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Abstract

The principal result of this paper is a homotopy criterion for detecting the tameness of non-compact 3-manifolds

which extends the one worked out by L.Funar and T.L.Thickstun for open 3-manifolds. A group is properly 3-realizable

if it is the fundamental group of a compact 2-polyhedron whose universal covering is proper homotopy equivalent to a

3-manifold. As a consequence of the main result a properly 3-realizable group which is also quasi-simply filtered has

pro-(finitely generated free) fundamental group at infinity and semi-stable ends. Conjecturally the quasi-simply filtration

assumption is superfluous. Using these restrictions we provide the first examples of finitely presented groups which are

not properly 3-realizable, for instance large families of Coxeter groups.

AMS MOS Subj.Classification(1991): 57 M 50, 57 M 10, 57 M 30.
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1 Introduction

In [18, 21] the authors proved that an open 3-manifold is simply connected at infinity if it has the proper
homotopy type of a weakly geometrically simply connected polyhedron. The simple connectivity at infinity is
a strong tameness condition for open 3-manifolds which, roughly speaking, expresses the fact that each end is
collared by a 2-sphere.

The main concern of this paper is to give a similar homotopy criterion for detecting the tameness in the case
of 3-manifolds with boundary. The relevant tameness conditions have to be changed accordingly, in order to
take into account the boundary behavior. Instead of the simple connectivity at infinity we will consider the
so-called missing boundary manifold condition introduced by Simon (see [40]), while the weak geometric simple
connectivity has to be replaced by the stronger pl-geometric simple connectivity, to be defined below.

Despite the fact that there are similarities in the proofs with [18, 21], the case where manifolds have non-compact
boundary components presents some new and interesting features. Working in this more general context opens
the possibility to find applications to geometric group theory. Specifically, we obtain necessary conditions for a
finitely presented group to act freely co-compactly on a simply connected 2-complex having the proper homotopy
type of a 3-manifold. In particular we find explicit examples of groups which do not have this property.

∗Emails: funar@fourier.ujf-grenoble.fr (L.Funar), lasheras@us.es (F.F.Lasheras), dusan.repovs@guest.arnes.si (D.Repovš)
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We start with definitions of various tameness conditions that will be used in the sequel. We will introduce first
the concepts which are relevant in the study of open manifolds and then the enhanced ones arising when we
work with manifolds with boundary.

Definition 1.1. A polyhedron P is weakly geometrically simply connected (wgsc) if it admits an exhaustion
by compact connected sub-polyhedra P1 ⊂ P2 ⊂ · · · such that π1(Pn) = 0, for all n.

The wgsc property for polyhedra is the piecewise-linear counterpart of the geometric simple connectivity of
open manifolds. Specifically, let us recall (following [37]) that:

Definition 1.2. The non-compact manifold W is geometrically simply connected (gsc) if it admits a proper
handlebody decomposition without index one handles.

It is an immediate consequence of Smale’s theory that an open manifold of dimension at least 5 which is wgsc
is actually gsc. Moreover, in dimension 3 the wgsc condition implies that the manifold is simply connected at
infinity. The main results of [18, 21] state that an open 3-manifold which is proper homotopy equivalent to
a wgsc polyhedron is wgsc and thus simply connected at infinity. Therefore one can homotopically detect the
simple connectivity at infinity of 3-manifolds.

The wgsc property is not so useful anymore if we look upon the tameness of 3-manifolds with boundary. We
will give below examples of non-compact wgsc 3-manifolds which are not tame in a suitable sense.

In the realm of manifolds with boundary the relevant tameness condition that will replace the simple connectivity
at infinity is the following:

Definition 1.3. A manifold W is a missing boundary manifold (also called almost compact) if there exists a
compact manifold with boundary M and a closed subset A ⊂ ∂M of the boundary (not necessarily a sub-complex)
such that W is homeomorphic to M −A.

Interesting examples of manifolds which are not missing boundary manifolds can be found in [38, 43].

The antecedent of the papers [18, 21] is the paper [37] of Poenaru where the geometric simple connectivity is
already defined and used for non-compact manifolds with boundary.

Poenaru has proved in [37] that an open 3-manifold is simply connected at infinity if the product with a
closed n-ball (for some n ≥ 2) is a geometrically simply connected manifold with boundary. One might expect
therefore that the analogous statement be true for the more general case of non-compact 3-manifolds. However,
we will have to consider products of non-compact manifolds and disks, namely manifolds with corners. It is
then natural to look for the piecewise-linear analogue of the geometric simple connectivity of manifolds with
boundary. Specifically, we set:

Definition 1.4. A polyhedron P is pl-gsc if it admits an exhaustion by compact connected sub-polyhedra P1 ⊂
P2 ⊂ · · · such that π1(Pn) = 0 and π1(A, A ∩ Pn) = 0, for every connected component A of Pn+1 − Pn and all
n. Equivalently, the map induced by inclusion π1(A ∩ Pn) → π1(A) is surjective for all A as above and all n.
For a pair of spaces X ⊃ Y we set Π(X, Y ) = π1(X − Y , X − Y ∩ Y ).

This definition is consistent with the previous ones since, by using Smale’s theorem again, a non-compact
manifold of dimension n ≥ 6 is pl-gsc iff it is gsc. Moreover the gsc and pl-gsc are equivalent for open manifolds
without any dimensional restrictions. The pl-gsc is stronger than the wgsc (see proposition 2.1 below) for
3-manifolds with boundary.

Let us introduce very briefly, for the sake of completeness, some end invariants of non-compact spaces which
will be used in the sequel. Standard references are [2, 29] where these notions are studied in detail.

Given the sequence of homomorphisms Ai−1 ← Ai, called bonding morphisms, one builds up the tower of groups
A0 ← A1 ← · · · . A pro-isomorphism between the towers A0 ← A1 ← · · · and B0 ← B1 ← · · · is given by two
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sequences of morphisms Bj2n+1
→ Ai2n+1

and Ai2n
→ Bj2n

where 0 = i1 < j1 < j2 < i2 < i3 < j3 < j4 <
i4 < · · · , which are commuting with the respective compositions of bonding morphisms in the two towers. A
pro-isomorphism class of towers of groups is called a pro-group.

Definition 1.5. A pro-group is said pro-(finitely generated free) if it has a representative tower in which all
groups involved are finitely generated free groups.

Definition 1.6. The tower A0 ← A1 ← · · · is telescopic if the following conditions are satisfied:

1. Ai are free groups of finite basis Di, for all i;

2. Di ⊂ Di+1 and the differences Di+1 −Di are finite for all i;

3. the bonding morphisms are the obvious projections.

It was shown in ([26]) that if a pro-group is pro-(finitely generated free) and has a representative tower with
surjective bonding maps, then it has a representative telescopic tower (i.e., a tower in which both conditions
hold simultaneously).

Pro-groups arise in topology by means of towers associated to exhaustions of non-compact spaces.

Definition 1.7. If X is a polyhedron then a proper map ω : [0,∞) → X is called a proper ray. Two proper
rays define the same end if their restrictions to the subset of natural numbers are properly homotopic. An end
is called semi-stable if every two proper rays defining that end are actually properly homotopic; one also says
that the two rays define the same strong end.

Given now a proper base ray ω in X and an exhaustion C1 ⊂ C2 ⊂ · · · ⊂ X = ∪∞i=1Ci by compact sub-polyhedra
we can associate a tower of groups

π1(X, ω(0))← π1(X − C1, ω(1))← · · ·

where the bonding morphisms are induced, on one hand, by the inclusions of spaces and on the other hand, by
the change of base points which are slid along the ray ω restricted to integral intervals.

