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June-July 2004



Chapter 1

Fuchsian groups

1.1 The geometry of the hyperbolic plane

1.1.1

The most common model for the hyperbolic plane is the upper half-space H = {z ∈ C ; Im(z) > 0}, endowed
with the metric ds2 = dx2+dy2

y2 . If SL(2, R) denote the Lie group of 2 × 2 matrices of determinant 1 then one
sets PSL(2, R) = SL(2, R)/{±1}. The natural action of SL(2, R) on C by mean Mbius transformations factors
through an action of PSL(2, R) on the upper half-plane, as follows

w =
(

a b
c d

)
· z =

az + b

cz + d
;

As Im w = Im z· 1
(cz+d)2 we find that PSL(2, R) actually acts by homeomorphisms on H.

Proposition 1.1.1
i) H is a complete Riemannian manifold of constant curvature −1.

ii) PSL(2, R) = Isom+(H).

iii) The geodesics of H are semi-circles (half-lines) orthogonal to the real axis.

iv) PSL(2, R) maps geodesics into geodesics.

v) The hyperbolic distance between two points z, w ∈ H is given by

d(z, w) = log
|z − w| + |z − w|
|z − w|− |z − w| = log[w, z∗, z, w∗]

where [z1, z2, z3, z4] = (z1−z2)(z3−z4)
z2−z3)(z1−z4)

and the geodesic joining z to w intersects the real axis into z∗ and
w∗.

Remarks.

1. PSL(2, R) ⊂ Isom(H) by direct computation.

2. The geodesics are semi-circles because one computes easily a lower bound for the length l(γ) of a curve γ
which joins γ(0) = ia to γ(1) = ib, for i =

√
−1, a, b ∈ R+, as follows:

ℓh (γ; γ(0) = ia, γ(1) = ib) ≥
∫ 1

0

ẏ

y
dt = log

b

a

The equality is attained only when γ is the vertical segment of half-line joining the two points. Further
PSL(2, R) sends semi-circles into half-lines orthogonal to the real axis and in meantime it acts transitively
on pairs of points in the half-plane, thus a geodesic joining two arbitrary points is the image of a vertical
segment by such a Möbius transformation.

3. The full group of isometries of the upper half-plane is Isom(H) = SL∗(2, R)/{±1} where
SL∗(2, R) = {A ∈ GL(2, R) ; detA ∈ {±1}.
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1.1.2

Another well-known model for the hyperbolic geometry is the unit disk model D = {z ∈ C ; |z| < 1}, with the
metric dr2 = 2(dx2+dy2)

1−(x2+y2) , where we write z = x + iy. The map f : H → D given by f(z) = z·i+1
z+i is therefore an

isometry. The geodesics are semi-circles orthogonal to the boundary circle (which is also called the principal
circle).

Remarks.

1. The action of PSL(2, R) on D can be deduced from above:
(

a b
c d

)
w =

w(a + d + (b − c)i) + (b + c + (a − d)i)
w(b + c − (a − d)i) + ((a + d) − (b − c)i)

=
wα + β̄

wβ + ᾱ

where α, β ∈ C, αᾱ − ββ̄ = 1.

2. The PSL(2, R) action on D extends continuously to an action on the boundary circle, hence to the closed
2-disk D.

1.2 PSL(2, R) and Fuchsian groups

1.2.1

Set Tr : PSL(2, R) → R+ for the function Tr(A) = | tr(Ã)| where Ã is an arbitrary lift of A in SL(2, R). Then
Tr is well-defined. The elements of PSL(2, R) are classified as follows:

A) elliptic if TrA < 2, thus conjugate to a unique matrix of the form
(

cos θ sin θ
− sin θ cos θ

)
, with θ ∈ (0, 2π).

B) hyperbolic if Tr A > 2, thus conjugate to a unique matrix
(

λ 0
0 λ−1

)
, where λ ̸= 1, λ ∈ R, hence

diagonalizable over R.

C) parabolic if TrA = 2, thus conjugate to either the positive or the negative translation along the real axis.

Remarks.

1. A transformation A ∈ PSL(2, R) is

• elliptic iff it has a unique fixed point in D (or H).

• hyperbolic iff it has exactly two fixed points in ∂D (or equivalently ∂H).
• parabolic iff it has a unique fixed point in ∂D (or equivalently ∂H).

2. Conjugacy classes in SL(2, R) (respectively PSL(2, R) are essentially determined by the trace (respectively
Tr); this is really true for hyperbolic or elliptic transformations and up to sign ambiguity for the parabolic
ones. Notice that parabolics are always conjugate within the larger group PSL∗(2, R) = Isom(H).

Remark.

1. PSL(2, R) acts on the unit tangent bundle SH, by A(z, v) = (Az, dA(v)). This action is simply transitive,
identifying PSL(2, R) and SH. In particular PSL(2, R) is an open solid torus.

2. If γ1, γ2 are two geodesics in H and zi ∈ γi are two points on them then there exists A ∈ PSL(2, R) such
that A(γ1) = γ2 and Az1 = z2.
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1.2.2

SL(2, R) inherits a topology when seen as a subset of the Euclidean space SL(2, R) ⊂ R4 by means of the obvious

inclusion sending the matrix
(

a b
c d

)
into the point (a, b, c, d). Furthermore, the Z/2-action (a, b, c, d) −→

(−a,−b,−c,−d) identifies PSL(2, R) as a quotient of the topological space SL(2, R), which is then endowed
with the quotient topology. Notice that PSL(2, R) is a topological group since the topology defined above is
compatible with the group structure.

Definition 1.2.1 The subgroup Γ ⊂ PSL(2, R) is discrete if Γ is a discrete set in the topological space PSL(2, R).
Discrete subgroups of PSL(2, R) are usually called Fuchsian groups.

Definition 1.2.2 Let G be a group of homeomorphisms acting on the topological space X. Then G acts properly
discontinuously an X if the G-orbit of any x ∈ X, i.e. Gx = {gx; g ∈ G}, is a locally finite family.

Remarks.

1. One required that the family of orbits be a locally finite family and not only a locally finite set. Recall
that the family {Mα}α∈J is called locally finite if for any compact subset K ⊂ X we have Mα ∩ K ̸= ∅
only for finitely many values of α ∈ A.

2. In Gx each point is contained with a multiplicity equal to the order of the stabilizer Gx = {g ∈ G; gx = x}.

3. In particular G acts properly discontinuously iff each orbit is discrete (as a set this time) and the order
of the stabilizer is finite.

4. G acts properly discontinuously iff for all x ∈ X , there exists a neighborhood V ∋ x, V ⊂ X such that
J (V ) ∩ V ̸= ∅ for only finitely many g ∈ G.

Proposition 1.2.1 The subgroup Γ ⊂ PSL(2, R) is Fuchsian iff it acts properly discontinuously on H.

Corollaire 1.2.1
1. The fixed points of elliptic elements form a discrete set in H.

2. If moreover Γ does not contain elliptic elements then H/Γ is a complete connected orientable Riemannian
2-manifold of curvature −1.

Remark. In general, a discrete group might well act non-discontinuously on a topological space. For example,
the action of the discrete subgroup PSL(2, Z) of PSL(2, R) on the boundary circle ∂H, which is induced by the
action of PSL(2, R) on the boundary, has an orbit equal to Q ∪ {∞} which is dense in R ∪ {∞}.
Examples.

1. PSL(2, Z) is a Fuchsian group.

2. PSL(2, Z[
√

2]) is not a Fuchsian group.

1.3 Discreteness of subgroups Γ ⊂ PSL(2, R)

Definition 1.3.1 The limit set Λ(Γ) ⊂ H is the set of accumulation points of Γ-orbits Γz, for z ∈ H.

Examples.

1. If Γ is the cyclic group generated by the homothety z → λz, with λ > 1 then Λ(Γ) = {0,∞}.

2. Γ = PSL(2, Z) then Λ(Γ) = R ∪ {∞}.

3. If Γ is Fuchsian then Λ(Γ) ⊂ R ∪ {∞}.

Definition 1.3.2 The subgroup Γ is elementary if there exists a finite Γ-orbit in H. Equivalently, we have the
equality Tr[A, B] = 2, whenever A, B ∈ Γ have infinite order.

Elementary Fuchsian groups can be characterized completely. It is known that:
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Proposition 1.3.1 An elementary Fuchsian group is either cyclic or it is conjugate within PSL(2, R) to the
group generated by the two transformations g and j below:

g(z) = λz, λ > 1 and j(z) = −1
z

Proposition 1.3.2 If Γ ⊂ PSL(2, R) contains only elliptic elements (or the identity 11) then Γ is cyclic ele-
mentary.

Proposition 1.3.3 Let Γ be a non-elementary subgroup of PSL(2, R). Then Γ is discrete iff the following
equivalent conditions are fulfilled:

i) The fixed points of elliptic elements do not accumulate on H.

ii) The elliptic elements do not accumulate on 11.

iii) Each elliptic element has finite order.

Proposition 1.3.4 Let Γ ⊂ PSL(2, R) be non-elementary. Then:

1. Γ contains hyperbolic elements.

2. If Γ does not contain elliptic elements then it is discrete.

3. Γ is discrete iff every cyclic subgroup of Γ is discrete.

Remarks.

1. The proof of the third assertion above is due to T.Jorgensen. He used the following inequality valid
actually more generally in PSL(2, C):

| tr2(A) − 2| + | tr([A, B]) − 2| ≥ 1

whenever the subgroup ⟨A, B⟩ ⊂ PSL(2, C) generated by A and B is discrete. Observe that both tr2(A)
and tr([A, B]) are well-defined when A, B ∈ PSL(2, C).

2. Notice that a subgroup Γ ⊂ PSL(2, C) is discrete if and only if every two generators subgroup of Γ is
discrete. Moreover, this time the discreteness of its cyclic subgroups is not sufficient.

3. Another proof of the third part is due to Rosenberger [27], who showed that if we have a discrete subgroup
Γ ⊂ PSL(2, R) which is not isomorphic to Z/2 ∗ Z/2 then

|Tr([A, B]) − 2| ≥ 2 − 2 cos
π

7

for any A, B ∈ Γ.

4. The discreteness of a two generator subgroup ⟨A, B⟩ can be algorithmically and effectively decided, as it
was proved by J.Gilman (see [9]). By instance if A, B are hyperbolic elements with intersecting distinct
axes and γ2 = [A, B], A = E1E2, B = E1E3, Ei having order 2, γ = E1E2E3 and G denotes the subgroup
⟨A, B⟩, then we have:

• if A, B, γ are primitive (i.e. hyperbolic, parabolic or elliptic of finite order) then G is discrete.

• if [A, B] is elliptic of infinite order then G is not discrete.
• if tr[A, B] = −2 cos 2kπ

n , 1 ≤ k < n
2 ,

– if k /∈ {2, 3} then G is not discrete.
– if k ∈ {2, 3} then we have special triangular groups G which might be discrete, and the situation

is completely understood (see [9]).
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1.4 Freeness of subgroups of PSL(2, R) and PSL(2, C)

Proposition 1.4.1
1. The subgroup Γλ ⊂ PSL(2, R), which is generated by the two matrices B =

(
1 0
λ 1

)
and A =

(
1 λ
0 1

)
is

free provide that |λ| ≥ 2 This was proved by I.N.Sanov in 1947 and by J.L.Brenner in 1955.

2. More generally the same holds true for λ ∈ C provided that one of the following conditions holds:

• λ is outside the unit disks centered at −1, 0 and 1.

• λ is outside the disks radius 1
2 centered at −i

2 and i
2 and outside the unit open disks centered at −1

and 1.

• λ lies outside the convex hull of the open disk radius 1 at origin and the points ±2.

• |λ| > 1 and | Im(λ)| ≥ 1
2 .

• |λ − 1| > 1
2 and 1 ≤ |ℜλ| < 5

4 , where ℜ denotes the real part and Im the imaginary part.

• λ is transcendental.

Those λ ∈ C for which the subgroup Γλ is free will be called free.

3. Moreover, it is known (see the papers [1, 2]) that

• The set of algebraic complex numbers which are free points is dense in C.

• There exist sets S1, S2 consisting of algebraic irrational complex numbers so that S1 = (−2, 2),
S2 = (−i, i) and Si consist of non-free points.

• The points 1
2e2πi/k, 1

k , k
k2+1 , for k ∈ Z, 1√

2
, 9

50 , 8
25 , 25

98 are non-free.

