
ON KNOTS HAVING THE SAME INVARIANTS UP TO A CERTAIN DEGREE

L. FUNAR

Abstract. Two links are k-equivalent if their Vassiliev invariants in degree at most k coincide.
Examples of pairs of k-equivalent knots were constructed by Stanford: cut open a knot by a transversal
plane, insert an element of the k + 1-th term of the lower central series of the pure braid group (on
the corresponding number of strands) and glue back the two pieces. Then the resulting knot is k-
equivalent to the initial one. We prove that the converse holds true: two k-equivalent knots can be
obtained one from the other by a Stanford move.

1. Introduction

A knot invariant is of finite type and degree ≤ k if its natural extension to singular knots vanishes
for singular knots with ≥ k + 1 double points.

Two knots K and L are (Vassiliev) V −k-equivalent if v(K) = v(L) holds for all Vassiliev invariants
of degree ≤ k. It has been shown by Gusarov in [3] (using a slightly different, but equivalent definition
of finite type invariants) that k-equivalence classes of knots, under the connected sum form a finitely
generated Abelian group.

In [4, 5, 6] Stanford defined some k-moves which preserve the k-th equivalence class of the knot.
A Stanford k-move relates two knots K and L if there is an element x ∈ LCS(k+1)(Pn), and some
transversal plane cutting open K such that, after inserting x and glueing back we obtain L. The
question we want to answer in these notes is whether the converse affirmation is also true. Let us
call the two links (Stanford) S − k-equivalent if there is a k-move relating them. The main result
(see [7]) is:

THEOREM 1.1. Two V − k-equivalent knots can be obtained one from the other by using one
k-move.

This result is also a corollary of a theorem due to Habiro ([2]).

2. Proof of the theorem

2.1. The plan. Let us make a few notations:
LCSk(G) is the lower central series of a group G.
IG ⊂ ZG is the augmentation ideal.
S∗ is the set of singular objects with ∗ double points, of a given kind i.e. knots, braids, etc.
F ∗ is the Vassiliev filtration obtained from the desingularization of singular objects from S∗.
K states for the set of knots (modulo isotopy).
K/Vk states for the equivalence classes of knots modulo V − k-equivalence.
K/Sk states for the equivalence classes of knots modulo S − k-equivalence.

PROPOSITION 2.1. Stanford’s k-equivalence is an equivalence relation on the set of links.
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PROPOSITION 2.2. The set K/Sk of knots modulo S − k-equivalence forms a group (under the
connected sum of knots).

PROPOSITION 2.3. If two links are S − k-equivalent then they are V − k-equivalent.

PROPOSITION 2.4. If two knots are V − k-equivalent then they are S − k-equivalent.

2.2. Proof of Proposition 1. Before to proceed let us make some comments on the Markov the-
orem. Any link can be identified with a closed braid in infinitely many ways. As the Reidemeister
moves act transitively on the set of diagrams associated to the same link, the theorem of Markov
provides the moves relating two braids having the same closure.

It is useful in applications to have an improved version of Markov’s theorem, which is folklore
(after J.Birman, H.Morton). The proof we present here is due to S.Kamada. This result provides a
rearrangement of the elementary moves in the Markov theorem.

PROPOSITION 2.5. If the closed braids x and y are equivalent then there exists a sequence of
elementary moves relating them x = x0 → x1 → ... → xk → yk → yk−1 → ... → y0 = y, such that,
for each j
• xj → xj+1 is either a conjugation or a stabilization.
• yj+1 → yj is either a conjugation or a destabilization (the inverse of a stabilization).

Proof. Define a generalized stabilization to be the transformation x ∈ Bn goes to xw−1bε
nw ∈ Bn+1,

w ∈ Bn, ε ∈ {−1, 1}. It is easier to work with them and also these are not far from usual stabilization:
a generalized stabilization x → x′ can be decomposed as x → y a conjugation, y → z a stabilization,
and z → x′ a conjugation. In fact if x′ = xw−1bε

nw we set y = wxw−1 and z = wxw−1bε
n.