Definition 1.8. The (fundamental) pro-group at infinity of X based at ω, denoted π∞
1 (X, ω), is the pro-group

associated to the tower of groups

π1(X, ω(0))← π1(X − C1, ω(1))← · · ·

Two rays defining the same strong end yield isomorphic pro-groups. In particular, if the end is semi-stable, the
pro-group at infinity is an invariant of the end, and then also called the (fundamental) pro-group of the end.
The end is called simply connected at infinity (or π1-trivial) if the associated pro-group is pro-isomorphic to a
tower of trivial groups.

Remark 1.1. There are alternative equivalent definitions of the semi-stability, in particular the one used in
Siebenmann’s thesis: an end is semi-stable if its fundamental pro-group has a representative tower with surjective
bonding morphisms (see also [25]). For the sake of completeness we recall that an end is called stable if there
exist some representative tower in which all bonding morphisms are isomorphisms. Examples of Davis show that
the ends of universal coverings of finite complexes might be not stable, although it is not known whether they
should be always semi-stable. Notice that sometimes in literature one uses the terms π1-stable, π1-semi-stable
etc. for the corresponding notions introduced above. As already observed above, we can infer from [26] that a
semi-stable end having pro-(finitely generated free) fundamental pro-group at infinity admits a representative
telescopic tower for that fundamental pro-group at infinity.

We introduce now a family of 3-manifolds which is, in some sense, the smallest one containing the missing
boundary 3-manifolds and allowing manifolds to have infinitely many boundary components. These manifolds
will be the right analog of the open manifolds which are simply connected at infinity in the pl-gsc context.
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Before to proceed let us recall that a compact 0-dimensional subset C is tame (or tamely embedded) in Rn if
there exists a homeomorphism of Rn sending C into a subset of R×{0} ⊂ Rn. It is well-known that perfect (i.e.
without isolated points) compact 0-dimensional separable topological spaces are homeomorphic to the Cantor
space. Hence the tameness condition above is mostly relevant for Cantor subsets of Rn. Notice that there exist
wild Cantor sets in any Rn, with n ≥ 3, while Cantor sets in R2 are tame, by a classical theorem of Bing ([3]).

Definition 1.9. A standard model is a 3-manifold with boundary V constructed as follows. Let {Bi}i∈I be a
collection of pairwise disjoint 3-balls in the interior int(B) of the 3-ball whose radii go to 0 and whose limit set
L is a tame 0-dimensional subset disjoint from ∂B. Let X ⊃ L be a tame 0-dimensional subset of int(B) which
is disjoint from int(Bi), for all i ∈ I, and T ⊂ ∂B ∪ ∪i∈I∂Bi. Then we put V = B − (X ∪ T ∪i∈I int(Bi)).
Manifolds of this form where T ∩ ∂B = ∅ were called ragged cells by Brin and Thickstun in ([6], p.9-10).

Remark 1.2. 1. The open simply connected 3-manifolds V which are simply connected at infinity can be
described are the manifolds of the form S3 −X, where X is a tame 0-dimensional compact subset of B3.
Alternatively, V can be written as the ascending union of compact simply connected sub-manifolds, i.e.
holed balls, by the Poincareé Conjecture (see [21, 44]).

2. A simply connected missing boundary 3-manifold V is homeomorphic to M − T , where M is a simply
connected compact 3-manifold and T is a closed subset of ∂M (see e.g. [44]). By the Poincaré Conjecture
there is a finite set of pairwise disjoint balls Bi, i ∈ I such that V = B−(∪i∈I int(Bi)∪T ) and T is a closed
subset of ∂B ∪ ∪i∈I∂Bi. Thus standard models V with finite I correspond precisely to simply connected
missing boundary manifolds. Actually any standard model can be obtained by making connected sums of
(possibly infinitely many) simply connected missing boundary manifolds.

Remark 1.3. Another characterization of standard models was given by Brin and Thickstun (see[6], Full End
Description Theorem (b), p.10), as follows. Modulo the Poincaré Conjecture, the set of simply connected end
1-movable 3-manifolds coincide with that of standard models.

Remark 1.4. The boundary of a standard model consists of 2-spheres and open planar surfaces. Each end
has pro-(finitely generated free) fundamental group at infinity. In fact the complementary of an unknotted ball
in a 1-ended standard model is homotopy equivalent to the complementary of a finite graph, namely a holed
handlebody. Thus its fundamental group is a finitely generated free group. Moreover, each end of a standard
model is semi-stable.

The principal result of this paper is the following extension of the result of [21, 18] to arbitrary non-compact
3-manifolds, as follows:

Theorem 1.1. A non-compact 3-manifold which is proper homotopy equivalent to a pl-gsc polyhedron is home-
omorphic to a standard model. In particular, each end is semi-stable and its fundamental pro-group at infinity
is pro-(finitely generated free).

The plan of the paper is as follows. In the next section one shows that the pl-gsc condition for a 3-manifold
implies that the manifold is standard. Section 3 is devoted to the proof of the main theorem by using some
of the methods developed in [37, 18]. The last section contains applications to geometric group theory. We
state a conjectural characterization of properly 3-realizable groups and prove it for a special class of groups. In
particular we find examples of groups which are not properly 3-realizable.

Proviso: In order to simplify some arguments we will use in the sequel the fact that there are no fake homotopy
disks in dimension 3, as the Poincaré conjecture has been settled by Perelman in [34, 35] (see a detailed and
self-contained exposition of Perelman’s proof in [33]).

Acknowledgements. The authors are indebted to Ross Geoghegan and Valentin Poenaru for useful discussions
and comments and to the referee for pointing out several errors and suggestions for improving the clarity of
the exposition. The first author was supported by the Proteus program (2005-2006), no 08677YJ and the ANR
Repsurf: ANR-06-BLAN-0311. The second author was supported by the project MTM 2007-65726 and the
third author was supported by the Proteus program (2005-2006), no 08677YJ.
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2 Wgsc and gsc in dimension 3

Let W 3 be a 3-manifold with boundary which is wgsc. Thus W 3 is the ascending union of compact simply
connected 3-manifolds with boundary. The boundary components of a simply connected compact manifold
are 2-spheres. In fact if one boundary had nontrivial genus then some nontrivial boundary loop would give a
nontrivial class in the fundamental group of the 3-manifold. Let us cap the boundary spheres by 3-balls. We
then obtain a simply connected closed 3-manifold. The Poincaré conjecture states then the latter is a 3-sphere.
In particular, any compact simply connected 3-manifold with boundary is standard i.e. homeomorphic to a
closed 3-ball with finitely many open 3-balls deleted. We call it a holed ball.

In the case of open manifolds of dimension n ≥ 5 it is well-known, as a consequence of Smale’s proof of the
generalized Poincaré conjecture, that wgsc and gsc are equivalent. This is equally true in dimension 3 if one
assumes the manifolds irreducible, and more generally for non-compact manifolds admitting boundary, when
each boundary component is compact. However, this equivalence fails for more general non-compact manifolds
with non-compact boundary. In dimension 3 the wgsc condition is essential in order to derive the simple
connectivity at infinity and thus the tameness of the respective open manifold. First, we have to understand
whether the wgsc is sufficient for tameness in the non-compact case.

Consider the manifold Wh = ∪n≥0Bn where Bn are closed 3-balls such that the inclusion Bn ⊂ Bn+1 is isotopic
to the embedding of 3-balls given in the figure below. Actually we can consider any knotted properly embedded
arc A ⊂ B1 and B0 a regular neighborhood of the arc A in B1.

B0

B
1

Proposition 2.1. The manifold Wh is wgsc, int(Wh) = R3 and ∂Wh = R2 ∪ R2. However, Wh is not a
missing boundary manifold and in particular, it is not homeomorphic to R2 × [0, 1].

Proof. It is clear that Wh is wgsc being the union of 3-balls. Moreover, its interior is the ascending union
of open 3-balls and thus it is homeomorphic R3 by an old result of Morton Brown (see [7]). Each boundary
component is also the ascending union of closed 2-disks, each included in the interior of the next, and thus
homeomorphic to R2 by the same result.