• If p2 −Nq2 = 1, where p, q are integers and N is a positive integer which is not a perfect square then
λ = p

q is non-free. In fact, we have

W = Aq2
BNA−1 =

(
∗ 0
∗ ∗

)

and so
[W−1BW, B] = 1

Remark. There exists a family of free subgroups, called Schottky groups, in PSL(2, C) generated by transform-
ations γ1, . . . , γg ∈ PSL(2, C) with the property that γi(intD2i) = Ĉ ! D2i+1, where Dj are fixed disjoints disks
in the plane. Then the ping-pong Lemma shows that this group is free.

1.5 Arithmetic groups in PSL(2, R)

Definition 1.5.1 The subgroup Γ ⊂ PSL(2, R) is called arithmetic if Γ is a subgroup of finite index in some
group ϕ−1(GL(n, Z)) arising as the inverse image of some finite dimensional representation

ϕ : Γ −→ GL(n, R)

Proposition 1.5.1 An arithmetic Fuchsian group is commensurable with a Fuchsian group determined by a
quaternion algebra (which are either 2× 2 matrix algebras over some field or else division algebras). Moreover,
all these Fuchsian arithmetic groups are either cocompact or commensurable with PSL(2, Z).

Examples. The Hecke groups

Γλ =
〈(

1 λ
0 1

)
,

(
0 1
−1 0

)〉
=
〈(

1 λ
0 1

)
,

(
1 0
λ 1

)〉
⊂ PSL(2, R)

for the values of the parameter λ = 2 cos π
2 have different behaviour than those for which |λ| ≥ 2 (which are

free groups, by the results above). In fact, one has

Γ2 cos π
q

= Z/qZ ∗ Z/2Z
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and in particular, if q = 3 we obtain Γ3 = PSL(2, Z).
Remark. If q /∈ {3, 4, 6} then the Hecke groups are not arithmetic. In fact the Hecke groups are of finite
covolume, not cocompact and not commensurable with PSL(2, Z). For instance, if we consider the element

γ =
(
−2 cos π

5 1
−1 0

)
∈ Γcos 2π

5
then Tr γn /∈ Q for any n ∈ Z ! {0}. This implies that no finite index subgroup of

Γcos 2π
5

could be contained in PSL(2, Z). Thus the group is not arithmetic by the criterion provided above.

1.6 Fundamental regions for Fuchsian groups

Definition 1.6.1 We say that a closed region X ⊂ H is a fundamental region for Γ if

1.
⋃

g∈Γ
gX = H

2. int(X) ∩ g(int(X)) = ∅, for all g ∈ Γ, g ̸= 1.

Remark. If X , Y are both fundamental regions for the group Γ and µ(X) < ∞, then µ(X) = µ(Y ).

Let us provide examples of fundamental regions. The Dirichlet fundamental region associated to a Fuchsian
group Γ is constructed as follows:

1. Pick up p ∈ H such that p is not fixed by any g ∈ Γ ! {0}.

2. Set then D(Γ, p) = {z ∈ H; d(p, z) ≤ d(z, g(p)), for all g ∈ Γ}.

Then D(Γ, p) is a fundamental region for Γ, called the Dirichlet region.
Alternatively let H+,p,g be the half-space containing p and having as boundary the bisector of the segment of
geodesic which joins p to g(p). Then D(Γ, p) =

⋂
g∈Γ!{0}

H+,p,g, in particular it is geodesically convex. It is easy

to prove that D(Γ, p) is a connected fundamental region for Γ.

H+,p,g p

g(p)

Example. Let Γ = PSL(2, Z) and pick-up p = λi, where λ > 1. Thus p is not fixed by any element of Γ. Then
D(PSL(2, Z)), λi) = {z ∈ H; |z| ≥ 1, |ℜ(z)| ≤ 1

2}

λi

−1 − 1
2 0 1

2 1
Remarks.

1. The tesselation {g(D(Γ, p)), g ∈ Γ} is locally finite since Γ acts properly discontinuously.

2. It is important to notice that H/Γ is homeomorphic then to D/Γ for any fundamental region D of Γ
(locally finite). Moreover D/Γ is obtained from D by using self-identifications of the boundary arcs, hence
we can expect a complete topological description of H/Γ.
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Consider now a Fuchsian group Γ and a fundamental region F for Γ.

x1

x2

x3

x4

x5

x6

x7x8

Two points of the fundamental region F are said to be congruent if they are equivalent under the action of Γ.
They should therefore belong to the boundary ∂F of the fundamental region. We have then the following type
of vertices of the curved polygon F :

• elliptic vertices of F corresponding to fixed points of elliptic elements;

• parabolic vertices of F corresponding to fixed points of parabolic elements.

Given a congruence class we consider the Γ-orbit of one vertex in that class and obtain a cycle. Two cycles are
then different if they correspond to different classes of vertices modulo Γ. The cycles are said to be elliptic or
parabolic according to their vertices.
Example. In the picture above x1, x2 are elliptic and x3, x4 are parabolic.
Remarks.

1. Elliptic cycles correspond to conjugacy classes of nontrivial maximal finite cyclic subgroups of Γ, while
parabolic cycles correspond to maximal (cyclic) parabolic subgroups.

2. If θ1, . . . , θt are the internal angles of the polygon F at the vertices x1, . . . , xt which are congruent to each
other in F and form a cycle, then θ1 + · · ·+ θt = 2π

m , where m is the order of the stabilizer in Γ of any of
these vertices.

Definition 1.6.2 The subgroup Γ is geometrically finite if there exists a convex fundamental region of Γ with
finitely many sides.

Let µ denote the Lebesgue measure on the quotient H/Γ by a Fuchsian group, induced from that of H. We
have the following characterization of geometric finiteness due to Siegel:

Theorem 1.6.1 (Siegel) If µ(H/Γ) < ∞ then Γ is geometrically finite. Actually, for any fundamental region
F we have the more precise estimation:

∑

v vertex of F

(π − θv) ≤ µ(F ) + 2π

where θv denotes the internal angle of the polygon F at the vertex v.

Remarks.

1. If Γ has a compact fundamental region then Γ has non parabolic elements.

2. Some (equivalently, any) fundamental region of Γ is noncompact iff the quotient H/Γ is noncompact.

3. Moreover, if µ(H/Γ) < ∞ but H/Γ is noncompact then there exist vertices at infinity in any fundamental
region for Γ, which are parabolic vertices.

4. If some fundamental region F for Γ is compact then all fundamental regions of Γ are compact; further, Γ
is cocompact iff µ(H/Γ) < ∞ and Γ has no parabolics.

Definition 1.6.3 The orders of elliptic elements fixing the elliptic vertices (in each congruence class) are called
the periods of the Fuchsian group. One can add ∞ as period of each parabolic vertex.
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Example. PSL(2, Z) has periods 2, 3 and ∞.
Remark. Let Ti be elements of Γ which are pairing the sides of the fundamental region F . Then the set of
elements {Ti} generate the group Γ. In particular if F has finitely many sides (e.g. when Γ is geometrically
finite) then Γ is finitely generated.

Proposition 1.6.1
1. If the Fuchsian group Γ is finitely generated then it is geometrically finite.

2. Moreover, if the Fuchsian group Γ is cocompact and H/Γ is a surface of genus g with r singular points
corresponding to the periods m1, . . . , mr then we have the following Siegel formula:

µ(H/Γ) = 2π

(
2g − 2 +

r∑

i=1

(
1 − 1

mi

))

3. For any (g, m1, . . . , mr) with 2q−2t+
r∑

i=1
1− 1

mi
> 0, g ≥ 0, r ≥ 0, mi ≥ 2, there exists a Fuchsian group of

signature (g, m1, . . . , mr), i.e. such that H/Γ is a surface of genus g with r singular points corresponding
to the periods m1, . . . , mr.

Remark. Notice that there exist subgroups of GL(2, R) which are not finitely generated, e.g.

Γ =
{(

a b
0 1

)
; a = 2α, b =

p

2q
, α, p, q ∈ Z

}

Remark. If Γ is not cocompact then one should consider the Nielsen core K(Γ) which is the convex hull of Λ(Γ).
Then Γ is finitely generated iff µ(K(Γ)/Γ) < ∞, which is equivalent to have a Dirichlet region with finitely
many sides. Furthermore, Siegel’s formula above extends to the finitely generated situation as follows:

µ(K(Γ)/Γ) = 2π

(
2g − 2 + t +

r∑

i=1

(
1 − 1

mi

))

where t = p+ b, where p denotes the number of parabolic cycles and b the number of boundary hyperbolics; one
remarks that K(Γ)/Γ is a surface with p punctures and b boundary curves, which is a core for the non-compact
surface H/Γ. The surface H/Γ has infinite area, but if we cut open the components corresponding to boundary

hyperbolics, which have the shape we obtain a cusped surface with boundary of finite area.

1.7 The Poincaré theorem: construction of Fuchsian groups

1.7.1 The finite case

Consider P a compact convex polygon with n ≥ 3 vertices x1, x2, . . . , xn such that the interior angle at xj is
π
pj

, pj ∈ Z+. There exists such a polygon with prescribed angles in the hyperbolic plane H a polygon exists if
and only if (by the Gauss-Bonnet theorem) the following condition is fulfilled:

n∑

j=1

1
pj

< n − 2

Remark that there exists a polygon P with these prescribed angles in the Euclidean plane E2 iff
n∑

j=1

1
pj

= n− 2,

while the existence of a spherical polygon P on the sphere S2 is equivalent to
n−2∑
j=1

1
pj

> n − 2. We will stick to

the hyperbolic case.
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x
x

x x 21

n
nï1

Set σj for the reflection of H with respect to the side xjxj+1 and Γ ⊂ PSL∗(2, R) for the group of isometries
generated by {σ1, . . . , σn}.

Proposition 1.7.1 The group Γ admits the following presentation by means of the generators σ1, . . . , σn and
relations:

σ2
j = 1, j = 1, n

(σj−1σj)pj = 1, j = 1, n

Moreover Γ acts properly on H and P is a fundamental region for Γ.

Remark that Γ is a hyperbolic Coxeter group.
Example. If 2 ≤ a ≤ b ≤ c ∈ Z so that 1

a + 1
b + 1

c < 1, then the group

T ∗
a,b,c =

〈
x, y, z | x2 = y2 = z2 = (yz)a = (zx)b = (xy)c = 1

〉

acts on H and has a fundamental domain given by a triangle whose angles are π
a , π

b , π
c . In particular, the area

of the fundamental domain is π(1 − 1
a − 1

b − 1
c ). The index 2 subgroup Ta,b,c ⊂ T ∗

a,b,c consisting of orientation
preserving isometries has the presentation

Ta,b,c =
〈
u, v | uc = va = (uv)b = 1

〉
, u = xy, v = yz

and a fundamental domain constructed by gluing two adjacent triangles with a common edge. The area of this
quadrilateral is then 2π(1 − 1

a − 1
b − 1

c ). In particular, its area is bounded from below by 2π
21 , with equality for

(a, b, c) = (2, 3, 7). It can be shown that inf µ(H/Γ) = 2π
21 , where the infimum is taken over all Fuchsian groups

Γ, not only over the triangular groups.

1.7.2 The infinite case

One can also consider noncompact polygons P

x
1

x
9

x
8

x 7
x6

x5

x4

3
x

x
2

x10

having a number of proper vertices at infinity (e.g. x1, x2 on the picture) but having improper vertices at
infinity as well (like x3, x4, x5, x6 on the figure). The sides of P are the geodesic segments joining xk and xk+1

where at least one of the vertices xk, xk+1 should be proper. In the picture above we have therefore 8 sides.
Notice that we might have vertices whose associated angle is π, like the vertex x10 from above.
Consider now that we are given the following data. We have first an involution ι from the set of the sides of P
onto itself, and for each side e we are given an isometry σe ∈ PSL∗(2, R) of the hyperbolic plane H, supposed
to satisfy the conditions σe(e) = ι(e) and σι(e) = σ−1

e . In general, the group Γ generated by the isometries σe,
with e running over the set of sides of P is not discrete. However, the discreteness can be decided effectively
for Γ, as follows. We assume that the following conditions are satisfied:
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1. The cycle condition For any cycle (x1, x2, . . . , xp) of vertices at finite distance there exist m ∈ Z,
m ≥ 1 such that

p∑

j=1

θj =
2π

m

2. The cusp condition : For any cycle (x1, x2, . . . , xp) of proper vertices at infinite the transformation
σepσep−1 · · · ee1 is parabolic.

