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Abstract

The Θ-invariant is the simplest 3-manifold invariant defined with configuration space
integrals. It is actually an invariant of rational homology spheres equipped with a combing
over the complement of a point. It can be computed as the algebraic intersection of three
propagators associated to a given combing X in the 2-point configuration space of a Q–
sphere M . These propagators represent the linking form of M so that Θ(M,X) can be
thought of as the cube of the linking form of M with respect to the combing X. The
invariant Θ is the sum of 6λ(M) and p1(X)

4 , where λ denotes the Casson-Walker invariant,
and p1 is an invariant of combings that is an extension of a first relative Pontrjagin class.
In this article, we present explicit propagators associated with Heegaard diagrams of a
manifold, and we use these “Morse propagators”, constructed with Greg Kuperberg, to
prove a combinatorial formula for the Θ-invariant in terms of Heegaard diagrams.
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Notation 40

1 Introduction

In this article, a Q–sphere or rational homology sphere is a smooth closed oriented 3-manifold
that has the same rational homology as S3.

1.1 General introduction

The work of Witten [Wit89] pioneered the introduction of many Q–sphere invariants, among
which the Le-Murakami-Ohtsuki universal finite type invariant [LMO98] and the Kontsevich
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configuration space invariant [Kon94] that was proved to be equivalent to the LMO invariant
for integral homology spheres by G. Kuperberg and D. Thurston [KT99]. The construction of
the Kontsevich configuration space invariant for a Q–sphere M involves a point ∞ in M , an
identification of a neighborhood of ∞ with a neighborhood of ∞ in S3 = R3 ∪ {∞}, and a
parallelization τ of (M̌ = M \ {∞}) that coincides with the standard parallelization of R3 near
∞. The Kontsevich configuration space invariant is in fact an invariant of (M, τ). Its degree

one part Θ(M, τ) is the sum of 6λ(M) and p1(τ)
4

, where λ is the Casson-Walker invariant and p1

is a Pontrjagin number associated with τ , according to a Kuperberg Thurston theorem [KT99]
generalized to rational homology spheres in [Les04b]. Here, the Casson-Walker invariant λ
is normalized like in [AM90, GM92, Mar88] for integral homology spheres, and like 1

2
λW for

rational homology spheres where λW is the Walker normalisation in [Wal92].
The invariant Θ(M, τ) reads

Θ(M, τ) =

∫
M̌2\diag(M̌)2

ω(M, τ)3

for some closed 2-form ω(M, τ) that is often called a propagator . As it is developed in [Les04b,
Section 6.5], Θ(M, τ) can also be written as the algebraic intersection of three 4-dimensional
chains in a compactification C2(M) of M̌2 \ diag(M̌)2, for chains that are Poincaré dual to
ω(M, τ) in the 6–dimensional configuration space C2(M). In this article, a propagator will be
such a 4-chain. For more precise definitions, see Subsection 2.2. A combing of a 3-manifold M
as above is an asymptotically constant nowhere zero section of the tangent bundle of M̌ .

In Theorem 2.1, we will prove that the invariant Θ is an invariant of combed Q–spheres
(M,X) rather than an invariant of parallelised punctured Q–spheres, so that (4Θ(M,X) −
24λ(M)) is an extension of the Pontrjagin number p1 to combings. The invariant p1 of paral-
lelizations coincides with the Hirzebruch defect of the parallelization τ studied in [Hir73, KM99].
This invariant p1 of combings is studied in [Les13], and it is shown to be the analogue of the
Gompf θ-invariant [Gom98, Section 4] of Q–sphere combings, for asymptotically constant comb-
ings of punctured Q–spheres. The variations of Θ, θ and p1 under various combing changes are
described in [Les13].

In Section 4, we describe explicit propagators associated with Morse functions or with
Heegaard splittings. These “Morse propagators” have been obtained in collaboration with
Greg Kuperberg. Then we use these propagators to produce a combinatorial description of Θ
in terms of Heegaard diagrams in Theorem 3.8.

Our Morse propagators and our techniques could be applied to compute more configuration
space invariants, and they might be useful to relate finite type invariants to Heegaard Floer
homology.

This article benefited from the stimulating visit of Greg Kuperberg in Grenoble in 2010-2011.
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1.2 Conventions and notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented by the outward
normal first convention. Products are oriented by the order of the factors. More generally, unless
otherwise mentioned, the order of appearance of coordinates or parameters orients chains or
manifolds. The fiber of the normal bundle V(V ) to an oriented submanifold V is oriented so that
the normal bundle followed by the tangent bundle to the submanifold induce the orientation
of the ambient manifold, fiberwise. The transverse intersection of two submanifolds V and
W is oriented so that the normal bundle of V ∩W is (V(V ) ⊕ V(W )), fiberwise. When the
dimensions of two such submanifolds add up to the dimension of the ambient manifold U , each
intersection point x is equipped with a sign ±1 that is 1 if and only if (Vx(V ) ⊕Vx(W )) (or
equivalently (Tx(V ) ⊕ Tx(W ))) induces the orientation of U . When V is compact, the sum of
the signs of the intersection points is the algebraic intersection number 〈V,W 〉U . For a manifold
V , (−V ) denotes the manifold V equipped with the opposite orientation.

2 The Θ-invariant

This section presents a complete definition of the invariant Θ.

2.1 On configuration spaces

In this article, blowing up a submanifold V means replacing it by its unit normal bundle.
Locally, Rc × V is replaced with [0,∞[×Sc−1 × V , where the fiber Rc of the normal bundle
is naturally identified with {0} ∪ (]0,∞[×Sc−1). Topologically, this amounts to removing an
open tubular neighborhood of the submanifold (thought of as infinitely small), but the process
is canonical, so that the created boundary is the unit normal bundle of the submanifold and
there is a canonical projection from the manifold obtained by blow-up to the initial manifold.

In a closed 3-manifold M , we fix a point ∞ and define the blown-up manifold C1(M)
as the compact 3-manifold obtained from M by blowing up {∞}. This space C1(M) is a
compactification of M̌ = (M \ {∞}).

The configuration space C2(M) is the compact 6–manifold with boundary and corners ob-
tained from M2 by blowing up (∞,∞), and the closures of {∞} × M̌ , M̌ × {∞} and the
diagonal of M̌2, successively.

Then the boundary ∂C2(M) of C2(M) contains the unit normal bundle of the diagonal of
M̌2. This bundle is canonically isomorphic to the unit tangent bundle UM̌ of M̌ via the map

[(x, y)] ∈
TmM̌2

diag
\ {0}

R+∗ 7→ [y − x] ∈ TmM̌ \ {0}
R+∗ .

When M is a rational homology sphere, the configuration space C2(M) has the same rational
homology as S2 (see the proof of Theorem 2.1 below) and H2(C2(M);Q) has a canonical
generator [S] that is the homology class of a product (x×∂B(x)) where B(x) is a ball embedded
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in M̌ that contains x in its interior. For a 2-component link (J,K) of M , the homology class
[J ×K] of J ×K in H2(C2(M);Q) reads lk(J,K)[S], where lk(J,K) is the linking number of
J and K, that is the algebraic intersection number of J and a 2-dimensional chain bounded by
K.

2.2 On propagators

WhenM is a rational homology sphere, a propagator of C2(M) is a 4–cycle P of (C2(M), ∂C2(M))
that is Poincaré dual to the preferred generator of H2(C2(M);Q) that maps [S] to 1. For such
a propagator P , for any 2-cycle G of C2(M),

[G] = 〈P , G〉C2(M)[S]

in H2(C2(M);Q) where 〈P , G〉C2(M) denotes the algebraic intersection of P and G in C2(M).
Let B and 1

2
B be two balls in R3 of respective radii R and R

2
, centered at the origin in

R3. Identify a neighborhood of ∞ in M with S3 \ (1
2
B) in (S3 = R3 ∪ {∞}) so that M̌ reads

M̌ = BM ∪]R/2,R]×S2 (R3 \ (1
2
B)) for a rational homology ball BM whose complement in M̌ is

identified with R3 \B. There is a canonical regular map

p∞: (∂C2(M) \ UBM)→ S2

that maps the limit in ∂C2(M) of a convergent sequence of ordered pairs of distinct points of(
M̌ \BM

)2
to the limit of the direction from the first point to the second one. See [Les04a,

Lemma 1.1]. Let
τs:R3 × R3 → TR3

denote the standard parallelization of R3. In this article, a combing X of a Q–sphere M is a
section of UM̌ that is constant outside BM , i.e. that reads τs((M̌ \BM)×{~v(X)}) for some fixed
~v(X) ∈ S2 outside BM . Then the propagator boundary ∂PX associated with such a combing
X is the following 3–cycle of ∂C2(M)

∂PX = p−1
∞ (~v(X)) ∪X(BM)

where the part X(BM) of ∂C2(M) is the graph of the restriction of the combing X to BM and
a propagator associated with the combing X is a 4–chain PX of C2(M) whose boundary reads
∂PX . Such a PX is indeed a propagator (because for a tiny sphere ∂B(x) around a point x,
〈x×∂B(x),PX〉C2(M) is the algebraic intersection in UM̌ of a fiber and the section X(M̌), that
is one).

2.3 On the Θ-invariant of a combed Q–sphere

Theorem 2.1 Let X be a combing of a rational homology sphere M , and let (−X) be the
opposite combing. Let PX and P−X be two associated transverse propagators. Then PX ∩ P−X
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is a two-dimensional cycle whose homology class is independent of the chosen propagators. It
reads Θ(M,X)[S], where Θ(M,X) is therefore a rational valued topological invariant of M and
of the homotopy class of X.

Proof: Let us first show that C2(M) has the same rational homology as S2. The space C2(M)
is homotopy equivalent to (M̌2\diag). Since M̌ is a rational homology R3, the rational homology
of (M̌2 \ diag) is isomorphic to the rational homology of ((R3)2 \ diag). Since ((R3)2 \ diag) is
homeomorphic to R3×]0,∞[×S2 via the map

(x, y) 7→ (x, ‖ y − x ‖, 1

‖ y − x ‖
(y − x)),

((R3)2 \ diag) is homotopy equivalent to S2.
In particular, since H3(C2(M);Q) = 0, there exist (transverse) propagators PX and P−X

with the given boudaries ∂PX and ∂P−X . Without loss, assume that P±X ∩ ∂C2(M) = ∂P±X .
Since ∂PX and ∂P−X do not intersect, PX ∩ P−X is a 2–cycle. Since H4(C2(M);Q) = 0, the
homology class of PX ∩ P−X in H2(C2(M);Q) does not depend on the choices of PX and P−X
with their given boundaries. Then it is easy to see that Θ(M,X) ∈ Q is a locally constant
function of the combing X. �

When M is an integral homology sphere, a combing X is the first vector of a unique par-
allelization τ(X) that coincides with τs outside BM , up to homotopy. When M is a rational
homology sphere, and when X is the first vector of a such a parallelization τ(X), this par-
allelization is again unique. In this case, the invariant Θ(M,X) is the degree 1 part of the
Kontsevich invariant of (M, τ(X)) [Kon94, KT99, Les04a]. Let W be a connected compact
4–dimensional manifold with corners with signature 0 whose boundary is

∂W = BM ∪1×∂BM (−[0, 1]× S2) ∪0×S2 (−B3)

and that is identified with an open subspace of one of the products [0, 1[×B3 or ]0, 1]×BM near
∂W . Then the Pontrjagin number p1(τ(X)) is the obstruction to extending the trivialization of
TW⊗C induced by τ(X) and τs on ∂W toW . This obstruction lives inH4(W,∂W ; π3(SU(4)) =
Z) = Z. See [Les04a, Section 1.5] for more details. In [KT99], G. Kuperberg and D. Thurston
proved that

Θ(M,X) = 6λ(M) +
p1(τ(X))

4

when M is an integral homology sphere. This result was extended to Q–spheres by the author
in [Les04b, Theorem 2.6 and Section 6.5]. Setting p1(X) = (4Θ(M,X)− 24λ(M)) extends the
Pontrjagin number from parallelizations to combings so that the formula above is still valid for
combings.

