On the cube

of the equivariant linking pairing for closed 3-manifolds of rank 1

Christine Lescop

CNRS, Institut Fourier, Grenoble

In this talk, all the manifolds are oriented .
A homology sphere
is a closed (connected, compact, without boundary)
3-manifold N such that $H_{*}(N ; \mathbb{Z})=H_{*}\left(S^{3} ; \mathbb{Z}\right)$.

Chern-Simons Gauge Theory: 20 years after

Hausdorff Center for mathematics, Bonn, August 2009

Background
 Statements The construction

The study of 3-manifold invariants built from integrals over configuration spaces started after the work of Witten on Chern-Simons theory in 1989, with work of Axelrod, Singer, Kontsevich, Bott, Cattaneo, Taubes...
For the knots and links case, many more authors were involved
including Bar-Natan, Guadagnini, Martellini, Mintchev,
Altschüler, Freidel, Poirier..
In 1999, G. Kuperberg and D. Thurston proved that some of these invariants (the Kontsevich ones)
fit in with the framework of finite type invariants of homology spheres
studied by Ohtsuki, Le, Murakami (2), Goussarov,
Habiro, Rozansky, Garoufalidis, Polyak...
and together define a
universal finite type invariant for homology 3 -spheres.

In particular, the Kuperberg-Thurston work shows how to write

$$
{ }^{\lambda} \text { Casson, } 1984(N)=\frac{1}{6} \int_{(M \backslash\{\infty\})^{2} \backslash \text { diagonal }} \omega^{3}
$$

for a homology sphere $N, \infty \in N$,
and a closed 2 -form ω such that
for any 2-component link (J, L) of $N, \int_{J \times L} \omega=\operatorname{lk}(J, L)$.
$J \sqcup L: S^{1} \sqcup S^{1} \rightarrow N \backslash\{\infty\}$
induces $J \times L: S^{1} \times S^{1} \rightarrow(N \backslash\{\infty\})^{2} \backslash$ diagonal.
${ }^{6 \lambda}$ Casson (N) may be viewed as the cube of the linking form.

We can also write
${ }^{6 \lambda}$ Casson, $1984(N)$ is the algebraic intersection $\left\langle F_{X}, F_{Y}, F_{Z}\right\rangle$ of three codimension 2 submanifolds F_{X}, F_{Y}, F_{Z} in $(N \backslash\{\infty\})^{2} \backslash$ diagonal,
for a homology sphere $N, \infty \in N$,
and 4-dimensional submanifolds $F\left(F_{X}, F_{Y}\right.$ and $\left.F_{Z}\right)$
Poincaré dual to the previous ω
such that for any 2-component link (J, L) of N,

$$
\langle J \times L, F\rangle=\operatorname{Ik}(J, L) .
$$

See math.GT/0411088 and math.GT/0411431
for details and generalisations.

Background Statements

Relation to the Kontsevich integral
The invariant $\mathcal{Q}(M, \mathbb{K})$ is equivalent to the two-loop part of the Kontsevich integral of the core of the surgery in the surgered rational homology sphere $M(\mathbb{K})$.

In 2004, Garoufalidis and Kricker defined a rational lift of the Kontsevich integral for null-homologous knots in rational homology spheres.
In 2005, Julien Marché proposed a "cubic" definition of an invariant equivalent to the two-loop part.

The Casson invariant is associated with the graph θ.
Our equivariant cube is associated with the above haired θ.

Theorem

We can similarly define

an equivariant cube $\mathcal{Q}(M, \mathbb{K})$ of the equivariant linking pairing for a closed 3-manifold M with $H_{1}(M ; \mathbb{Q})=\mathbb{Q}$
w.r.t. a framed knot \mathbb{K} such that $H_{1}(M ; \mathbb{Z}) /$ Torsion $=\mathbb{Z}[\mathbb{K}]$ with the following properties.
(1) $\mathcal{Q}(M, \mathbb{K}) \in \mathbb{Q}(x, y)=\frac{\mathbb{Q}(x, y, z)}{(x y z=1)}, \quad \mathcal{Q}\left(S^{1} \times S^{2}, S^{1} \times u\right)=0$.
(2) If N is a rational homology sphere,

$$
\mathcal{Q}(M \sharp N, \mathbb{K})=\mathcal{Q}(M, \mathbb{K})+6 \lambda \text { Casson-Walker }(N) \text {. }
$$