Theorem 1.7.1 (Poincaré) If the data (P, ι, σe) satisfies the cycle and cusp conditions above then the group
Γ generated by the σe (with e running over the set of sides of P ) is finitely presented by means of the generators
σe and relations

σ2
e = 1 whenever ι(e) = e

(σepσep−1 · · ·σe1 )m = 1 for any cycle of vertices at finite distance (x1, . . . , xp) where m is the positive integer
defined by the cycle condition.

Moreover Γ is acting properly discontinuously on H and P is a fundamental domain for Γ.

Complement. The vertices at finite distance contain the set of elliptic fixed points of Γ and possibly some regular
points.
The cycles above are constructed so that they give elliptic or parabolic cycles. Specifically, we start with x1

vertex of P , e1 edge of P incident to x1. Define next x2 = σe1 (x1); let e2 be the other side, different from
σe1(e1) which is pending at x2. Then put x3 = σe2(x2) and e3 be the new edge pending at x3, and so on, until
we get (xp+1, ep+1) = (x1, e1). The sequence x1, . . . , xp is called a cycle.
Examples.

1. Take for P the polygon with 2 sides:

x
2

x
1

x
3

e

e

1

2

where the angle between the sides e1 and e2 is 2π
p . Let ι be the identity ι : {e1, e2} → {e1, e2}. Then Γ is

given by
Γ =

〈
σe1 , σe2 | σ2

e1
= σ2

e2
= (σe1σe2 )

p = 1
〉

and thus it is isomorphic to the dihedral group of order 2p.

2. Consider now the polygon P with 4g sides.

a

b a

b

b

a
b

a1
1

1

1

2

2
2

2
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The 4g edges e1, e2, e3, . . . , e4g of P are labeled counterclockwise as a1, b1, a
−1
1 , b−1

1 , a2, b2, a−1
2 , b−1

2 , . . . by
giving them a label and an orientation. Let ι be the involution which interchanges the edges where the
same letter (with opposite exponent) appear. Let σai be the hyperbolic isometry which sends the edge
labeled ai into the edge labeled a−1

i with the reversed orientation. Similarly define the isometries σbi

associated to the edges labeled bi.

Assume that the internal angles αj of the polygon P verify the identity:

(∗)
4g∑

j=1

αj = 2π

Then the cycle conditions are satisfied: there is only one cycle and the corresponding m = 1. In this case
the vertices are regular points of the quotient (degenerate elliptic fixed points, since m = 1). Thus the
group Γ is Fuchsian, given by the presentation:

Γ =
〈
σai , σbj | σa1σb1σ

−1
a1

σ−1
b1

σa2σb2σ
−1
a2

σ−1
b2

· · ·aagσbg σ−1
ag

σ−1
bg

= 1
〉

and having P as fundamental domain. In particular, H/Γ is the orientable surface of genus g obtained
from the polygon P by identifying the edges according to the labeling.

3. One remarks that different identifications of the sides might yield isomorphic Fuchsian groups with different
presentations. Take for instance the pairing of the 4g-gon induced by the counterclockwise labeling
a1, a2, . . . , a2g, a

−1
1 , a−1

2 , . . . , a−1
2g :

a

aa

a1

2 3

4

a2g

a2gï1
a2gï2

2gï3
a

In this case we have
Γ =

〈
σa1,...,σa2q

| σa1σa2 · · ·σa2qσ
−1
a1

σ−1
a2

· · ·σ−1
a2q

= 1
〉

.

In both cases from above H/Γ is a hyperbolic surface of genus g.

4. Let now consider the polygon P with the labeling of edges from the figure, inducing a natural involution,
as above.

a

a
1 a1

a

a
a

2

2
3

3

x

x

x

x
x

x

1

2

3

4

5

6

In this case we want that the isometry σa1 identifies the side x1x2 with the side x2x3 and so on. Thus
σa1 does not preserve the orientation of the plane. The group Γ that we obtain is presented by

Γ =
〈
σa1 , σa2 , σa3 | σ2

a1
σ2

a2
σ2

a3
= 1
〉
⊂ PSL∗(2, R)

In fact, the quotient H/Γ is the non-orientable surface of genus 3.
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5. A general finitely generated Fuchsian group has the following presentation:

(a) Generators a1, b1, a2, b2, . . . , ag, bg, e1, . . . , er, p1, . . . , ps, h1, . . . , hi

(b) Relations:

• emi
i = 1

•
(

g∏
i=1

[ai, bi]
)

e1 · · · erp1 · · · psh1 · · ·hi = 1, where ei are corresponding to the elliptic elements

(which are of finite orders mi), pj to the parabolics and thus in one-to-one correspondence with
the cusps, hj to the boundary hyperbolic, and ai, bi are hyperbolic.

1.8 Applications of the Fuchsian groups

Proposition 1.8.1 (Hurwitz) If Σ is a closed Riemann surface of genus g ≥ 2 then Aut(Σ) (the group of
holomorphic automorphisms) is finite and its order is uniformly bounded

card(Aut(Σ)) ≤ 84(g − 1)

Equality holds for infinitely many g, but there exist infinitely many g for which the inequality is strict.

Idea of proof. If Σ = H/Γ, Γ Fuchsian and N(Γ) is the normalizer of Γ in PSL(2, R) then the first observation
is that N(Γ) is also Fuchsian. In fact, if nk ∈ N(Γ) is a sequence of elements such that nk → 1, then one knows
that limk→∞ nkγn−1

k = γ, for all γ ∈ Γ. Now Γ being discrete implies that nkγn−1
k = γ for large k. Thus nk

and γ commute and thus they have the same fixed points, but there exist two γ1, γ2 ∈ Γ which have not the
same fixed points, contradiction.
Further if we choose n ∈ N(Γ) then we have n(Γz) = Γ·nz and thus there is an induced map n : H/Γ → H/Γ,
because n sends Γ-orbits into Γ-orbits. Thus we obtained an automorphism n∗ ∈ Aut Σ. The map η : N(Γ) →
AutΣ sending n into n∗ is a group homomorphism, which is surjective with ker η = Γ so that we obtain an
isomorphism Aut(Σ) = N(Γ)/Γ.
Moreover N(Γ) is Fuchsian so that

card(Aut Σ) = card(N(Γ)/Γ) =
µ(H/Γ)

µ(H/N(Γ))

By Siegel’s formula we have µ(H/Γ) = 4π(g − 1) since Γ has neither elliptics nor parabolics. Further

µ(H/N(Γ)) = 2π

(
2g′ − 2 + t +

r∑

i=1

(
1 − 1

mi

))
= cq′,mi,t

where N(Γ) has signature (g′, mi, t). An elementary computation shows that

µ(H/N(Γ)) ≥ cg′=0,mi=(2,3,7) = π/21

with equality iff N(Γ) is the triangle group (2, 3.7) = ⟨2, 3, 7⟩.
Moreover, ⟨2, 3, 7⟩ is a Coxeter group of matrices and hence it is residually finite. Thus there exists finite
quotients ⟨2,3,7⟩

Ti
of arbitrary large index. This proves that there exist infinitely many g for which we have

equality.
If g = p + 1, with prime p > 84 then there is no such quotient of order 84(g − 1) because first there is no such
group of order 84 and second, any Sylow p-subgroup should be normal.
Remark. The first part of the theorem is classical and due to Hurwitz and the second part is due to Macbeath.
L.Greenberg proved also that for any finite group G there exists a closed Riemann surface Σ such that Aut Σ ≃ G.
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Chapter 2

Spaces of discrete groups

2.1 Non rigidity phenomena for subgroups of PSL(2, R)

1. We consider first the family of Hecke groups which we already encountered before,

Γa =
〈(

1 a
0 1

)
,

(
1 0
a 1

)〉
⊂ PSL(2, R).

One knows that all Γa are free if |a| ≥ 2 hence isomorphic to each other. If a ∈ Z then Γa ⊂ PSL(2, Z) and
thus they are also discrete. However, one remarks that Γ2 and Γa, a > 2 are not conjugate inside PSL(2, R).
Using the Poincaré theorem we can construct Γa by making use of fundamental regions; it is easy to verify that
the following domain Pa:

ïa/2 ï1/a 0 1/a a/2

CB

A D

is a fundamental region for Γa having the sides A, B, C, D. Let ι : {A, B, C, D} → {A, B, C, D} be the involution

given by ι(A) = D, ι(B) = C, and let us define σA =
(

1 A
0 1

)
and σB =

(
1 0
a 1

)
. Then Γa is naturally identified

with the group generated by σA and σB.
Now, if a > 2 then µ(Pa) = +∞, while for a = 2 we have a

2 = 1
a and thus the quotient surface is a non-compact

cusped surface of finite volume. Thus, vol(H/Γ2) ̸= vol(H/Γa) and thus Γ2 and Γa cannot be conjugate.

2. Let now consider the group Γ′
2 =

〈(
0 1
−1 1

)
,

(
2 1
1 1

)〉
⊂ PSL(2, R). Then Γ′

2 has the same fundamental

region P2 as Γ2.
Moreover the involution ι : {A, B, C, D} → {A, B, C, D} which yields Γ′

2 is a different one, namely ι(A) = C,

ι(B) = D. If we consider the matrices σ′−1
A =

(
0 1
−1 1

)
, σ′

B =
(

2 1
1 1

)
then one verifies easily that Γ′

2 is the

group generated by σ′
A and σ′

B. The Poincaré theorem implies that Γ′
2 is also free.

However, despite the fact that Γ1 and Γ2 share the same fundamental region and thus µ(H/Γ2) = µ(H/Γ′
2),

these groups are not conjugate within PSL(2, R). The reason is that H/Γ2 is homeomorphic to a 2-sphere with
3 cusps (i.e. S2 − {0, 1,∞}) while H/Γ′

2 is a torus with 1-cusp. This follows immediately by looking at the
identifications of sides of the respective fundamental domains induced by the involution.
3. Conclusion: If one seeks for families of Fuchsian groups then one needs to fix both the isomorphism type
of the abstract group Γ as well as the homeomorphism type of the quotient surface H/Γ. If Γ has no elliptic
points then H/Γ is an orientable surface, with the orientation inherited by taking the quotient. It makes sense
to set:

13



Definition 2.1.1 The Teichmüller space T (Σ) of the oriented surface Σ is the space of marked Fuchsian groups
Γ ⊂ PSL(2, R) such that π1Σ

∼−→ Γ and Σ is orientation-preserving homeomorphic to H/Γ. Notice that a marking
of Γ is provided by a system of generators.

An equivalent definition is to set:

Definition 2.1.2 The Teichmüller space T (Σ) is the set of marked complex structures on Σ up to the equival-
ence relation below. A marked complex structure is a homotopy equivalence f : Σ → M where M is an arbitrary
Riemann surface and two such f and f ′ : Σ → M ′ are equivalent f ∼ f ′ if there exist a conformal equivalence
h : M → M ′ such that f ′ ≃ f ◦ h, ≃ denoting homotopy equivalence.

Remark. By Riemann’s uniformization theorem we can always write M = H/Γ where Φ ⊂ PSL(2, R) acts by
isometries. In particular, we have an identification:

T (Σ) = Hom+
f,d(π1, Σ, PSL(2, R))/conjugacy within PSL(2, R)

where ϕ = π1Σ → PSL(2, R) belongs to Hom+
f,d if ϕ preserves the orientation i.e. there exists φ : Σ → H/Γ,

Γ = ϕ(π1Σ) preserving the orientation, homeomorphism and such that

φ∗ : π1Σ → π1(H/Γ) = Γ ⊂ PSL(2, R)

is identified with ϕ (up to a PSL(2, R)-conjugacy).

2.2 Thurston-Bonahon-Penner-Fock coordinates on the Teichmüller
spaces

2.2.1 Preliminaries on fatgraphs

Let Γ be a finite graph. We denote by VΓ and EΓ the set of its vertices and edges respectively.

Definition 2.2.1 An orientation at a vertex v is a cyclic ordering of the (half-) edges incident at v. A fatgraph
(sometimes called ribbon graph) is a graph endowed with an orientation at each vertex of Γ. A left-hand-turn
path in Γ is a directed closed path in Γ such that if e1, e2 are successive edges in the path meeting at v, then
e2, e1 are successive edges with respect to the orientation at v. The ordered pair e1, e2 is called a left-turn. We
sometimes call faces of Γ the left-hand-turn paths and denote them by FΓ.

