
CAT(0) METRICS ON CONTRACTIBLE MANIFOLDS
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ABSTRACT. We prove that an open manifoldM of dimension at least 5 which admits a complete CAT(0) polyhedral met-

ric is pseudo-collarable, its fundamental group at infinity is strongly perfectly semistable and has vanishing Chapman-

Siebenmann obstruction τ∞(M). Moreover, this implies that M is topologically arborescent, when n ≥ 6. Conversely,

any PL arborescent polyhedron is PL homeomorphic to a CAT(0) cubical complex.

1. INTRODUCTION

1.1. Context. The Cartan–Hadamard theorem in Riemannian geometry can be accentuated in two parts:

(1) Nonpositive sectional curvature (a local condition) together with simple connectivity implies global nonpos-

itive curvature (i.e. Alexandrov’s CAT(0) condition).

(2) The Riemannian manifold in question is in particular diffeomorphic to an Euclidean space.

With the increase of interest in Alexandrov’s coarse curvature notions (motivated chiefly by the work of

Burago, Perelman, Shioya, Gromov and others) it was noticed that while the first part holds quite generally for

metric length spaces [12], the second part of the Cartan–Hadamard seemed to break down in the topological and

polyhedral categories. When revitalizing the interest in CAT(0) geometry for his work on hyperbolic groups,

Gromov therefore prominently asked in the eighties for other open manifolds which can be endowed with

complete CAT(0) metrics.

Gromov also noticed that this question should be asked for geodesically complete metrics (an assumption

we restrict to throughout), as every manifold with boundary can be given a smooth non-complete metric of

curvature < 0 (and also a metric of curvature > 0) using the h-principle. In this setting, a CAT(0) manifold is

necessarily contractible.

A first answer to this question was provided by Davis and Januszkiewicz [26], who proved the existence of

nontrivial CAT(0) n-manifolds, n ≥ 5, using Gromov’s own hyperbolization construction, combined with the

Cannon–Edwards criterion. Soon after, Ancel and Guilbault [5] extended the picture by showing that the interior

of any compact contractible manifold of dimension n ≥ 5 can be given a complete CAT(-1) geodesic metric.

On the other hand, already examples of CAT(0) manifolds constructed by Davis and Januszkiewicz have

fundamental groups at infinity not stable, and are therefore not compactifiable, giving us two disjoint sources

for CAT(0) manifolds. A complete understanding of CAT(0) manifolds remained elusive.
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1.2. CAT(0) metrics. It is understood that throughout this paper any CAT(0) metric which we define on a given

topological space has the property that the metric and usual topologies agree.

Recall that a metric space (X, d) is geodesic (also called a length space or an inner metric space) if every two

points of it can be joined by a minimizing geodesic, namely a curve whose length equals the distance between

the points. The length of the continuous path γ : [0, 1]→ X is defined as

sup
r,0=t0<t1<···tr<tr+1=1

r∑
j=0

d(γ(tj), γ(tj+1)

A geodesic triangle in (X, d) satisfies the CAT(κ) inequality if the geodesic comparison triangle with sides of

the same length within the simply connected curvature κ Riemannian surface has distances between pairs of

boundary points larger than those between corresponding pairs of points in the initial triangle. Moreover, the

geodesic metric space (X, d) is CAT(0) if every geodesic triangle, which for κ > 0 has perimeter less than 2π√
κ

,

satisfies the CAT(κ) inequality.

It is well-known that a simply connected CAT(0) space is contractible. Conversely, we would like to know

which contractible spaces admit CAT(0) metrics. In this paper we will only consider this question for manifolds

instead of arbitrary spaces and more specifically, contractible topological manifolds M of dimension n ≥ 5.

Classical results show that every open contractiblem-manifoldM is triangulable, namely there exists a locally

finite simplicial complex ∆ homeomorphic to M (see e.g. [44], Annex B, p. 300, Annex C, p.315). The CAT(κ)

metrics which we consider on M are supposed to be polyhedral, namely there exists a suitable triangulation ∆
such that every cell of ∆, when equipped with the induced metric, is isometric to the convex hull of a finite set of

points in the hyperbolic or Euclidean space of curvature κ ≤ 0 (see [9], I.7, Def. 7.37). For instance the piecewise

flat equilateral metric is the length metric obtained when simplices or cubes are Euclidean and have all their edges

of the same (unit) length.

Throughout this paper all polyhedral metrics are supposed to have only finitely many isometry classes of cells.