The following theorem is proved in [Les13].
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Figure 1: Two Heegaard diagrams of RP3

Theorem 2.2 Let X and Y be two combings of M such that the cycle ∂PY is transverse to
∂PX and to ∂P−X in ∂C2(M). Then the oriented intersection ∂PX ∩∂PY (resp. ∂PX ∩∂P−Y )
is a section of UM̌ over an oriented link LX=Y (resp. LX=−Y ) and

Θ(M,Y )−Θ(M,X) =
p1(Y )− p1(X)

4
= lk(LX=Y , LX=−Y ).

3 The formula for the Θ-invariant from Heegaard dia-

grams

3.1 On Heegaard diagrams

Every closed 3–manifold M can be written as the union of two handlebodies HA and HB glued
along their common boundary that is a genus g surface as

M = HA ∪∂HA HB

where ∂HA = −∂HB. Such a decomposition is called a Heegaard decomposition of M . A system
of meridian disks for HA is a system of g disjoint disks D(αi) properly embedded in HA such
that the union of the boundaries αi of the D(αi) does not separate ∂HA. Let (D(αi))i∈{1,...,g}
be such a system for HA and let (D(βj))j∈{1,...,g} be such a system for HB. Then the surface
equipped with the collections of the curves αi and the curves βj = ∂D(βj) determines M .
When the collections (αi)i∈{1,...,g} and (βj)j∈{1,...,g} are transverse, the data collection

D = (∂HA, (αi)i∈{1,...,g}, (βj)j∈{1,...,g})

is called a genus g Heegaard diagram. Figure 1 shows two Heegaard diagrams of RP3 (or SO(3)).
We fix such a diagram D. A crossing c of D is an intersection point of a curve αi(c) and a

curve βj(c). Its sign σ(c) is 1 if ∂HA is oriented by the oriented tangent vector of αi(c) followed
by the oriented tangent vector of βj(c) at c. It is (−1) otherwise. The collection of crossings is
denoted by C.

Fix a point ai inside each disk D(αi) and a point bj inside each disk D(βj). Then join ai
to each crossing c of αi by a segment [ai, c]D(αi) oriented from ai to c in D(αi), so that these
segments only meet at ai for different c. Similarly define segments [c, bj(c)]D(βj(c)) from c to bj(c)
in D(βj(c)). Then for each c, define the flow line γ(c) = [ai(c), c]D(αi(c)) ∪ [c, bj(c)]D(βj(c)).
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A Heegaard decomposition as above can be obtained from a Morse function fM on M with
one minimum, one maximum, index one-critical points ai mapped to 1 and index 2 critical
points bj mapped to 5, by setting HA = f−1

M (] −∞, 3]) and HB = f−1
M ([3,+∞[) [Hir94]. For

an appropriate (generic) metric, the descending manifolds of the bj intersect HB as disks D(βj)
and the ascending manifolds of the ai intersect HA as disks D(αi) so that the boundaries αi
of the D(αi) are transverse to the boundaries βj of the D(βj). The Morse function fM and
such a metric g induce a Heegaard diagram of M where the flow line γ(c) above can be chosen
as the closure of the actual flow line through c for the gradient flow of fM . Conversely, for
any Heegaard diagram, there exist a Morse function and a metric as above that produce this
diagram.

An exterior point of the diagram is a point of ∂HA \
(∐g

i=1 αi ∪
∐g

j=1 βj

)
as in Figure 1.

Pick an exterior point w of the diagram, and let γ(w) be the closure of the flow line through
w with respect to g. It goes from the minimum of fM to its maximum. Identify a ball around
γ(w) with a neighborhood of ∞ in S3, so that the restriction of fM to BM extends to M̌ as
a Morse function f that is the standard height function outside BM , that has no extremum,
whose index one critical points ai are mapped to 1, and whose index 2 critical points bj are
mapped to 5.

In Section 4, we describe an explicit propagator P(f, g) associated with a Morse function f
of M̌ that satisfies these properties, and with a metric g that is standard outside BM .

A matching in a genus g Heegaard diagram (∂HA, {αi}i=1,...,g, {βj}j=1,...,g) is a set m of g
crossings such that every curve of the diagram contains one crossing of m. Thus a matching
m can be written as m = {ci; i ∈ {1, 2, . . . , g}} where the ci are crossings of αi ∩ βρ−1(i) for a
permutation ρ of {1, 2, . . . , g}.

The choice of a matching m and of an exterior point w in a diagram D of M equips M̌
with a combing X(w,m) = X(D, w,m), that is roughly obtained from the gradient vector of
f by reversing this singular field along the flow lines through the points of m. The combing
X(w,m) of M̌ is precisely described in Subsection 5.1. 1 The propagator P(f, g) is modified
near ∂C2(M) to become a propagator PX(w,m) associated with X(w,m) in Subsection 5.2.

Sections 6 and 7 are devoted to the computation of Θ(M,X(w,m)), performed by evaluating
the homology class of the intersection of PX(w,m) and P−X(w,m), and by applying the definition
of Theorem 2.1. This section is devoted to presenting the combinatorial formula

Θ(M,X(D, w,m)) = `2(D) + lk(L(D,m), L(D,m)‖)− e(D, w,m)

that we get from our computation.
The three ingredients of our formula are completely combinatorial. They can be read on the

Heegaard diagram without referring to Morse functions. However, they also have a topological
meaning that explains the chosen notation and that makes them easier to apprehend. We first

1The same data (D, w,m) can be used to define an Euler structure or a combing of the non-punctured
M . Such a combing represents a Spinc structure. Matchings representing a given Spinc-structure ξ are the
generators of a chain complex whose homology is a Heegaard-Floer homology of (M, ξ).
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introduce the ingredients lk(L(D,m), L(D,m)‖) and `2(D) with their topological interpreta-
tions in Subsections 3.2 and 3.3, respectively, before giving their combinatorial expressions in
Corollary 3.5 at the end of Subsection 3.4. The combinatorial definition of e(D, w,m) is given
in Subsection 3.5.

Let
[Jji](j,i)∈{1,...,g}2 = [〈αi, βj〉∂HA ]−1

be the inverse matrix of the matrix of the algebraic intersection numbers 〈αi, βj〉∂HA .

g∑
i=1

Jji〈αi, βk〉∂HA = δjk =

{
1 if j = k
0 otherwise.

Let

L(m) = L(D,m) =

g∑
i=1

γ(ci)−
∑
c∈C

Jj(c)i(c)σ(c)γ(c).

Note that L(m) is a cycle since

∂L(m) =

g∑
i=1

(bi − ai)−
∑

(i,j)∈{1,...,g}2
Jji〈αi, βj〉∂HA(bj − ai) = 0.

The term lk(L(D,m), L(D,m)‖) is the linking number of L(m) with a canonical parallel
L(m)‖ of L(m) that is defined in Subsection 3.2 below.

Example 3.1 For the genus one Heegaard diagram D1 of Figure 1, σ(c) = 1, 〈α1, β1〉∂HA = 2,
J11 = 1

2
, we choose {c} as a matching and L({c}) = 1

2
(γ(c)− γ(d)).

For the genus two Heegaard diagram D2 of Figure 1, 〈α2, β1〉∂HA = 1, J11 = 1
2
, J22 = 1,

J12 = 0, J21 = −1
2
, we choose the matching {c, e} and L({c, e}) = 1

2
(γ(c)− γ(d)).

3.2 Parallels of flow lines

For each point ai, choose a point a+
i and a point a−i close to ai outside D(αi) so that a+

i is on
the positive side of D(αi) (the side of the positive normal) and a−i is on the negative side of
D(αi). Similarly fix points b+

j and b−j close to the bj and outside the D(βj).
Then for a crossing c ∈ αi(c) ∩ βj(c), γ(c)‖ will denote the following chain. Consider a small

meridian curve m(c) of γ(c) on ∂HA, it intersects βj(c) at two points: c+
A on the positive side of

D(αi(c)) and c−A on the negative side of D(αi(c)). The meridian m(c) also intersects αi(c) at c+
B

on the positive side of D(βj(c)) and c−B on the negative side of D(βj(c)). Let [c+
A, c

+
B ], [c+

A, c
−
B ],

[c−A, c
+
B ] and [c−A, c

−
B ] denote the four quarters of m(c) with the natural ends and orientations

associated with the notation.
Let γ+

A(c) (resp. γ−A(c)) be an arc parallel to [ai(c), c]D(αi(c)) from a+
i(c) to c+

A (resp. from a−i(c)
to c−A) that does not meet D(αi(c)). Let γ+

B (c) (resp. γ−B (c)) be an arc parallel to [c, bj(c)]D(βj(c))

from c+
B to b+

j(c) (resp. from c−B to b−j(c)) that does not meet D(βj(c)).
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c−B c+B

c−A
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−
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+
B ]
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B ]

c+A

βj

αic

σ(c) = −1
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c−A
[c−A, c

+
B ]
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+
B ]
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−
B ]

[c+A, c
−
B ]

c+A

Figure 2: m(c), c+
A, c−A, c+

B and c−B

γ(c)‖ =
1

2
(γ+
A(c) + γ−A(c)) +

1

4
([c+
A, c

+
B ] + [c+

A, c
−
B ] + [c−A, c

+
B ] + [c−A, c

−
B ]) +

1

2
(γ+
B (c) + γ−B (c)).

Set ai‖ = 1
2
(a+
i + a−i ) and bj‖ = 1

2
(b+
j + b−j ). Then ∂γ(c)‖ = bj(c)‖ − ai(c)‖.

Set L(m)‖ =
∑g

i=1 γ(ci)‖ −
∑

c∈C Jj(c)i(c)σ(c)γ(c)‖ and note that L(m)‖ is a cycle disjoint
from L. The cycle L(m) depends neither on the orientations of the αi and the βj, nor on their
order. Permuting the roles of the αi and the roles of the βj reverses its orientation and leaves
lk(L(m), L(m)‖) unchanged.

3.3 A 2-cycle G(D) of C2(M) associated with a Heegaard diagram

The term `2(D) will be defined from the homology class of the 2–cycle G(D) of C2(M) associated
with the Heegaard diagram in the following proposition 3.2, by the equality [G(D)] = `2(D)[S]
in H2(C2(M);Q). This term `2(D) can be thought of as the main term of the formula, the
other ones can be thought of as correction terms.

Proposition 3.2 Set

G(D) =
∑

(c,d)∈C2
Jj(c)i(d)Jj(d)i(c)σ(c)σ(d)(γ(c)× γ(d)‖)−

∑
c∈C

Jj(c)i(c)σ(c)(γ(c)× γ(c)‖).