A fatgraph is usually represented in the plane, by assuming that the orientation at each vertex is the counter-
clockwise orientation induced by the plane, while the intersections of the edges at points other than the vertices
are ignored. There is a natural surface, which we denote by Γt obtained by thickening the fatgraph. We usually
call Γt the ribbon graph associated to Γ. We replace the half-edges around a vertex by thin strips joined at
the vertex, whose boundary arcs have natural orientations. For each edge of the graph we connect the thin
strips corresponding to the vertices by a ribbon which follows the orientation of their boundaries. We obtain an
oriented surface with boundary. The boundary circles are in one-to-one correspondence with the left-hand-turn
paths. If one caps each left-hand-turn path by a 2-disk we find a closed surface Γc, and this explains why
we called these paths faces. The centers of the 2-disks will be called punctures of Γc and Γo = int(Γt) is
homeomorphic to the punctured surface.

There is a canonical embedding Γ ⊂ Γt, and one can associate to each edge e of Γ a properly embedded
orthogonal arc e⊥ which joins the two boundary components of the thin strip lying over e. The dual arcs e⊥

divide the ribbon Γt into hexagons. When we consider the completion Γc, we join the boundary points of these
dual arcs to the punctures within each 2-disk face and obtain a set of arcs connecting the punctures, denoted
by the same symbols. Then the dual arcs divide Γc into triangles. We set ∆(Γ) for the triangulation obtained
this way. The vertices of ∆(Γ) are the punctures of Γc. Remark that ∆(Γ) is well-defined up to isotopy. Now
the fatgraph Γ ⊂ Γt can be recovered from ∆(Γ) as follows. Mark a point in the interior of each triangle, and
connect points corresponding to adjacent triangles. This procedure works for any given triangulation ∆ of an
oriented surface and produces a fatgraph Γ = Γ(∆) with the property that ∆(Γ) = ∆. The orientation of Γ
comes from the surface.

If Γo is the surface Σs
g of genus g with s punctures then by Euler characteristic reasons we have: ♯VΓ = 4g−4+2s,

♯EΓ = 6g − 6 + 3s, ♯FΓ = s.

14
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Figure 2.1: The standard marked ideal triangle

2.2.2 Coordinates on Teichmüller spaces

Marked ideal triangles Let us denote by D the unit disk, equipped with the hyperbolic metric. Recall that
any two ideal triangles are isometric, since we may find a Möbius transformation, which takes one onto the
other. Choose a point on each edge of the ideal triangle. The chosen points will be called tick-marks.

Definition 2.2.2 A marked ideal triangle is an ideal triangle with a tick-mark on each one of its three sides. An
isomorphism between two marked ideal triangles is an isomorphism between the ideal triangles which preserves
the tick-marks. A standard marked ideal triangle is one which is isometric to the marked ideal triangle whose
vertices in the disk model are given by v1 = 1, v2 = ω, v3 = ω2 and whose tick-marks are t1 = −(2−

√
3), t2 =

−(2 −
√

3)ω, t3 = −(2 −
√

3)ω2, where ω = e2πi/3.

The ideal triangle and its tick-marks are pictured in figure 2.1 in both the half-plane model and the disk model;
they correspond each other by the map z 6→ z−(ω+1)

z−(ω̄+1) .

Coordinates on the Teichmüller space of punctured surfaces Set T s
g for the Teichmüller space of

surfaces of genus g with s punctures. Let Γ be a fatgraph with the property that Γc is a surface of genus g with
s punctures and let S denote the surface Γc endowed with a hyperbolic structure of finite volume, having the
cusps at the punctures.

As already explained above we have a triangulation ∆(Γ) associated to Γ. One deforms the arcs of ∆(Γ) within
their isotopy class in order to make them geodesic. We shall associate a real number te ∈ R to each edge of ∆(Γ)
(equivalently, to each edge of Γ). Set ∆v and ∆w for the two triangles sharing the edge e⊥. We consider next
two adjacent lifts of these triangles (which we denote by the same symbols) to the hyperbolic space H2. Then
both ∆v and ∆w are isometric to the standard ideal triangle of vertices v1, v2 and v3. These two isometries
define (by pull-back) canonical tick-marks tv and respectively tw on the geodesic edge shared by ∆v and ∆w.
Set te for the (real) length of the translation along this geodesic needed to shift tv to tw. Notice that this
geodesic inherits an orientation as the boundary of the ideal triangle ∆v in H2 which gives te a sign. If we
change the role of v and w the number te is preserved.

An equivalent way to encode the translation parameters is to use the cross-ratios of the four vertices of the
glued quadrilateral ∆v ∪∆w, which are considered as points of RP 1. It is convenient for us to consider RP 1 as
the boundary of the upper half-plane model of H2, and hence the ideal points have real (or infinite) coordinates.
Let assume that ∆v is the ideal triangle determined by [p0p−1p∞] and ∆w is [p0p∞p]. We consider then the
following cross-ratios:

ze = [p−1, p∞, p, p0] = [p, p0, p−1, p∞] = log− (p0 − p)(p−1 − p∞)
(p∞ − p)(p−1 − p0)

.

This cross-ratio reflects both the quadrilateral geometry and the decomposition into two triangles. In fact the
other possible decomposition into two triangle of the same quadrilateral leads to the value ze.

The relation between the two translation parameters te and ze is immediate. Consider the ideal quadrilateral
of vertices −1, 0, ez and ∞, whose cross-ratio is ze = z, where e = [0∞]. The left triangle tick-mark is located
at i, while the right one is located at ie−z, after the homothety sending the triangle into the standard triangle.
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Taking in account that the orientation of the edge e is up-side one derives that te is the signed hyperbolic
distance between i and e−zei, which is ze.

Proposition 2.2.1 The map tΓ : T s
g → REΓgiven by tΓ(S) = (te)e∈EΓ is a homeomorphism onto the linear

subspace REΓ/FΓ ⊂ REΓ given by equations:

tγ :=
n∑

k=1

tek = 0,

for all left-hand-turn closed paths γ ∈ FΓ, which is expressed as a cyclic chain of edges e1, ..., en.

Remark. Notice that there are exactly s left-hand-turn closed paths, which lead to s independent equations
hence the subspace REΓ/FΓ from above is of dimension 6g − 6 + 2s.
Proof. The map tΓ is continuous, and it suffices to define an explicit inverse for it. Let Γ be a trivalent fatgraph
whose edges are labeled by real numbers r = (re)e∈EΓ . We want to paste one copy ∆v of the standard marked
ideal triangle on each vertex v of Γ and glue together by isometries these triangles according to the edges
connections. Since the edges of an ideal triangle are of infinite length we have the freedom to use arbitrary
translations along these geodesics when gluing together adjacent sides. If e = [vw] is an edge of Γ then one can
associate a real number te ∈ R as follows. There are two tick-marks, namely tv and tw on the common side of
∆v and ∆w. We denote by te the amount needed for translating tv into tw according to the orientation inherited
as a boundary of ∆v. Given now the collection of real numbers r we can construct unambiguously our Riemann
surface S(Γ, r), which moreover has the property that tΓ(S(Γ, r)) = r. Furthermore it is sufficient now to check
whenever this constructions yields a complete Riemann surfaces. The completeness at the puncture determined
by the left-hand-turn path γ is equivalent to the condition tγ = 0, and hence the claim. The cusps of S(Γ)
are in bijection with the left-hand-turn paths in Γ, and the triangulation of S(Γ) obtained by our construction
corresponds to Γ.
Remark. W.Thurston associated to an ideal triangulation a system of shearing coordinates for the Teichmüller
space in mid eighties (see [29]). However, the systematic study of such coordinates appeared only later in
the papers of F.Bonahon [4] and from a slightly different perspective in Penner’s treatment of the decorated
Teichmüller spaces ([24]). V.Fock unraveled the elementary aspects of this theory which lead him further to the
quantification of the Teichmüller space.

The Fuchsian group associated to Γ and r The surface S(Γ, r) is uniformized by a Fuchsian group
G = G(Γ, r) ⊂ PSL(2, R), i.e. S(Γ, r) = H2/G(Γ, r). We can explicitly determine the generators of the Fuchsian
group, as follows.

We have natural isomorphisms between the fundamental group π1(S(Γ, r) ∼= π1(Γt) ∼= π1(Γ). Any path γ in Γ is
a cyclic sequence of adjacent directed edges e1, e2, e3, ..., en, where ei and ei+1 have the vertex vi in common. We
insert between ei and ei+1 the symbol lt if ei, ei+1 is a left-hand-turn, the symbol rt if it is a right-hand-turn
and no symbol otherwise (i.e. when ei+1 is ei with the opposite orientation). Assume now that we have a
Riemann surface whose coordinates are tΓ(S) = r. We define then a representation ρr : Π1(Γ) → PSL(2, R) of
the path groupoid Π1(Γ) by the formulas:

ρr(e) =
(

0 e
re
2

−e−
re
2 0

)
, and ρr(lt) = ρr(rt)−1 =

(
1 1
−1 0

)
.

This is indeed well-defined since ρr(e)2 = −1 = 1 ∈ PSL(2, R), and hence the orientation of the edge does not
matter, and ρr(lt)3 = ρr(rt)3 = 1. Furthermore the fundamental group π1(Γ) is a subgroup of Π1(Γ).

Proposition 2.2.2 The Fuchsian group G(Γ, r) is ρr(π1(Γ)) ⊂ PSL(2, R).

Proof. We can begin doing the pasting without leaving the hyperbolic plane, until we get a polygon P , together
with a side pairing. We may think of each triangle as having a white face and a black face, and build the
polygon P such that all the triangles have white face up. We attach to each side pairing (si, sj) an orientation
preserving isometry Aij , such that Aij(si) = sj , Aij sends tick-marks into the tick-marks shifted by re, and
P ∩ Aij(P ) = ∅. Denote by G the subgroup of ISO+(D) generated by all the side-pairing transformations. In
order to apply the Poincaré Theorem all the vertex-cycle transformations must be parabolic. This amounts to
ask that for every left-hand-turn closed path γ we have tγ = 0. Then by the Poincaré theorem G is a discrete
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group of isometries with P as its fundamental domain and H2/G is the complete hyperbolic Riemann surface
S(Γ, r).

We need now the explicit form of the matrices Aij . We obtain them by composing the isometries sending a
marked triangle into the adjacent one, in a suitable chain of triangles, where consecutive ones have a common
edge. If e is such an edge we remark that ρr(e) do the job we want, because it sends the triangle [−1, 0,∞] into
[ere ,∞, 0]. Moreover the quadrilateral [−1, 0, ere,∞], with this decomposition into two triangles, has associated
the cross-ratio re. We need next to use ρr(lt) which permutes counter-clockwise the tick-marks and the vertices
−1, 0 and ∞ of the ideal triangle. Then one identifies the matrices Aij with the images of the closed paths by
ρr.
Remark. We observe that the left-hand-turn paths are preserved under an isomorphism of graphs which preserves
the cyclic orientation at each vertex. Thus any automorphism of the fatgraph Γ induces an automorphism of
S(Γ).

Coordinates on the Teichmüller space of surfaces with geodesic boundary Set Tg,s;or for the
Teichmüller space of surfaces of genus g with s oriented boundary components. Here or denotes the choice
of one orientation for each of the boundary components. Since the surface has a canonical orientation, we can
set unambiguously or : {1, 2, ..., s} → Z/2Z by assigning or(j) = +1 if the orientation of the j-th component
agrees with that of the surface and or(j) = −1, otherwise. We suppose that each boundary component is a
geodesic in the hyperbolic metric, and possibly a cusp (hence in some sense this space is slightly completed).
Let Γ be a fatgraph with the property that Γt is a surface of genus g with s boundary components and let S
denote the surface Γt endowed with a hyperbolic structure, for which the boundary is geodesic. Assume that,
in this metric, the boundary geodesics bj have length lj.

Consider the restriction of the hyperbolic metric to int(Γt) = Γo. Then Γo is canonically homeomorphic
to the punctured surface Γc − {p1, ..., ps}. In particular there is a canonically induced hyperbolic metric on
Γc−{p1, ..., ps}, which we denote by S∗. Moreover this metric is not complete at the punctures pj. Suppose that
the punctures pj corresponds to the left-hand-turn closed paths γj , or equivalently the boundary components
geodesics bj, of length lj . Assume that we have an ideal triangulation of S∗ by geodesic simplices, whose ideal
vertices are the punctures pj. Then the holonomy of the hyperbolic structure around the vertex pj is a non-
trivial, and it can be calculated in the following way (see [28], Prop.3.4.18, p.148). Consider a geodesic edge
α entering the puncture and a point p ∈ α. Then the geodesic spinning around pj in the positive direction
(according to the orientation of the boundary circle) is intersecting again α a first time in the point hpj (p). The
hyperbolic distance between the points p and hpj (p) is the length lj of the boundary circle in the first metric.
Moreover the point hpj (p) lies in the ray determined by p and the puncture pj. Notice that if we had chose the
loop encircling the puncture to go in opposite direction then the iterations hpj (p) would have gone faraway from
the puncture, and the length would have been given the negative sign. Set therefore loj∗ for the signed length.