(3) Surgery formula
(9) Variation under framed knot change
(3) And more...
The infinite cyclic covering

$$
q: \tilde{M} \rightarrow M
$$

T_{M} generates covering group
Example : $M=S^{1} \times S^{2}$ $\tilde{M}=\mathbb{R} \times S^{2}, K=S^{1} \times u$

M closed 3-manifold,
K knot of M such that $H_{1}(M ; \mathbb{Z}) /$ Torsion $=\mathbb{Z}[K]$
S closed surface such that $\langle K, S\rangle=1$.

\bar{M} infinite cyclic covering of $M . T_{M}$ generates its covering group. The action of T_{M} on $H_{1}(\tilde{M} ; \mathbb{Q})$ is denoted as the multiplication by t_{M}.
The $\mathbb{Q}\left[t_{M}^{ \pm 1}\right]$-module $H_{1}(\tilde{M} ; \mathbb{Q})$ reads

$$
H_{1}(\tilde{M} ; \mathbb{Q})=\bigoplus_{i=1}^{k} \frac{\mathbb{Q}\left[t_{M}^{ \pm 1}\right]}{\delta_{i}}
$$

where δ_{i} divides δ_{i+1}.
$\delta=\delta(M)=\delta_{k}$ is the annihilator of $H_{1}(\tilde{M} ; \mathbb{Q})$ and
$\Delta=\Delta(M)=\prod_{i=1}^{k} \delta_{i}$ is the Alexander polynomial of M.
They are normalised so that

$$
\begin{aligned}
& \Delta\left(t_{M}\right)=\Delta\left(t_{M}^{-1}\right) \text { and } \Delta(1)=1, \\
& \delta\left(t_{M}\right)=\delta\left(t_{M}^{-1}\right) \text { and } \delta(1)=1 .
\end{aligned}
$$

Theorem

We can construct
an equivariant cube $\mathcal{Q}(M, \mathbb{K})$ of the equivariant linking pairing for a closed 3-manifold M with $H_{1}(M ; \mathbb{Q})=\mathbb{Q}$
w.r.t. a framed knot \mathbb{K} such that $H_{1}(M ; \mathbb{Z}) /$ Torsion $=\mathbb{Z}[\mathbb{K}]$ with the following properties.
(1) $\mathcal{Q}(M, \mathbb{K}) \in \mathbb{Q}(x, y)=\frac{Q}{(x, y, z)}(x y=1), \quad \mathcal{Q}\left(S^{1} \times S^{2}, S^{1} \times u\right)=0$.

The equivariant linking pairing
(J, L) 2-component link of \tilde{M}, $q(J) \cap q(L)=\emptyset$
Assume $J=\partial \Sigma$.

$$
\begin{aligned}
\mathbb{k}_{e}(J, L) & =\sum_{n \in \mathbb{Z}} t_{M}^{n}\left\langle\Sigma, T_{M}^{n}(L)\right\rangle \\
& =\langle\Sigma, L\rangle_{e}
\end{aligned}
$$

Here, $\operatorname{lk}_{e}(J, L)=t_{M}^{2}$

$$
\begin{aligned}
& \mathbb{I}_{e}\left(P\left(T_{M}\right) J, Q\left(T_{M}\right) L\right) \\
& =P\left(t_{M}\right) Q\left(t_{M}^{-1}\right) k_{e}(J, L)
\end{aligned}
$$

For any knot J of \tilde{M}, δJ bounds a rational chain. $I K_{e}(J, L)=\frac{I K_{e}(\delta J, L)}{\delta}$.

$$
\delta(x) \delta(y) \delta(z) \mathcal{Q}(M, \mathbb{K}) \in \frac{\mathbb{Q}\left[x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right]}{(x y z=1)}=\mathbb{Q}\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

where δ is the annihilator of $H_{1}(\tilde{M} ; \mathbb{Q})$.If N is a rational homology sphere,
$\mathcal{Q}(M \sharp N, \mathbb{K})=\mathcal{Q}(M, \mathbb{K})+6 \lambda_{\text {Casson-Walker }}(N)$.