We shall point out that our arguments are more general, it suffices that the restriction of the metric to every cell

of ∆ be a piecewise analytic Riemannian metric whose curvature is bounded above and below by two constants

independent on the cell and that the distorsion of cells be uniformly bounded.

Note that we only consider topological manifolds endowed with polyhedral CAT(κ) metrics which are com-

plete geodesic metric spaces. Explicit examples can be obtained from a locally finite triangulation of M whose

simplices are endowed with constant curvature metrics and have finite distorsion, by ([9], I.7A.13 and I.3.7).

1.3. Pseudo-collarability. The goal of this note is to give a topological characterization of CAT(0) manifolds for

dimensions ≥ 6. The key notion was introduced by Guilbault in [33]:

Definition 1. An open manifold M is pseudo-collarable if it admits an exhaustion M = ∪∞j=1Mj by compact

manifolds Mj such that Mj ⊂ int(Mj+1) and the inclusion ∂Mj ↪→M − int(Mj) is a homotopy equivalence, for

every j ≥ 1.

Note that there exist open contractible n-manifolds which are not pseudo-collarable, for every n ≥ 5.

1.4. The Chapman-Siebenmann obstruction τ∞ for pseudo-collarable manifolds. The obstruction τ∞ was de-

fined by Siebenmann in [56] and Chapman and Siebenmann in [19].
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Definition 2. Let ε(M) denote the end of a one ended manifold M and U(ε(M)) be a system of open neighbor-

hoods of infinity, namely having compact complement. The attenuation of the Whitehead functor is:

Wh1(ε(M)) = lim
←

1 (Wh(π1(U)))U∈U(ε(M))

where lim1 denotes the first derived limit and Wh(π1(K)) denotes the Whitehead group of the fundamental

group π1(K).

Let M be an open contractible pseudo-collarable manifold. Consider a compact manifold exhaustion Mi ⊂
int(Mi+1) of M , such that the inclusion map ∂Mi → Mi+1 − int(Mi) is a homotopy equivalence. Then the

Chapman-Siebenmann obstruction τ∞(M) ∈Wh1(ε(M)) is the image of the sequence (τi), where τi is the image

of the Whitehead torsion τ(Mi+1 − int(Mi), ∂Mi) ∈ Wh(π1(Mi+1)) into Wh(π1(M − int(Mi))). See section 2.1

for details.

1.5. Collapsibility and arborescence. Complete CAT(0) metrics are strongly convex, namely there is an unique

midpoint associated to any two points of the space. Rolfsen proved in [50, 51] that the only compact manifolds

of dimension n ≤ 3 admitting a strongly convex metric are homeomorphic to the ball. This implies that complete

open CAT(0) manifolds of dimension n ≤ 3 are homeomorphic to Rn. Thus Whitehead 3-manifolds cannot be

endowed with complete CAT(0) metrics.

If one looks more generally upon complexes instead of manifolds White (see [67]) proved that a 2-complex

admits a strongly convex metric if and only if it is collapsible. As such the result cannot be extended to higher

dimensions, as there exist (non rectilinear) triangulations of the 3-cell which are not collapsible (see [8]).

A triangulation of some n-manifold is PL if the link of every vertex is PL homeomorphic to a (n−1)-sphere. A

simply connected manifold M endowed with a PL triangulation for which the associated polyhedral (piecewise

flat or hyperbolic) metric is CAT(0) is homeomorphic to Rn, by a classical theorem of Stone ([58]). Thus CAT(0)

polyhedral metrics on exotic manifolds are subjacent to non PL triangulations.

Consider two finite simplicial complexes X and Y such that X = Y ∪ e, where e is a cell whose boundary

∂e intersects Y along the complement of a single facet (face of maximal dimension). We say that X elementary

collapses on Y , or X is an elementary expansion of Y . Moreover, a simplicial collapse or expansion is a sequence of

elementary collapses or expansions, respectively.

A triangulable topological manifold will be called PL collapsible in the sequel if it admits a triangulation which

is collapsible, i.e. it collapses to a point. We emphasize that this triangulation is not required to be a PL triangu-

lation.

Let Bn be the closed unit n-dimensional ball and Bn−1
+ , Bn−1

− ⊂ ∂Bn the upper and lower hemispheres of

the boundary sphere. We denote by Xn the n-skeleton of the CW complex X . Collapsibility extends readily to

CW-complexes (see [21]), as follows:

Definition 3. LetX and Y be finite CW complexes such thatX = Y ∪en∪en−1, where en and en−1 are open cells

of dimension n and n − 1 respectively, such that there exists a continuous map φ : Bn → X with the following

properties:

(1) φ is a characteristic map for attaching the cell en, namely φ|int(Bn) is a homeomorphism of int(Bn) onto

en and φ(∂Bn) ⊂ Y n−1;
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(2) φ|Bn−1
+

: Bn−1
+ → X is a characteristic map for the cell en−1, namely φ|int(Bn+) is a homeomorphism of

int(Bn+) onto en−1 and φ(∂Bn+) ⊂ Y n−2;

(3) φ(Bn−1
− ) ⊂ Y n−1.