We construct as above the geodesic ideal triangulation ∆(Γ) of the non-complete hyperbolic punctured surface
S∗. We can therefore compute the holonomy map using the thick-marks on some edge abutting to the puncture
pj . It is immediately that the the holonomy displacement on this edge is given by tγj , where γj is the left-hand-
turn closed path corresponding to this puncture. In particular we derive that:

|tγj | = lj, for all j ∈ {1, 2, ..., s}.

Using the method from the previous section we know how to associate to any edge e of Γ a real number
te = te(S∗) measuring the shift between two ideal triangles in the geodesic triangulation of the surface S∗.

Proposition 2.2.3 The map tΓ : Tg,s;or → REΓ given by tΓ(S) = (te)e∈EΓ is a homeomorphism.

Proof. The construction of an inverse map proceeds as above. Given r ∈ REΓ we construct a non-complete
hyperbolic surface S∗ with s punctures with the given parameters, by means of gluing ideal triangles. As shown
in ([28], Prop. 3.4.21, p.150) we can complete this hyperbolic structure to a surface with geodesic boundary S,
such that int(S) = S∗. Further if tγj > 0, then we assign the orientation of γj for the boundary component bj,
otherwise we assign the reverse orientation. When tγj = 0 it means that we have a cusp at pj .
Remark. The two points of Tg,s;or given by the same hyperbolic structure on the surface Σg,s but with distinct
orientations of some boundary components lie in the same connected component. Nevertheless the previous
formulas shows that a path connecting them must pass through the points of Tg,s;or corresponding to surfaces
having a cusp at the respective puncture.
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Set Tg,s for the Teichmüller space of surfaces of genus g with s non-oriented boundary components, i.e. hy-
perbolic metrics for which the boundary components are geodesic. There is a simple way to recover co-
ordinates on Tg,s from its oriented version. Let ψ : REΓ → RFΓ be the map ψ(t) = (tγi)γi∈FΓ . Choose
a projector ψ∗ : REΓ → kerψ = REΓ/FΓ , and set ι|.| : RFΓ → RFΓ for the map given on coordinates by
ι|.|(yj)j=1,♯FΓ = (|yj |)j=1,♯FΓ . Then Tg,s is the quotient by the (Z/2Z)FΓ -action on Tg,s;or which changes the
orientation of the boundary components.

Proposition 2.2.4 We have a homeomorphism tΓ : Tg,s → R6g−6+2s ⊕ Rs, which is induced from the second
line of the following commutative diagram:

Tg,s;or

(ψ∗⊕ψ)◦tΓ
✲ REΓ/FΓ ⊕ RFΓ

↓ ↓ id ⊕ ι|.|

Tg,s
✲ REΓ/FΓ ⊕ RFΓ

+

↑ ↑ id ⊕ 0

T s
g

✲ REΓ/FΓ

Remark. Observe that the embedding T s
g ↪→ Tg,s given in terms of coordinates by adding on the right a string

of zeroes lifts to an embedding T s
g ↪→ Tg,s;or.

Putting together the results of the last two sections we derive that:

Proposition 2.2.5 The map tΓ : T s
g,n;or → REΓ given by tΓ(S) = (te)e∈EΓ is a homeomorphism of the

Teichmüller space of surfaces of genus g with n oriented boundary components and s punctures onto the linear
subspace REΓ/F∗Γ of dimension 6g − 6 + 3n + 2s given by the equations:
tγj = 0, for those left-hand-turn closed paths γj corresponding to the punctures, γj ∈ F ∗

Γ ⊂ FΓ.
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Chapter 3

The interplay between mapping class
groups and Teichmüller spaces

3.1 Mapping class groups

3.1.1 General facts about mapping class groups

Consider Σ surface, possibly with boundary and punctures or marked points, compact and orientable. We denote
by Homeo+(Σ) the group of homeomorphisms of Σ preserving the orientation, endowed with the compact-open
topology.

Definition 3.1.1 The mapping class group of Σ is Mod(Σ) = Homeo+(Σ)/ ≃, where f, g : Σ → Σ are
equivalent if they are homotopic. This is equivalent to consider the quotient Homeo+(Σ)/ Homeo0(Σ), where
Homeo0(Σ) is the connected component of identity. If Σ has boundary or marked points then one requires that
the homeomorphisms and the homotopies we are concerned of to fix this boundary/marking data (pointwise or
setwise).

Remarks.

1. An equivalent definition is Mod(Σ) = Diffeo+(Σ)/ ≃, where Diffeo+(Σ) denotes the group of diffeomorph-
isms of Σ and ≃ is the smooth homotopy equivalence. The smoothness class might be chosen to be any
Cr, with r ≥ 1.

2. Topological groups of homeomorphisms like Homeo(Σ), or Banach-Frechet groups of diffeomorphisms like
Diffeo(Σ) are huge groups and little is known about. Here is a sample of results:

i) If we replace in the definition above homotopy by isotopy (i.e. homotopy among homeomorph-
isms/diffeomorphisms) we still obtain the same quotient Mod(Σ); however, one requires that Σ be
compact and Σ ̸= D2, S′ × [0, 1]. This is a classical result due to Baer, Epstein.

ii) If the genus of Σ is g ≥ 2 then Eells and Sampson proved that the connected component Diffeo0(Σ) is
contractible. Moreover Diffeo0(Σ) is a simple group, as well as the diffeomorphism groups of arbitrary
compact manifolds, as was shown by Banyaga and Thurston. An old result of Anderson and Fisher
established that the group of homeomorphisms Homeo0(Σ) is also a simple group.

3. Mod(Σ) is a discrete group.

Elements of Mod(Σ) are usually constructed via the following procedure: pick-up a simple closed curve γ ⊂ Σ
and an annulus A having the core γ. We perform then the following transformation supported in A:

a `

aT

T
a `
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We drawn on the left side the curve β transversal to γ which joins the boundary circles and on the right side
the image of β by Tγ . We extend further Tγ by identity to all of Σ. The transformation Tγ is called the left
Dehn twist around Γ.
Remarks.

1. In order to define Tγ one needs to specify the orientation of Σ but γ is not oriented.

2. Actually the mapping class group Mod(A) of the annulus is the cyclic group ⟨Tγ⟩ ≃ Z generated by the
Dehn twist. In fact, if ϕ ∈ Mod A then look at the image ϕ(β) which is well-defined (and independent on
the homeomorphism representing ϕ in π1(A, ∂A). Then there exists n such that T−n

γ ϕ(β) = β ∈ π1(A, ∂A).
Moreover, in the case of the annulus we find that the curves T−n

γ ϕ(β) and β are not only homotopic
but isotopic. Cut open A along β in order to obtain a disk. By the Alexander trick, which says that
homeomorphisms of the 2-disk are homotopic/isotopic to identity we find that T n

γ ≃ ϕ, as claimed.

Example.

1. Id Σg denotes the closed surface of genus g then we have a natural isomorphism Mod(Σ1) ∼= SL(2, Z),
which sends the class of the homeomorphism ϕ into the map ϕ∗ : H1(Σ1) → H1(Σ1) induced on the
homology.

2. Notice that if the genus g ≥ 2 then Mod(Σ) is not an arithmetic group, as it was proved by N.Ivanov.

Proposition 3.1.1 (M.Dehn, J.Nielsen, R.Baer, D.B.A.Epstein) For any g ≥ 1 there is a natural iso-
morphism

Mod(Σg) → Out+(π1(Σg)) = Aut(π1(Σg))/ Inn(π1Σg)

which sends the class of the homeomorphism ϕ into the class of the map ϕ∗ : π1Σg → π1Σg induced by ϕ
in homotopy. Here Inn(Γ) is the set of inner automorphisms (acting by conjugacy), which corresponds to the
freedom in choosing the base point for the fundamental group. The result can be stated in the case when Σg has
boundary but one needs to add extra conditions on the automorphisms in the right hand side, by asking them to
preserve the conjugacy classes of boundary loops.

Proposition 3.1.2 (M.Dehn, W.L.B.Lickorish, S.Humpreis) Mod(Σg) is finitely presented. A conveni-
ent system of generators is given by the Dehn twists around the 2g + 1 curves below:

This is sharp, as Humpries proved that Mod(Σg) cannot be generated by 2g (or less) Dehn twists, if g ≥ 2.
However, one can do better if we accept generators which are not necessary Dehn twists. B.Wajnryb showed
that two elements can generate Mod(Σg), and M. Korkmaz proved that one of the two generators can be taken
to be a Dehn twist, and also that both generators can be torsion elements.

Open questions.

1. It is still unknown whether the Torelli subgroup Tor(Σg) ⊂ Mod(Σg) – which is the subgroup generated by
the Dehn twists along separating simple curves, and the elements TγT−1

δ where γ, δ are boundary circles
of some subsurface of Σ – is finitely presented. It is known it is finitely generated if g ≥ 3 and free on
infinitely many generators g = 2 by the results of G.Mess. Notice that Tor(Σg) is also the kernel of the
natural morphism Mod(Σg) → Aut(H1(Σg)).

2. There is an interesting subgroup K(Σg) ⊂ Tor(Σg), which is the subgroup generated by the Dehn twists
along separating curves. Recently, D.Biss and B.Farb proved that K(Σg) is not finitely generated, leaving
unsettled the problem on whether its abelianization is finitely generated or not when g ≥ 3.
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3.1.2 Mapping class groups acting on Teichmüller spaces

There is a close relation between mapping class groups and Teichmüller spaces. By using the identification
between Mod(Σ) and Out+(π, Σ) the mapping class group acts by left composition on the space T (Σ) which
can be seen as a space of group representation:

T (Σ) = Hom+
f,d (π1Σ, PSL(2, R)) / PSL(2, R)

Specifically, we have

Out+(π, Σ) × Hom+
f,d (π1Σ, PSL(2, R)) / PSL(2, R) → Hom+

f,d (π1Σ, PSL(2, R)) / PSL(2, R)

given by
(ϕ, [ρ]) −→ [ϕ ◦ ρ]

Moreover, Mod(Σ) acts by real analytic homeomorphisms. This action is important in understanding both the
algebraic structure of the mapping class group using the geometry of the Teichmüller space, because of the
following basic result going back to F.Klein and R.Fricke.

Proposition 3.1.3 (R.Fricke, S.Kravetz) Mod(Σ) acts properly discontinuously on T (Σ).

Idea of proof. Let assume that there exist a sequence ϕn ∈ Mod Σ so that there exist two compacts C1, C2 in
the Teichmüller space with the property ϕn(C1) ∩ C2 ̸= ∅ for all n. Then there exists a convergent sequence of
points zn → z ∈ T (Σ) so that ϕn(zn) also converges to some point w ∈ T (Σ). Thus ϕ−1

n ϕn−1(zn) → z. We
will show that if ξn ∈ Mod Σ has the property that ξnzn → z then ξn = 11 for large enough n.
This is a consequence of the following facts:

1. If Γ is a Fuchsian group then the set

A(Γ) = {Tr(γ); γ ∈ Γ ⊂ PSL(2, R)} ⊂ R+

is mapped by the function cosh 1
2 (x) bijectively into the marked set of lengths of geodesics of the surface

H/Γ (indexed by elements of Γ. Moreover, these sets are discrete.

2. If ξ ∈ Mod(Σ) and Γ = ρ(π1Σ) is a Fuchsian group then the marked set A(ξΓ) is obtained from the
marked set A(Γ) by a permutation of its elements.

3. The regular functions tr(ρ(γ)), γ ∈ π1Σ, viewed as functions T (Σ) → R are generating a polynomial
algebra which is finitely generated. The proof is based on the identity:

tr(x) tr(y) = tr(xy) × tr(xy−1).

4. If ξnzn → z then for large n

A(ξnΓzn) and A(Γs) agree on ther first N items

It N is large enough in order that all generators of the algebra above are contained among the first N
items then we find that A(ξnΓzn) = A(Γz). Since ξn acts as a permutation on the marked sets of geodesics
we derive that the permutation is the identity.

5. Two hyperbolic structures on a surface having the same marked lengths of geodesics are isometric. In
fact, if the traces of two discrete faithful representations coincide i.e. tr(ρ(γ) = tr(ρ′(γ)) for any γ ∈ π1(Σ)
then the representations are conjugate.