$$
\mathcal{Q}(M \sharp N, \mathbb{K})=\mathcal{Q}(M, \mathbb{K})+6 \lambda_{\text {Casson-Walker }}(N) \text {. }
$$

Background Statements
 Statements construction

(3) Surgery formula

Let J be a knot of M that bounds a Seifert surface Σ disjoint from K, whose H_{1} goes to 0 in $H_{1}(M) /$ Torsion.
Let $\left(a_{i}, b_{i}\right)_{i=1, \ldots, g}$ be a symplectic basis of $H_{1}(\Sigma)$.

then

$$
\mathcal{Q}(M(J ; p / q), \mathbb{K})-\mathcal{Q}(M, \mathbb{K})=6 \frac{q}{p} \lambda_{e}^{\prime}(J)+6 \lambda\left(S^{3}(\bigcirc ; p / q)\right)
$$

(3) Surgery formula

$$
I_{\Delta}(t)=\frac{1+t}{1-t}+\frac{t \Delta^{\prime}(t)}{\Delta(t)}
$$

Let J be a knot of M that bounds a Seifert surface Σ disjoint from K, whose H_{1} goes to 0 in $H_{1}(M) /$ Torsion.
Let $\left(a_{i}, b_{i}\right)_{i=1, \ldots, g}$ be a symplectic basis of $H_{1}(\Sigma)$. Let
$\lambda_{e}^{\prime}(J)=\frac{1}{12} \sum_{(i, j) \in\{1, \ldots, g\}^{2}} \sum_{\mathfrak{G}_{3}(x, y, z)}\left(\alpha_{i j}(x, y)+\alpha_{i j}\left(x^{-1}, y^{-1}\right)+\beta_{i j}(x, y)\right)$
where $\alpha_{i j}(x, y)$ is
$l k_{e}\left(a_{i}, a_{j}^{+}\right)(x) l k_{e}\left(b_{i}, b_{j}^{+}\right)(y)-I k_{e}\left(a_{i}, b_{j}^{+}\right)(x) \nmid k_{e}\left(b_{i}, a_{j}^{+}\right)(y)$
and $\beta_{i j}(x, y)$ is
$\left(k_{e}\left(a_{i}, b_{i}^{+}\right)(x)-I k_{e}\left(b_{i}^{+}, a_{i}\right)(x)\right)\left(\mathbb{l} k_{e}\left(a_{j}, b_{j}^{+}\right)(y)-\mathbb{k _ { e }}\left(b_{j}^{+}, a_{j}\right)(y)\right)$,
then

$$
\mathcal{Q}(M(J ; p / q), \mathbb{K})-\mathcal{Q}(M, \mathbb{K})=6 \frac{q}{p} \lambda_{e}^{\prime}(J)+6 \lambda\left(S^{3}(\bigcirc ; p / q)\right)
$$

(4) Framed knot change

Let \mathbb{K}^{\prime} be another knot of M such that $H_{1}(M) /$ Torsion $=\mathbb{Z}\left[K^{\prime}\right]$. Then there exists an antisymmetric polynomial $\mathcal{V}\left(\mathbb{K}, \mathbb{K}^{\prime}\right)$ in $\mathbb{Q}\left[t, t^{-1}\right]$ such that

$$
\mathcal{Q}\left(M, \mathbb{K}^{\prime}\right)-\mathcal{Q}(M, \mathbb{K})=\sum_{\mathfrak{S}_{3}(x, y, z)} \frac{\mathcal{V}\left(\mathbb{K}, \mathbb{K}^{\prime}\right)(x)}{\delta(x)} I_{\Delta}(y) .
$$

Furthermore, for any $k \in \mathbb{Z}$, there exists a pair of framed knots $\left(\mathbb{K}, \mathbb{K}^{\prime}\right)$ such that $\mathcal{V}\left(\mathbb{K}, \mathbb{K}^{\prime}\right)=t^{k}-t^{-k}$.