Moreover, Wh is P 2-irreducible being an ascending union of balls. We can thus apply Tucker’s criterion
([42]) which asserts that a P 2-irreducible 3-manifold is a missing boundary manifold iff the complement of
any of its compact sub-complexes has finitely generated fundamental group. We consider B0 ⊂ Wh. Then
Wh−B0 = ∪n≥1Bn −Bn−1 and thus π1(Wh−B0) = Γ ∗Z Γ ∗Z Γ ∗Z ∗ · · · , where Γ = π1(B1 −B0).

The cylinder ∂B0 \ (B0∩∂Wh) has fundamental group Z generated by a meridian. Assume that π1(B1 −B0) is
also generated by the class of this meridian. Let us glue together B1 −B0 with B′

1 −B′
0 where now B′

0 ⊂ B′
1 are

two concentric solid cylinders. The result of the gluing is the complement S3−N(K) of a tubular neighborhood
of a knot K obtained by closing up the extremities of the arc A. It also follows that π1(S

3−N(K)) = Γ∗ZZ ∼= Γ is
generated by the class of the meridian. Since H1(S

3−N(K)) = Z, this implies that π1(S
3−N(K)) is isomorphic

to Z and, by the well-known theorem of Papakyriakopoulos, K should be a trivial knot. But this implies that
the embedding B0 ⊂ B1 is unknotted, contradicting our assumptions. This shows that Γ is not generated by
the image of a meridian.

Suppose now that the infinite product Γ∞ = Γ ∗Z Γ ∗Z · · · is finitely generated. Each generator is a finite word
in the set of generators of infinitely many copies of Γ and hence belongs to some finite amalgamated product,
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say Γk = Γ ∗Z Γ ∗Z · · ·Z Γ, which contains k factors. We can therefore suppose that all generators of Γ∞ belong
to some Γn, for some finite n. Consider then Γn+1 = Γn ∗Z Γ. The Van der Waerden structure theorem for
amalgamated products shows that Γn+1 contains nontrivial elements ab 6= 1, with a ∈ Γn and b ∈ Γ \ Z. Thus
Γn+1 cannot be generated by using only elements of Γn, which contradicts our assumptions.

This proves that π1(Wh − B0) = Γ∞ is infinitely generated. In particular Wh is not a missing boundary
manifold since it does not satisfy Tucker’s criterion.

Thus the wgsc condition is too weak to imply tameness when the manifold has a non-compact boundary. We
will now turn towards a stronger gsc condition, which seems more appropriate in our context:

Proposition 2.2. If a non-compact 3-manifold W 3 is gsc (or pl-gsc) then it is homeomorphic to a standard
model.

Proof. When W 3 is 1-ended there is a simple proof where we can apply directly Tucker’s criterion from [42]. In
this case W 3 is the ascending union of simply-connected compact sub-manifolds Pj and thus, by the Poincaré
conjecture, of holed balls. We cap off all sphere boundary components of W 3. Then W 3 is P 2-irreducible,
because there are no embedded essential 2-spheres nor embedded P 2 in a 3-ball.

We can assume that Pn − Pn ∩ ∂W ⊂ int(Pn+1). Let us denote Fr(Pn) = ∂Pn − Pn ∩ ∂W . Then Fr(Pn) =
Pn+1 − Pn ∩ Pn. We can further suppose that Fr(Pn) and ∂Pn are connected for all n. Since one obtains Pn+k

from Pn by adding a number of 2-handles (for any k ≥ 1) it follows that the homomorphism induced by the
inclusion π1(Fr(Pn))→ π1(Pn+k − Pn) is a surjection.

We claim now that:

Lemma 2.1. The map π1(Fr(Pn))→ π1(W − Pn) induced by inclusion is surjective.

Proof. When W is gsc this is a consequence of the fact that π1(W − Pn) is a direct limit of limk→∞ π1(Pn+k − Pn).
In other words the class of a loop in W − Pn is represented by a loop contained into some Pn+k − Pn, by com-
pactness and thus it belongs to the image of π1(Fr(Pn)).

The claim above holds true also when W 3 is supposed to be pl-gsc. By Van Kampen we have

π1(Pn+2 − Pn) = π1(Pn+1 − Pn) ∗π1(Fr(Pn+1)) π1(Pn+2 − Pn+1)

Since π1(Fr(Pn)) surjects onto π1(Pn+1 − Pn) and π1(Fr(Pn+1)) surjects onto π1(Pn+2 − Pn+1) we obtain that
π1(Fr(Pn)) surjects onto π1(Pn+2 − Pn). By induction π1(Fr(Pn)) surjects onto π1(Pn+k − Pn) for all k and we
conclude as above.

Therefore the algebraic assumptions in Tucker’s theorem are satisfied, namely:

Lemma 2.2. The complement of any compact sub-polyhedron K of W has finitely generated fundamental group.

Proof. This is clear when K is one of the compacts Pn exhausting W . Let n be such that K ⊂ Pn. Using Van
Kampen we obtain:

π1(W −K) = π1(W − Pn+1) ∗π1(Fr(Pn+1)) π1(Pn+1 − Pn) ∗π1(Fr(Pn)) π1(Pn −K)

From the surjectivity claim above one derives that the map π1(Pn −K) → π1(W −K) is surjective and thus
π1(W −K) is finitely generated, for any compact K.

We derive then from [42] that W 3 is a missing boundary manifold. Since it is also simply connected it should
be homeomorphic to a standard model. This proves the proposition in the one-ended case.

Let us now consider the case of a multi-ended manifold W 3. Without loss of generality we can assume that Pn

are connected and Pn ∩ ∂W ⊂ int(Pn+1 ∩ ∂W ), for all n.
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The boundary components of Pn are 2-spheres. Thus each component of ∂W is either a 2-sphere or an ascending
union of compact planar surfaces and hence an open planar surface. Moreover we will discard the compact
components of ∂W , which are 2-spheres, and hence suppose that all boundary components are planar surfaces.

Lemma 2.3. We can assume that, for every n, each connected component of Pn ∩∂W consists of a closed disk
D with several disjoint open disks intδi removed from it such that the circles ∂δi are essential in ∂W .

Proof. Suppose that Pn intersects the planar component F of ∂W in a compact planar surface homeomorphic
to D−∪iintδi so that ∂δj is not essential in F . Then there exists an embedding of δj in F with boundary ∂δj.
We can therefore define P ′

n to be the result of adding a 2-handle along ∂δj (with the natural framing) to Pn

and next P ′
n+1 to be the first Pm which contains P ′

n. Remove then the terms Pn, Pn+1, . . . , Pm−1, Pm from our
initial exhaustion and replace them by the sequence P ′

n, P ′
n+1.

We can continue this procedure until all boundary loops of Pn become essential and all terms of the exhaustion
have the required property.

Eventually, observe (using Van Kampen) that all transformations we made preserve the property Π(Pj+1, Pj) =
0, for all consecutive terms of the considered exhaustions. Thus the lemma follows.

Consider a connected component S of Fr(Pn), which is contained into some connected component of ∂Pn. By
adding 2-handles we do not connect components which were disconnected before and thus each component S
of Fr(Pn) determines a unique component B(S) of Pn+1 − Pn.

Lemma 2.4. The homomorphism π1(S)→ π1(B(S)) induced by inclusion is surjective.

Proof. Clear.

Let T denote ∂B(S) \ S and T ∗ denote T deprived of those components which are 2-spheres.

Lemma 2.5. We have χ(S) ≥ χ(T ∗).