Then G(D) is a 2–cycle of C2(M). Its homology class [G(D)] depends neither on the orienta-
tions of the αi and the βj, nor on their order. Permuting the roles of the αi and the roles of
the βj does not change it either.

Proof: Let us first prove that G(D) is a 2-cycle. Note that, for any j,

∑
c∈βj

Jj(d)i(c)σ(c) =

g∑
i=1

Jj(d)i〈αi, βj〉 = δjj(d)

10



and, for any i,
∑

c∈αi Jj(c)i(d)σ(c) =
∑g

j=1 Jji(d)〈αi, βj〉 = δii(d). Therefore, for any d ∈ C,

∂

(∑
c∈C

Jj(c)i(d)Jj(d)i(c)σ(c)γ(c)

)
= Jj(d)i(d)(bj(d) − ai(d)) = Jj(d)i(d)∂γ(d)

and

∂G(D) =
∑

d∈C σ(d)Jj(d)i(d)(∂γ(d))× γ(d)‖ −
∑

c∈C Jj(c)i(c)σ(c)(∂γ(c))× γ(c)‖
−
∑

c∈C Jj(c)i(c)σ(c)γ(c)× ∂γ(c)‖ +
∑

c∈C Jj(c)i(c)σ(c)γ(c)× ∂γ(c)‖ = 0.

In particular our choices for the a±i near the ai (resp. for the b±j ) do not matter as soon as
they satisfy our assumptions of being on the wanted side of D(αi) (resp. D(βj)). Now, since
the + and the − play the same roles in the formula, γ(c)‖ does not depend on the orientations
of the αi and the βj. Since changing the orientation of αi(c) leaves Jj(d)i(c)σ(c) invariant and
changing the orientation of βj(c) leaves Jj(c)i(d)σ(c) invariant, the cycle G(D) does not depend
on the orientations of the αi and the βj. It clearly does not depend on the numbering. It is
also easy to see that permuting the roles of the αi and the βj reverses the orientations of the
γ(c), changes J to the transposed matrix and does not change the cycle G(D) either. �

Note that `2(D) is additive under connected sum of Heegaard diagrams, and therefore it is
invariant under stabilisation of diagrams, but, as Example 3.9 will show, it is not an invariant of
Heegaard splittings. In the next subsection, we state Proposition 3.4 that yields combinatorial
formulae both for `2(D) and for lk(L(D,m), L(D,m)‖).

3.4 Evaluating some 2–cycles of C2(M)

When d and e are two crossings of αi, [d, e]αi = [d, e]α denotes the set of crossings from d to e
(including them) along αi, or the closed arc from d to e in αi depending on the context. Then
[d, e[α= [d, e]α \ {e}, ]d, e]α = [d, e]α \ {d} and ]d, e[α= [d, e[α\{d}.

Now, for such a part I of αi,

〈I, βj〉 =
∑
c∈I∩βj

σ(c).

We shall also use the notation | for ends of arcs to say that an end is half-contained in an arc,
and that it must be counted with coefficient 1/2. (“[d, e|α = [d, e]α \ {e}/2”). We agree that
|d, d|α = ∅.

We use the same notation for arcs [d, e|βj = [d, e|β of βj. For example, if d is a crossing of
αi ∩ βj, then

〈[d, d|α, βj〉 =
σ(d)

2
and

〈[c, d|α, [e, d|β〉 =
σ(d)

4
+

∑
c∈[c,d[α∩[e,d[β

σ(c).
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Example 3.3 In the diagramD1 of Figure 1, 〈[c, c|α, [c, c|β〉 = 1
4
, 〈[c, c|α, [c, d|β〉 = 〈[c, d|α, [c, c|β〉 =

1
2
, 〈[c, d|α, [c, d|β〉 = 5

4
, 〈[c, c|α, β1〉 = 1

2
and 〈[c, d|α, β1〉 = 3

2
.

The following proposition is proved in Subsection 4.3.

Proposition 3.4 For any curve αi (resp. βj), choose a basepoint p(αi) (resp. p(βj)). These
choices being made, for two crossings c and d of C, set

`(c, d) = 〈[p(α(c)), c|α, [p(β(d)), d|β〉 −
∑

(i,j)∈{1,...,g}2
Jji〈[p(α(c)), c|α, βj〉〈αi, [p(β(d)), d|β〉

where α(c) = αi(c) and β(c) = βj(c). Then, for any 2–cycle G =
∑

(c,d)∈C2 gcd(γ(c) × γ(d)‖) of

C2(M),

[G] =
∑

(c,d)∈C2
gcd`(c, d)[S] =

∑
(c,d)∈C2

gcd`(d, c)[S].

We have the following immediate corollary of Proposition 3.4.

Corollary 3.5 For any choice of ` as in Proposition 3.4

`2(D) =
∑

(c,d)∈C2
Jj(c)i(d)Jj(d)i(c)σ(c)σ(d)`(c, d)−

∑
c∈C

Jj(c)i(c)σ(c)`(c, c)

and

lk(L(D,m), L(D,m)‖) =
∑

(i,j)∈{1,...,g}2 `(ci, cj) +
∑

(c,d)∈C2 Jj(c)i(c)Jj(d)i(d)σ(c)σ(d)`(c, d)

−
∑

(i,c)∈{1,...,g}×C Jj(c)i(c)σ(c)(`(ci, c) + `(c, ci)).

Proof: Recall [L(m)× L(m)‖] = lk(L(m), L(m)‖)[S] in H2(C2(M);Q). �

Example 3.6 Again, consider the diagram D1 of Figure 1. Choose p(α1) = p(β1) = c. Using
Example 3.3, we get

`(c, c) =
1

4
− 1

8
=

1

8
, `(d, d) =

5

4
− 9

8
=

1

8
, `(c, d) = `(d, c) =

1

2
− 3

8
=

1

8
.

For the diagram D2 of Figure 1, choose p(α1) = p(β1) = c and p(α2) = p(β2) = e. Then we still
have `(c, c) = `(c, d) = `(d, c) = `(d, d) = 1

8
. Furthermore, `(e, e) = 0 , and, as a nonsymmetric

example, `(c, e) = 0 and `(e, c) = 1
8
. Then lk(L({c}), L({c})‖) = lk(L({c, e}), L({c, e})‖) = 0,

and `2(D1) = `2(D2) = 0.
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3.5 Combinatorial definition of e(w,m)

Recall that we fixed a matching m = {ci; i ∈ {1, 2, . . . , g}} where the ci are crossings of
αi ∩ βρ−1(i) for a permutation ρ of {1, 2, . . . , g}. Select an exterior point w of D. These choices
being fixed, represent the Heegaard diagram D in a plane by removing a topological disk around
w and by cutting the surface ∂HA along the αi. The boundary of the removed topological disk
will be pictured as a rectangle, and each αi gives rise to two boundary components of the planar
surface that are copies of αi denoted by α′i and α′′i . They are drawn as circles. The crossing ci is
located at the points with upward tangents of α′i and α′′i , while the other crossings are located
near the points with downward tangents as in Figure 3. A diagram with these properties is
called a rectangular diagram of (D,m, w).

α′1 α′′1

. . .

α′g α′′g

c1 c1 cg cg

Figure 3: Rectangular diagram of (D,m, w)

The rectangle has the standard parallelization of the plane. Then there is a map “unit
tangent vector” from each partial projection of a beta curve βj in the plane to S1. The total
degree of this map for the curve βj is denoted by de(βj). For a crossing c ∈ βj, de(|cρ(j), c|β) ∈ 1

2
Z

denotes the degree of the restriction of this map to the arc |cρ(j), c|β. For any c ∈ C, define

de(c) = de(|cρ(j(c)), c|β)−
∑

(r,s)∈{1,...,g}2
Jsr〈αr, |cρ(j(c)), c|β〉de(βs),

where |c, c|β = ∅. Then set

e(w,m) = e(D, w,m) =
∑
c∈C

Jj(c)i(c)σ(c)de(c).

In Section 7.1, e(w,m) will be identified with an Euler class. See Proposition 7.2.

Example 3.7 For the Heegaard diagram D1 equipped with the matching m = {c}, there are
two choices for an exterior point w up to isotopy, the choice w of Figure 1, and the choice of a

point w′ in the other connected component of ∂HA \
(∐g

i=1 αi ∪
∐g

j=1 βj

)
. These choices give

rise to the two rectangular diagrams of (D1,m, w) and (D1,m, w
′) shown in Figure 4.

For both rectangular diagrams, we have de(|c, c|β) = 0, de(c) = 0 and de(|c, d|β) = 1
2

while
de(β1) = 0 for (D1, {c}, w) and de(β1) = 2 for (D1, {c}, w′) so that de(d) = 1

2
for (D1, {c}, w)

and de(d) = −1
2

for (D1, {c}, w′). Thus e(w′, {c}) = −1
4

and e(w, {c}) = 1
4
.
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α′1
d c dc

β1

β1

α′′1

(D1,m, w)

w′

(D1,m, w′)

α′1

w

d c dc

β1

α′′1

Figure 4: Rectangular diagrams of (D1, {c}, w) and (D1, {c}, w′)

3.6 Statement of the main theorem

The main result of this article is the following theorem.

Theorem 3.8 For any Heegaard diagram D of a rational homology sphere M , for any exterior
point w of D, and for any matching m as above

Θ(M,X(w,m)) = `2(D) + lk(L(D,m), L(D,m)‖)− e(D, w,m).

Example 3.9 According to the computations of Examples 3.6 and 3.7, Θ(RP3, X(w, {c})) =
−1

4
and Θ(RP3, X(w′, {c})) = 1

4
. Since λ(RP3) = 0, this implies that p1(X(w′, {c})) = 1 and

p1(X(w, {c})) = −1.
Let us now evaluate the ingredients of our formula for the rectangular genus two diagram

(D2, {c, e}, w) of Figure 5. Recall from Example 3.6 that lk(L({c, e}), L({c, e})‖) = 0, and
`2(D2) = 0 and observe e(D2, w, {c, e}) = 1

4
so that Θ(RP3, X(D2, w, {c, e})) = −1

4
.

d c dc

β1

α′1 α′′1

β1
f e fe

β2

α′2 α′′2
β1

Figure 5: (D2, {c, e}, w)

Consider the diagram (D3, {c, e}, w) of Figure 6 obtained from (D2, {c, e}, w) by an isotopy
of β2 on ∂HA. The Jji are the same as forD2, and L(D3, {c, e}) = 1

2
(γ(c)−γ(d))+ 1

2
(γ(g)−γ(h)).

dg
h

c
dg
h

c

β1

α′1 α′′1

β1

β2
f e feβ2
α′2 α′′2

β1

Figure 6: (D3, {c, e}, w)
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Again, choosing p(α1) = p(β1) = c and p(α2) = p(β2) = e, `(c, c) = `(c, d) = `(d, c) =
`(d, d) = 1

8
and `(e, e) = 0. For any crossing x ∈ {c, d, e, f}, `(g, x) = `(h, x) and `(x, g) =

`(x, h). Furthermore, `(g, h) = `(h, g), `(g, g) = `(h, g) + 1
4

and `(h, h) = `(h, g) − 1
4

so that
lk(L(D3, {c, e}), L(D3, {c, e})‖) = 0 and `2(D3) = J21(`(h, h)− `(g, g)) = 1

4
. Thus `2(D) is not

an invariant of Heegaard splittings. Since de(g) = −1
2
, e(D3, w, {c, e}) = 1

4
+ 1

4
= 1

2
. Again

Θ(RP3, X(D3, w, {c, e})) = −1
4
.