Example: If \mathbb{K}^{\prime} is obtained from \mathbb{K} by adding one to the framing, then $\mathcal{V}\left(\mathbb{K}, \mathbb{K}^{\prime}\right)(t)=-\frac{\delta(t)}{2} \frac{\Delta \Delta^{\prime}(t)}{\Delta(t)}$.

Consider the infinite cyclic covering of M^{2}

$$
\widetilde{M^{2}}=\frac{\tilde{M}^{2}}{(u, v) \sim\left(T_{M}(u), T_{M}(v)\right)} \quad \xrightarrow{q_{2}} M^{2}
$$

Definition of an invariant for 3-manifolds of rank one

For a fixed (δ, Δ), define $\overline{\mathcal{Q}}(M)$ in the quotient of $\mathbb{Q}(x, y)$
by the vector space generated by the $\left(\mathcal{Q}\left(M, \mathbb{K}^{\prime}\right)-\mathcal{Q}(M, \mathbb{K})\right)$ as the class of $\mathcal{Q}(M, \mathbb{K})$.

The invariant $\overline{\mathcal{Q}}(M)$ is equivalent
to a special case of invariants defined by Ohtsuki in 2008, combinatorially,
for 3-manifolds of rank one.

(5) Property

If Δ has only simple roots,
if N is a rational homology sphere s. t. $\lambda_{\text {Casson-Walker }}(N) \neq 0$, then $\overline{\mathcal{Q}}(M) \neq \overline{\mathcal{Q}}(M \sharp N)$.

$$
I_{\Delta}(t)=\frac{1+t}{1-t}+\frac{t \Delta^{\prime}(t)}{\Delta(t)}
$$

Lemma

$\forall X \in S^{2}, \exists$ a rational 4-dimensional chain G of $\tilde{C}_{2}(M)$ such that

$$
\partial G=(t-1) \delta\left(M \times_{\tau} X-I_{\Delta} K \times_{\tau} S^{2}\right)
$$

Set $F=\frac{G}{(t-1) \delta}$, then $\langle J \times L, F\rangle_{e}=k_{e}(J, L)$.

Lemma

$H_{3}\left(\tilde{C}_{2}(M) ; \mathbb{Q}\right) \otimes_{\mathbb{Q}[t]} \mathbb{Q}(t)=\mathbb{Q}(t)\left[K \times_{\tau} S^{2}\right]$.

$$
A(K)=\overline{\left\{\left(K(z), K(z \exp (2 i \pi u)) ; z \in S^{1}, u \in\right] 0,1[\}\right.} .
$$

Assume that $\tau: T M \rightarrow M \times \mathbb{R}^{3}$ maps $T K$ to $\mathbb{R} W$ with $W \in S^{2}$.

Lemma

Let K_{X}, K_{Y} and K_{Z} be disjoint parallels of K w.r.t. its parallelisation. $\forall X, Y, Z \in S^{2} \backslash\{W,-W\}$ distinct, \exists rational 4-dimensional chains G_{X}, G_{Y} and G_{Z} of $\tilde{C}_{2}(M)$ such that
$\partial G_{X, Y \text { or } z}=(t-1) \delta\left(M \times_{\tau}\{X, Y\right.$ or $\left.Z\}-I_{\Delta} K_{X, Y \text { or } Z} \times_{\tau} S^{2}\right)$
and $\left\langle A(K), G_{X}\right\rangle_{e}=\left\langle A(K), G_{Y}\right\rangle_{e}=\left\langle A(K), G_{Z}\right\rangle_{e}=0$.

Definition of $\mathcal{Q}(M ; \mathbb{K})$

$\mathcal{Q}(M ; \mathbb{K})=\frac{\left\langle G_{X}, G_{Y}, G_{Z}\right\rangle_{e}}{(x-1) \delta(x)(y-1) \delta(y)(z-1) \delta(z)}-\frac{1}{4} p_{1}(\tau)$.
$\left\langle G_{X}, G_{Y}, G_{Z}\right\rangle_{e}=\sum x^{m} y^{n}\left\langle T^{-m}\left(G_{X}\right), T^{-n}\left(G_{Y}\right), G_{Z}\right\rangle$

