class of F (X,Z)∩
F (−X,−Z) in H(M) where F (X,Z) (resp. F (−X,−Z)) is constructed by gluing shrinked
copies of F (X, Y ) (resp. F (−X,−Y )) and F (Y, Z) (resp. F (−Y,−Z)) so that [F (X,Z) ∩
F (−X,−Z)] = [F (X, Y ) ∩ F (−X,−Y )] + [F (Y, Z) ∩ F (−Y,−Z)]. �

3.2 Proof of Theorem 1.1

The first part of Theorem 1.1 follows from Lemma 2.1 and Corollary 2.7. According to
Lemma 2.16, two transverse sections X and Y are torsion sections if and only if LY=X and
LY=−X are rationally null-homologous. In this case, lk(LY=X , LY=−X) only depends on the
combings [X] and [Y ] according to Lemma 2.17 (or to Proposition 3.6).

Now, assume that Y and Y ′ are such that LY=−X and LY ′=−X are homologous. Then Y
and Y ′ represent the same Spinc-structure and there exists k ∈ Z such that Y ′ represents [γkY ].
According to Corollary 2.22, lk(LY ′=Y , LY ′=−Y ) = −k. According to Proposition 3.1,

lk(LY ′=X , LY ′=−X)− lk(LY=X , LY=−X) = lk(LY ′=Y , LY ′=−Y ).

Thus if lk(LY ′=X , LY ′=−X) = lk(LY=X , LY=−X), k = 0, and Y and Y ′ are homotopic. �

4 On the map p1

4.1 The original map p1 for parallelizations

It has long been known that smooth compact oriented 3-manifolds are parallelizable.
Let M be equipped with a parallelization τM :M × R3 → TM . Let GL+(R3) denote the

group of orientation-preserving linear isomorphisms of R3. Let C0((M,∂M), (GL+(R3), Id))
denote the set of maps

g : (M,∂M) −→ (GL+(R3), Id)

from M to GL+(R3) that send ∂M to the identity Id of GL+(R3). Let [(M,∂M), (GL+(R3), Id)]
denote the group of homotopy classes of such maps, with the group structure induced by the
multiplication of maps using the multiplication in GL+(R3).

For a map g in C0((M,∂M), (GL+(R3), Id)), define

ψ(g) : M × R3 −→ M × R3

(x, y) 7→ (x, g(x)(y)).

Then any parallelization τ of M that coincides with τM on ∂M reads

τ = τM ◦ ψ(g)

17



for some g ∈ C0((M,∂M), (GL+(R3), Id)). Thus fixing τM identifies the set of homotopy
classes of parallelizations of M fixed on ∂M with the group [(M,∂M), (GL+(R3), Id)]. Since
GL+(R3) deformation retracts onto SO(3), the group [(M,∂M), (GL+(R3), Id)] is isomorphic
to [(M,∂M), (SO(3), Id)].

The following standard proposition is proved in [Les12].

Proposition 4.1. For any compact connected oriented 3-manifold M , [(M,∂M), (SO(3), Id)]
is an abelian group, and the degree

deg: [(M,∂M), (SO(3), Id)] −→ Z

is a group homomorphism, that induces an isomorphism

deg: [(M,∂M), (SO(3), Id)]⊗Z Q −→ Q.

Let W be a connected, compact 4–dimensional manifold with signature 0 whose boundary
is

∂W =

{
M ∪1×∂M (−[0, 1]× S2) ∪0×S2 (−B3) when ∂M = S2

M when ∂M = ∅.
When ∂M = S2, W has ridges and it is identified with an open subspace of one of the products
[0, 1[×B3 or ]0, 1]×M near ∂W . For any parallelization τ of M , the tangent vector Tt[0, 1] to
[0, 1], the standard parallelization τs of R3 and τ together induce a trivialization τ(∂W, τ) of TW
over ∂W , this trivialization reads Tt[0, 1]⊕ τs or Tt[0, 1]⊕ τ . Then the Pontrjagin number p1(τ)
of τ is the obstruction to extending the trivialization τ(∂W, τ)⊗C of TW|∂W⊗C across W (with
respect to the trivialization of det(TW ) induced by the orientation of W ). This obstruction
lives in the module H4(W,∂W ; π3(SU(4))) that is isomorphic to Z since π3(SU(4)) = Z. For
more details, see [Les04a, Section 1.5] or [Les12, Proposition 6.13] where the following classical
theorem is proved.

Theorem 4.2. Let M be a compact connected oriented 3-manifold such that ∂M = ∅ or S2.
For any map g in C0((M,∂M), (SO(3), Id)), for any trivialization τ of TM

p1(τ ◦ ψ(g))− p1(τ) = 2deg(g).

For n ≥ 3, a spin structure of a smooth n–manifold is a homotopy class of parallelizations
over a 2-skeleton of M (that is over the complement of a point when n = 3, if M is connected).