Remarks.

1. The Mod(Σg)-action on the Teichmüller space is effective if g ≥ 3. When g = 1, 2 the hyperelliptic
involution acts trivially on T (Σ).

2. The quotient T (Σ)/ Mod(Σ) is naturally a complex space with orbifold singularities (at points where the
Mod(Σ) action is not free). However, one knows that all stabilizers should be finite. In this respect the
moduli space M(Σ) = T (Σ)/ Mod(Σ) plays the role of a classifying space for the mapping class group.
For instance, we have an isomorphism

H∗(M(Σ); Q) ≃ H∗(Mod(Σ); Q)

3. Since T (Σ) is a topological cell each torsion element of Mod(Σ) should fix a non-empty set. In particular,
any periodic mapping class contains a periodic homeomorphism which is a conformal homeomorphism for
some complex structure on Σ.
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3.1.3 Stabilizers of the mapping class group action

The action of Mod(Σ) on T (Σ) is properly discontinuous and hence it has finite stabilizers. A point p in T (Σ)
corresponds to a class of marked Riemann surface p = [S], and we can identify the stabilizer Mod(Σ)p of the
point p, as follows:

Mod(Σ)p = {ϕ ∈ Mod(Σ) such that [ϕS] = [S]}

Moreover, S is defined by the holonomy map ρS : π1Σ → PSL(2, R) and so we have ρϕS = ϕ ◦ ρS , where ϕ
is interpreted now as an element of Out+(π1Σ). Since the marked surfaces determined by ρϕS and ρS are the
same they should be obtained by means of a conjugation within PSL(2, R) i.e. there exists λ = λϕ ∈ PSL(2, R)
so that

ρϕS = λϕρSλ−1
ϕ

In particular, λϕ belongs to the normalizer of the Fuchsian group ρS(π1S) and it is immediate that the map

λ : Mod(Σ)p −→ N (ρS(π1Σ)) /ρS(π1Σ)

is a group homomorphism. Actually, we have a more precise result:

Proposition 3.1.4 The stabilizer of the class of the marked Riemann surface [S] is given by

Mod(Σ)p=[S] = Aut(S)

where Aut(S) are the conformal (i.e. holomorphic) automorphism group of S.

In fact, any element of N (Γ)/Γ, Γ Fuchsian group corresponds to an automorphism of the Riemann surface (see
the section 1.8).

Corollary 3.1.1 For a generic Riemann surface S we have Aut(S) = {11}.

Remark. It is known that, if the genus of Σ is g =≥ 4, then the local structure of T (Σ)/ Mod(Σ) around
p ∈ T (Σ)/ Mod(Σ) is described by the quotient R6g−6/Fp, where Fp ⊂ GL(6g − 6) is a finite group, which is
the image of a faithful linear representation Aut(S) → GL(6g − 6) (where [S] = p).
In particular, the point p is smooth in the quotient iff S has no automorphisms.
A more elaborate analysis shows that the space T (Σ)/ Mod(Σ) is singular at the points when S has automorph-
isms (as shown by E.Rauch in 1962) for g ≥ 4. For g = 2 there is only one singular point, corresponding to the
Riemann surface given by the equation:

y2 = x5 − 1

which has additional symmetries with respect to the rest of Riemann surfaces having only the hyperelliptic
involution automorphism. For g = 3 the hyperelliptic locus consists of smooth points.
Furthermore it is known that there exists a finite index subgroup of Mod(Σ) which acts freely on J (Σ). A
quantitative estimate of the index follows from the following result due to J. P. Serre (1958):

Proposition 3.1.5 If ϕ ∈ Mod(Σ)[S] is an automorphism of the Riemann surface S and

ϕ∗ : H1(Σ, Z/ℓZ) −→ H1(Σ, Z/ℓZ)

is the identity for some ℓ ≥ 3 then ϕ = 11. In particular ker(Mod(Σ) → Aut(H1(Σ; Z/ℓZ)) ∼= Sp(2g, ℓ)) acts
freely on T (Σ) for any ℓ ≥ 3.
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Chapter 4

Computation of the mapping class
group action on the Teichmüller spaces

4.1 The mapping class group action

4.1.1 The Ptolemy modular groupoid

The modular groupoid was considered by Mosher in his thesis and further as a key ingredient in [20, 21], it is
implicit in Harer’s paper on the arc complex (see [14]) and then studied by Penner (see [24, 25]; notice that the
correct definition is that from [25]) who introduced also the terminology.

Recall that a groupoid is a category whose morphisms are invertible, such that between any two objects there
is at least one morphism. The morphisms from an object to itself form a group (the group associated to the
groupoid).
Remark. Suppose that we have an action of a group G on a set M . We associate a groupoid G(G, M) as follows:
its objects are the G-orbits on M , and the morphisms are the G-orbits of the diagonal action on M ×M . If the
initial action was free then G embeds in G(G, M) as the automorphisms group of any object.

Assume that we have an ideal triangulation ∆(Γ) of a surface Σs
g. If e is an edge shared by the triangles ∆v and

∆w of the triangulation then we change the triangulation by excising the edge e and replacing it by the other
diagonal of the quadrilateral ∆v ∪ ∆w, as in figure 4.1. This operation F [e] was called flip in [7] or elementary
by Mosher and Penner.

Let IT (Σs
g)) denote the set of isotopy classes of ideal triangulations of Σs

g. The reduced Ptolemy groupoid
P s

g is the groupoid generated by the flips action on IT (Σs
g)). Specifically its elements are classes of sequences

∆0, ∆1, ..., ∆m, where ∆j+1 is obtained from ∆j by using a flip. Two sequences ∆0, ..., ∆m and ∆′
0, ..., ∆′

n are
equivalent if their initial and final terms coincide i.e. there exists a homeomorphism ϕ preserving the punctures
such that ϕ(∆0) ∼= ∆′

0 and ϕ(∆m) ∼= ∆′
n, where ∼= denotes the isotopy equivalence. Notice that any two

(isotopy classes of) ideal triangulations are connected by a chain of flips (see [15] for an elementary proof), and
hence P s

g is indeed an groupoid. Moreover P s
g is the groupoid G(Ms

g, IT (Σs
g)) associated to the obvious action

of the mapping class group Ms
g on the set of isotopy classes of ideal triangulations IT (Σs

g)). One problem in
considering P s

g is that the action of Ms
g on IT (Σs

g)) is not free but there is a simple way to remedy it. For
instance in [20, 21] one adds the extra structure coming from fixing an oriented arc of the ideal triangulation.
A second problem is that we want that the mapping class group action on the Teichmüller space extends to a

e e’

Figure 4.1: The flip
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groupoid action.

Consider now an ideal triangulation ∆ = ∆(Γ), where Γ is its dual fatgraph. A labelling of ∆ is a numerotation
of its edges σΓ : EΓ → {1, 2, ..., ♯EΓ}. Set now LIT (Σs

g)) for the set of labeled ideal triangulations. The
Ptolemy groupoid P s

g of the punctured surface Σs
g is the groupoid generated by flips on LIT (Σs

g)). The flip
F [e] associated to the edge e ∈ EΓ acts on the labellings in the obvious way:

σF [e](Γ)(f) =
{

σΓ(f), if f ̸= e′ = F [e](e)
σΓ(e), if f = e′,

According to ([25] Lemma 1.2.b), if 2g − 2 + s ≥ 2 then any two labeled ideal triangulations are connected by a
chain of flips, and thus P s

g is indeed a groupoid. Moreover, this allows us to identify P s
g with G(Ms

g,LIT (Σs
g)).

Remark. In the remaining cases, namely Σ3
0 and Σ1

1, the flips are not acting transitively on the set of labeled
ideal triangulations. In this situation an appropriate labelling consist in an oriented arc, as in [20]. The Ptolemy
groupoid associate to this labeling has the right properties, and it acts on the Teichmüller space.

Proposition 4.1.1 We have an exact sequence

1 → S6g−6+3s → P s
g → P s

g → 1,

where Sn denotes the symmetric group on n letters. Notice that P 1
1 = P1

1. If (g, s) ̸= (1, 1) then Ms
g naturally

embeds in P s
g as the group associated to the groupoid.

Proof. The first part is obvious. The following result is due to Penner ([25],Thm.1.3):

Lemma 4.1.1 If (g, s) ̸= (1, 1) then Ms
g acts freely on LIT (Σs

g).

Proof. A homeomorphism keeping invariant a labeled ideal triangulation either preserves the orientation of each
arc or else it reverses the orientation of all arcs. In fact once the orientation of an arc lying in some triangle
is preserved, the orientation of the other boundary arcs of the triangle must also be preserved. Further in the
first situation either the surface is Σ3

0 (when M3
0 = 1) or else each triangle is determined by its 1-skeleton, and

the Alexander trick shows that the homeomorphism is isotopic to identity. In the second case we have to prove
that (g, s) = (1, 1). Since the arcs cannot have distinct endpoints we have s = 1. Let ∆1 be an oriented triangle
and D ⊂ ∆1 be a 2-disk which is a slight retraction of ∆1 into its interior. The image D′ of D cannot lie within
∆1 because the homeomorphism is globally orientation preserving while the orientation of the boundary of D′

is opposite to that of ∂∆. Thus D′ lies outside ∆1 and the region between ∂D′ and ∂∆1 is an annulus, so the
complementary of ∆1 consists of one triangle. Therefore g = 1.
Remark. The punctured torus Σ1

1 has an automorphism which reverse the orientation of each of the three ideal
arcs.

The case of the punctured torus is settled by the following:

Proposition 4.1.2 Let ∆st = {α1, α2, α3}, where α1 = (1, 0), α2 = (1, 1), α3 = (0, 1) be the standard labeled
ideal triangulation of the punctured torus Σ1

1 = R2/Z2 − {0}.

1. If ∆ = {ασ(1), ασ(2), ασ(3)} is flip equivalent to ∆st then σ is the identity.

2. A mapping class which leaves invariant ∆st is either identity or −id ∈ SL(2, Z) = M1
1.

3. Let ∆ = {γ1, γ2, γ3} be an arbitrary ideal triangulation. Then there exists an unique σ(∆) ∈ S3 such that
∆ is flip equivalent with the labeled diagram {ασ(1), ασ(2), ασ(3)}.

4. In particular if ∆ = ϕ(∆st) then we obtain a group homomorphism σ : SL(2, Z) → S3, given by σ(ϕ) =
σ(ϕ(∆st), whose values can be computed from:

σ

(
1 1
0 1

)
= (23), σ

(
1 0
1 1

)
= (12), σ

(
0 −1
1 0

)
= (13).
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We need therefore another labeling for Σ1
1, which amounts to fix a distinguished oriented edge (d.o.e.) of the

triangulation. The objects acted upon flips are therefore pairs (∆, e), where e is the d.o.e. of ∆. A flip acts on
the set of labeled ideal triangulations with d.o.e. as follows. If the flip leaves e invariant then the new d.o.e. is
the old one. Otherwise the flip under consideration is F [e], and the new d.o.e. will be the image e′ of e, oriented
so that the frame (e, e′) at their intersection point is positive with respect to the surface orientation. The
groupoid Ptsg generated by flips on (labeled) ideal triangulations with d.o.e. of is called the extended Ptolemy
groupoid. Since any edge permutation is a product of flips (when (g, s) ̸= 1) it follows that any two labeled
triangulations with d.o.e. can be connected by a chain of flips.

The case of the punctured torus is subjected to caution again: it is more convenient to define the groupoid Pt11
as that generated by iterated compositions of flips on the standard (labeled or not) ideal triangulation ∆st of
Σ1

1 with a fixed d.o.e., for instance α1. In fact proposition 4.1.2 implies that there are three distinct orbits of
the flips on triangulations with d.o.e., according to the the position of the d.o.e. within ∆st.
Remark. For all (g, s) we have an exact sequence:

1 → Z/2Z → Ptsg → P s
g → 1.

Moreover Ms
g → P s

g lifts to an embedding Ms
g ↪→ Ptsg.

Remark. We can define the groupoid Ptsg by considering flips on ideal triangulations with d.o.e. without la-
bellings.

Remark. The kernel of the map M1
1 → P 1

1 is the group of order two generated by
(

0 −1
1 0

)
. Therefore any

(faithful) representation of P 1
1 induces a (faithful) representation of PSL(2, Z).

Remark. One reason to consider P s
g instead of P s

g is that P s
g acts on the Teichmüller space while P s

g does not.
The other reason is that Ms

g injects into P s
g (if (g, s) ̸= (1, 1)). The kernel of Ms

g → P s
g is the image of the

automorphism group Aut(Γ) in Ms
g.