Proof. Then T ∗ is obtained from gluing B(S)∩∂W with B(S)∩Fr(Pn+1) along B(S)∩∂Fr(Pn+1). The previous
lemma shows that (Pn+1 − Pn)∩Pn ∩ ∂W = ∂(Pn ∩ ∂W ). Thus ∂T ∗ contains the circles from ∂S and possibly
also some other circles coming from B(S) ∩ ∂W − (∂Fr(Pn+1) ∪ ∂S). Recall now that S and T ∗ are 2-spheres
with several disks removed from it. We found therefore that the number of boundary components of T ∗ is at
least as large as the number of boundary components of S.

Now all other components of T ∗ should be closed surfaces of non-positive Euler characteristic and so χ(T ∗) ≤
χ(S).

Set further B∗(S) for the result of capping off all those 2-spheres on the boundary of B(S) not containing S by
3-balls.

Lemma 2.6. B∗(S) is homeomorphic to S × [0, 1].

Proof. Theorem 1.1 from ([9]) states that, given a compact connected 3-manifold B and S a non-void compact
connected 2-manifold properly contained in ∂B such that χ(S) ≥ χ(B) and π1(S) → π1(B) is onto then both
S and ∂B − S are strong deformation retracts of B. Moreover, ([8], Theorem 3.4) improved the conclusion,
namely under the extra assumption that S is not a projective plane and B has no fake homotopy disks then B
is homeomorphic to S × [0, 1].

Since χ(B∗(S)) = 1
2 (χ(T ∗) + χ(S)) the previous lemma shows that χ(S) ≥ χ(B).

Moreover, we infer from lemma 2.4 that π1(S) → π1(B
∗(S)) is surjective and hence, by the previous cited

results of Brown and Crowell, B∗(S) is homeomorphic to S × [0, 1].
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Let us consider now the collection of 2-spheres arising in ∂Pn \ Fr(Pn) for all n. This is a proper collection of
embedded 2-spheres, namely each compact intersects only finitely many of them. We cut W open along this
collection of spheres and then cap off the boundary components by 3-balls. The result is an infinite collection of
3-manifolds Wi such that W is the infinite connected sum of the Wi’s. Moreover each Wi is a gsc (respectively a
pl-gsc) 3-manifold and inherits from W an exhaustion Pn,i such that ∂Pn,i has no sphere components. If Sn,i,p

are the components of Fr(Pn,i) within Wi then B∗(Sn,i,p) are disjoint and their union is all of Pn+1,i − Pn,i.
Therefore lemma 2.6 shows that Pn+1,i − Pn,i is homeomorphic to Fr(Pn,i)× [0, 1]. Lemma 1 from ([42]) states
that a 3-manifold admitting such an exhaustion is a missing boundary manifold. Thus each Wi is a simply
connected missing boundary manifold and thus homeomorphic to a standard model as that described in Remark
1.2.2. As the infinite proper connected sum of such standard models is a standard model the result follows.

3 Proof of the Theorem 1.1

3.1 Outline

Let us introduce the concept of geometric Dehn exhaustibility, which seems slightly weaker than the gsc.

Definition 3.1. A non-compact manifold with boundary W 3 is geometrically Dehn exhaustible if there exist a
sequence of compact simply connected 3-manifolds with boundary Mn endowed with triangulations, the simplicial
immersions pn : Mn →Mn+1 and the generic smooth immersions fn : Mn →W fulfilling the properties:

1. fn and pn are compatible i.e. fn+1 ◦ pn = fn, for all n;

2. fn(Mn) exhausts W 3;

3. Π(Mn+1, pn(Mn)) = 0 for all n.

Remark 3.1. For a generic immersion f : M3 → W 3 the set of double points (at source) M2(f) is a compact
3-dimensional sub-manifold of M3, the set of triple points M3(f) is finite and there are no higher multiplicities
i.e. M4(f) = ∅, where Mk(f) = {x ∈M3; cardf−1(f(x)) ≥ k}. We can actually take this properties as defining
the genericity in the sequel.

First we have the following:

Proposition 3.1. If a 3-manifold W 3 is proper homotopy equivalent to a pl-gsc polyhedron then W 3 is geo-
metrically Dehn exhaustible.

Remark 3.2. One can define similarly the geometric Dehn exhaustibility for non-compact manifolds with bound-
aries in any dimension n. Moreover, if dimension n 6= 3 then one drops the genericity assumption. Then the
result of the previous proposition extends, as stated, to any dimension n. The proof in dimensions n ≥ 4 is
easier, as one can see from [19], where the case of open manifolds was treated. As we will not use this higher
dimensional extension anymore in this paper we leave the details to the reader.

The second step uses in an essential way the fact that the dimension is 3 and we are not aware of an extension
to all dimensions.

Proposition 3.2. If the non-compact 3-manifold W 3 is geometrically Dehn exhaustible then it is pl-gsc.

End of proof of Theorem 1.1. Propositions 3.1 and 3.2 above settle our claim. In fact, altogether they imply
that a 3-manifold W 3 proper homotopy equivalent to a pl-gsc polyhedron should be gsc and so, by proposition
2.2, W 3 is homeomorphic to a standard model. By remark 1.4, W 3 has semi-stable ends with pro-(finitely
generated free) pro-groups. 2

Remark 3.3. From the Poincaré conjecture and [6] simply connected non-compact 3-manifold whose ends are
semi-stable and have pro-(finitely generated free) fundamental groups at infinity are homeomorphic to standard
models. However, if the semi-stability condition is dropped then we can find also manifolds which are not
standard models.
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3.2 Proof of Proposition 3.1

Let W 3 be a non-compact 3-manifold which is proper homotopy equivalent to the pl-gsc polyhedron P .

We say that the polyhedron Q is an enlargement of W 3 if there exist an embedding i : W →֒ Q and a proper
retraction r : Q→W such that r ◦ i is the identity.

Lemma 3.1. It suffices to prove the proposition in the case when W 3 has a pl-gsc enlargement P .

Proof. We already proved the similar result for the wgsc property in ([18], Lemma 2.1 p.18). The idea is to
consider the mapping cylinder of a homotopy equivalence W → P , which admits a strong deformation retraction
onto W which makes it an enlargement of it. It is immediate that P being pl-gsc implies that the mapping
cylinder is also pl-gsc.

Assume then that P is a pl-gsc enlargement of W 3 and i : W → P and r : P →W are the associated embedding
and retraction. Thus there exists an exhaustion X0 ⊂ X1 ⊂ X2 ⊂ · · · by finite sub-complexes of P with the
property that π1(Xj) = Π(Xj+1, Xj) = 0, for all j ≥ 0. By restricting r to the 3-skeleton of P we can suppose
that P is of dimension 3 (and actually 3-full, see [18], Definition 2.2 p.19), while r is a non-degenerate simplicial
map.

Recall that Poenaru defined an equivalence relation Ψ(r) ⊂M2(r)∪Diag(P ), where M2(r)∪Diag(P ) = {(x, y) ∈
P ×P ; r(x) = r(y)}, which is associated to an arbitrary non-degenerate simplicial map r : P →W . Specifically
Ψ(r) is the smallest equivalence relation such that the induced map r : P/Ψ(r)→W is an immersion.

Recall that f : P → W is an immersion if it has no singularities, i.e. points z ∈ P such that z ∈ σ1 ∩ σ2 for
distinct simplices σ1, σ2 of P such that f(σ1) = f(σ2).

There is an explicit formula for Ψ(f) in [36]. But there exists a simple procedure for constructing Ψ(f)
recurrently: pick a singular point z of f and two distinct simplices σi of the same dimension with z ∈ σ1 ∩ σ2

and f(σ1) = f(σ2). Identify σ1 and σ2 (this is called a folding map) and call the quotient P ′, which is endowed
with a simplicial map f ′ : P ′ →W . Continue this procedure for the singularities of P ′ and so on. If P is finite
this procedure stops when we obtain an immersion. If P is infinite, then it is shown in [36] that an appropriate
choice of folding maps yields an infinite ascending sequence of equivalence relations whose union is Ψ(f).