The class of the covering map ρ̃ described in Notation 2.19 is the standard generator of
π3(SO(3)) = Z[ρ̃]. The map ρ can be used to describe the action of π3(SO(3)) on the homotopy
classes of parallelizations (τ :M × R3 → TM) of M as follows. Let B be a 3–ball in M
identified with B3. Let τψ(ρ) coincide with τ outside B×R3 and read τ ◦ψ(ρ) on B×R3. Set
[ρ̃][τ ] = [τψ(ρ)]. According to Theorem 4.2, p1([ρ̃][τ ]) = p1(τ) + 4. The set of parallelizations
that induce a given spin structure form an affine space with translation group π3(SO(3)).

The Rohlin invariant µ(M,σ) of a smooth closed 3-manifold M , equipped with a spin
structure σ, is the mod 16 signature of a compact spin 4-manifold W bounded by M so that
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the spin structure of W restricts to M as a stabilisation of σ. The first Betti number of M that
is the dimension of H1(M ;Q) is denoted by β1(M).

Kirby and Melvin proved the following theorem [KM99, Theorem 2.6].

Theorem 4.3. For any closed oriented 3-manifold M , for any parallelization τ of M ,

(p1(τ)− dimension(H1(M ;Z/2Z))− β1(M)) ∈ 2Z.

Let M be a closed 3-manifold equipped with a given spin structure σ. Then p1 is a bijection
from the set of homotopy classes of parallelizations of M that induce σ to

2 (dimension(H1(M ;Z/2Z)) + 1) + µ(M,σ) + 4Z

When M is a Z–sphere, p1 is a bijection from the set of homotopy classes of parallelizations of
M to (2 + 4Z).

Extend the standard parallelization τs of B3 as a parallelization τ̂s of S3. When ∂M = S2,
form M̂ = (S3 \ (B3 \ N(∂M))) ∪N(∂M) M and use τ̂s to extend any parallelization τ of M

to a parallelization τ̂ of M̂ . Then it is easy to see that p1(τ) = p1(τ̂) − p1(τ̂s). In particular,
according to Theorem 4.3, (p1(τ)− dimension(H1(M ;Z/2Z))− β1(M)) ∈ 2Z and, when M is
a Z–ball, the map p1 is a bijection from the set of homotopy classes of parallelizations of M to
4Z.

4.2 Proofs of Theorems 1.2 and 1.3

Lemma 4.4. Let τ be a trivialization of TM . Let g ∈ C0((M,∂M), (SO(3), Id)). Recall that
pS2 :SO(3)→ S2 maps a transformation t of SO(3) to t(N) where N is the first basis vector of
R3. Let X and Y be two combings of UM induced by τ and [g][τ ] = [τψ(g)], respectively. Then

lk(LY=X , LY=−X) = lk((pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)) = −1

2
deg(g)

Proof: The first equality follows from the definition. It implies that lk(LY=X , LY=−X) =
lk((pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)) = lk′(g) only depends on g. Then Proposition 3.1 implies
that lk′ is a homomorphism from [(M,∂M), (SO(3), Id)] to Q. According to Proposition 4.1 it
suffices to evaluate it on the element ρ viewed as a degree 2 map of C0((B3, ∂B3), (SO(3), Id)).
According to Corollary 2.22, when g = ρ, lk(LY=X , LY=−X) = −1. �
Proof of Theorem 1.2: Theorem 4.2 and Lemma 4.4 show that if X and Y extend to
parallelizations τ(X) and τ(Y ), then

p1(τ(Y ))− p1(τ(X)) = −4lk(LY=X , LY=−X).

For any torsion combing [Y ], define p1([Y ]) from a combing [X] that extends to a parallelization
by

p1([Y ]) = p1([X]) + 4lk(LX=Y , LX=−Y ).
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Thanks to Proposition 3.1, since this formula is valid for combings that extend to paralleliza-
tions, this definition does not depend on the choice of X. Now, Proposition 3.1 implies that
the above formula is valid for all pairs of torsion combings.

Since [−X] = [X] for a section X that extends as a trivialization, we deduce that p1([−Y ]) =
p1([Y ]), for all torsion sections Y , from the above definition.

According to the following Lemma 4.5, Proposition 2.23 ensures the injectivity of the re-
striction of p1 to any torsion Spinc-structure. �

Lemma 4.5. For any torsion combing [X], p1(γ[X])− p1([X]) = 4.

Recall Corollary 2.22. �

Proposition 4.6. With the notation of Theorem 2.9, if (L,L‖) is a framed rationally null-
homologous link of the interior of M , then

p1(C(τ, L, L‖)) = p1(τ)− 4lk(L,L‖).

Proof: Assume that τ reads (X,X2, X3) so that L = LY=−X . Then X and X2 are homotopic
sections of UM so that p1(τ) = p1(X) = p1(X2) and, according to Theorem 1.2, p1(Y ) =
p1(τ)− 4lk(LY=X2 , LY=−X2). The link (LY=X2 , LY=−X2) is isotopic to (L,L‖). �

Proof of Theorem 1.3: According to Theorem 2.9, any torsion combing Y is homotopic to
C(τ, L, L‖), for some L and τ as in Proposition 4.6 and in its proof. In particular, since L =
LY=−X , p1(Y ) ∈ p1(τ)− 4`([LY=−X ])) and p1(Y ) ∈ p1(τ)− 4`(Torsion(H1(M ;Z)). Conversely,
any element in `(Torsion(H1(M ;Z)) reads lk(L,L‖) for some rationally null-homologous link
link L. �

4.3 Identifying p1 with the Gompf invariant

Let us first recall the definition of the Gompf invariant. An almost-complex structure on a
smooth 4-dimensional manifold W is an operator J such that J2 = −Id, acting smoothly on
the tangent space to W , fiberwise. An almost-complex structure on W induces a combing of
∂W , that is the class of the image [JN = J(N(∂W ))] under J of the outward normal N(∂W )
to W . Gompf showed that all the combings of a 3-manifold appear as combings JN for some
W [Gom98, Lemma 4.4], this will be reproved below. The first Chern class c1(TW, J) of
(TW, J) is the obstruction to trivializing TW over the two-skeleton of W as an almost-complex
manifold (the induced trivialization of TW must read (X, JX, Y, JY )). The class c1(TW, J)
lives in H2(W ;Z). (The first Chern class c1 of a complex vector bundle is the Euler class
of the corresponding determinant bundle. The reader can check that the definitions coincide
in this case.) Its restriction to H2(∂W ;Z) is e(JN⊥) so that the boundary of the Poincaré
dual Pc1(TW, J) of c1(TW, J) is Poincaré dual to e(JN⊥). When JN is a torsion combing,
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this boundary ∂Pc1(TW, J) is a torsion element of H1(∂W ;Z) so that there exists a rational
2–chain Σ of ∂W such that (Pc1(TW, J) ∪ Σ) is a closed rational 2-cycle of W . The algebraic
self-intersection of this rational cycle is independent of Σ and it is denoted by (Pc1(TW, J))2,
and the Gompf invariant θG(JN) that is denoted by θ(JN) in [Gom98, Section 4] is

θG(JN) = (Pc1(TW, J))2 − 2χ(W )− 3 signature(W )

where χ stands for the Euler characteristic.
In this subsection, we prove that θG = p1.

Lemma 4.7. When a combing X of M extends as a parallelization, θG([X]) = p1([X]).

Proof: For a rank 2k complex bundle ω seen as a rank 4k real bundle ωR, p1(ωR) = c2
1(ω)−

2c2(ω), where c2 denotes the second Chern class that is the Euler class of ωR for a rank 2
complex bundle ω. See [MS74, Definition p.158 § 14 and Corollary 15.5]. Let (W,J) be an
almost-complex connected compact manifold bounded by M such that X = JN , let Y be
a nowhere zero section of X⊥ ⊂ TM . Consider the almost-complex parallelization (N, Y )
inducing the real parallelization (N, JN, Y, JY ) of TW|M , and the complex bundle ω over
(W ∪M (−W )) that is trivial with fiber CN⊕CY over (−W ) and that coincides with the initial
one over W . Since the characteristic classes p1, c1 and c2 of ωR or ω trivially restrict to H∗(−W ),
they come from classes of H∗(W ∪M (−W ),−W ) ∼= H∗(W,M). Thus p1(ωR) is the image of
p1(W, (JN, Y, JY ))[W,∂W ] ∈ H4(W,∂W ), and c2(ω) is the image of c2(TW,N) ∈ H4(W,∂W )
that is χ(W )[W,∂W ] since c2 is the obstruction to extending N as a nowhere zero section of
TW , that is the relative Euler class of (TW,N). Similarly, c1(ω) is the image of a lift c̃1 of
c1(TW, J) in H2(W,∂W ), where P c̃1 is represented by a cycle of W that can be constructed as
in the definition of (Pc1(TW, J))2 before Lemma 4.7. The Poincaré dual Pc1(ω) of c1(ω) is the
image of this cycle in H2(W ∪M (−W )) and p1(W, (JN, Y, JY )) = (Pc1(TW, J))2 − 2χ(W ). �

Lemma 4.8. When a combing X of M extends as a parallelization, θG([γX]) = θG([X]) + 4.

Proof: According to Lemma 4.5, p1([γX]) = p1([X]) + 4 for any [X]. �
Any closed oriented connected 3-manifold M is the boundary of a 4-manifold

WL = B4
⋃

L×D2⊂S3

∐
i=1,...,n

(D2 ×D2)(i)

obtained from B4 by attaching 2-handles (D2×D2)
(i)
i=1,...,n along a tubular neighborhood L×D2

of a framed link L = (Ki, µi)i=1,...,n. Such a framed link L is an integral surgery presentation of
WL and M . The Ki are the components of L, the µi are the surgery parallels Ki×{1} ⊂ Ki×D2

that frame the Ki, and the handle (D2 ×D2)(i) is attached by a natural identification of Ki ×
D2 ⊂ ∂B4 with ((−S1)×D2)(i) that restricts to µi as an orientation-reversing homeomorphism
onto (S1 × {1})(i).

According to Kaplan [Kap79], we can furthermore demand that lk(Ki, µi) is even for any i,
in the statement above. In this case, we shall say that the surgery presentation is even.
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Lemma 4.9. Let L be an even surgery presentation of M . There is an almost-complex structure
J0 on WL (described below) such that e(J0N⊥) = 0. For any Spinc structure ξ on M , there
is at least one almost complex structure J on WL (described below) such that the class of JN
belongs to ξ and, if JN is a torsion combing, then p1(JN)− p1(J0N) = θG(JN)− θG(J0N).