Proof. An automorphism of Γ is a combinatorial automorphism which preserves the cyclic orientation at each
vertex. Notice that an element of Aut(Γ) induces a homeomorphism of Γt and hence an element of Ms

g. Now,
if ϕ is in the kernel then ϕ is described by a permutation of the edges i.e. an element of ϕ∗ ∈ S♯EΓ . One can
assume that the orientations of all arcs are preserved by ϕ when (g, s) ̸= (1, 1). Then ϕ∗ completely determines
ϕ, by the Alexander trick. Further ϕ induces an element of Aut(Γ) whose image in S♯EΓ is precisely ϕ∗. This
establishes the claim. Notice that the map Aut(Γ) → S♯EΓ is injective for most but not for all fatgraphs Γ. The
fatgraphs Γ for which the map Aut(Γ) → S♯EΓ fails to be injective are described in [22].
We can state now a presentation for Ptsg which is basically due to Penner ([25]):

Proposition 4.1.3 Ptsg is generated by the flips F [e] on the edges. The relations are:

1. Set J for the change of orientation of the d.o.e. Then

F [F [e]e]F [e] =
{

1, if e is not the d.o.e.
J, if e is the d.o.e.

2. J2 = 1.

3. Consider the pentagon from picture 4.2, and F [ej ] be the flips on the dotted edges. Let τ(12) denote the
transposition interchanging the labels of the two edges e1 and f1 from the initial triangulation. Then we
have:

F [e1]F [e2]F [e3]F [e4]F [e5] =
{

Jτ(12), if e1 is not the d.o.e.
τ(12), if e1 is the d.o.e.

The action of τ(12) on triangulations with d.o.e. is at follows: if none of the permuted edges e, f is the
d.o.e. then τ(12) leaves the d.o.e. unchanged. If the d.o.e. is one of the permuted edges, say e, then
the new d.o.e. is f oriented such that e (with the former d.o.e. orientation) and f with the given d.o.e.
orientation form a positive frame on the surface. Notice that [F [e1]F [e2]F [e3]F [e4]F [e5] = τ(12) even if
f1 is the d.o.e.

4. If e and f are disjoint edges then F [e]F [f ] = F [f ]F [e].
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Figure 4.2: The pentagon relation

5. The relations in a Z/2Z extension of the symmetric group, expressed in terms of flips. To be more specific,
les us assume that the edges are labeled and the d.o.e. is labelled 0. Then we have:

τ2
(0i) = J, τ2

(ij) = 1, if i, j ̸= 0, τ(st)τ(mn) = τ(mn)τ(st) if {m, n} ∩ {s, t} = ∅,

τ(st)τ(tv)τ(st) = τ(tv)τ(st)τ(tv), if s, t, v are distinct.

6. F [τ(e)]τF [e] = τ , for any label transposition τ (expressed as a product of flips as above), which says that
the symmetric group is a normal subgroupoid of P s

g .

Proof. We analyze first the case where labellings are absent:

Lemma 4.1.2 P s
g is generated by the flips on edges F [e]. The relations are:

1. F [e]2 = 1, which is a fancy way to write that the composition of the flip on F [e](e) with the flip on e is
trivial.

2. F [e1]F [e2]F [e3]F [e4]F [e5] = 1, where F [ei] are the flips considered in the picture 4.2.

3. Flips on two disjoint edges commute each other.

Proof. This result is due to Harer (see [14]). It was further exploited by Penner ([24, 25]).
The complete presentation is now a consequence of the two exact sequences from proposition 4.1.1 and remark
4.1.1, relating P s

g , P s
g and Ps

g.
Remark. By setting J = 1 above we find the presentation of P s

g , with which we will be mostly concerned in the
sequel.

4.1.2 The mapping class group action on the Teichmüller spaces

In order to understand the action on T s
g we to consider also Tg,s;or.

The action of Ms
g on the Teichmüller space extends to an action of P s

g to T s
g . Geometrically we can see it as

follows. An element of T s
g is a marked hyperbolic surface S. The marking comes from an ideal triangulation.

If we change the triangulation by a flip, and keep the hyperbolic metric we obtain another element of T s
g .

In the same way the Mg,s action on the Teichmüller space Tg,s;or extends to an action of the Ptolemy groupoid
Pg,s. This action is very easy to understand in terms of coordinates. In more specific terms a flip between
the graphs Γ and Γ′ induces an analytic isomorphism REΓ → REΓ′ by intertwining the coordinate systems
tΓ and tΓ′ . It is more convenient to identify REΓ with a fixed Euclidean space, which is done by choosing
a labelling σ : EΓ → {1, 2, ...♯EΓ} of its edges. Thus we have homeomorphism tΓ,σ : Tg,s;or → R♯EΓ given
by (tΓ,σ(S))k = (tΓ(S))σ−1(k)∈EΓ . Further we can compare the coordinates tΓ,σ and tF (Γ,σ), for two labelled
fatgraphs which are related by a flip. We can state:
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Proposition 4.1.4 A flip acts on the edge coordinates of a fatgraph as follows:

q( z)

q( -z)b - 

q( -z)d - 

z)a +       q(

cd

a b

-zz

c + 

F

where φ(z) = log(1 + ez). Here it is understood that the coordinates associated to the edges not appearing in the
picture remain unchanged.

Proof. The flip on the graph corresponds to the following flip of ideal triangulations:

P

P

Q

P

Q
-1

3

8

Q

Q
2

4

0

1
P

P

P

Q

P

Q
-1

3

8

Q

Q
2

4

0

1
P

Then the coordinates a, b, c, d, z using the left-hand-side graph are the following cross-ratios: a = [Q3, P∞, P0, P−1],
b = [Q4, P−1P∞, P0], c = [Q1, P0, P∞, P ], d = [Q2, P, P0, P∞], z = [P−1, P∞, P, P0]. Let a′, b′, c′, d′, z′ be the
coordinates associated to the respective edges from the right-hand-side graph, which can again be expressed as
cross-ratios as follows: a′ = [Q3, P∞, P, P−1], b′ = [Q4, P−1, P, P0], c = [Q1, P0, P−1, P ], d = [Q2, P, P−1, P∞],
z = [P∞, P, P0, P−1]. One uses for simplifying computations the half-plane model where, up to a Möbius
transformation, the points P−1, P∞, P, P0 are sent respectively into −1,∞, ez and 0. The flip formulas follow
immediately.
Remark. Similar computations hold for Penner’s λ-coordinates on the decorated Teichmüller spaces. However
the transformations of R6g−6+2s obtained using λ-coordinates are rational functions.
Let us denote by Autω(Rm) the group of real analytic automorphisms of Rm.

Corollary 4.1.1 1. We have a faithful representation ρ : Mg,s → Autω(R6g−6+3s) induced by the Pg,s

action on the Teichmüller space Tg,s;or if (g, s) ̸= (1, 1).

2. The groupoid P s
g ⊂ Pg,s leaves invariant the Teichmüller subspace T s

g ⊂ Tg,s;or. Therefore the formula
given in proposition 4.1.4 above for the flip actually yields a representation of P s

g into Autω(R6g−6+2s).
The restriction to the mapping class groups is a faithful representation ρ : Ms

g → Autω(R6g−6+2s) if
(g, s) ̸= (1, 1), and a faithful representation of PSL(2, R) when (g, s) = (1, 1).

Proof. The representation of Mg,s (respectively Ms
g) is injective because the mapping class group acts ef-

fectively on the Teichmüller space. Therefore if the class of any (marked) Riemann surface is preserved by a
homeomorphism then this homeomorphism is isotopic to the identity.

The invariance of the subspace T s
g ⊂ Tg,s;or by flips is geometrically obvious, but we write it down algebraically

for further use. This amounts to check that the linear equations tγ = 0, for γ ∈ FΓ are preserved. Let γ be a
left-hand-turn path, which intersects the part of the graph shown in the picture, say along the edges labeled
a, z, b. Then the flip of γ intersects the new graph along the edges labeled by a+φ(z) and b−φ(−z). The claim
follows from the equality z = φ(z) − φ(−z). The remaining three cases reduces to the same equation.
Remark. There is a Ptsg-action on the Teichmüller space but it is not free, and actually factors through P s

g .
Remark. Assume that there exists an element r ∈ T s

g , which is fixed by some ψ ∈ Ms
g, i.e. ϕ(ψ)(r) = r.

Then r is contained in some codimension two analytic submanifold Qs
g ⊂ T s

g , and for a given r its isotropy
group is finite. This is a reformulation of the fact that Ms

g acts properly discontinuously on the Teichmüller
space with finite isotropy groups corresponding to the Riemann surfaces with non-trivial automorphism groups
(biholomorphic). Moreover the locus of Riemann surfaces with automorphisms is a proper complex subvariety
of the Teichmüller space, corresponding to the singular locus of the moduli space of curves.
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4.1.3 Deformations of the mapping class group representations

We want to consider deformations of the tautological representation ρ = ρ0 of Ms
g obtained in the previ-

ous section. We first restrict ourselves to deformations ρh : Ms
g → Autω(R6g−6+2s) satisfying the following

requirements:

1. The deformation ρh extends to the Ptolemy groupoid P s
g . In particular ρh is completely determined by

ρh(F ) and ρh(τ(ij)).

2. The image of a permutation ρh(τ(ij)) is the automorphism of R6g−6+2s given by the permutation matrix
P(ij), which exchanges the i-th and j-th coordinates.

3. The image Fh = ρh(F ) of a flip has the same form as for ρ0(F ), namely that given in the picture from
proposition 4.1.4, but with a deformed function φ = φh, with φ0 = log(1 + ez).

4. The linear subspace T s
g ⊂ Tg,s;or is invariant by ρh.

Proposition 4.1.5 The real function φ : R → R yield a deformation of the mapping class groups (respectively
the Ptolemy groupoids) if and only if it satisfies the following functional equations:

φ(x) = φ(−x) + x. (4.1)

φ(x + φ(y)) = φ(x + y − φ(x)) + φ(x). (4.2)

φ (φ (x + φ(y)) − y) = φ(−y) + φ(x). (4.3)

Proof. The first equation is equivalent to the invariance of the linear equations defining the cusps. The other
two equations follow from the cumbersome but straightforward computation of terms involved in the pentagon
equation.

4.1.4 Belyi Surfaces

Let S be a compact Riemann surface. It is well known that there exists a non-constant meromorphic function
on S, φ : S → CP1.

Definition 4.1.1 The Riemann surface S is a Belyi surface if there exists a ramified covering φ : S → CP1,
branched over 0, 1 and ∞.

A surprising theorem of Belyi ([3]) states that:

Theorem 4.1.1 S is a Belyi surface if and only if it is defined over Q i.e. as a curve in CP2 its minimal
polynomial lies over some number field.

Following [24, 22] we can characterize Belyi surfaces in terms of fat graphs as follows:

Theorem 4.1.2 A Riemann surface S can be constructed as S(Γ) = S(Γ,0) for some trivalent fatgraph Γ if
and only if S is a Belyi surface.

Proof.
We prove first:

Lemma 4.1.3 Let G ⊂ PSL(2, Z) be a finite index torsion-free subgroup. Then H2/G = S(Γ) for some trivalent
fatgraph Γ.

Proof. Remark that A = {z ∈ H2; 0 < ℜ(z) < 1, |z| > 1, |z − 1| > 1}, is a fundamental domain for PSL(2, Z),
with the property that three copies of it around ω+1 fit together to give the ideal marked triangle. These three
copies are equivalent by means of an order three elliptic element γ of PSL(2, Z).

A fundamental domain for G is composed of copies of A, and since G is torsion free the three copies A, γ(A)
and γ2(A) are not equivalent under G, thus they can all be included in the fundamental domain for G. In
particular it exists a fundamental domain B for G which is made of copies of the ideal triangle I and hence it is
naturally triangulated. Consider the graph Γ dual to this triangulation, which takes into account the boundary
pairings, and which inherits an orientation from H2/G. Then H2/G = S(Γ).
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Figure 4.3: Fundamental domains for PSL(2, Z) and Γ(2)

Lemma 4.1.4 S is a Belyi surface if and only if we can find finitely many points on S, {p1, . . . , pk}, such that
S − {p1, . . . , pk} is isomorphic to H2/G, where G is a finite index torsion free subgroup of PSL(2, Z).