In the case of the retraction map r : P →W the main property of this equivalence relation is that it induces (for
a simplicial complex P which is 3-full) a simplicial isomorphism r : P/Ψ(r)→W (see ([37], p.442, Proposition
A)). Recall that P has the nice exhaustion Xj . The main idea in [37] is to use the compactness in order to see
that any compact K ⊂W is covered by some Xk/Ψ(r|Xk

) such that the immersion rk : Xk/Ψ(r|Xk
)→W has

no double points in K. Specifically, K is covered by some r(Xj1 ) (since r is proper) and r−1(r(Xj1 ) ⊂ Xj2 by
compactness. We can think of K as i(K) ⊂ i(W )∩Xj2 . Obviously if (x, y) ∈M2(r) are double points of r and
x ∈ i(K) then y ∈ Xj2 . The properness of r and the fact that Ψ(r) contains all double points of r imply that
there exists j3 such that

Ψ(r|Xj3
)|Xj2

= {(x, y) ∈ Xj2 ×Xj2 ; r(x) = r(y)}

Then k = j3 is convenient for us, since

K = i(K) ⊂ r(Xj1 ) ⊂ Xj1/Ψ(r|Xj3
) ⊂ Xj3/Ψ(r|Xj3

)

and
r|Xj3

: Xj3/Ψ(r|Xj3
)→W

is an immersion whose double points are far from Xj1 . In particular K ∩M2(r|Xj3
) = ∅.

We consider above the indices ni such that for each i, if we put j1 = ni then j3 = ni+1.

We then have the families of simplicial immersions

pi : Xni
/Ψ(r|Xni

)→ Xni
/Ψ(r|Xni+1

) →֒ Xni+1
/Ψ(r|Xni+1

)
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where the first map is the obvious projection, while the second one is the natural inclusion. Notice that
pi(Xni

/Ψ(r|Xni
)) = Xni

/Ψ(r|Xni+1
). According to ([37], p.422, Theorem (II)) we have surjective homomor-

phisms
π1(Xni

)→ π1(Xni
/Ψ(r|Xni+1

)) and π1(Xni+1
)→ π1(Xni+1

/Ψ(r|Xni+1
)

and hence
π1(Xni+1

/Ψ(r|Xni+1
)) = π1(Xni

/Ψ(r|Xni+1
)) = 0

The same argument works also in the relative case and thus

Π(Xni+1
/Ψ(r|Xni+1

), Xni
/Ψ(r|Xni+1

)) = 0

Further recall that we also have the collection of immersions induced by r, namely ri = r|Xni
that are compatible

with the pi.

The only problem with the family of spaces Yi = Xni
/Ψ(r|Xni

) is that these are just simplicial complexes and not
manifolds with boundary. Nevertheless, we can replace Yi by the regular neighborhood Mi = Θ(Yi, ri) associated
to the immersion ri, viewed as generically immersed in W 3. The construction of a regular neighborhood
associated to an immersion can be found in [28] and one can consult ([18], p.21). The data consisting of the
3-manifolds Mi (endowed with induced triangulations from Yi), induced simplicial embeddings from pi and
immersions induced from ri (which are generic) verifies the conditions required in definition 3.1 and thus W 3 is
geometrically Dehn exhaustible. 2

3.3 Proof of Proposition 3.2

The key-point is the following enhanced Dehn-type lemma:

Lemma 3.2. Let W 3 be a simply connected non-compact 3-manifold with boundary, K ⊂W a compact subset
and B ⊂ W a holed ball. Assume that there exist a compact simply connected 3-manifold with non-empty
boundary X3, an embedding i : K ∪B →֒ X and a generic immersion f : X → W such that

1. f ◦ i is the natural inclusion K ∪B →֒ W ;

2. M2(f) ∩ (K ∪B) = ∅; and

3. Π(X, i(B)) = 0.

Then there exists a compact simply connected sub-manifold with boundary U ⊂ W such that K ∪ B ⊂ U and
Π(U, B) = 0.

Proof. The proof is a slight improvement of that given in ([37], p.433-439). Compact, not necessarily connected,
3-manifolds Y having ∂Y a nonempty union of 2-spheres are said to have property S. Then compact sub-
manifolds Y ⊂W have property S if and only if they are simply connected.

By [39] any compact connected 3-manifold with nonempty boundary which does not possess 2-sheeted coverings
has property S.

We can assume that f(X) ⊂ W is a sub-manifold. Consider f(X) ⊂ W and remark that Π(f(X), B) = 0. If
f(X) does not admit 2-sheeted coverings then take U = f(X) and we are done.

If f(X) has a 2-sheeted coverings X1 → f(X) then observe that the map f : X → f(X) has a lift f1 : X → X1,
because π1(X) = 0. Consider then a 2-sheeted covering of X2 of f1(X), if it exists, setting the stage for an
inductive tower construction. We consider Xj+1 to be a 2-sheeted covering of fj(X) ⊂ Xj so that the map
fj : X → Xj extends to fj+1 : X → Xj+1. We remark that the extensions fj are generic immersions. Moreover,
Π(fj(X), fj(B)) = 0.

This tower construction should end up in finitely many steps. We reproduce here the argument in [37], p.438-439
for completeness. If h : A → B is a map set M2(h) = {(x, y) ∈ A × A; x 6= y, h(x) = h(y)}. It is immediate
that all inclusions

M2(f) ⊃M2(f1) ⊃M2(f2) ⊃ · · ·M
2(fk) ⊃ · · ·
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are strict. Since all fj are generic immersions the sets M2(fj) are compact manifolds with boundary. Further
M2(fj+1) is both open and closed in M2(fj) and thus it has at least one component less than M2(fj). Therefore
climbing the tower the number of connected components decreases strictly proving the claim. This means that
eventually we obtain a map fk : X → Xk such that fk(X) has property S and Π(fk(X), fk(B)) = 0.

Since the composition of fj |K∪B with the covering pj : fj(X)→ fj−1(X) is an embedding it follows that fj |K∪B

are embeddings for all j. Moreover, M2(pj |fj(X)) ∩ fj(K) = ∅.

The next step is to descend the tower step by step. In order to be able to do that we need the following:

Lemma 3.3. Let W 3 be a non-compact 3-manifold with boundary, K ⊂ W a compact subset and B ⊂ W a
holed ball. Assume that there exist a compact 3-manifold X3 with property S, an embedding i : K ∪B →֒ X and
a generic immersion f : X →W such that

1. f ◦ i is the natural inclusion K ∪B →֒ W ;

2. M2(f) ∩ (K ∪B) = ∅;

3. M3(f) = ∅; and

4. Π(X, i(B)) = 0.

Then there exists a compact sub-manifold with boundary U ⊂ W having property S such that K ∪ B ⊂ U and
Π(U, B) = 0.

Proof. Following ([37], p.436-437) we consider the set S of double points of f that involve one point from X
and the other from ∂X ; this is a 2-dimensional sub-manifold.

Suppose that ∂S 6= ∅. Any double circle from ∂S ⊂ ∂X bounds a 2-disk d whose interior is disjoint from the
other circles in ∂S. Since K ∩ ∂S = ∅ then either K ∩ d = ∅ or else K ∩ ∂X ⊂ int(d). We claim that there
exists a minimal double circle γ from ∂S such that K ∩ d = ∅. Here minimal means that the disk d does not
contain other points of ∂S. In fact, if we choose a minimal circle γ0 with the disk d0 that does not satisfy all
requirements above then K ∩ ∂X ⊂ int(d0). Consider now the complementary disk d1 of d0 in the respective
connected component of ∂X , which has to be a sphere. If d1 contains other components of ∂S take a minimal
one γ and its associated 2-disk d. Otherwise take γ = γ0 with the associated disk d = d1.