A systematic study of the variations of the three ingredients of the formula under the moves
that relate two Heegaard diagrams of a rational homology 3-sphere is performed in [Les14].

4 Propagators associated with Morse functions

In this section, we introduce a propagator P(f, g) associated with a Morse function f without
minima and maxima of M̌ , and with a metric g that is standard outside BM . This Morse
propagator has been constructed in a joint work with Greg Kuperberg. We use this propagator
(whose boundary is not associated with a combing) to prove Proposition 3.4. Similar propa-
gators associated with more general Morse functions have been constructed by Watanabe in
[Wat12], independently.

4.1 The Morse function f

Start with R3 equipped with its standard height function f0 and replace [0, 2g]× [0, 4]× [0, 6]
with a rational homology ball CM equipped with a Morse function f that coincides with f0 on
∂ ([0, 2g]× [0, 4]× [0, 6]), and that has 2g critical points, g points a1, . . . , ag of index 1 that
are mapped to 1 by f , and g points b1, . . . , bg of index 2 that are mapped to 5 by f . Let M̌
be the associated open manifold, and let M be its one-point compactification. Equip M̌ with
a Riemannian metric g that coincides with the standard one outside [0, 2g]× [0, 4]× [0, 6].

The preimage Ha of ]−∞, 2] under f in CM has the standard representation of the bottom
part of Figure 7. Our standard representation of the preimage Hb of [4,+∞[ under f in CM is
shown in the upper part of Figure 7. It can be thought of as the complement of the bottom
part in [0, 2g]× [0, 4]× [0, 6].

The two-dimensional ascending manifold of ai is oriented arbitrarily, its closure is denoted
by Ai. Its intersection with Ha is denoted by D(αi). The boundary of D(αi) is denoted by αi.
The descending manifold of ai is made of two half-lines L+(ai) and L−(ai) starting as vertical
lines and ending at ai. The one with the orientation of the positive normal to Ai is called
L+(ai). Thus L(ai) = L+(ai) ∪ (−L−(ai)) is the descending manifold of ai.

Symmetrically, the two-dimensional descending manifold of bj is oriented arbitrarily, its
closure is denoted by Bj. The Bj are assumed to be transverse to the Ai outside the critical
points. The ascending manifold of bj is made of two half-lines L+(bj) and L−(bj) starting at bj
and ending as vertical lines. The one with the orientation of the positive normal to Bj is called
L+(bj). Thus L(bj) = L+(bj)− L−(bj) is the ascending manifold of bj. See Figure 8.
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Hbβ1 . . . βg

Ha

. . .

α1 αg

Figure 7: Ha and Hb

Let
Ha,2 = CM ∩ f−1(2)

and similarly define Hb,4 = CM∩f−1(4). The preimage of [2, 4] in CM is the product Ha,2×[2, 4].
Its intersection with Ai is −αi × [2, 4] and its intersection with Bj is βj × [2, 4]. Each crossing
c of αi ∩ βj has a sign σ(c) and an associated flow line γ(c) from ai to bj oriented as such.

Note the following lemma.

Lemma 4.1 Let c ∈ αi ∩ βj. Along γ(c), Ai is cooriented by σ(c)βj and Bj is cooriented by
σ(c)αi.

Bj ∩ Ai =
∑

c∈αi∩βj

σ(c)γ(c).

�

4.2 The propagator P(f, g)

Let sφ(M̌) be the closure in UM̌ of the (graph of the) section of UM̌|M̌\{ai,bi;i∈{1,...,g}} directed
by the gradient of f . This closure contains the restriction of the unit tangent bundle to the
critical points, up to orientation. Let φ be the flow associated with the gradient of f . Let Pφ
be the closure in C2(M) of the image of(

M̌ \ {ai, bi; i ∈ {1, . . . , g}}
)
×]0,+∞[ → C2(M)

(x, t) 7→ (x, φt(x)),
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L+(ai) L−(ai)

ai

D(αi)

αi L+(bj)

bj

L−(bj)

D(βj)

βj

Figure 8: L+(ai), L−(ai), L+(bj), L−(bj)

let ((Bj ×Ai) ∩ C2(M)) denote the closure of
(
(Bj ×Ai) ∩ (M̌2 \ diagonal)

)
in C2(M), set

PI =
∑

(i,j)∈{1,...,g}2
Jji ((Bj ×Ai) ∩ C2(M)) and P(f, g) = Pφ + PI

Let ~v be the upward vector in S2, and let

∂od = p−1
∞ (~v) ∩

(
∂C2(M) \ UM̌

)
be a boundary part outside the diagonal of M̌2. (If ~v∞ denotes the upward vertical vector in the
boundary of the compactification C1(M) of M̌ , then ∂od contains

(
−M̌ × ~v∞ −

(
(−~v∞)× M̌

))
.)

Theorem 4.2 (Kuperberg–Lescop) The 4–chain P(f, g) is a propagator and its boundary,
that lies in ∂C2(M), is

∂P(f, g) = ∂od +
∑
c∈C

Jj(c)i(c)σ(c)UM̌|γ(c) + sφ(M̌).

Proof: The expression of ∂P(f, g) is the immediate consequence of the following two lemmas.
Then it is easy to see that for a tiny sphere ∂B(x) around a point x outside the γ(c), 〈(x ×
∂B(x)),P(f, g)〉C2(M) will be the algebraic intersection in UM̌ of a fiber and the section sφ(M̌)
that is one. �

Note that UM̌|γ(c) is diffeomorphic to S2 × γ(c). For simplicity, UM̌|γ(c) will sometimes be
simply denoted by S2 × γ(c), or by S2 ×τ γ(c) when the parallelization τ that induces such a
diffeomorphism matters.

Lemma 4.3

∂Pφ = ∂od + sφ(M̌)−
g∑
i=1

L(ai)×Ai −
g∑
j=1

Bj × L(bj)
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Proof: The boundary of Pφ is made of
(
∂od + sφ(M̌)

)
and some other parts coming from the

critical points. Let us look at the part coming from ai, where the closures L+(ai) and L−(ai)
of flow lines stop and closures of flow lines of Ai start. Consider a tubular neighborhood

D2 × L+(ai) = {(u exp(iθ), y);u ∈ [0, 1], θ ∈ [0, 2π[, y ∈ L+(ai)}

around L+(ai), where φt((u exp(iθ), y)) reads (u′ exp(iθ), y′) for some u′ ≥ u, for t ≥ 0 and
for u small enough, so that θ is preserved by the flow. When u approaches 0, the flow line
through (u exp(iθ), y) approaches L+(ai) ∪ Lθ(Ai) where Lθ(Ai) is the closure of a flow line in
Ai determined by θ, for generic θ (that are θ such that this closure does not end at a bj). In
particular, Pφ contains ±(L+(ai)×Ai), and we examine more closely what Pφ looks like near
(L+(ai)× f−1([1,+∞[)).

Blow up 0 in D2 to obtain an annulus B̀ (D2, 0). Blow up L+(ai) in D2×L+(ai) to replace
L+(ai) by its unit normal bundle S1×L+(ai) = {(exp(iθ), y)}. Let B̀ (D2, 0)×L+(ai) denote the
blown-up tubular neighborhood. Fix a fiber B̀ (D2, 0)0 = {(u, exp(iθ));u ∈ [0, 1], exp(iθ) ∈ S1}
of B̀ (D2, 0) × L+(ai), and its natural projection onto the disk D2

0 = {u exp(iθ)}. Then there
are topological embeddings

E1: D2
0×]−∞, 1[ → f−1(]−∞, 1[)

(u exp(iθ), x) 7→ m = E1(u exp(iθ), x)

such that m is on the flow line through the point u exp(iθ) of D2
0 and f(m) = x, and

E2: B̀ (D2, 0)0×]1, 5[ → f−1(]1, 5[)
(u, exp(iθ), x) 7→ n = E2(u, exp(iθ), x)

such that f(n) = x, n is on the flow line through the point u exp(iθ) of B̀ (D2, 0)0 if u 6= 0,
and E2(0, exp(iθ), x) ∈ Lθ(Ai). Then Pφ intersects f−1(] −∞, 1[) × f−1(]1, 5[) near L+(ai) ×
f−1(]1, 5[) as the image of the continuous embedding

E: B̀ (D2, 0)0×]−∞, 1[×]1, 5[ → M̌2

(u, exp(iθ), x1, x2) 7→ (E1(u exp(iθ), x1), E2(u, exp(iθ), x2))

and the boundary of Pφ contains E(∂bB̀ (D2, 0)0×] −∞, 1[×]1, 5[) where ∂bB̀ (D2, 0)0 = −S1

is the preimage of (0 ∈ D2
0). The closure of ]−∞, 1[ is naturally identified with L+(ai) via E1,

so that the boundary of Pφ contains L+(ai)×E2(S1×]1, 5[) and it is easy to conclude that the
boundary part coming from ai near L+(ai) × f−1([1,+∞[) is (−L+(ai)) × Ai (with a minor
2–dimensional abuse of notation around ai). We similarly find L−(ai) × Ai in ∂Pφ, and the
part of ∂Pφ coming from ai is (L−(ai)− L+(ai))×Ai.

For L+(bj), we similarly get a part of ∂Pφ

−
⋃

exp(iθ)∈S1

flow line Lθ(Bj)× L+(bj),
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locally oriented as (flow line Lθ(Bj)) × (S1 × L+(bj)) where Bj locally reads (−Lθ(Bj) × S1),
and the boundary part coming from bj is Bj × (L−(bj) − L+(bj)). The two boundary parts
(−L(ai))×Ai and Bj × (−L(bj)) intersect along a two-dimensional locus, and the 3-cycle ∂Pφ
is completely described in the statement. �

Lemma 4.4

∂PI =

g∑
i=1

L(ai)×Ai +

g∑
j=1

Bj × L(bj) +
∑
c∈C

Jj(c)i(c)σ(c)(S2 × γ(c))

Proof: The interior of a figure similar to Figure 9 embeds in the closure Ai of the ascending
manifold of ai in M̌ . The whole closure is obtained by attaching such an open disk to the
ascending manifolds (L(bj) = L+(bj)− L−(bj)) of the bj.

L−(bj)

L+(bj)

L−(bk)
L+(bk)

αi

γ(c3) γ(c1)

γ(c2)

ai

Figure 9: The interior of Ai (In the figure σ(c1) = 1 = −σ(c2).)

Recall that when the sign σ(c) of a crossing c ∈ αi ∩ βj is 1, βj is positively normal to Ai
and αi is positively normal to Bj along the interior of γ(c). See Lemma 4.1.

When Ai arrives at bj by a line γ(c), it opens to L(bj) and we find

∂Ai =

g∑
j=1

∑
c∈αi∩βj

σ(c)L(bj) =

g∑
j=1

〈αi, βj〉Ha,2L(bj)

∂Bj =

g∑
i=1

〈αi, βj〉Ha,2L(ai).