Proof: We shall only consider almost-complex structures J that are compatible with a given
Riemannian metric in the following sense: J preserves the Riemannian metric and Jx is orthog-
onal to x for any x. Our almost-complex structures J of 4-manifolds also induce the orientation
via local parallelizations of the form (X, JX, Y, JY ). Below, B4 is seen as the unit complex
ball of C2, it is equipped with its usual Riemannian structure. It is also seen as the unit ball
of the quaternion field H = C⊕Cj, so that S3 is identified with the group of unit quaternions
and TxS

3 is the space of quaternions orthogonal to x.
A homotopy

JN : [−1, 0]× S3 → TS3

(t, x) 7→ JN(t, x) ∈ TxS3

such that JN(−1, x) = ix, and ‖JN(t, x)‖ = 1 induces a homotopic almost-complex structure
on B4 as follows, the complex structure is unchanged outside a collar [−1, 0]×S3 of the boundary
of B4, and the operator J of the almost-complex structure maps the unit tangent vector to
[0, 1]×{x ∈ S3} at (t, x) to JN(t, x). Note that J is completely determined by these conditions.
If such a homotopy is such that JN(0, .) is tangent to Ki×{y} on Ki×D2, then the associated
almost-complex structure J preserves the tangent space to {x} × D2 and it uniquely extends
to (D2 × D2)(i) so that J preserves the tangent space to {x} × D2 and J is compatible with
the product Riemannian structure on (D2 ×D2)(i). In particular J maps the outward normal
to (D2 × S1)(i) ⊂M at (x, y ∈ S1) to the unit tangent vector to ({x} × S1)(i) at (x, y).

Before smoothing the ridges, WL reads (R2 \ {(x, y);x < −1, y > −1}) × (−Ki) × S1 near
Ki×S1. The 4-manifold WL is next smoothed around Ki×S1, the smoothing adds the product

NB4

ND2×D2

B4

(D2 ×D2)(i)

NB4

ND2×D2

WL

Figure 1: WL near Ki × S1 before and after smoothing.

of Ki × S1 by a triangle with two orthogonal straight sides and a smooth hypothenuse that
makes null angles with the two straight sides. See Figure 1.

This new piece may be seen as a part of a D2×R2 that contains D2×D2, so that J naturally
extends there.

In the plane of the triangle, the normal N reads N = cos(θ)NB4 + sin(θ)ND2×D2 for some
θ ∈ [0, π/2], so that JN reads JN = cos(θ)JNB4 + sin(θ)JND2×D2 and JN goes from the
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tangent to Ki × {y} to the tangent to ({x} × S1)(i) on T(x,y)Ki × S1 by the shortest possible
way on the smooth hypothenuse.

Then J and JN are completely determined on WL by the homotopy JN on [−1, 0] × S3,
and we now study them as a function of this homotopy.

We shall consider homotopies induced by homotopies of orthonormal parallelizations, i.e.
homotopies JN such that there is a homotopy V : [−1, 0] × S3 → TxS

3 where V (t, x) ∈ TxS3,
V (t, x) ⊥ JN(t, x), ‖V (t, x)‖ = 1 and V (−1, x) = jx. Furthermore, our homotopies are such
that JN(0, .) is tangent to Ki × {y} on Ki ×D2, so that V (0, x) induces a framing of Ki. The
linking number of Ki with the parallel of Ki induced by this framing is denoted by ri. Recall
that H1(SO(3);Z) = π1(SO(3)) = Z/2Z is generated by a loop of rotation (exp(iθ) 7→ ρ(θ, A))
for a fixed arbitrary axis A.

Sublemma 4.10. The integers ri are odd.

Proof of Sublemma 4.10: Let Σ be a Seifert surface of Ki, then TM|Σ has a trivialization
τΣ whose third vector is the positive normal NΣ to Σ, and whose first vector over Ki is obtained
from the tangent vector vK to Ki by rotating it (−χ(Σ)) times around the axis NΣ, along Ki.
On the other hand, the first vector of the restriction to Ki of the trivialization τJV induced
by JN(0, .) and V (0, .) is vK and its third vector is obtained from NΣ by rotating it ri times
around vK along Ki. Then τ−1

Σ ◦ τJV induces a map from Σ to SO(3) whose restriction to Ki

represents a trivial homology class in H1(SO(3)). Since the class of this restriction is (ri+χ(Σ))
mod 2 and since χ(Σ) is odd, ri is odd, too. �

Sublemma 4.11. The integers ri may be changed to any arbitrary odd number, by perturbing
the homotopy near Ki ×D2.

Proof of Sublemma 4.11: Assume without loss that JN(0, .) is tangent to Ki × {y} on a
bigger tubular neighborhood Ki × 2D2. Let e1 denote the first basis vector of R3. Consider a
map

F : [0, 1]× R
2πZ → SO(3)

(t, θ) 7→ Id if t = 1 or θ ∈ 2πZ
ρ(2θ, e1) if t = 0.