Morover a conjugation and a generalized stabilization could “commute” each other as follows. Let
x0 → x1 be a conjugation, x1 → x2 be a generalized stabilization. Then there exists some y such
that x0 → y is a generalized stabilization and y → x2 is a conjugation. Indeed the hypothesis is that
x1 = w−1x0w, x2 = x1t−1bε

nt. We take then y = x0wt−1bε
ntw−1.

The main argument is the equivalence of a sequence having the shape down-up with another one
up-down (with respect to the braid index):

LEMMA 2.1. Let x0 → x1 be a generalized destabilization and x1 → x2 be a generalized stabiliza-
tion. Then there exist y, z such that x0 → y is a generalized stabilization, y → z is a conjugation,
and z → x2 is a generalized destabilization.

Proof. We can write x0 = x1w−1bε
nw ∈ Bn+1, x2 = x1t−1bδ

nt ∈ Bn+1, where x1, w, t ∈ Bn, ε, δ ∈
{−1, +1}. We put then y = x0(bnt)−1bδ

n+1(bnt) ∈ Bn+2, z = b−1
n+1ybn+1 ∈ Bn+2. We have therefore

z = b−1
n+1x0(bnt)−1bδ

n+1(bnt)bn+1 =

= b−1
n+1x1w

−1bε
nwt−1b−1

n bδ
n+1bntbn+1 =

= b−1
n+1x1w

−1bε
nwt−1bn+1b

δ
nb−1

n+1tbm+1 =

= x1w
−1b−1

m+1b
ε
mbn+1wt−1bδ

nt =

= x1w
−1bnbε

n+1b
−1
n wt−1bδ

nt =

= x1t
−1bδ

nt(b−1
n wt−1bδ

nt)−1bε
n+1(b

−1
n wt−1bδ

nt)

!
A straightforward recurrence yields the result. !
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LEMMA 2.2. Consider y ∈ BN which is obtained by a sequence of generalized stabilizations from
x ∈ Bn and h ∈ LCSk(Pn). Then there exists g ∈ LCSk(BN ) such that gy is obtained by a sequence
of generalized stabilizations from hx.

Proof. It suffices to do that for one stabilization: y = a−1xabε
n. Then a−1hxabε

n = (a−1ha)a−1xabε
n

and we take g = a−1ha. !
Final argument in the proof of the Proposition 1: We have to check that the S − k equivalence

is transitive. Take then three links K1 = hx, K2 = x = y, K3 = gy, where h and g are from the
LCSk+1. By the strengthened Markov lemma there exists some braid z ∈ BN which is obtainable
by sequences of generalized stabilizations from both x and from y. According to the previous lemma
there exist h′, g′ ∈ LCSk+1(PN) such that h′z and hx (and respectively g′z and gy) are still related
by a sequence of generalized stabilizations, hence K1 = h′z, K3 = g′z.

2.3. Proof of Proposition 2. Notice that it is essential here to consider knots and not arbitrary

links. Denote by
S,n∼ the S − n-equivalence.

LEMMA 2.3. If K1
S,n∼ K ′

1 and respectively K2
S,n∼ K ′

2 then K1♯K2
S,n∼ K ′

1♯K2.

Proof. We can assume that all knots involved in the lemma are closures of braids in Bk. By using
conjugations we can assume that the permutations associated to these braids are the same as that of
the element tk = b−1

k−1b
−1
k−1...b

−1
1 . In fact all complete cycles are conjugated in the permutation group.

Thus we have K1 = x1tk, K ′
1 = h1x1tk, K2 = x2tk, K1 = h2x2tk, where h1, h2 ∈ LCSn+1(Pk).