Near a connecting flow line γ(c), Bj is parametrized by βj × γ(c)(]1, 5[) and Ai is parametrized
by γ(c)(]1, 5[)×αi. Near the diagonal of such a line, Bj×Ai is parametrized by the height of the
first point in [1, 5] followed by the infinitesimal difference (second point minus first point) that
is parametrized by (height difference, αi,−(−βj)), where one minus sign in front of βj comes

19



from the permutation of the parameters, and the other one comes from the fact that βj is now
used to parametrize the difference, so that we get∑

c∈C

Jj(c)i(c)σ(c)(S2 × γ(c))

in the boundary. �

4.3 Using the propagator to prove Proposition 3.4

Let ι denote the continuous involution of C2(M) that exchanges two points in a pair of (M̌2 \
diag). Note that ι reverses the orientation of C2(M).

Lemma 4.5 For any 2–cycle G =
∑

(c,d)∈C2 gcd(γ(c)× γ(d)‖) of C2(M),

[G] =

 ∑
(c,d)∈C2

gcd(γ(d)× γ(c)‖)

 .
Proof: With the notation of Subsection 3.2, for ε = ± and η = ±, let

γ(c)νε(A)νη(B) = γεA(c) + [cεA, c
η
B] + γηB(c)

so that

γ(c)‖ =
1

4

(
γ(c)ν+(A)ν+(B) + γ(c)ν+(A)ν−(B) + γ(c)ν−(A)ν+(B) + γ(c)ν−(A)ν−(B)

)
.

Then for any ε and for any η,

Gε,η =
∑

(c,d)∈C2
gcdγ(c)× γ(d)νε(A)νη(B)

is a 2–cycle homotopic to

Gε,η
s =

∑
(c,d)∈C2

gcdγ(c)ν−ε(A)ν−η(B) × γ(d).

Now,

ι(Gε,η
s ) = −

∑
(c,d)∈C2

gcdγ(d)× γ(c)ν−ε(A)ν−η(B),

and, since [ι∗(S)] = −[S], ι∗ is the multiplication by (−1) in H2(C2(M);Q), and (−ι(Gε,η
s )) is

homologous to Gε,η. Since G is the average of the Gε,η, and since
(∑

(c,d)∈C2 gcdγ(d)× γ(c)‖

)
is the average of the (−ι(Gε,η

s )), the lemma is proved. �
In order to prove Proposition 3.4, we are now left with the proof that

[G] =
∑

(c,d)∈C2
gcd`(c, d)[S].
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We prove this by transforming the γ(c) into

γ(c)ν(B) =
1

2

(
γ(c)ν+(B) + γ(c)ν−(B)

)
where γ(c)ν+(B) (resp. γ(c)ν−(B)) is obtained from γ(c) by pushing it infinitesimally (that is
much less than slightly) in the direction of the positive (resp. negative) normal to Bj(c) except
in the neighborhood of ai(c) where

• γ(c)ν(B) is in Ai(c) and it is transverse to the Bj,

• the starting points of the γ(c)ν+(B) and the γ(c)ν−(B) such that i(c) = i near ai coincide,
they are denoted by ai,ν(B),

• this starting point ai,ν(B) does not belong to the sheets of the Bj corresponding to crossings
of αi and the βj, (these sheets meet along L(ai)),

• the first encountered sheet from ai,ν(B) when turning around L(ai) like αi is the sheet of
p(αi).

See the local infinitesimal picture of Figure 10. Recall from Lemma 4.1 that αi is the positive
normal to Bj along flow lines through positive crossings.

γ(f)

ai ai,ν(B)

γ(p(αi))ν+(B)

γ(f)ν+(B) γ(p(αi))

γ(e) γ(e)ν+(B)

αi

γ(f)

ai ai,ν(B)

γ(p(αi))ν−(B)
γ(f)ν−(B)

γ(e)ν−(B)

αi

Figure 10: The γ(c)ν+(B) and the γ(c)ν−(B) near ai (where σ(p(αi)) = σ(f) = 1 = −σ(e))

We shall similarly fix the positions of the

γ(d)‖ =
1

4

(
γ(d)ν+(A)ν+(B) + γ(d)ν+(A)ν−(B) + γ(d)ν−(A)ν+(B) + γ(d)ν−(A)ν−(B)

)
by homotopies of the γ(d)νε(A)νη(B) = γεA(d)+[dεA, d

η
B]+γηB(d), with the notation of Subsection 3.2

so that:

21



• for any d, ∂γ(d)νε(A)νη(B) = bηj(d) − aεi(d) is fixed,

• γ(d)νε(A)νη(B) is on the ε side of Ai(d) except near bj(d) where its orthogonal projection
γ(d)νε(A) on Bj(d) is shown in Figure 11,

• γ(d)νε(A)νη(B) is on the η side of Bj(d) except near ai(d) where its orthogonal projection on
Ai(d) behaves like the projection of γ(d)νη(B) in Figure 10 at a larger scale.

In particular, the orthogonal projections on Bj(d) of b+
j(d) and b−j(d) both coincide with the

intersection point of the dashed segments in Figure 11, and the orthogonal projections on Ai(d)

of a+
i(d) and a−i(d) both coincide with the intersection point of the dashed segments in Figure 10

at a larger scale.

γ(f)

bj b±j

γ(p(βj))ν+(A)

γ(f)ν+(A) γ(p(βj))

γ(e) γ(e)ν+(A)

βj

γ(f)

bj b±j

γ(p(βj))ν−(A)
γ(f)ν−(A)

γ(e)ν−(A)

βj

Figure 11: The orthogonal projections of the γ(d)‖ on Bj near bj (where σ(p(βj)) = σ(f) =
1 = −σ(e))

These positions being fixed, we have the following proposition that implies Proposition 3.4.

Proposition 4.6
〈γ(c)ν(B) × γ(d)‖,P(f, g)〉 = `(c, d).

Recall P(f, g) = Pφ + PI . We prove the proposition by computing the intersections with
PI and Pφ in Lemmas 4.7 and 4.8 below.

Lemma 4.7

〈γ(c)ν(B) × γ(d)‖,Bj ×Ai〉 = −〈[p(α(c)), c|α, βj〉〈αi, [p(β(d)), d|β〉
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Proof: In any case, 〈γ(c)ν(B) × γ(d)‖,Bj ×Ai〉C2(M) = 〈γ(c)ν(B),Bj〉M〈γ(d)‖,Ai〉M .
The only intersection points of γ(c)ν(B) with Bj are shown in Figure 10. Then since the

γ(c)ν(B) cross the Bj like the αi that are positive normals for Bj along flow lines associated to
positive crossings

〈γ(c)ν(B),Bj〉M = 〈[p(α(c)), c|α(c), βj〉.
The computation of 〈γ(d)‖,Ai〉M is similar since the position of the γ(d)‖ with respect to

Bj does not matter. The only difference comes from the fact that the flow lines are oriented
towards bj(d) so that they cross the Ai like (−βj) that is the positive normal along flow lines
associated to negative crossings. See Figure 11.

〈γ(d)‖,Ai〉M = −〈αi, [p(β(d)), d|β(d)〉.

�

Lemma 4.8
〈γ(c)ν(B) × γ(d)‖, Pφ〉 = 〈[p(α(c)), c|α, [p(β(d)), d|β〉.

Proof: Assume c ∈ αi∩βj(c) and d ∈ αi(d)∩βj. When the first M̌ -coordinate of a point of Pφ
is in γ(c) \ ai, its second M̌ -coordinate is in

(
γ(c) ∪ L(bj(c))

)
, and therefore it is not in γ(d)‖.

Since the first M̌ -coordinate of a point in γ(c)ν(B)× γ(d)‖ is very close to γ(c), γ(c)ν(B)× γ(d)‖
intersects Pφ in a small neighborhood of ai ×Ai.

Thus, the intersection points will be infinitely close to pairs of points on flow rays from ai
on Ai, the closest point to ai being on γ(c)ν(B) and the second one on γ(d).. Then, for a given
γ(c), the second point must be on the subsurface D(γ(c)) of Ai made of the points x such that
the flow ray from ai to x intersects γ(c)ν+(B) or γ(c)ν−(B). This interaction locus of γ(c)ν+(B),
D(γ(c)), is shown in Figure 12. The interaction locus of γ(c)ν−(B) is similar.

γ(p(αi))ν+(B)

γ(f)ν+(B) γ(p(αi))

γ(e) γ(e)ν+(B)

αi

γ(f)

γ(e) γ(e)ν+(B)

αi

Figure 12: Interaction loci of γ(e)ν+(B) and γ(f)ν+(B) on Ai (where σ(f) = 1 = −σ(e))

The only intersection points of γ(d)‖ with the domain D(γ(c)) of Ai are near the bj and
they are shown in Figure 11.

The curve γ(d)‖ meets Ai near a crossing line γ(e), where near means in the sheet of γ(e)
around L(bj),
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• with probability 1 if i(e) = i and if e ∈ [p(βj), d[βj ,

• with probability 1/2 (depending on the side of Ai for γ(d)‖ near bj) if i(e) = i and if
e = d, (this is also valid when e = p(βj) = d),

• with probability 0 in the other cases.

The corresponding intersection point is in D(γ(c)) if e ∈ [p(αi), c[αi , or if e = c and γ(d)‖
is on the correct side of Bj (the ((−αi) side), that is with a probability 1/2 independent of the
previous one.

Then M is oriented as (flow line× γ(c)ν(B) × ν+(Ai)) near ai and Pφ is oriented as

(beginning of flow line× diag(γ(c)ν(B) × ν+(Ai))× end of flow line)

that is intersected negatively by γ(c)ν(B) × ν+(Ai), where ν+(Ai) is oriented like σ(e)βj and
like (−σ(e))γ(d)‖ near a point in

(
γ(c)ν(B) × γ(d).

)
∩ Pφ corresponding to a crossing e of

[p(α(c)), c|α ∩ [p(β(d)), d|β. �

5 The combing associated with m and its associated prop-

agator

In this section, we first define the combing X(w,m) of M̌ . Next we introduce correction 4-
chains Ph and PΣ in UM̌ ⊂ ∂C2(M) such that the sum P = P(f, g) + Ph + PΣ is a propagator
associated with X(w,m).

5.1 The combing X(w,m)

Consider the matching m introduced in Subsection 3.5. Up to renumbering and reorienting the
Bj, assume that ci ∈ αi ∩ βi and that σ(ci) = 1. Set γi = γ(ci).

There is a combing X = X(w,m) (section of the unit tangent bundle) of M̌ that coin-
cides with the direction sφ of the flow (and the gradient of f) outside the union of regular
neighborhoods N(γi) of the γi, that is opposite to sφ along the interiors of the γi and that is
obtained as follows on N(γi). Choose a natural trivialization (X1, X2, X3) of TM̌ on a regular
neighborhood N(γi) of γi, such that:

• γi is directed by X1,

• the other flow lines never have X1 as an oriented tangent vector,

• (X1, X2) is tangent to Ai (except on the parts of Ai near bi that come from other crossings
of αi ∩ βi), and (X1, X3) is tangent to Bi (except on the parts of Bi near ai that come
from other crossings of αi ∩ βi).
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This parallelization identifies the unit tangent bundle UN(γi) of N(γi) with S2 ×N(γi).

There is a homotopy h: [0, 1]× (N(γi) \ γi)→ S2, such that

• h0 is the unit tangent vector to the flow lines of φ,

• h1 is the constant map to (−X1) and

• ht(y) goes from h0(y) = sφ(y) to (−X1) along the shortest geodesic arc [sφ(y),−X1] of
S2 from sφ(y) to (−X1).

