Moduli and Friends, Bucharest, September 2023

On topological invariants counting graph configurations

Christine Lescop, CNRS, Institut Fourier, Grenoble
I. The Theta invariant for 3-manifolds associated with \odot (Mostly on blackboard, with included auxiliary slides).
II. The Watanabe invariant for $\left(D^{4}, \partial D^{4}\right)$-bundles associated with

For more about these invariants for 3-manifolds and links therein, see the book arXiv/2001.09929 (final version in preparation)

One more advertisement for a simple invariant of genus one knots arXiv/2304.04707.

$C_{2}(M)$

$C_{2}(M)=\mathrm{Bl}\left(\mathrm{B} \ell\left(M^{2},(\infty, \infty)\right), \bar{M} \times \infty \coprod \overline{\left.\infty \times \check{M} \coprod \overline{\operatorname{diag}\left(\check{M}^{2}\right)}\right)}\right.$

Blow-ups

Here, blowing up B properly embedded in A replaces B with its unit normal bundle UNB to produce

$$
\mathrm{B} \ell(A, B)=(A \backslash B) \cup U N B
$$

homeomorphic to $A \backslash \mathcal{N}(B)$.

$\left.\mathbb{R}^{d}=\right] 0,+\infty\left[\times S^{d-1} \cup\{0\} \quad \mathrm{B} \ell\left(\mathbb{R}^{d}, 0\right)=\left[0,+\infty\left[\times S^{d-1}\right.\right.\right.$
$\mathrm{B}\left(\mathbb{R}^{k} \times \mathbb{R}^{d}, \mathbb{R}^{k} \times 0\right)=\mathbb{R}^{k} \times \mathrm{B} \ell\left(\mathbb{R}^{d}, 0\right) \rightsquigarrow$ local models

- $p_{\mathrm{B} \ell(A, B)}: \mathrm{Bl}(A, B) \rightarrow A$ canonical,
- $\mathrm{B} \ell(A, B)$ homotopy equivalent to $A \backslash B$,
- A compact $\Rightarrow \mathrm{Bl}(A, B)$ compact.

Borromean surgery in dimension 3

X is the cube minus the three thin tubes

Borromean surgery in dimension 3

X and X^{\prime} are the cubes minus the thin tubes. We have $\partial X=\partial X^{\prime}$. Assume $X \subset M$. Define $M_{\{X\}}=M \backslash \dot{X} \cup_{\partial X=\partial X^{\prime}} X^{\prime}=M_{X}$. Let Y be a copy of X.
Assume $X \sqcup Y \subset M$. Set $M_{\{X, Y\}}=\left(M_{\{X\}}\right)_{\{Y\}}=M_{X Y}$.
For $I \subset\{X, Y\}$, define M_{I} as above.
We compute $\Theta^{\prime \prime}=\sum_{I \subset\{X, Y\}}(-1)^{|/|} \Theta\left(M_{l}\right)$

$$
=\Theta\left(M_{X Y}\right)-\Theta\left(M_{Y}\right)-\Theta\left(M_{X}\right)+\Theta(M)
$$

The surfaces S_{1}^{\prime} and S_{2}^{\prime}

Watanabe's disproof of the 4d-Smale conjecture

$I=[0,1]$.
In 2018, Watanabe constructed a non-trivial $\left(D^{4}, \partial D^{4}\right)$-bundle over $\left(I^{2}, \partial I^{2}\right)$

$$
\left(\mathbb{R}^{4}, \mathbb{R}^{4} \backslash \dot{D}^{4}\right) \hookrightarrow \underset{ }{E} \begin{gathered}
\downarrow \\
l^{2}
\end{gathered}
$$