Proof. Set Γ(2) =
{(

a b
c d

)
∈ PSL(2, Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2)

}
. Then F = {z ∈ H2; 0 < ℜ(z) <

2, |z − 1/2| > 1
2 , |z − 3/2| > 1

2} is a fundamental domain for Γ(2) composed of 2 ideal triangles glued along
a common edge. Thus the 3-punctured sphere CP1 − {0, 1,∞} is H2/Γ(2). Moreover each ideal triangle is
composed of three copies of the fundamental domain of PSL(2, Z). Therefore, the 3-punctured sphere is a
six-fold branched covering of H2/ PSL(2, Z).

Let S be a compact Riemann surface. If S is a Belyi surface then S − {p1, . . . , pk} is a regular smooth finite
degree covering of H2/Γ(2) and thus S − {p1, . . . , pk} = H2/G, where G is a finite-index subgroup of Γ(2) (and
hence of PSL(2, Z)).

Conversely, if S − {p1, . . . , pk} = H2/G, where G is a finite index torsion free subgroup of PSL(2, Z), then
S − {p1, . . . , pk} is a finite-degree branched covering of H2/ PSL(2, Z), which is a sphere with one cusp and
2 ramification points. Therefore, if we remove the 2 ramification points and their pre-images, we get that
S − {p1, . . . , pk, . . . , pn} is a regular smooth finite-degree covering of the 3-punctured sphere, i.e. a Belyi
surface.
These lemmas show that any Belyi surface can be constructed out of some fatgraph.

Conversely the fundamental polygon constructed for G(Γ) is composed of copies of the ideal triangle. By
decomposing each ideal triangle into three copies of the fundamental domain for PSL(2, Z), we see that G(Γ)
can be embedded as a finite-index torsion free subgroup of PSL(2, Z).

4.2 The geometry of the Teichmüller space

4.2.1 Symplectic structures for the Teichmüller space of punctured surfaces

The Teichmüller space T s
g has a natural structure of complex manifold. Let us recall some of its features.

Suppose that the Riemann surface S is uniformized by the Fuchsian group G ⊂ PSL(2, R).

One considers first the vector space Q(S) = Q(G) of integrable holomorphic quadratic differentials on S. An
element ϕ ∈ Q(S) is a holomorphic function ϕ(z) on H2 satisfying ϕ(γ(z))γ′(z)2 = ϕ(z) for all γ ∈ G, and∫

F |ϕ| is finite, where F is a fundamental domain for G. Then ϕ induces a symmetric tensor of type (2, 0) on S.

Let then M(S) be the space of G-invariant Beltrami differentials. These are measurable, essentially bounded
functions µ : H2 → C satisfying µ(γ(z))γ′(z)

γ′(z) = µ(z) for all γ ∈ G, and hence define a (−1, 1) tensor on S.

There is a natural pairing (, ) : M(S) × Q(S) → C given by (µ, ϕ) =
∫

F µϕ, with null space N(S) ⊂ M(S)
which induces a duality isomorphism between M(S)/N(S) and Q(S).

The holomorphic cotangent space at the point [S] ∈ T s
g is identified with Q(S) and thus the tangent space is

naturally isomorphic to M(S)/N(S). Weil introduced a hermitian product on Q(S) defined in terms of the
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Petersson product for automorphic forms. This yields the Weil-Petersson (co)metric on T s
g :

< ϕ, ψ >=
1
2
Re

∫

H2/G
ϕψ (Imz)−2 , for ϕ, ψ ∈ Q(S).

Remark. The Weil-Petersson metric is Kähler, it has negative holomorphic sectional curvature and is invariant
under the action of the mapping class group.
The Kähler form of the Weil-Petersson metric is a symplectic form ωWP . In the case of closed surfaces Wolpert
([34]) derived a convenient expression for ωWP in terms of Fenchel-Nielsen coordinates:

ωWP = −
∑

j

d τj ∧ d lj.

Recall that a pair of pants Σ0,3 has a hyperbolic structure with geodesic boundary. The lengths lj ∈ R+ of the
boundary circles can be arbitrarily prescribed. To each decomposition of S into pairs of pants P1, ..., P2g−2 we
have therefore associated the lengths of their boundary geodesics l1, ..., l3g−3. In fact given pairs of pants, not
necessarily distinct, P1 and P2 with boundary circles c1 on P1 and c2 on P2, of the same length we can glue
the pants by identifying c1 with c2 by an isometry. The hyperbolic metric extends over the connected sum.
Therefore we can glue together the pants P1, ..., P2g−2 to obtain the Riemann surface S. If a length l = 0 then
this corresponds to the situation where the surface has a cusps. We can therefore extend this description to
punctured surfaces Σn

g with cusps at punctures. The pants decomposition is specified therefore by 3g − 3 + n
geodesics on S. Each boundary circle c belongs to two pairs of pants Pj and Pk. The geodesics joining the
circles of Pj to the circles of Pk intersect c into two points. The parameter τj is the (signed) hyperbolic distance
between these two points. The parameters (τj , lj) are the Fenchel Nielsen coordinates on T s

g .

Fricke and Klein established that, if one carefully choose the curves γ1, ..., γ6g−6+2n then the associated lengths
lj can also give local coordinates on T s

g . A typical example is to pick up first the curves γ1, ..., γ3g−3+n arising
from a pants decomposition, and then a dual pants decomposition obtained as follows. Consider the pieces of
geodesics which yield the canonical points on the circles, and then identify combinatorially the canonical points.
We obtained this way a family of closed loops γ3g−3+n+1, ..., γ6g−6+2n. Wolpert ([35],Lemma 4.2, 4.5) expressed
the Kähler form in these coordinates:

Lemma 4.2.1 Assume that l1, ..., l6g−6+2n provide local coordinates on T s
g and denote:

αjk =
∑

p∈γj∩γk

cos θp,

where θp is the angle between the geodesic γj and γk at the point p. Let W = (wjk)j,k be the inverse of the
matrix A = (αjk)j,k. Then the Weil-Petersson form is:

ωWP = −
∑

j<k

wjk d lj ∧ d lk.

4.2.2 Poisson structure for the Teichmüller space of surfaces with boundary

Let G be a connected Lie group, which will be most of the time PSL(2, R) in this section. Set M(Σ, G) =
Hom(π1(Σ), G)/G for the moduli space of representations of the fundamental groups.

Goldman ([10]) proved that M(Σ, G) is endowed with a natural symplectic structure, whenever Σ is a closed
oriented surface. Moreover Fock and Rosly ([8]) was able to show more generally that there is a Poisson
structure on M(Σ, G), even in the case when Σ is a surface with boundary. Furthermore the symplectic leaves
of this structures are precisely the singular submanifolds M(Σ, G)λ1,...,λs , where λj is the conjugacy class of the
holonomy around the j-th boundary component.

Notice also that Zocca have shown that M(Σ, G) has a pre-symplectic structure, whose restriction to the
symplectic leaves is the symplectic form.
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4.2.3 Penner’s decorated Teichmüller space

Penner ([24, 25] considered the space T̃ s
g of cusped Riemann surfaces endowed with a horocycle around each

puncture, and called it the decorated Teichmüller space. There is a natural family of coordinates (called lambda
lengths), associated to the edges of an ideal triangulation ∆ = ∆(Γ) of the surface. For each such edge e one
puts λe =

√
2exp(δ), where δ is the signed hyperbolic distance between the two horocycles centered at the two

endpoints of the edge e. The sign convention is that λe > 0 if the horocycles are disjoint. It is not difficult
to see that these coordinates give a homeomorphism T̃ s

g → R6g−6+3s. The map which forgets the horocycles
π : T̃ s

g → T s
g is a fibration having Rs

+ as fibers. Moreover:

Lemma 4.2.2 The projection π is expressed in terms of Penner and Fock coordinates as follows:

π
(
(λe)e∈∆(Γ)

)
=
(

log
λaλc

λbλd

)

e∈∆(Γ)

,

where, for each edge e we considered the quadrilateral of edges a, b, c, d, uniquely determined by the following
properties:

• the cyclic order a, b, c, d is consistent with the orientation of Σs
g.

• e is the diagonal separating a, b from c, d (see the figure 4.2.2).

• each triangle of ∆ has an orientation inherited from Σs
g, in particular the edge e is naturally oriented. We

ask that a (and d) be adjacent to the startpoint of e, while b and c is adjacent to the endpoint of e.

a

b

c

d

e

Proof. The proof is a mere calculation.

Proposition 4.2.1 The pull-back π∗ωWP of the Weil-Petersson form on the decorated Teichmüller space T̃ s
g

is given in Penner’s coordinates as:

π∗ωWP = −2
∑

T⊂∆

d log λa ∧ d log λb + d log λb ∧ d log λc + d log λc ∧ d log λa,

where the sum is over all triangles T in ∆ whose edges have lambda lengths a, b, c in the cyclic order determined
by the orientation of Σs

g.

Proof. See [26], Appendix A.
Remark. For dimensional reasons the pre-symplectic form π∗ωWP is degenerate.

Proposition 4.2.2 The Poisson structure on Tg,s;or is given by the following formula in the Fock coordinates
(te):

PWP =
∑

T⊂∆

dta ∧ dtb + dtb ∧ dtc + dtc ∧ dta,

where the sum is over all triangles T in ∆ whose edges are a, b, c in the cyclic order determined by the orientation
of Σs

g. This Poisson structure is degenerate. Moreover T s
g ⊂ Tg,s;or is a symplectic leaf and hence the restriction

of PWP is the Poisson structure dual to the Weil-Petersson symplectic form ωWP .
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4.3 Teichmüller spaces after Thurston

1. Denote by S(Σ) the set of isotopy classes of simple closed curves on Σ. Consider the geometric intersection
number ι(α, β) for α, β ∈ S(Σ) which is the minimum number of intersection points of two curves in the
respective isotopy classes.

Proposition 4.3.1 1. For every α ∈ S there exists β ∈ S such that ι(α, β) ̸= 0.

2. If α1 ̸= α2 ∈ S then there exists β ∈ S such that ι(α1, β) ̸= ι(α2, β).

The map ι : S × S → R induces ι∗ : S → RS ; let

P : RS − {0} −→ P(RS)

be the quotient map defining the projectivisation. Since ι∗(S) ⊂ RS ! {0} it makes sense to define:

PS(Σ) = closure of (P (ι∗(S))) ⊂ P(RS)

Proposition 4.3.2 PS(Σ) is homeomorphic to a sphere S6g+2b−7, where Σ is of genus g with b boundary
components, provided that χ(Σ) < 0.

Remark.
If S′(Σ) denotes the set of isotopy classes of non-empty unions of disjoint simple loops in Σ (none bounding a
disk or isotopic to γM) then the same construction yields PS′(Σ). Moreover PS′(Σ) = PS(Σ).

2. We identify points of T (Σ) with marked hyperbolic structures on Σ. Define the map

ι : T (Σ) × S(Σ) → R+

where ι(T , α) states for the infimum length of a simple closed curve a ⊂ Σ where a represents α and Σ has
metric τ . It is known that a is the unique closed geodesic representing α. Moreover two hyperbolic metrics
τ1, τ2 are isotopic if

ι(τ1, α) = ι(τ2, α) for all α ∈ S .

We obtain then a map ι∗ : T (Σ) → RS ! {0} and by projecting onto P (RS ! {0}) we set

T (Σ) = closure of (P ◦ ι∗(T (Σ))) ⊂ P(RS) .

Proposition 4.3.3 (W.Thurston) T (Σ) = P ◦ ι∗(T (Σ)) ∪ PS(Σ), and with this topology T (Σ) ∼= D6g−6+2b,
such that PS(Σ) corresponds to S6g−7+2b. Thus T (Σ) is a compactification of T (Σ).

Remark. M.F. Vignéras proved that there are non isometric Riemann surfaces with the same length spectrum.
If one adds the marking by means of the conjugacy classes in π1(Σ) corresponding to the length of closed
geodesics then the two negatively curved surfaces should be isometric (as shown by J.-P. Otal).

Corollary 4.3.1 The action of Mod(Σ) extends continuously to T (Σ). In particular, if φ is a diffeomorphism
of Σ then either

1. φ fixes an element of the Teichmüller space, or

2. φ fixes a projective class of a measurable foliation.

Remarks.

1. T (Σ) has a smooth structure but PS(Σ) does not have (unless g = 1) a natural smooth structure. However
PS(Σ) has a projective piecewise integral structure and Mod(Σ) acts by piecewise integral projective
homeomorphisms on PS(Σ).

2. There exists an invariant measure on PS(Σ). However the Mod(Σ)-action on PS(Σ) is not properly
discontinuous, but an ergodic action, as proved by H.Masur.
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