If the disk d ⊂ ∂X is made of double points then consider the associated paired disk d such that f(d) = f(d)
and d ⊂ X ; one splits X along d and this operation is far from K since the double points locus is disjoint from
K. After splitting, the component containing K has one less components in ∂S.

If the disk d is not made of double points then consider the circle γ ⊂ int(X) that is paired with γ i.e. such
that f(γ) = f(γ). Let us attach a 2-handle H to X along γ. We define f : X ∪H →W by sending the core of
the 2-handle H homeomorphically onto the 2-disk d. Since K ∩ d = ∅ the new map f can be made a generic
immersion without double points in K.

Using repeatedly the procedure above we obtain a manifold X as above with the property that ∂S = ∅. Thus
the double locus M2(f) of f is a manifold of codimension zero in X whose boundary S is made of spheres
which are grouped into pairs, each pair consisting of one sphere in int(X) and the other one in ∂X . Consider a
connected component Y ⊂M2(f) containing an interior sphere from S. We split X along Y and get a manifold
Z having only spheres as boundary, one connected component being Y . Consider the connected component X ′

of Z − Y that contains K.

By continuing this process we reduce the number of components of M2(f). Eventually we obtain a manifold X ′

for which f : X ′ →W is an embedding and its boundary is made of spheres, as claimed.

Let us follow these steps by taking care of the modifications made on the pair (X, i(B)). Cutting along an
embedded disk d of double points does not affect Π(X, B) since d is included in a boundary component, and
thus it is a subset of the sphere, and so it is unknotted.

Changing X by adding a new 2-handle along a circle disjoint from B also preserves Π(X, i(B)). Thus we can
suppose that all steps from above can be performed until we obtain ∂S = ∅.
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Now, the main modification is when we throw away (one component of ) the codimension zero manifold with
boundary N = M2(f) ⊂ X , whose boundary is made of spheres from ∂X and spheres inside int(X).

The Poincaré conjecture implies that N is a holed sphere, like X . We have to prove that Π(X −N, B) = 0.
First, the spheres from X −N ∩N are in the interior of X . All such spheres are separating, since otherwise a
non-separating interior sphere will create a nontrivial loop in X , contradicting its simple connectivity.

Recall that we have a surjection π1(Fr(B))→ π1(X −B). By using Van Kampen in the decomposition X −B =
X − (N ∪B)) ∪ N it follows that the inclusion induces a surjection π1(Fr(B)) → π1(X − (N ∪B)), and thus
Π(X −N, B) = 0. This proves the lemma.

We apply lemma 3.3 to the last floor of our tower by taking as X the manifold fk(X) which has property S,
the generic immersion f to be the restriction of the double covering pk : Xk → Xk−1 to fk(X) which has no
triple points and W = fk−1(X) Then we obtain a sub-manifold X ′

k−1 ⊂ fk−1(X) which has property S and
contains fk−1(K ∪B) and Π(X ′

k−1, fk−1(B)) = 0. We are now able to apply lemma 3.3 to the restriction of the
double covering pk−1|X′

k−1
to obtain a compact sub-manifold X ′

k−2 ⊂ fk−2(X) which has property S, it contains

fk−2(K∪B) and satisfies Π(X ′
k−2, fk−2(B)) = 0. This way we can descend inductively all steps of the tower and

at the bottom level we find a sub-manifold X ′
0 ⊂W with property S such that K ∪B ⊂W and Π(X ′

0, B) = 0.
Since W is simply connected U = X ′

0 is also simply connected and has the required properties.

End of the proof of proposition 3.2. Let K0 ⊂ K1 ⊂ · · · be a compact exhaustion of a 3-manifold W 3 which is
geometrically Dehn exhaustible. By lemma 3.2, K0 is contained into a simply connected compact sub-manifold
X1. Applying lemma 3.2 to K1 and B = X1 we find a simply connected compact sub-manifold X2 ⊃ K1 ∪X1

such that Π(X2, X1) = 0. By inductive application of the lemma 3.2 to Kj and B = Xj one obtains then a
simply connected compact sub-manifold Xj+1 ⊃ Kj ∪Xj such that Π(Xj+1, Xj) = 0 for every j. Therefore the
exhaustion Xj of W 3 verifies the conditions of definition 1.4 and hence W 3 is pl-gsc. 2

3.4 Comments on the proof

The subject of this section is to explain why do we need to develop the additional gsc/pl-gsc machinery instead
of simply using the wgsc.

The wgsc analogues of the propositions above hold for non-compact manifolds in any dimension by [19], and in
particular if W 3 is a Dehn exhaustible non-compact 3-manifold then W 3 is wgsc.

In [18, 21] it was proved that open 3-manifolds W 3 which are proper homotopy equivalent to wgsc polyhedra are
simply connected at infinity and thus they are obtained by deleting a 0-dimensional tame subset from the sphere
S3, according to Edwards and Wall ([16, 44]). The proof given there can be adjusted with minor modifications
in order to cover the case where W 3 is non-compact but each boundary component is compact.

Assume then that we have a wgsc 1-ended 3-manifold W 3 with boundary. Let U be the complement of the
planar components of ∂W . Observe that, if W 3 is Dehn exhaustible then U is also Dehn exhaustible. In
particular, we can apply the results from [37, 21] in order to obtain that U is wgsc and hence U is simply
connected at infinity.

Since U is 1-ended, U is homeomorphic to R3 with a collection of closed 3-balls removed. This is because in the
one-ended case the second homology of W 3 (and hence π2(W )) is represented by the spheres on the boundary of
W 3. Thus, after gluing to U a collection of 3-balls to kill these spheres, we get an open contractible 3-manifold
which is simply connected at infinity and hence R3.

The problem we face now is that there is not only one way to attach a plane to R3 in order to get a boundary
component. In fact many examples can be obtained by using the so-called Artin-Fox arcs (see [17]). Recall
that Artin-Fox (or wild) arcs are topological embeddings of the unit interval in R3 which are not topologically
equivalent to the standard embedding. In [17] one might find instructive examples of wild arcs, including arcs
whose complements are simply connected. We can associate to any Artin-Fox arc λ in R3 a manifold with
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boundary Wλ ⊂ R3 such that the “normal” arc to Wλ at the origin is isotopic to λ. Specifically, consider an
arc A ⊂ S3 that is wild at only one point p and has simply connected complement. The arc A − p is tamely
embedded in R3 = S3 − p. We thicken A − p to a 3-cell B in R3. Then its complement M = R3 − int(B) is a
manifold with boundary that has int(M) = R3 and ∂M = R2. However, M is not homeomorphic to R3

+ and
actually it is not a missing boundary manifold.

As a consequence we cannot use information about U alone in order to derive the tameness of W .

It is amazing to observe that the only surfaces with finitely generated fundamental groups yielding exotic
compactifications are actually the planes, as explained by Tucker in [43]. More examples and exotic constructions
can be found in [38, 42].

Notice also that in any dimension n ≥ 4 there is only one way to add an Rn−1 boundary to a Rn, up to
diffeomorphism.

Moreover, if one obtained that W 3 were wgsc, this would still be not enough in order to conclude that W 3 is
tame (e.g. a standard model). The example Wh above (see Proposition 2.1) shows that one needs to consider
whether the manifold W 3 is gsc and not only wgsc and this is more subtle.

The difference with respect to the open case is that although there is only one isotopy class of embeddings of
a codimension zero ball inside the interior of another ball, there are at least as many different isotopy classes
of embeddings of one 3-ball into another 3-ball as knots. The gsc condition amounts to asking for ascending
unions of (holed balls) with extra unknottedness assumptions for the terms of the exhaustion. Fortunately, in
dimension 3 we can algebraically express the unknottedness of balls, in terms of fundamental groups of pairs.

