I repeat two exercises from Sheet 2 because they were about some material I did not cover in my second lecture.

Exercise 1. Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram, x a Heegaard Floer generator, P a periodic domain and $[P] \in H_2(M; \mathbb{Z})$ the homology class associated to it. Prove that
\[c_1(s_z(x)) = e(P) + 2n_x(P). \]

Exercise 2. Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram and let z' be another basepoint separated by α_i from z by the curve α_i.

\[\bullet \quad z \]

\[\bullet \quad z' \]

Compute $s_z(x) - s_{z'}(x)$ for a Heegaard Floer generator x.

Exercise 3. Let x and y be Heegaard Floer generators. prove that
\[s_z(y) - s_z(y) = \epsilon(x, y). \]

Be careful with the next exercise because I couldn’t solve it, but it should be doable.

Exercise 4. Choose (arbitrary) orientations of the α- and β- curves. Then to each intersection point x we assign $\sigma(x) = \pm 1$ depending on the sign of the intersection (since the sign depends on the order in dimension two, we fix the convention that α is first and β second). Given an a Heegaard Floer generator $x = \{x_1, \ldots, x_n\}$ we define $\sigma(x) = \prod \sigma(x_i)$.

Prove that, for every $u \in \mathcal{M}(x, y)$, we have that $I(D(u) \equiv 0 \pmod 2$ if $\sigma(x)\sigma(y) = 1$ and $I(D(u) \equiv 1 \pmod 2$ if $\sigma(x)\sigma(y) = -1$.

Exercise 5. Let $(T^2, \alpha, \beta, \gamma, z)$ be the triple Heegaard diagram where, for some orientation of α, β and γ, $\alpha \cdot \beta = 1$ and $\gamma = \alpha + n\beta$ for $n \in \mathbb{Z}$. The placement of z is up to you. Compute the maps $F_{\alpha, \beta, \gamma}$.