Let 2η be the distance between γi and ∂N(γi) and let X(y) = h(max(0, 1 − d(y, γi)/η), y) on
N(γi) \ γi, and X = −X1 along γi.

Note that X is tangent to Ai on N(γi) (except on the parts of Ai near bi that come from
other crossings of αi ∩ βi), and that X is tangent to Bi on N(γi) (except on the parts of Bi
near ai that come from other crossings of αi ∩ βi). More generally, project the normal bundle
of γi to R2 in the X1–direction by sending γi to 0, Ai to an axis Li(A) and Bi to an axis Li(B).
Then the projection of X goes towards 0 along Li(B) and starts from 0 along Li(A), it has the
direction of sa(y) at a point y of R2 near 0, where sa is the planar reflexion that fixes Li(A)
and reverses Li(B). See Figure 13.

Li(B)

Li(A)
X2

X3

Figure 13: Projection of X

Then X(y) is on the half great circle that contains sa(y), X1 and (−X1). In Figure 14
(and in Figure 7), γi is a vertical segment, all the other flow lines corresponding to crossings
involving αi go upward from ai, and X is simply the upward vertical field. See also Figure 18.

βi

αi

γi

Figure 14: γi
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5.2 The propagator associated with a combed Heegaard splitting

Recall that UN(γi) is identified with S2×N(γi). Let Ph = Ph(m) be the closure in ∂C2(M) of

{(h(t, y), y) ∈ S2 × (N(γi) \ γi); t ∈ [0,max(0, 1− d(y, γi)/η)], y ∈ N(γi)}.

Lemma 5.1 ∂Ph = X(M̌)− sφ(M̌)−
∑g

i=1 UM̌|γi

Proof: We explain the (UM̌|γi = S2×γi) part of ∂Ph, with its sign. The homotopy h naturally
extends to [0, 1]× B̀ (N(γi), γi), where B̀ (N(γi), γi) is obtained from N(γi) by blowing up γi,
so that (−B̀ (N(γi), γi)) contains the unit normal bundle S1 × γi of γi in CM , in its boundary.
Then ∂Ph contains {(h(t, y), pγi(y)) ∈ S2 × γi; t ∈ [0, 1], y ∈ S1 × γi}, where S1, that is the
blown-up center of the fiber D2 of N(γi), is mapped by sa to the equator of S2 so that the
image of ([0, 1]× S1) covers a fiber S2 of UM̌|γi with degree (−1). �

Recall the 1–cycle L(m) =
∑g

i=1 γi −
∑

c∈C Jj(c)i(c)σ(c)γ(c). Let Σ(m) be a two–chain

bounded by L(m) in M̌ and let
PΣ = UM̌|Σ(m).

Note that PΣ is homeomorphic to S2 × Σ(m).

Proposition 5.2
P = P(f, g) + Ph + PΣ

is a propagator associated with the combing X(w,m).

Proof: The boundary of P is (X(w,m)(M̌) + ∂od). �
Recall that ι denotes the involution of C2(M) that exchanges two points in a pair. Then

ι(P) is also a propagator associated with the combing (−X(w,m)). Theorem 2.1 defines
Θ(M,X(w,m)) from the algebraic intersection of P and ι(P) that we compute from now on in
order to prove Theorem 3.8.

6 Computation of [PX(w,m) ∩ P−X(w,m)]

6.1 A description of [PX(w,m) ∩ P−X(w,m)]

Fix w, m, X = X(w,m), L = L(m) and Σ = Σ(m) such that ∂Σ = L.
Consider a vector field Y of X⊥ on M̌ such that

• Y vanishes outside CM ,

• the norm of Y is one on the γ(c),

• Y is tangent to the line L(ai) at ai, for any i (but Y does not necessarily direct the line),
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• Y is tangent to the line L(bj) at bj, for any j, (again, Y does not necessarily direct the
line),

Then L‖Y denotes the link parallel to L obtained by pushing L in the Y direction. Along
γ(c), sa is the symmetry of X⊥ with respect to Ai(c) that preserves the vectors tangent to Ai(c)
and reverses the vectors tangent to Bj(c). Define γ(c)× γ(d)‖sa(−Y ) as the product of γ(c) and
a parallel of γ(d) infinitely close to γ(d) in the direction of sa(−Y ). This can be formalised
as follows. When c 6= d, γ(c) × γ(d)‖sa(−Y ) = γ(c) × γ(d) (away from the possibly coinciding
ends). Let [−Tγ(c)(x), Tγ(c)(x)]sa(−Y ) represent a half great circle in a fiber of the unit tangent
bundle of UM̌|γ(c)(x) through sa(−Y (x)) towards the unit tangent vector Tγ(c)(x) of γ(c), and
let s[−Tγ(c),Tγ(c)]sa(−Y )

(γ(c)) be the total space of the bundle over γ(c) of these half-circles. Then

γ(c)× γ(c)‖sa(−Y ) = γ(c)2 \ diag(γ(c)2)− s[−Tγ(c),Tγ(c)]sa(−Y )
(γ(c)).

Similarly, s[−X,X]sa(−Y )
(∂Σ) is the total space of the bundle of the half-circles [−X,X]sa(−Y ) over

∂Σ. In this section, we prove the following proposition.

Proposition 6.1 Let Y be a vector field of X⊥ as above. There exists a two-chain O(sa(−Y ))
in the hemipheres of sa(−Y ) in UM̌|∪iai∪(∪jbj) such that

Gi
↑↓(Y ) =

∑
(i,j,k,`)∈{1,...,g}4 JjiJ`k

(
(Bj ∩ Ak)× (B` ∩ Ai)‖sa(−Y )

)
−
∑

c∈C Jj(c)i(c)σ(c)
(
γ(c)× γ(c)‖sa(−Y )

)
+O(sa(−Y ))

is a 2–cycle of C2(M) whose homology class is unambiguously defined. Let S be a fiber of UM̌
and let X(Σ) denote the graph of X|Σ in UM̌ . Set

Gb
↑↓(X, Y ) = lk(L,L‖Y )S −

(
X(Σ)− (−X)(Σ)− s[−X,X]sa(−Y )

(∂Σ)
)
.

Then the cycle
G↑↓ = Gi

↑↓(Y ) +Gb
↑↓(X, Y )

represents the homology class of PX(w,m) ∩ P−X(w,m).

6.2 Introduction to specific chains PX and P−X
In this subsection, we deform the propagators P and ι(P) constructed in Section 5.2 to prop-
agators PX and P−X that are transverse to each other, in order to determine their algebraic
intersection.

Let [−1, 0]× ∂C2(M) be a (topological) collar of ∂C2(M) in C2(M). Then C2(M) is home-
omorphic to C̃2(M) = C2(M) \ (]− 1/2, 0]× ∂C2(M)) by the shrinking homeomorphism

hs: C2(M) → C̃2(M)
(t, x) ∈ [−1, 0]× ∂C2(M) 7→ ((t− 1)/2, x) ∈ [−1,−1/2]× ∂C2(M)
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that is the identity map outside the collar. Identifying [−1/2, 0] with [0, 6] by the appropriate
affine monotonous transformation identifies C2(M) with

C̃2(M) ∪∂C̃2(M) ([0, 6]× ∂C2(M))

that is our space C2(M) from now on.
Use hs to shrink P(f, g) and ι(P(f, g)) into C̃2(M), and construct transverse PX and P−X

with respective boundaries {6} × ∂PX and {6} × ∂P−X as follows:

P−X = hs(ι(P(f, g))) + [0, 1]× ∂ι(P(f, g))

+{1} × ι(Ph) + [1, 3]× (ι(−S2 × L+ ∂od) + (−X)(M̌))

+{3} × ι(S2 × Σ) + [3, 6]× ((−X)(M̌) + ι(∂od))

while the expression of PX will require a perturbating diffeomorphism Ψ of C2(M) isotopic and
very close to the identity map in order to get transversality near the diagonal,

PX = hs(Ψ(P(f, g))) + [0, 2]× ∂Ψ(P(f, g))

+{2} ×Ψ(Ph) + [2, 4]×Ψ(−S2 × L+X(M̌) + ∂od)

+{4} ×Ψ(S2 × Σ) + [4, 5]×Ψ(X(M̌) + ∂od) + {5} ×Ψ[ε,0](∂PX) + [5, 6]× ∂PX

where Ψ[ε,0](∂PX) is the small cobordism between Ψ(X(M̌) + ∂od) and ∂PX induced by the
isotopy between Ψ and the identity map. We describe Ψ in the next subsection.

6.3 The perturbating diffeomorphism ΨY,ε of C2(M)

Recall that Y is a field like in Section 6.1. For η small enough, we have an isotopy ψY : [0, η]×
M̌ → M̌ such that d

dt
ψY (t, y) = Y (y) and ψ0 is the identity.

Let
χε: [0, ε] → [0, ε]

0 7→ ε
ε 7→ 0

be a smooth family of decreasing functions with horizontal tangents at 0 and ε for ε ∈ [0, η].
Fix ε. Consider the diffeomorphism Ψ = ΨY,ε of C2(M̌) that is the identity outside a

neighborhood UM̌ × [0, ε] of the blown-up diagonal, where the second coordinate stands for
the distance between two points in a pair and that reads

(v ∈ UM̌|m, u) 7→ (TψY (χε(u),m)(v), u)

on UM̌ × [0, ε], so that it coincides with Tψ on (UM̌ = UM̌ × {0}), where ψ = ψY (ε, .).

Define the flow ψφψ−1 ((t,m) 7→ ψφtψ
−1(m)) on M̌ . Observe Ψ(sφ(M̌)) = sψφψ−1(M̌). The

projections of the directions of the flow lines of ψ∗(φ) = ψφψ−1 onto a fiber of the tubular
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Ai ψ(Ai)

Bi

Y

ψ(Bi)

Figure 15: Horizontal directions of the flow lines of ψ∗(φ)

neighborhood of a line γ(c) are shown in Figure 15. We shall refer to the directions of these
projections as horizontal directions.

Without loss, assume that the isotopy ψY moves the critical points ai along the lines L(ai)
and the bj along the L(bj) (recall that Y is tangent to these lines). Let φ denote the flow φ
reversed so that ι(Pφ) = Pφ.

Lemma 6.2 For ε small enough, the direction of ψ∗(φ) (that is the direction of sψ∗(φ)) along
γ(c) is very close to a geodesic arc between the direction of φ and sa(−Y ), so that its distance
in S2 from sa(Y ) is at least π/4.

The direction of φ along ψ(γ(c)) is very close to a geodesic arc between the direction of
(−T (ψ(γ(c)))) and sa(−Y ), so that its distance in S2 from sa(Y ) is at least π/4.

Furthermore, the direction of ψ∗(φ) at the critical points and the direction of φ at their
images under ψ coincide with sa(−Y ).

Proof: The direction of ψ∗(φ) along γ(c) is very close to the tangent direction of γ(c) away
from the ends of γ(c) and it is slightly deviated in the orthogonal direction of sa(−Y ) since
γ(c) is obtained from ψ(γ(c)) by a translation of −Y . See Figure 15 and Subsection 5.1. Near
the critical points, the direction of ψ∗(φ) approaches the direction of sa(−Y ), and it reaches it
at the critical points. Similarly, the direction of φ along ψ(γ(c)) is very close to the direction
of (−T (γ(c))) away from the ends and it is slightly deviated in the orthogonal direction of
(−sa(Y )). Near the critical points, the direction of φ approaches the direction of sa(−Y ), and
it reaches it at the critical points. �

Lemma 6.3 limε→0 Ψ(Pφ) ∩ ι(Pφ) is discrete located at the points ssa(−Y )(ai) and ssa(−Y )(bj).