Then (JN, V, JV )(0, .) may be replaced on Ki × 2D2, by the homotopic

(0, (exp(iθ), u exp(iη))) 7→ F (max(0, u− 1), kiθ) ((JN, V, JV )(0, (exp(iθ), u exp(iη))))

for some integer ki. Since this changes ri to ri + 2ki, this shows that ri can be changed to any
odd number. �

Now, the obstruction to extending V as a unit vector tangent to the second almost-complex
factor D2 across (D2× .)(i) is −(ri−lk(µi, Ki)), and the obstruction to extending JN that is the
tangent to Ki×{y} as a unit vector tangent to the first almost-complex factor across (D2×.)(i) is
1. In particular, the Poincaré dual of the Chern class c1(TWL, J) may be represented by a chain
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that does not intersect B4 and that intersects (D2×D2)(i) as (1−ri+ lk(µi, Ki))(0×D2)(i). Let
J0N be a homotopy such that ri = lk(µi, Ki) + 1. Then c1(TWL, J

0) = 0 since H2(B4, S3) = 0
and θG(J0N) = −2χ(WL)− 3 signature(WL).

Change ri to (ri + 2ki) as in Sublemma 4.11 and denote the obtained almost-complex
structure by J . Compare the induced vector fields and compute LJN=V 0 and LJN=−V 0 .

Note that composing the map F in the proof of Sublemma 4.11 by the evaluation pS2 at
e1 provides a degree ±1 map from ([0, 1] × S1, ∂[0, 1] × S1) to (S2, e1). Thus there exists a
well-determined ε = ±1 such that LJN=V 0 and LJN=−V 0 are homologous to ε

∑n
i=1 kimi in

(L×D2)\L where mi is a meridian of Ki. We can furthermore assume that LJN=V 0 ⊂ L×uS1

and LJN=−V 0 ⊂ L× u′S1 for two distinct elements u and u′ of ]1, 2[. Let mi (resp. mi‖) denote
a meridian of Ki in L× uS1 (resp. in L× u′S1).

Since the meridians mi generate H1(M ;Z), for any Spinc-structure ξ, there exists an almost-
complex structure J as above such that JN belongs to ξ. The combing JN is torsion if and
only if LJN=−V 0 represents a torsion element in H1(M ;Z). Assume that JN is torsion from
now on. According to Theorem 1.2

p1(JN)− p1(J0N) = p1(JN)− p1(V 0) = −4lk(
n∑
i=1

kimi,
n∑
i=1

kimi‖).

On the other hand, since the boundary of Pc1(TWL, J) is homologous to 2LJN=−V 0 , Pc1(TWL, J)
is represented by 2ε

∑n
i=1 ki(0×D2)(i). In order to compute (Pc1(TWL, J))2, consider a parallel

copy Pc1(TWL, J)‖ = 2ε
∑n

i=1 ki(x×D2)(i), and let (−∂Pc1(TWL, J)) and (−∂Pc1(TWL, J)‖)
bound Σ and Σ‖ in M , respectively, so that

θG(JN)− θG(J0N) = (Pc1(TW, J))2

= 〈2ε
∑n

i=1 ki(0×D2)(i) ∪ Σ, 2ε
∑n

i=1 ki(x×D2)(i) ∪ Σ‖〉WL∪∂WL=0×M [0,1]×M
= 〈(−[0, 1/2]× ∂Σ) ∪ (1/2× Σ), (−[0, 2/3]× ∂Σ‖) ∪ (2/3× Σ‖)〉[0,1]×M
= −〈Σ, ∂Σ‖〉M
= p1(JN)− p1(J0N).

�

The previous lemma, Lemma 4.5 and the transitivity of the action of π3(S2) on the combings
of a Spinc-structure reduce the proof that θG = p1 to the proof of the following lemma.

Lemma 4.12. θG([γX])− θG([X]) = 4 for any combing [X].

Proof: We refer to the previous proof. Add a trivial knot U framed by +1 to a surgery
presentation L, such that WL is equipped with an almost-complex structure J . The structure J
is homotopic to a structure J (1) that extends on WL∪U so that Pc1(TW, J (1)) is (0×D2)(0). Then
θG(J (1)N)−θG(JN) = 1−2−3 = −4. The structure J is also homotopic to a structure J (3) that
extends on WL∪U so that Pc1(TW, J (3)) is 3(0×D2)(0), then θG(J (3)N)−θG(J (0)N) = 9−2−3 =
4. These two combing modifications sit in a 3-ball of M , so that each of them corresponds to
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the action of an element of π3(S2) independent of (M,J). According to Lemma 4.8, [J (1)N ] =
[γ−1JN ] and [J (3)N ] = [γJN ]. Since the above process allows us to inductively represent all
the combings [γkJN ], by adding some disjoint trivial knots framed by +1, and to prove that
θG(γkJN)− θG(γk−1JN) = 4, for all k ∈ Z, we are done. �

Remark 4.13. For a natural integer k and for a surgery presentation L of M in S3, let L(k)
be the surgery presentation of M obtained from L by adding k trivial knots framed by +1.
On our way, we have proved that for any combing [X], for any even surgery presentation L
of M , there exists a natural integer k and an almost complex structure J on WL(k) such that
[X] = [JN ].