We then say thatX elementary collapses on Y , orX is an elementary expansion of Y . Moreover, a collapse/expansion

of CW complexes is a sequence of elementary collapses/expansions.

The two notions of collapsibility described above agree for polyhedra, when they are endowed with the

induced CW complex structures. For instance, if a CW complex is regular, namely all characteristic maps of its

cells are embeddings, then it is triangulable, i.e. homeomorphic to a simplicial complex. Note however that

there exist finite CW complexes which are not triangulable.

Note that in Definition 3 we can drop the cellularity requirements if the characteristic map is assumed to be

PL.

We have a more general related concept introduced in [11], as follows:

Definition 4. Let X and Y be compact Hausdorff topological spaces such that X = Y ∪ en ∪ en−1, where en and

en−1 are open cells of dimension n and n − 1 respectively, such that there exists a continuous map φ : Bn → X

with the following properties:

(1) φ is an attaching map for the cell en, namely φ|int(Bn) is a homeomorphism of int(Bn) onto en;

(2) φ|Bn−1
+

: Bn−1
+ → X is an attaching map for the cell en−1, namely φ|int(Bn+) is a homeomorphism of

int(Bn+) onto en−1;

(3) φ(Bn−1
− ) ⊂ Y .

We say that X has a topological elementary collapses on Y , or X is a topological elementary expansion of Y .

Moreover, a topological collapse/expansion of topological spaces is a sequence of topological elementary col-

lapses/expansions.

The attaching maps in the definition of a topological collapse are not necessarily characteristic maps for a CW

complex, namely they cannot be made cellular. In particular, even if Y is a CW complex, the space X obtained

by expansion is not necessarily a CW complex.

A compact topological manifold will be called topologically collapsible in the sequel if it topologically collapses

to a point.

Recall that the topological mapping cylinder M(f) of a continuous map f : M → N is the topological space

given by M × [0, 1] ∪(x,1)∼f(x) N . When M and N have an additional structure which is preserved by f , then

M(f) inherits that structure, in general. For instance if M,N are simplicial complexes and f is a simplicial map,

then M(f) has a natural simplicial structure and moreover M(f) collapses simplicially onto N . In the same

way, if M,N are finite CW complexes and f is a cellular map then M(f) is a CW complex and moreover M(f)
collapses onto N .

However, if M,N are finite CW complexes but f is just a continuous map, then a priori we cannot define a

natural CW complex structure onM(f). We still have a decomposition into cells ofM(f) by putting together the

cells of M × [0, 1] and those of N . For every cell e of M we have a topological collapse sending the cell e× [0, 1]
of M × [0, 1] onto the image of e× {1} within M(f). Using these topological collapses in reversing order of the

cell dimensions provides a topological collapse of M(f) onto the subspace N .
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Remark 1. Asume that we have a topological elementary collapse of X on Y . If φ is the attaching map from

Definition 4 then the mapping cylinder M(φ|Bn−1
−

) of its restriction φ|Bn−1
−

: Bn−1
− → Y is homeomorphic to X .

The natural retract of the mapping cylinder M(φ|Bn−1
−

) onto Y provides a strong deformation retract X → Y .

Remark 2. It is known (see [6]) that there exist polyhedra which are homeomorphic to balls and hence topolog-

ically collapsible but which are not PL collapsible. Specifically, if Σ is a PL homology n-sphere with nontrivial

fundamental group and M is the complement of a PL ball embedded into the join Sp ∗ Σ (or, equivalently the

p-th iterated suspension of Σ) whose closure is disjoint from Sp, then M is not PL collapsible, although for p ≥ 1
the double suspension theorem of Cannon implies that M is homeomorphic to a ball ([6], Main Proposition).

In this paper we will focus on the noncompact case. The right analog of collapsibility in this case is the

following notion:

Definition 5. A noncompact Hausdorff space is topologically arborescent if it is obtained from a point by an

infinite sequence of topological elementary expansions. Moreover, a noncompact CW complex is called PL

arborescent if it is obtained from a point by an infinite sequence of elementary expansions.