Proof: Observe that Pφ ∩ ι(Pφ) is supported on the restrictions of UM̌ to the critical points.
Therefore, for ε small enough, Ψ(Pφ)∩ ι(Pφ) will be near the restrictions of UM̌ to the critical
points. There are 4g points of type sφ(ψ(ai)), sψ∗(φ)(ai), sφ(ψ(bj)) and sψ∗(φ)(bj) in the inter-
section that have the wanted direction thanks to Lemma 6.2. Except for those points we have
to look for flow lines for φ and flow lines for ψ∗(φ) that intersect twice and that connect the
intersection points with opposite directions. Under our assumptions, this can only happen on
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the lines L(c) between c and ψ(c) for a critical point c. Indeed, outside L(c), φ and ψ∗(φ) both
escape from the neighborhoods of L(c) if c = ai, or both get closer if c = bi. On these lines, the
only parts where φ and ψ∗(φ) have opposite directions is between c and ψ(c), and the tangent
direction to φ is the direction of sa(−Y ). �

6.4 Reduction of the proof of Proposition 6.1

Consider a regular neighborhood N of the union of the γ(c) that contains the ψ(γ(c)), and
consider the fiber bundle over N whose fibers are the complement of an open disk of radius
π/4 around sa(Y ) in the fibers of UN . Let E be the total space of this bundle and let N =
[−1, 0]× E ⊂ [−1, 0]× ∂C2(M) ⊂ C2(M). Then H2(N ;Z) = 0.

Without loss, the chains PX and P−X are now assumed to be transverse so that their
intersection I is a 2–cycle of C2(M) that we are going to compute piecewise. We shall neglect
the pieces in N and write them as O(N ) in the statements. Sometimes, we shall also add
arbitrary pieces in N in order to close some 2–chains and find some 2–cycle I ′ such that

I ′ = I +O(N )

so that I ′ will be homologous to I.
We shall also consider continuous limits when possible to simplify the expressions like in

Lemma 6.3 that now reads:
lim
ε→0

Ψ(Pφ) ∩ ι(Pφ) = O(N )

or,
for ε > 0 small enough, Ψ(Pφ) ∩ ι(Pφ) = O(N ).

For example,

PX ∩ P−X ∩ ([5/2, 6]× ∂C2(M)) = [5/2, 3]× (ψ∗(X)(L)− (−X)(ψ(L)))
+{3} × (−ψ∗(X)(Σ) + S2 × (ψ(L) ∩ Σ))
−[3, 4]× (−X)(ψ(L))
+{4} × (−X)(ψ(Σ))

= {3} × (−ψ∗(X))(Σ) + {4} × (−X)(ψ(Σ))
+S2 × (ψ(L) ∩ Σ) +O(N )

Then S2 × (ψ(L) ∩ Σ) is a disjoint union of spheres homologous to lk(L,L‖Y )[S]. Let

` = lim
ε→0

(−{3} × (ψ∗(X))(Σ) + {4} × (−X)(ψ(Σ)))

` = −{3} ×X(Σ) + {4} × (−X)(Σ)
= −{3} ×X(Σ) + {4} × (−X)(Σ)− [3, 4]× (−X)(L) + {3} × s[−X,X]sa(−Y )

(L) +O(N )

Then PX ∩ P−X ∩ ([5/2, 6] × ∂C2(M)) is homologous to Gb
↑↓(X, Y ) mod N and the proof of

Proposition 6.1 is reduced to the proof of the two following propositions.
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Proposition 6.4
PX ∩ P−X ∩ C̃2(M) = Gi

↑↓(Y ) +O(N ).

Proposition 6.5
PX ∩ P−X ∩ ([0, 5/2]× ∂C2(M)) = O(N ).

In particular, Gi
↑↓(Y ) may be thought of as the intersection of P(f, g) ∩ P(−f, g) in the

interior of C2(M), while Gb
↑↓(Y ) collects the intersection coming from the boundary corrections.

6.5 Proof of Proposition 6.4

Lemma 6.6

lim
ε→0

Ψ(PI) ∩ ι(PI) =
∑

(i,j,k,`)∈{1,...,g}4
JjiJ`k(Bj ∩ Ak)× (B` ∩ Ai)‖sa(−Y ) +O(N ).

Proof: The intersection Bj ×Ai ∩ (Ak × B`) is cooriented by the positive normals of Bj, Ai,
Ak and B` in this order. Therefore the intersection reads like in the statement away from the
diagonal. Near the diagonal and away from the critical points, Ai and Bj are moved in the

direction of Y . If Y = ~a +~b where ~a is tangent to Ak and ~b is tangent to B`, then abusively
write Ai = Ak +~b and Bj = B` + ~a and see that the difference of the two points is moved in

the direction (~b−~a) of sa(−Y ), so that the corresponding intersection sits inside the neglected
part N . (When two points vary along the same γ(c), the second one will be deviated in the
direction of sa(−Y ) so that the limit pair of points describe an arc in UM̌|γ(c) from −Tγ(c) to
Tγ(c) through sa(−Y ), that is along the half great circle [−Tγ(c), Tγ(c)]sa(−Y ).)

~a

Y

~b

B`Bj

Ai

Ak

Figure 16: Deviation near the diagonal

Near a critical point, two points can come from different crossings. Then the direction
between them in (Bj ∩ Ak)× (B` ∩ Ai) \ diag is orthogonal to Y = ±sa(Y ). The field Y can be
assumed to preserve the B-sheets near the ai and the A-sheets near the bj. Then the difference
of the two points is moved in the direction of sa(−Y ) so that it belongs to the hemisphere of
sa(−Y ). �
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Lemma 6.7

lim
ε→0

Ψ(Pφ) ∩ ι(PI) =
∑
c∈C

Jj(c)i(c)(−σ(c)){(γ(c)(t1), γ(c)(t2)); t1 < t2}+O(N ).

Proof: The intersection Pφ ∩
(
ι(PI) =

∑
(i,j)∈{1,...,g}2 JjiAi × Bj

)
is supported on the

{(γ(c)(t1), γ(c)(t2)); t1 < t2}

away from the unit bundles of the critical points. It is transverse except near these unit bundles.
Let c ∈ αi ∩ βj. Along γ(c), Ai × Bj is cooriented by βj × αi. Then Pφ ∩ (Ai × Bj) will be

oriented as (−σ(c)){(γ(c)(t1), γ(c)(t2)); t1 < t2}. Since ψ∗(φ) is almost vertical away from the
critical points, we are left with the behaviour near the critical points. Near ai on Ai, (or near
bj on Bj) the direction of ψ∗(φ) is in the hemisphere of sa(−Y ), according to Lemma 6.2, so
that the pairs of points of Ai × Bj connected by flow lines of ψ∗(φ) near a critical point are in
N . �

Similarly, we have

Lemma 6.8

lim
ε→0

Ψ(PI) ∩ ι(Pφ) =
∑
c∈C

Jj(c)i(c)(−σ(c)){(γ(c)(t1), γ(c)(t2)); t1 > t2}+O(N ).

Proof: Away from the unit bundles of the critical points, it is clear. According to Lemma 6.2,
the direction of φ on ψ(Ai) near ψ(ai) (or on ψ(Bj) near ψ(bj)) is in the hemisphere of sa(−Y ),
so that the pairs of points of (ψ(Bj)×ψ(Ai))∩ ι(Pφ) near the critical points are again in N . �

Proposition 6.4 is a direct corollary of Lemmas 6.3, 6.6, 6.7, 6.8. �

6.6 Proof of Proposition 6.5

We prove that (PX ∩ P−X ∩ ([0, 5/2]× ∂C2(M))) is in N .
According to Theorem 4.2,

∂P(f, g) = ∂od +
∑
c∈C

Jj(c)i(c)σ(c)(S2 × γ(c)) + sφ(M̌).

Therefore, according to Lemmas 6.3 and 6.2,

Ψ(∂P(f, g)) ∩ ∂ι(P(f, g)) = O(N ).

Let us now show that
Ψ(∂P(f, g)) ∩ ι(Ph) = O(N ).
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ψ(Bj)Bj

ψ(Ai)

Ai

Y

ψ(x)

φ

x

ψ∗(φ)

Figure 17: Tangencies of the flow lines of φ and ψ∗(φ) near some γ(c)

According to the construction of Ph in Subsections 5.1 and 5.2, ι(Ph) intersects Ψ(S2× γ(c)) =
S2×ψ(γ(c)) on s[φ,−X](ψ(γ(c)) where [φ,−X] is the shortest geodesic arc between the tangent

to φ and −X, that is in the hemisphere of sa(−Y ), according to Lemma 6.2. Now, look at the
intersection of ι(Ph) and sψ∗(φ)(M̌), where the direction of ψ∗(φ) must belong to [φ,−X]. This
can only happen in a tubular neighborhood of γi at a place where the flow lines of ψ∗(φ) and
φ have the same horizontal direction. This only happens between γi and ψ(γi), more precisely
in the preimage of the rectangle shown in Figure 17 under the orthogonal projection directed
by X1. There the horizontal direction is close to the direction of sa(−Y ).

Similarly,

Ψ(Ph) ∩
(
S2 × L+ (−X)(M̌)

)
= O(N ).

Indeed, since the horizontal component of the direction of ψ∗(φ) along γ(c) is in the direction
of sa(−Y ), Ψ(Ph)∩ (S2×L) = O(N ). Now, (−X) can belong to [ψ∗(φ), ψ∗(X)] if the direction
of the horizontal component of (−X) that is the direction of horizontal component of sφ is the
same as the direction of the horizontal component of sψ∗(φ). This can only happen in the same
rectangles as before where (−X) is in the hemisphere of sa(−Y ). �

7 Concluding the proof of Theorem 3.8

Recall that w, m, X = X(w,m), L = L(m) and Σ such that ∂Σ = L are fixed. Note that
X depends neither on the orientations of the αi and the βj, nor on their order. Furthermore
e(w,m) is independent of the order of the βj. Thus, the permutation ρ of {1, 2, . . . , g} associated
with m is assumed to be the identity, without loss.

7.1 Reducing the proof of Theorem 3.8 to an Euler class computa-
tion

Consider the four following fields Y ++, Y +−, (Y −+ = −Y +−) and (Y −− = −Y ++) in a neigh-
borhood of the γ(c). Y ++ and Y +− are positive normals for Ai on Ha,≤3 = CM ∩f−1(]−∞, 3]),
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and Y ++ and Y −+ are positive normals for Bj on Hb,≥3 = CM ∩ f−1([3,+∞[). Then with the
notation of Subsections 3.2 and 3.5,

lk(L(m), L(m)‖) =
1

4

∑
(ε,η)∈{+,−}2

lk(L,L‖Y ε,η)

and, with the notation of Proposition 6.1,

[G↑↓] =
1

4

∑
(ε,η)∈{+,−}2

[
Gi
↑↓(Y

ε,η) +Gb
↑↓(X, Y

ε,η)
]

where sa(−Y ε,η) = Y ε,(−η), so that the collection of the sa(−Y ε,η) is the same as the collection
of the Y ε,η and, thanks to Lemma 4.1,

[G(D)] =
1

4

∑
(ε,η)∈{+,−}2

[Gi
↑↓(Y

ε,η)].