4.4 More variations of p1

In applications, combing modifications often arise as in Definition 4.16 or as in the statement
of Proposition 4.21 below. We show how the variation formula of Theorem 1.2 applies in these
settings to yield other useful variation formulas.

Lemma 4.14. Let M be equipped with a torsion combing X. Let L be a rationally null-
homologous link in the interior of M . Let Z be a section of UM orthogonal to X, such that Z
is defined on L and ∂M . Extend Z as a section Z̃ of the D2-bundle X⊥, so that Z̃ is transverse
to the zero section. Let L(Z ⊂ X⊥) be the zero locus of Z̃ cooriented by the fiber D2 of X⊥.
Then L(Z ⊂ X⊥) is a link of M \L that represents the Poincaré dual of the relative Euler class
of (X⊥, Z), and L(Z ⊂ X⊥) is homologous to the Poincaré dual of e(X⊥).

�

Remark 4.15. Lemma 4.14 can be taken as a definition of the relative Euler class in this
case. The obstruction to extending Z across a 2–cycle of (M,L∪∂M) is the intersection of the
2–cycle with L(Z ⊂ X⊥).

Definition 4.16. Let X be a section of UM . Let L be a link in the interior of M and let Z
be a section of UM|L orthogonal to X. Let η = ±1, let L‖ be a parallel of L and let N(L) be
a tubular neighborhood of L where Z is extended as a section of UM orthogonal to X. Let
ρ(θ,X) denote the rotation with axis X and angle θ. Let D2 = {u exp(iθ);u ∈ [0, 1], θ ∈ [0, 2π]}
be the unit disk of C. Define D(X,L, L‖, Z, η) (up to homotopy) as the section of UM that
coincides with X outside N(L) and that reads as follows in N(L) that is trivialized with respect
to L‖ so that it reads D2 × L.

• D(X,L, L‖, Z, η)(0, k ∈ L) = −X(0, k),

• when u ∈]0, 1], [−X,D(X,L, L‖, Z)(u exp(iθ), k)] is the geodesic arc of length uπ of the
half great circle [−X,X]ρ(ηθ,X)(Z) from (−X) to X through ρ(ηθ,X)(Z), where X and Z
stand for X(u exp(iθ), k) and Z(u exp(iθ), k), respectively,
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so that D(X,L, L‖, Z, η)(1/2, k) = Z(1/2, k). Note that the homotopy class of D(X,L, L‖, Z, η)
can also be defined by the following formula.

D(X,L, L‖, Z, η)(u exp(iθ), k) = ρ(π(1 + u), ρ(ηθ − π/2, X)(Z))(X)(u exp(iθ), k).

Remark 4.17. Note that with the notation of Remark 2.8

C(X,L, σ) = D(X,L, L‖, Z(σ, σN),−1).

Proposition 4.18. Under the assumptions of Lemma 4.14 above, let η = ±1, let L‖ be a
parallel of L and let N(L) be a tubular neighborhood of L where Z is extended as a section of
UM orthogonal to X. For the combing D(X,L, L‖, Z, η) of Definition 4.16,

p1(D(X,L, L‖, Z, η))− p1(X) = 4lk(L, ηL(Z ⊂ X⊥)− L‖).

Proof: Set Y = D(X,L, L‖, Z, η). Let τ be the parallelization of N(L) with first vector X
and second vector Z. Then τ−1 maps Y (D2/∂D2 × k) to the sphere S2 with degree (−η) so
that LY=−X = −ηL and LX=−Y = ηL. In order to use Theorem 1.2, deform X to X̃ to make
it transverse to Y using Z̃ as follows. Let N1/3(L) = {(u exp(iθ), k ∈ L) ∈ N(L);u ∈ [0, 1/3]}
and N2/3(L) = {(u exp(iθ), k) ∈ N(L);u ∈ [0, 2/3]}. Consider a function χ:M → [0, 1] that
maps

(
M \N2/3(L)

)
to 1 and N1/3(L) to 0. Let ε be a very small positive real number,

set X̃ = 1
‖X+εχZ̃‖(X + εχZ̃) so that X̃(M) is now transverse to Y (M). Outside UM|N(L),

X̃(M) ∩ Y (M) reads Y (L(Z ⊂ X⊥)), whereas on UM|N(L), Y (M) ∩ X̃(M) reads Y (−ηL‖)
because Y covers S2 with degree (−η) along a fiber of N(L). �

We have the two immediate corollaries.

Corollary 4.19. Under the hypotheses of Proposition 4.18, when Z extends as a section of the
unit bundle of X⊥ on M ,

p1(D(X,L, L‖, Z, η)) = p1(X)− 4lk(L,L‖).

Corollary 4.20. Under the hypotheses of Proposition 4.18, let K = {K(exp(iκ) ∈ S1)} be a
component of L, let r ∈ Z, and let Zr = Z on L\K and Zr(K(k = exp(iκ))) = ρ(rκ,X)(Z)(k).
Then

p1(D(X,L, L‖, Zr, η))− p1(D(X,L, L‖, Z, η)) = 4ηr.

Note that under the hypotheses of Proposition 4.18, when X is tangent to L, if Z is induced
by L‖, then D(X,L, L‖, Z, 1) is independent of Z and L‖.