An immediate inspection shows that xtk♯ytk = xt−k
2k ytk+1

2k , and so K1♯K2 = x1t
−k
2k x2t

k+1
2k , K ′

1♯K
′
2 =

h1x1t
−k
2k h2x2t

k+1
2k = h1t

−k
2k h2tk2kx1t

−k
2k x2t

k+1
2k , because x1 and t−k

2k h2tk2k commute each other, modulo
LCSn+1(P2k). But now h1t

−k
2k h2tk2k ∈ LCSn+1(P2k), and the claim follows. !

It remains to show that the monoid structure induced by ♯ is a group one, which is equivalent to:

LEMMA 2.4. Every equivalence class in K/Sk has an inverse.

Proof. It suffices to prove that for a S − k-trivial knot K there exists some knot K ′ such that K♯K ′

is S − (k +1)-trivial. Since any knot is S − 1-trivial an inductive use of this claim proves the lemma.
Let now K = xtk, where h ∈ LCSk+1(Pn) and hxtk is the unknot. We claim that K ′ = htk verifies

the previous claim. More generally, for any x ∈ BN and h ∈ LCSk+1(Pn) xtk♯htk is S − (k + 1)-
equivalent to hxtk.

In fact we have, for all j:

ht−j
2k xtj+1

2k = t−j−1
2k xtj+1

2k ht2k = [t−j−1
2k xtj+1

2k , h]ht−j−1
2k xtj+2

2k ,

hence by transitivity we get hxt12k is S − (k + 1)-equivalent to ht−k
2k xtk+1

2k . But the latter is isotopic
to xtk♯htk, and we are done. !
2.4. Proof of Proposition 3. The following well-known lemma holds for any group G:

LEMMA 2.5. If x ∈ LCSk(G) then x − 1 ∈ Ik
G.

Proof. By recurrence on k. Consider x ∈ LCSn(G) and y ∈ G. Then [x, y]− 1 = (xy − yx)x−1y−1 =
((x − 1)(y − 1) − (y − 1)(x − 1))x−1y−1 ∈ In+1(G). Also if x − 1 ∈ In

g and y − 1 ∈ In
G then

xy − 1 = x(y − 1) + (x − 1) ∈ In
G, and x−1 − 1 = −x−1(x − 1) ∈ In

G. !



4 L. FUNAR

If Jk
Bn

denotes the 2-sided ideal of ZBn generated by Ik
Pn

⊂ Pn ⊂ Bn, then we have the following
simple interpretation of the Vassiliev filtration on braids:

LEMMA 2.6. We have F k(Bn) = Jk
Bn

.

Proof. The desingularization of a crossing can be written in ZBn (and not ZPn !) as the difference
bi− b−1

i = (b2
i −1)b−1

i , where the bi (i = 1, 2, ..., n−1) are the usual generators of the braid group Bn.
Then all crossings of x ∈ SdB yield by desingularization δ(x) = y0(b2

i1 − 1)y1(b2
i2 − 1)y2...(b2

id
− 1)yd,

where all elements yi ∈ Bn. Since x was a singular braid we have y0y1...yd ∈ Bn. We can write:

δ(x) =

(
d−1∏

j=0

y0y1...yj(b
2
ij+1

− 1)(y0y1...yj)
−1

)
y0y1...yd.

Now each term y0y1...yj(b2
ij+1

− 1)(y0y1...yj)−1 = y0y1...yjb2
ij+1

(y0y1...yj)−1 − 1, has the form x − 1,

with x ∈ Pn. This proves that F k(Bn) ⊂ Jk
Bn

.
If J is an ideal and x − 1, y − 1 ∈ J we derive that xy − 1 = (x − 1)(y − 1) + x − 1 + y − 1 ∈ J .

Hence, in order to prove the reverse inclusion IPn ⊂ F 1(Bn) it suffices to show that x − 1 ∈ F 1(Bn)
for x running over a set of generators of Pn, for instance xij = bj−1bj−2...bi+1b2

i b
−1
i+1...b

−1
j−1. But

xij − 1 = bj−1bj−2...bi+1(b2
i − 1)b−1

i+1...b
−1
j−1, so that xij − 1 ∈ IG(1). Since both filtrations are ideals in

the group algebras, this argument shows also that Jk
Bn

⊂ F k(Bn). !
Now the Proposition 3 follows: if K = x and L = yx, where x ∈ Bn, y ∈ LCSk+1(Pn) then

x(y − 1) ∈ Fk+1BN , hence K − L ∈ F k+1K.