(i.e. a ($D^{4}, \partial D^{4}$)-bundle over I^{2} equipped with a trivialization along ∂I^{2} that does not extend to I^{2}) $\left(\Rightarrow \pi_{1}\left(\operatorname{Diff}\left(D^{4}, \partial D^{4}\right)\right) \neq\{1\} \Rightarrow \pi_{1}\left(\operatorname{Diff}\left(S^{4}\right)\right) \neq \pi_{1}(S O(5))\right)$ He detected such a counter-example to the $4 d$-Smale conjecture with an invariant, which he called a

```
Kontsevich characteristic class.
```


Watanabe's first (blue) surgery

R_{0} is the cube minus the two thin tubes and a tubular neighborhood of the sphere.
R_{t} is the cube minus the two thin tubes and a tubular neighborhood of the travelling sphere at time $t \in I$.

$$
R=R_{0} \times I
$$

$$
R^{\prime}=\cup_{t \in I} R_{t} \times\{t\}
$$

This model R is in \mathbb{R}^{4}.

A Kontsevich-Watanabe invariant

trivialized over $\partial I^{2} \quad$ associated $C_{2}\left(S^{4}\right)$-bundle vertically framed A propagator of E is a codimension 3 cycle P of $\left(C_{2}(E), \partial C_{2}(E)\right)$
 such that $\partial P=G^{-1}(a)$ for some $a \in S^{3}$

$$
\begin{array}{r}
C_{4}\left(S^{4}\right) \hookrightarrow C_{4}(E) \xrightarrow[\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto]{p_{i j}} \underset{\left(x_{i}, x_{j}\right)}{C_{2}(E)}
\end{array}
$$

$\left(P_{a}, P_{b}, \ldots, P_{f}\right)$ generic family of 6 propagators of E $W(E)=\sum \frac{1}{2^{6} 6!}\left\langle p_{12}^{-1}\left(P_{g(12)}+\iota\left(P_{g(12)}\right), \ldots, p_{34}^{-1}\left(P_{g(34)}+\iota\left(P_{g(34)}\right)\right\rangle_{C_{4}(E)}\right.\right.$ $g:\{12,13,14,23,24,34\} \hookrightarrow\{a, b, \ldots, f\}$
. if the vertical framing of E over ∂E extends to E.

Watanabe's first (blue) surgery

R_{t} is the cube minus the two thin tubes and a tubular neighborhood of the travelling sphere at time $t \in I$ $R=R_{0} \times I$

$$
R^{\prime}=\cup_{t \in I} R_{t} \times\{t\}
$$

When R is embedded in some M^{4},

$$
M_{R}^{4}=M^{4}\left(R^{\prime} / R\right)=\left(M^{4} \backslash \stackrel{\circ}{R}\right) \cup_{\partial R} R^{\prime}
$$

Watanabe's parametrized (green) surgery

$V_{t, v}$ is the cube minus the thin tube and tubular neighborhoods of the two travelling spheres at $(t, v) \in I^{2}$.
$V_{v}=V_{0, v} \times I$ is identified with $V_{0}=V_{0,0} \times I$

$$
V_{v}^{\prime}=\cup_{t \in I} V_{t, v} \times\{t\}
$$

The Watanabe counter-example

$$
\begin{gathered}
E_{Q R U V}=\cup_{\left.(u, v) \in\right|^{2} \mathbb{R}^{4}\left(Q^{\prime} / Q, R^{\prime} / R, U_{u}^{\prime} / U_{u}, V_{v}^{\prime} / V_{v}\right) \times\{u, v\}} W\left(E_{Q R U V}\right)=\sum_{I \subset\{Q, R, U, V\}}(-1)^{|/|} W\left(E_{l}\right) \neq 0
\end{gathered}
$$

LECTURERS

Weeks 1 and 2 - Summer School
Claire Amiot - IUF, Institux Fourier
Paolo Ghiggini - CNRS, Instiut Fourier
Marco Golla - CNRS, Laboratoire Jean Leray
Arunima Ray - Max-Planck-Insitut fur Mathematil
Emmanuel Wagner - IMU-Paris Rive Gauche
Liam Watson - Univ. British Columbia