4 Applications to discrete groups

The second aim of this paper is to obtain necessary conditions for a finitely presented group be properly 3-
realizable, that lead conjecturally to a complete characterization. Lasheras introduced and studied this class of
groups in [26, 12, 11]. Recall that:

Definition 4.1. A finitely presented group Γ is properly 3-realizable (abbreviated P3R from now on) if there

exists a compact 2-dimensional polyhedron X with fundamental group Γ such that the universal covering X̃ is
proper homotopy equivalent to a 3-manifold W 3.

Remark 4.1. Here and henceforth we will consider only infinite groups Γ and thus the associated 3-manifolds
W 3 appearing in the definition above will be non-compact. Notice that, in general, the 3-manifolds W 3 will also
have non-compact boundary.

Remark 4.2. In the definition of a P3R group one does not claim that any compact 2-dimensional polyhedron X
with fundamental group Γ has its universal covering proper homotopy equivalent to a 3-manifold. However one
proved in ([1], Proposition 1.3) that given a P3R group G then for any 2-dimensional compact polyhedron X of
fundamental group G the universal covering of the wedge X

∨
S2 is proper homotopy equivalent to a 3-manifold.

Recall the following classical theorem of embedding up to homotopy due to Stallings. Let P be a finite CW-
complex of dimension k, let M be a PL-manifold of dimension m and let f : P → M be a c-connected map.
If m − k ≥ 3 and if c ≥ 2k −m + 1 then there exists a compact sub-polyhedron j : Q →֒ M and a homotopy
equivalence h : P → Q such that jh is homotopic to f . This was generalized in [10] to the non-compact situation
by replacing the connectivity with the proper connectivity. Thus the proper homotopy type of a locally finite
CW-complex X of dimension n is represented by a closed sub-polyhedron of R2n−c if X is properly c-connected.

In particular, the universal covering X̃ of an arbitrary compact 2-polyhedron X2 is proper homotopy equivalent
to a 4-manifold, because any 2-polyhedron embeds, up to proper homotopy, into R4. Therefore P3R groups are
singled out among the set of all finitely presented groups by the fact that the universal covering X̃ of some
compact polyhedron X with given π1(X) is proper homotopy equivalent to a particular 4-manifold, namely the
product of a 3-manifold with an interval.
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Remark 4.3. Fundamental groups of compact 3-manifolds are obviously P3R, but there exist also P3R groups
which are not 3-manifold groups. For instance, any ascending HNN extension of a finitely presented group is
P3R ([26], see also other explicit examples in [12]). Moreover, given any infinite finitely presented groups G
and H their direct product G × H is P3R (according to [11]). Further amalgamated products of P3R groups
(and HNN extensions) over finite groups yield P3R groups (see [13]).

Definition 4.2. A finitely presented group has semi-stable ends if there exist a compact polyhedron X with
given fundamental group whose universal covering has semi-stable ends.

Remark 4.4. If a group has semi-stable ends then the universal covering of any compact polyhedron with given
fundamental group has semi-stable ends. Although there exist spaces whose ends are not semi-stable, there are
still not known examples of finitely presented groups (i.e. universal coverings of compact polyhedra) without
semi-stable ends (see also [30, 23]).

Definition 4.3. The (fundamental) pro-group at infinity of a finitely presented group is the pro-group at infinity
of the universal covering of a compact polyhedron with given fundamental group. This depends of course on the
base ray (and thus only on the end if it is semi-stable), but not on the the particular compact polyhedron we
chose.

The main source of examples of P3R groups is the paper ([26]) of Lasheras where it is proved that a one-
ended finitely presented group which is semi-stable and whose fundamental pro-group at infinity is pro-(finitely
generated free) is P3R. In particular, any one-ended finitely presented group Γ which is simply connected at
infinity (and hence automatically semi-stable at infinity) is P3R.

We expect the following to be a complete characterization of this class of groups:

Conjecture 1 (3-dimensional homotopy covering conjecture). A finitely presented group is P3R iff each one
of its ends is semi-stable and has pro-(finitely generated free) fundamental pro-group.

In this paper we give evidence in the favor of this conjecture, by proving it in the case when the group under
consideration satisfies an additional hypothesis related to the geometric simple connectivity. In order to explain
this we have to introduce, following Brick, Mihalik ([5]) and Stallings ([41]), the following tameness condition
for groups and spaces.

Definition 4.4. A space X is quasi-simply filtered (i.e. qsf) if for any compact C ⊂ X there exists a connected
and simply connected compact K together with a map f : K → X such that f(K) ⊃ C and f |f−1(C) : f−1(C)→
C is a homeomorphism.

A finitely presented group Γ is qsf if there exists a (equivalently, for every) compact polyhedron P with funda-
mental group Γ such that the universal covering P̃ is qsf.

Remark 4.5. The condition qsf is a rather mild assumption on finitely presented groups. There are still no
known examples of groups which do not have the qsf property and most classes of known groups, as hyperbolic,
semi-hyperbolic, automatic, tame combable etc., are qsf.

We can state now our main result in this section:

Theorem 4.1. If a finitely presented group is P3R and qsf then all its ends are semi-stable and have pro-(finitely
generated free) fundamental group at infinity.

Remark 4.6. We do not know whether all finitely presented groups which have semi-stable ends and pro-
(finitely generated free) fundamental groups at each end are actually qsf. Notice that one-ended groups with
stable end having an element of infinite order should be either simply connected at infinity or pro-Z at infinity,
by a theorem of Wright (see [22], Theorem 16.5.6). Thus they are P3R by the above cited result of Lasheras.
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Remark 4.7. Cardenas announced that 1-ended groups which are P3R and semi-stable have actually pro-
(finitely generated free) pro-group at infinity, as an application of the Brin-Thickstun structure theorem ([6]).
In fact 3-manifolds with semi-stable ends are homeomorphic to standard models. Notice that for P3R groups
having semi-stable ends is equivalent to being qsf.

Remark 4.8. 1. The homotopy covering conjecture implies the well-known covering conjecture in dimension
3 which states that the universal covering of an irreducible closed 3-manifold M3 with infinite fundamental
group is simply connected at infinity. In fact the universal covering M̃ is an open contractible 3-manifold
(thus one-ended) which is semi-stable and has pro-(finitely generated free) fundamental pro-group at infinity.

This implies that there exists an exhaustion by compact sub-manifolds Ci such that π1(M̃ −Ci) are finitely

generated free. Tucker’s criterion from [42] implies that the manifold M̃ is a missing boundary manifold
and thus it is homeomorphic to int(N3), for a suitable compact 3-manifold N3 with boundary. By the
contractibility of the universal covering each component of ∂N3 is homeomorphic to a 2-sphere and this
implies that int(N3) (and so M̃) is simply connected at infinity.

2. Conversely, it is immediate that the universal covering conjecture implies the homotopy covering conjecture
for closed 3-manifold groups because open 3-manifolds which are simply connected at infinity are semi-stable
and have pro-(finitely generated free) pro-group at infinity (in fact trivial pro-group!).

3. Notice that the universal covering X̃ of a compact 2-polyhedron X can never be proper homotopy equivalent
to an open (simply connected) 3-manifold M3. In fact, the Poincaré duality would give us that the third

cohomology group with compact support H3
c (X̃) is isomorphic to H3

c (M) = H0(M) = Z, which is impossible,

as dim(X̃) = 2.

Remark 4.9. Let us consider the universal covering M̃3, of a 3-manifold M3 with boundary. If the boundary
is a union of spheres then M̃ is obtained from the universal covering of a closed 3-manifold (obtained by capping
off boundary spheres by balls) by deleting out a collection of disjoint balls. Assume that the boundary is non-
trivial i.e. not a union of 2-spheres. Then M3 is Haken and thus, by Thurston’s theorem, it is a geometric
3-manifold. Let us moreover assume that M3 is atoroidal i.e. there are no Z ⊕ Z embedded in π1(M) other
than peripheral subgroups coming from boundary torus components. Then Thurston’s geometrization theorem
tells us that M3 is hyperbolic. Therefore the universal covering M̃ is obtained geometrically by deleting out a
collection of horoballs from the hyperbolic 3-space. In particular the pro-group at infinity of M̃ is pro-(finitely
generated free) and its ends are semi-stable. Thus the conjecture holds true for fundamental groups of atoroidal
3-manifolds with non-trivial boundary. A similar but more involved discussion shows that it holds true for all
3-manifolds with non-trivial boundary (since these are geometric).