Therefore, thanks to Proposition 6.1, the proof of Theorem 3.8 is reduced to the proof of
the following equality in H2(UM̌ ;Q).X(Σ)− (−X)(Σ)− 1

4

∑
(ε,η)∈{+,−}2

s[−X,X]Y ε,η (∂Σ)

 = e(w,m)[S].

Consider the rank 2 sub-vector bundle X⊥ of TM̌ of the planes orthogonal to X. Let
X⊥(Σ) be the total space of the restriction of X⊥ to our surface Σ. Let Y be a non-vanishing
section of X⊥ on ∂Σ. The relative Euler class e(X⊥(Σ), Y ) of Y in X⊥(Σ) is the obstruction
to extending Y as a nonzero section of X⊥(Σ) over Σ. If Ỹ is an extension of Y as a section of
X⊥(Σ) transverse to the zero section s0(X⊥(Σ)), then

e(X⊥(Σ), Y ) = 〈Ỹ (Σ), s0(X⊥(Σ))〉X⊥(Σ).

Lemma 7.1 Under the assumptions above,[
X(Σ)− (−X)(Σ)− s[−X,X]Y (∂Σ)

]
= e(X⊥(Σ), Y )[S]

in H2(C2(M)).

Proof: If Y extends as a nonzero section of X⊥(Σ) still denoted by Y , then the cycle of the
left-hand side bounds s[−X,X]Y (Σ). This allows us to reduce the proof to the case when Σ is a

neighborhood of a zero of the extension Ỹ above, that is when Σ is a disk ∆ equipped with a
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trivial D2-bundle, and when Y : ∂∆ → ∂D2 has degree d = ±1. Then d = e(X⊥(∆), Y ), and[
X(∆)− (−X)(∆)− s[−X,X]Y (∂∆)

]
= d[S]. �

Thus,X(Σ)− (−X)(Σ)− 1

4

∑
(ε,η)∈{+,−}2

s[−X,X]Y ε,η (∂Σ)

 =
1

4

∑
(ε,η)∈{+,−}2

e(X⊥(Σ), Y ε,η)[S].

The proof of Theorem 3.8 is now reduced to the proof of the following proposition that
occupies the end of this section.

Proposition 7.2

e(w,m) =
1

4

∑
(ε,η)∈{+,−}2

e(X(w,m)⊥(Σ), Y ε,η).

Remark 7.3 Note that this proposition provides a combinatorial formula for the average of
the Euler classes in the right-hand side. In this formula, the de(βj) and de(|cj(c), c|β) depend on
our rectangular diagram of (D,m, w) in Figure 3. Thus, the proposition implies that the sum
e(w,m) is independent of our special picture of the Heegaard diagram.

7.2 A surface Σ(L(m))

Let Hb,≥2 = CM ∩ f−1([2,+∞[). For any crossing c of C, define the triangle Tβ(c) in the disk
(D≥2(βj(c)) = Bj(c) ∩Hb,≥2) such that

∂Tβ(c) = [cj(c), c]β + (γ(c) ∩Hb,≥2)− (γj(c) ∩Hb,≥2).

Similarly, define the triangle Tα(c) in the disk (D≤2(αi(c)) = Ai(c) ∩Ha) such that

∂Tα(c) = −[ci(c), c]α + (γ(c) ∩Ha)− (γi(c) ∩Ha).

Proposition 7.4 There exists a 2-chain F (m) in Ha,2 such that the boundary of

Σ(L(m)) = F (m)−
∑

c∈C Jj(c)i(c)σ(c)(Tβ(c) + Tα(c))
+
∑

(j,i)∈{1,...,g}2
∑

c∈C Jj(c)i(c)σ(c)Jji
(
〈αi, |cj(c), c|β〉D≥2(βj)− 〈|ci(c), c|α, βj〉D≤2(αi)

)
is L(m).

Proof: The boundary of the defined pieces reads (L(m) + u) where the cycle u is

u =
∑

c∈C Jj(c)i(c)σ(c)
(
[ci(c), c]α − [cj(c), c]β

)
+
∑

(j,i)∈{1,...,g}2
∑

c∈C Jj(c)i(c)σ(c)Jji
(
〈αi, |cj(c), c|β〉βj − 〈|ci(c), c|α, βj〉αi

)
.
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Compute 〈αk, u〉, by pushing u in the direction of the positive normal to αk and in the direction
of the negative normal, and by averaging, so that locally

〈αk, [ci(c), c]α − [cj(c), c]β〉 = −〈αk, |cj(c), c|β〉

and
〈αk, u〉 = −

∑
c∈C

Jj(c)i(c)σ(c)〈αk, |cj(c), c|β〉+
∑
c∈C

Jj(c)i(c)σ(c)〈αk, |cj(c), c|β〉 = 0.

Similarly, 〈u, β`〉 = 0 for any ` so that (−u) bounds a 2-chain F (m) in Ha,2. �

7.3 Proof of the combinatorial formula for the Euler classes

In this section, we prove Proposition 7.2.
Represent Ha like in Figure 7, and assume that the curves βj intersect the handles as arcs

parallel to Figure 18, one below through the favourite crossing and the other ones above.

β1

α′1α′′1

Figure 18: How the βj look like near the handles’ cores

Then cut this upper neighborhood of the cores of the handles in order to get the rectangular
diagram of (D,m, w) of Figure 3, Subsection 3.5.

Let Hm
a,2 denote the complement of disk neighborhoods of the favourite crossings in the

surface Ha,2. See Hm
a,2 as the surface obtained from the rectangle of Figure 3 by adding a

band of the handle upper part of each αi so that the band of αi contains all the non-favourite
crossings of αi. See Figure 19 for an immersion of this surface in the plane.

α1

α′1 α′′1

. . .

αg
α′g α′′g

Y ++ = Y +−

Y −− = Y −+

Figure 19: The punctured surface Hm
a,2

Extend every Y = Y ε,η on Ha so that the fields Y ε,η are horizontal and their projections
are the depicted constant fields in Figure 19.

Note that [0, 2g]× [0, 4]× [−∞, 0] is the product of Figure 20 by [−∞, 0] where all the flow
lines are directed by [−∞, 0].
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α′1 α′′1

. . .

α′g α′′g

Y ++ = Y +−

Y −− = Y −+

Figure 20: A typical slice of [0, 2g]× [0, 4]× [−∞, 0]

Similarly, assume that the α-curves are orthogonal to the picture on the lower parts of the
handles in the standard picture of Hb in Figure 7, and draw a planar picture similar to Figure 19
of Hm

a,4 (that is f−1(4) ∩ CM minus disk neighborhoods of the favourite crossings), by starting
with Figure 21 and by adding a vertical band cut by an horizontal arc of βj oriented from right
to left, for each βj.

β′1

β′′1

. . .

β′g

β′′g

. . .

. . .

. . .

. . .

Y ++ = Y −+

Y −− = Y +−

Figure 21: A typical slice of [0, 2g]× [0, 4]× [6,∞]

Again, [0, 2g]× [0, 4]× [6,∞] is the product of Figure 21 by [6,∞] where all the flow lines
are directed by [6,∞]. Extend every Y = Y ε,η on Hb so that Y looks constant and horizontal
in our standard figure of Hb in Figure 7 and so that its projection on Figure 21 is the drawn
constant field.

Also assume that every Y = Y ε,η varies in a quarter of horizontal plane in our tubular
neighborhoods of the γi in Figure 14. Similarly, extend every Y = Y ε,η in the product by [2, 4]
of the bands of Figure 19 so that Y ε,η is horizontal and is never a (−ε)-normal to the Ai there.

Let HCa,2 denote the punctured rectangle of Figure 3, that is a subsurface of Ha,2. Now, Y
is defined everywhere except in HCa,2×]2, 4[ so that

e(X⊥(Σ), Y ) = e(X⊥(Σ ∩ (HCa,2 × [2, 4])), Y )
= −

∑
c∈C Jj(c)i(c)σ(c)e(X⊥([cj(c), c]β × [2, 4])), Y )

+
∑

(j,i)∈{1,...,g}2
∑

c∈C Jj(c)i(c)σ(c)Jji〈αi, |cj(c), c|β〉e(X⊥(βj × [2, 4]), Y ).

for the surface Σ = Σ(L(m)) of Proposition 7.4. Thus, Proposition 7.2 will be proved as soon
as we have proved the following lemma.

37



Lemma 7.5 With the notation of Subsection 3.5,

de(βj) = −1

4

∑
(ε,η)∈{+,−}2

e(X⊥(βj × [2, 4]), Y ε,η)

and

de(|cj(c), c|β) = −1

4

∑
(ε,η)∈{+,−}2

e(X⊥(|cj(c), c|β × [2, 4]), Y ε,η).

Proof: Consider an arc [c, d]β between two consecutive crossings of β. Let [c′, d′] = [c, d]β ∩
HCa,2. On [c′, d′]×[2, 4], the field X is directed by [2, 4], the field Y is defined on ∂ ([c′, d′]× [2, 4]),
and it is in the hemisphere of the η-normal to [c′, d′]× [2, 4] along ∂ ([c′, d′]× [2, 4])\ [c′, d′]×{2}
(the η-normal is the positive normal when η = + and the negative normal otherwise). Then
e(X⊥([c′, d′] × [2, 4]), Y ε,η) is the degree of Y ε,η at the (−η)-normal to [c′, d′] = [c′, d′] × {2},
in the fiber of the unit tangent bundle of Ha,2 trivialised by the normal to [c′, d′]. Thus,
e(X⊥([c′, d′]× [2, 4]), Y ε,η) is the opposite of the degree of the (−η)-normal to the curve in the
fiber of Ha,2 at Y ε,η trivialised by Y ε,η (that is by Figure 3) along [c′, d′]. This (−η)-normal
starts and ends as vertical in this figure, and Y ε,η is horizontal with a direction that depends
on the sign of ε. The (−η)-normal to [c′, d′] makes (de(|c, d|β) ∈ 1

2
Z) positive loops with respect

to the parallelization induced by Figure 3. Therefore the sum of the degree of the (−η) normal
at the direction of Y ε,η and at the direction of Y (−ε),η is 2de(|c, d|β).

This shows that

de(|c, d|β) = −1

2

(
e(X⊥([c′, d′]× [2, 4]), Y ε,η) + e(X⊥([c′, d′]× [2, 4]), Y (−ε),η)

)
and allows us to conclude the proof of Lemma 7.5, and therefore the proofs of Proposition 7.2
and Theorem 3.8. �
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Ai, 15
ai, 8

BM , 5

CM , 15
C2(M), 3, 4

D(αi), 7
de, 13
∂od, 17

e(w,m) = e(D, w,m), 13

γ(c), 8
G↑↓, 27
Gb
↑↓(X, Y ), 27

Gi
↑↓(Y ), 27

Ha, 15
Ha,2, 16

ι, 20

Jji, 9

L(ai), 15
L+(ai), 15
λ, 1
`(., .), 12
`2(D), 10, 12
L(m) = L(D,m), 9

m, 8

P(f, g), 17
Ph, 26
PI , 17
Pφ, 16
PΣ, 26
p1, 1, 6
p∞, 5

[S], 4
sa, 25
sφ(M̌), 16
σ(c), 7

UM̌ , 4

w, 8

X(w,m), 24
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