The following combing modification also arises in the study of combings associated with
Heegaard diagrams.
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Proposition 4.21. Let M be equipped with a torsion combing X. Let N0(L) denote a tubular
neighborhood of a rationally null-homologous link L in the interior of M . Let L2 ⊂ ∂N0(L)
be a satellite of L such that the restriction to L2 of the bundle projection of N0(L) onto L
defines a 2-fold covering of L. Let s be the involution of L2 that exchanges two points in
a fiber of this covering. Pick a parallelization τ of M such that X is constant with respect
to τ over N(L). Let Z be a section orthogonal to X of the restriction of UM to L2, such
that Z(s(k)) = −Z(k). Define D(X,L, L2, Z,−1) as follows. On intervals I of L, trivialize
a larger tubular neighborhood N(L) (N0(L) ⊂ N(L)) as D2 × I so that (D2 × I) ∩ L2 reads
{−1/2, 1/2} × I, and define D(X,L, L2, Z,−1) as in Proposition 4.18 on these portions:

• D(X,L, L2, Z,−1)(0, k ∈ I) = −X(0, k),

• when u ∈]0, 1], [−X,D(X,L, L2, Z)(u exp(iθ), k)] is the geodesic arc of length uπ of the
half great circle [−X,X]ρ(−θ,X)(Z(1/2,k)) from (−X) to X through ρ(−θ,X)(Z(1/2, k)),

so that D(X,L, L2, Z,−1)(1/2, k) = Z(1/2, k). Let f be a smooth increasing surjective function
from an interval I to [0, π], such that all derivatives of f vanish at the ends of I. Let k ∈ Z.
Define

T k: D2 × I −→ D2 × I
(u exp(iθ), t) 7→ (u exp(i(θ + kf(t))), t)

so that T is a half-twist. Assume that D2×I is a part of N(L) as above and let (T k(L2), T k∗ (Z))
coincide with (L2, Z) outside D2 × I and read (T k(L2), T k∗ (Z)) on D2 × I where, for θ ∈
{−1/2, 1/2},

T k∗ (Z)((exp(i(θ + kf(t)))/2, t)) = ρ(kf(t), X)(Z((exp(iθ)/2, t))).

Then
p1(D(X,L, T k(L2), T k∗ (Z),−1))− p1(D(X,L, L2, Z,−1)) = −4k

Proof: The variation of a combing under some T k sits inside the ball D2 × I. Therefore
the corresponding variation of p1 may be read in this ball. It does not depend on the trivial-
ization of the ball induced by X and Z, since all of them are homotopic. Therefore, it only
depends on k, linearly. The coefficient is obtained by looking at the effect of the twist T 2 on a
D(X,L, L‖, Z,−1) as in Proposition 4.18. �

5 The Θ-invariant of combings

In this section, we present a self-contained homogeneous definition of an invariant Θ of combings
of rational homology balls. This definition is deeply inspired from the definition of ΘKKT that
can be found in [Les04b, Section 6.5] and in [Les11, Theorem 2.14].
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5.1 On configuration spaces

Recall that blowing up a submanifold A means replacing it by its unit normal bundle. See
Definition 3.5.

In a closed 3-manifold R, we fix a point ∞ and define C1(R) as the compact 3-manifold
obtained from R by blowing up {∞}. This space C1(R) is a compactification of Ř = (R\{∞}).

The configuration space C2(R) is the compact 6–manifold with boundary and corners ob-
tained from R2 by blowing up (∞,∞), and the closures of {∞}× Ř, Ř×{∞} and the diagonal
of Ř2, successively.

Then ∂C2(R) contains the unit normal bundle to the diagonal of Ř2. This bundle is canon-
ically isomorphic to UŘ via the map

[(x, y)] ∈
TrŘ2

diag
\ {0}

R∗+
7→ [y − x] ∈ TrŘ \ {0}

R∗+
.

Since ((R3)2 \ diag) is homeomorphic to R3×]0,∞[×S2 via the map

(x, y) 7→ (x, ‖ y − x ‖, 1

‖ y − x ‖
(y − x)),

((R3)2 \ diag) is homotopy equivalent to S2. In general, C2(R) is homotopy equivalent to
(Ř2 \ diag). When R is a rational homology sphere, Ř is a rational homology R3 and the
rational homology of (Ř2 \diag) is isomorphic to the rational homology of ((R3)2 \diag). Thus,
C2(R) has the same rational homology as S2, and H2(C2(R);Q) has a canonical generator [S]
that is the homology class of a fiber of UŘ ⊂ C2(R), oriented as the boundary of the unit ball
of a fiber of TŘ. For a 2-component link (J,K) of Ř, the homology class [J ×K] of the image
of J ×K in H2(C2(R);Q) reads lk(J,K)[S], where lk(J,K) is the linking number of J and K,
see [Les12, Proposition 1.6].