Remark 4.10. The homotopy covering conjecture implies that all 1-relator groups are P3R. This is already
known to hold for 1-relator finitely ended groups (see [14]). In fact, 1-relator groups are semi-stable at infinity
(see [32]) and it was proved in [14] Proposition 2.7 that their pro-groups at infinity are pro-(finitely generated
free). Notice that 1-relator groups are also qsf (see [31]). Recently, Lasheras and Roy ([27]) have extended the
results in [14] to a class of groups which contains all 1-relator groups.

It is presently unknown but quite plausible that any finitely presented group which is qsf, semi-stable and has
pro-(finitely generated free ) pro-groups at infinity is P3R.

The homotopy covering conjecture admits an (a priori stronger) restatement as follows:

Conjecture 2. Given a finitely presented P3R group then the universal covering of a compact 2-dimensional
polyhedron with that fundamental group is proper homotopy equivalent to a standard model.

Remark 4.11. The equivalence between the two conjectures stated in this paper is a consequence of the proper
homotopy classification of 3-manifolds with semi-stable ends and pro-(finitely generated free) pro-group at in-
finity. Simply connected non-compact 3-manifolds with semi-stable ends (and more generally, with 1-movable
ends) were classified by Brin and Thickstun (see [6], Full End Description Theorem, p.10). Details are left to
the reader.
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As an application of theorem 4.1 we will obtain explicit examples of groups which are not P3R, as follows.

Theorem 4.2. Let Γ be one of the following:

1. the fundamental group of a finite non-positively curved complex which is a homology n-manifold (n ≥ 3),
but not a topological manifold.

2. the right angled Coxeter group associated to a flag complex L whose geometric realization is a closed
combinatorial n-manifold (n ≥ 3) and π1(L) is not a free group.

Then Γ is not P3R.

In particular many Coxeter groups are not P3R. Similar examples were announced by Cardenas.

4.1 Proof of Theorem 4.1

We first prove:

Proposition 4.1. If the finitely presented group G is P3R and qsf then there exists a 2-polyhedron X with
fundamental group G such that X̃ is pl-gsc and proper homotopy equivalent to a 3-manifold W 3.

Proof. Since G is qsf then for any polyhedron Y with fundamental group G its universal covering Ỹ is qsf
(see [5]). Take Y to be a closed 5-manifold with fundamental group G. Then Ỹ is an open 5-manifold. One
proved in ([20], Proposition 3.2) that any open simply connected manifold of dimension at least 5 which is qsf

is actually gsc, as consequence of general transversality results. It follows that Ỹ is gsc. We triangulate Y and
get an equivariant triangulation of Ỹ . Then the triangulated Ỹ is a pl-gsc polyhedron. The pl-gsc property is
preserved when passing to the 2-skeleton. This means that the 2-skeleton Z of the triangulation of Y has the
property that Z̃ is pl-gsc.

It was proved in ([1], Proposition 1.3), as an application of Whitehead’s theorem, that given a P3R group G
then for any 2-dimensional compact polyhedron X of fundamental group G the universal covering of the wedge
X

∨
S2 is proper homotopy equivalent to a 3-manifold. In particular this holds when taking the 2-polyhedron

Z from above and thus Z̃
∨

S2 is proper homotopy equivalent to a 3-manifold. Moreover, Z̃
∨

S2 is made of

one copy of Z̃ with infinitely many S2’s attached on it. In particular if Z̃ is pl-gsc then it is immediate that

Z̃
∨

S2 is also pl-gsc. Then X = Z
∨

S2 has the required properties.

End of the proof of Theorem 4.1. Let assume that we have a group G which is both P3R and qsf. The previous
proposition shows that there exists some 2-polyhedron X such that X̃ is pl-gsc and also proper homotopy
equivalent to some 3-manifold W 3. Looking the other way around we can apply Theorem 1.1 to the 3-manifold
W 3 (since it is proper homotopy equivalent to a pl-gsc polyhedron) and obtain that W 3 is homeomorphic to the
standard model. In particular, W 3 has semi-stable ends and its pro-groups at infinity are pro-finitely generated
free, as claimed. By the proper homotopy invariance of these end invariants X̃ has the same properties. This
proves Theorem 4.1. 2

4.2 Proof of Theorem 4.2

First, recall that groups acting properly cellularly and co-compactly on a CAT(0)-complex are wgsc and qsf
(see [20, 31]). Thus Coxeter groups and fundamental groups of finite non-positively curved complexes are qsf.

Let us consider X a finite non-positively curved complex. We will make use of the the criterion given in [4] for
the semi-stability, which also provides a way to understand the pro-group at infinity. The link of a vertex in
X can be given a piecewise spherical metric. Let p be a point of the link of some vertex. The set of points of
the link which are at distance at least π

2 from p is called the punctured link. The punctured link deformation
retracts onto the maximal sub-complex of the link that it contains. The main theorem of [4] states that if the

links and the punctured links of X are connected then X̃ is has a semi-stable end.
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If X is a homology n-manifold both the links and the punctured links have the same k-homology as the (n−1)-
sphere, for k ≤ n − 2. In particular they are connected. On the other hand there is at least one vertex v of x
whose link is not simply connected, since the complex X is not a topological manifold. The fundamental group
of the link is then perfect non-trivial and thus it cannot be a free group.

In [4] it is defined the Morse subdivision of X̃ as a geodesic subdivision induced by adding the critical points of

the distance to a fixed base point. Let X̃>r be the maximal sub-complex contained in the complement of the
ball of radius r in the Morse subdivision of X̃. Since the distance is a Morse function on a CAT(0)-complex
and the links are connected it is proved in [4] that the inverse system

π1(X̃>0)← π1(X̃>1)← π1(X̃>2)← · · ·

has surjective bonding maps i.e. the end is semi-stable. Taking the base point to be a lift of the vertex v it
follows that the pro-group at infinity cannot be pro-free because X̃>0 deformation retracts onto the link of v,
and thus the first term is a non-free group. Therefore X̃ has a semi-stable end which is not pro-free. Since
π1(X) is qsf it follows from the main theorem that it cannot be P3R.

The second part follows along the same lines. The topology at infinity of Coxeter groups was described in [15].
Recall that the right angled Coxeter group WL associated to the flag complex L is generated by the vertices of
L and the relations correspond to commutativity of adjacent vertices and the fact that these generators are of
order two. Moreover WL acts on the Davis complex properly and cellularly. The Davis complex is a flag cubical
complex and thus a CAT(0) complex. Thus WL is qsf (see also [31]).

There is a natural filtration of the end defined by iterated neighborhoods of some vertex (see [15]). If L is a closed
connected combinatorial manifold then WL has one semi-stable end and the inverse sequence of fundamental
groups is as follows (see also ([22], Theorem 16.6.1)):

G← G ∗G← G ∗G ∗G← · · ·

where G = π1(L) and each bonding map is a projection annihilating the last factor. Thus if L has dimension
at least 2 and G is not free then the fundamental group at infinity is not pro-free. The main theorem implies
then that WL cannot be P3R. This settles theorem 4.2.

Remark 4.12. We can infer from Remark 1.4 that the higher homotopy groups at infinity π∞
k (W ) vanish for

any standard model W and k ≥ 3. In particular this furnishes another practical tool for proving that a qsf finitely
presented group G is not P3R. Notice however that this is a consequence of the fact that ends are semi-stable
and pro-(finitely generated free).
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