2.5. Proof of Proposition 4. We consider the composition, ZK → Z[K/Vk] → K/Vk where the
second arrow is the Z-linear extension of the identity map between the two groups. Roughly speaking
K/Vk is the dual of the group of additive Vassiliev invariants of degree ≤ k. We have a similar map
ZK → Z[K/Sk] → K/Sk, and our task is to identify these two projections map. It is sufficient to
prove the the kernel of the former projection is contained in the kernel of the second one.

Definition 2.1. A relator of order n and length m is an element of ZK having the form

(x1 − 1)(x2 − 1)...(xm − 1)ytk,

where ni is the greater natural such that xi ∈ LCSni(Pk), and n =
∑

i ni, y ∈ Pk.

LEMMA 2.7. F m(K) is generated by relators of length m and order ≥ m.

Proof. This is equivalent to show that the projection map induced by the closure yields a surjective
map F m(B∞) → F m(K). Any singular knot with m + 1 double points is the closure of a singular
braid with m + 1 double points. This generalization of Alexander’s theorem is due to Birman ([1]).
Conjugating by a braid we can suppose the permutation associated is the same as that of tk. The
identification of F m(Bk) with Jm

Bk
made above sends F m(Pk) isomorphically on Im

Pk
. !

We remark that the kernel of ZK → Z[K/Sk] is generated by relators of length 1 and order ≥ k.
The kernel of the second projection Z[K/Sk] → K/Sk is generated by the composite combinations
(which we call relators) of the form K1♯K2 − K1 − K2 (corresponding to the additivity of Vassiliev
invariants).

We have therefore to prove that:
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PROPOSITION 2.6. Any relator of order ≥ n is a linear combination (over Z) of relators of
length 1 and order ≥ n and of composite relators.

Proof. Set Cn be the span of all relators length 1 and order ≥ n and of composite relators. Suppose
on the contrary that there is one relator of order ≥ n which does not belong to Cn. Choose one
such of minimal length m, and among those with minimal length, one with maximal order. Such
one should exist because, if the order is large enough then the element is in Cn. In fact there
exists one xi ∈ LCSn(PN) and the relator can be rewritten as a sum of elements of the form as
w(xi − 1)ytk = (wxiw−1 − 1)ytk, but now wxiw−1 ∈ LCSn(Pk) hence all these are relators of length
1 and order ≥ n.

Suppose this relator is (x1 − 1)...(xm − 1)ytk = (x1 − 1)...(xm − 1)yt2k, xj , y ∈ Pk.
We can interchange (xi−1) and (xi+1−1) modulo relators of shorter length or greater order, using

(xi − 1)(xi+1 − 1)− (xi+1 − 1)(xi − 1) = xixi+1 −xi+1xi = ([xi, xi+1]− 1)+ ([xi, xi+1]− 1)(xi+1xi − 1).

Meantime (xm − 1) can be interchanged with y modulo relators of greater order, since

(xm − 1)y − y(xm − 1) = ([xm, y] − 1)yxm.

Using a conjugation we have that (x1 − 1)...y(xm − 1)t2k = ((t−1
2k−1xmt2k − 1)(x1 − 1)...(xm−1 − 1)yt2k.

Applying these transformations repeatedly we derive that the initial relator is equal (modulo rela-

tors of smaller length or greater order) to ((t−k
2k−1xmtk2k − 1)(x1 − 1)...(xm−1 − 1)yt2k which equals

(x1 − 1)(x2 − 1)...(xm−1 − 1)ytk♯(x1 − 1)tk. The latter is a linear combination of composite relators,
and the proposition is proved. !
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