5.2 On propagators

When R is a rational homology sphere, a propagator of C2(R) is a 4–cycle F of (C2(R), ∂C2(R))
that is Poincaré dual to the preferred generator of H2(C2(R);Q) that maps [S] to 1. For such
a propagator F , for any 2-cycle G of C2(R),

[G] = 〈F,G〉C2(R)[S]

in H2(C2(R);Q).
Let B and 1

2
B be two balls in R3 of respective radii ` and `

2
, centered at the origin in

R3. Identify a neighborhood of ∞ in R with S3 \ (1
2
B) in (S3 = R3 ∪ {∞}) so that Ř reads

Ř = M∪]`/2,`]×S2 (R3\(1
2
B)) for a rational homology ball M whose complement in Ř is identified

with R3 \B. There is a canonical regular map

p∞: (∂C2(R) \ UM)→ S2
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that maps the limit in ∂C2(R) of a sequence of ordered pairs of distinct points of (Ř \ M)
to the limit of the direction from the first point to the second one. See [Les04a, Lemma 1.1].
Recall that τs:R3 ×R3 → TR3 denotes the standard parallelization of R3. Also recall that the
sections X of UM that we consider are constant on ∂M , i.e. they read τs(∂M × {V (X)}) for
some fixed V (X) ∈ S2 on ∂M . Let X be such a section. Then the propagator boundary bX
associated with X is the following 3–cycle of ∂C2(R)

bX = p−1
∞ (V (X)) ∪X(M)

and a propagator associated with the section X is a 4–chain FX of C2(R) whose boundary reads
bX . Such an FX is indeed a propagator because the algebraic intersection in UM of a fiber and
the section X(M) is one.

5.3 On the Θ-invariant of a combed Q-sphere

Theorem 5.1. Let X be a section of UM (that is constant on ∂M) for a rational homology
ball M , and let (−X) be the opposite section. Let FX and F−X be two associated transverse
propagators. Then FX ∩ F−X is a two-dimensional cycle whose homology class is independent
of the chosen propagators. It reads Θ(M,X)[S], where Θ(M,X) is a rational valued topological
invariant of (M, [X]).

Proof: Recall that C2(R) has the same rational homology as S2. In particular, since
H3(C2(R);Q) = 0, there exist transverse propagators FX and F−X with the given bound-
aries bX and b−X . Without loss, assume that F±X ∩ ∂C2(R) = b±X . Since bX and b−X do not
intersect, FX ∩ F−X is a 2–cycle. Since H4(C2(R);Q) = 0, the homology class of FX ∩ F−X in
H2(C2(R);Q) does not depend on the choices of FX and F−X with their given boundaries. It
reads Θ(M,X)[S]. Then it is easy to see that Θ(M,X) ∈ Q is a locally constant function of
the section X. �

When R is an integral homology sphere, a combing X is the first vector of a unique par-
allelization τ(X) that coincides with τs outside M , up to homotopy. When R is a rational
homology sphere, and when X is the first vector of a such a parallelization τ(X), this paral-
lelization is again unique. In this case, according to [Les04b, Section 6.5] (or [Les11, Theorem
2.14]), the invariant Θ(M,X) is the degree 1 part of the Kontsevich invariant of (M, τ(X))
[Kon94, KT99, Les04a] and

Θ(M,X) = 6λ(M) +
p1(τ(X))

4
.

With our extension of the definition of p1 to combings, we prove that the above formula
also holds for combings.

Theorem 5.2. Let X and Y be two transverse sections of UM . Then

Θ(M,Y )−Θ(M,X) = lk(LX=Y , LX=−Y ).
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In particular,

Θ(M,X) = 6λ(M) +
p1(X)

4
.

Proof: Let us prove that Θ(M,Y ) − Θ(M,X) = lk(LX=Y , LX=−Y ). This can be done as
follows. Let F−1(±X,±Y ) be the chain F (±X,±Y ) of Lemma 3.3 translated by −1 and seen
in a collar [−1, 0] × UM of UM in C2(R). Assume that FX and F−X behave as products
[−1, 0]× ∂F±X in [−1, 0]× UM . Then replacing these parts by F−1(X, Y ) and F−1(−X,−Y ),
respectively, and making the appropriate easy corrections in C2(R)\C2(M) transforms FX and
F−X into chains FY and F−Y so that [FY ∩ F−Y ] = [FX ∩ F−X ] + [F−1(X, Y ) ∩ F−1(−X,−Y )]
where [F−1(X, Y ) ∩ F−1(−X,−Y )] = lk(LX=Y , LX=−Y )[S] according to Proposition 3.6. �
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Changes with respect to the first version v1

There was an incorrect “homotopy” in the last sentence of the proof of Lemma 2.4 in v1. I
apologize. It is replaced by “modification” in the proof of the corresponding Lemma 2.1 in v2.
References have been added, thanks to Patrick Massot’s help.
The paragraph order has been modified as follows:

v1.End of §1.2 ∼ v2.Definition 3.5
v1.§2.1 ∼ v2.§4.1
v1.§2.2− §2.4 ∼ v2.§2.1− §2.3
v1.(Proof of Thm 1.1 in §3.2) ∼ v2.§3.2
v1.(§3.2 except Proof of Thm 1.1 + Proof of Thm 1.3 in §4.1) ∼ v2.§4.2
v1.§4.1 into v2.§4.4
v1.§4.2 = v2.§4.3
v1.Definition 2.6 = v2.Definition 4.16

The redaction of v2.§2.1 has also been modified, and there are minor other local changes in the
redaction elsewhere.
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