The Euclidean space is the simplest example of a PL arborescent polyhedron.

1.6. The main results.

Theorem 1. An open contractible n-manifold M , n ≥ 5 which admits a CAT(0) complete polyhedral metric is pseudo-

collarable, it has strongly perfectly semistable fundamental group at infinity and vanishing Chapman-Siebenmann obstruc-

tion τ∞(M). Moreover, if n ≥ 6, then M is topologically arborescent.

Theorem 2. A locally finite PL arborescent polyhedral complex is PL homeomorphic to a cubical complex which is CAT(0)

when endowed with the piecewise flat equilateral metric.

The fact that a finite cubical complex which is CAT(0) with respect to the equilateral piecewise flat metric is

collapsible was established in [1].

As an immediate consequence interiors of compact contractible manifolds are homeomorphic to CAT(0) cubi-

cal complexes, when n ≥ 4. This should be compared with [5], where Ancel and Guilbault proved that there are

CAT(-1) metrics on these manifolds.

In essence, pseudo-collarability guarantees an exhaustion by contractible manifolds as well as a sufficiently

"nice" structure at infinity (cf. Lemma 7). A simpler notion is the notion of weakly geometrically contractible mani-

folds, which abandons the structure at infinity and describes open contractible manifolds that can be exhausted

by compact contractible manifolds. Section 8, which explores different topological notions related to pseudo-

collarability, reveals a hierarchy:

compactifiable ( pseudo-collarable ( geometrically contractible ( general.

1.7. Comments and questions. We formulate here two questions, for which affirmative answers might bridge

the gap between the two main theorems.

Question 1. Consider a compact PL n-manifold W with boundary, n ≥ 5, which is homeomorphic to the topological

mapping cylinder M(f) of an acyclic map f : M → N between closed PL homology spheres. Suppose that the kernel of the
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map induced by f at fundamental groups level is the normal closure of a finitely generated perfect group. Then, is the pair

(W,N) homeomorphic to a polyhedron pair (P,Q) such that P PL collapses onto Q?

In other words we ask whether any topological collapse between PL manifolds as in the statement can be

made PL if we accept to replace the initial triangulations with non PL triangulations. A particular case of this

question asks whether a PL manifold which topologically collapses to a point is homeomorphic to a polyhedron

which PL collapses. This is known to hold by the construction of an arc spine for any compact contractible

manifold M by Ancel and Guilbault in [4]. Specifically, if n ≥ 5 and M is a compact contractible n-manifold,

then there exists a map f : ∂M → [0, 1] such that M is homeomorphic to the topological mapping cylinder M(f).

One constructs first a codimension one homology sphere Σ ⊂ ∂M providing a surjective map at fundamental

group level, so that ∂M − Σ × (0, 1) is the disjoint union of two acyclic manifolds A and B. Then the map f

sends A into 0, Σ×{t} into t and B into 1. In particular we can refine the triangulation of M such that the map f

becomes simplicial. Now, we can define the simplicial mapping cylinderC(f) of f , which is a simplicial complex

collapsing onto [0, 1] and hence to a point. By a result of Cohen (see [20]) the simplicial mapping cylinder C(f)
is homeomorphic to the topological mapping cylinder M(f) and in particular to M .

A weaker version concerns the case of open manifolds and reads as follows:

Question 2. Consider an open contractible n-manifold W , n ≥ 5, which is a mapping telescope, namely the union of PL

manifolds with disjoint interiors, each one homeomorphic to the topological mapping cylinder of some acyclic map between

closed PL homology spheres. Suppose that the kernels of the induced maps at fundamental groups level are normal closures

of finitely generated perfect groups. Then is the manifold W homeomorphic to a polyhedron which is PL arborescent?

In the absence of the requirement that the CAT(0) metric be polyhedral we expect the following related ques-

tion.

Question 3. An open contractible n-manifold W , n ≥ 5, admits a CAT(-1) complete length metric if and only if it is

pseudo-collarable, it has perfectly semistable fundamental group at infinity and the Chapman-Siebenmann obstruction τ∞
vanishes. Moreover this is so if only if W is homeomorphic to a topologically collapsible polyhedron?

2. PRELIMINARIES

2.1. Obstructions. According to [33] the manifold M is inward tame at infinity, if for arbitrarily small neighbor-

hoods of infinity U there exist homotopies H : U × [0, 1]→ U with H0 being identity and H1(U) having compact

closure. Alternatively, M is inward tame if and only if arbitrarily small neighborhoods of infinity U are finitely

dominated, namely there exist finite complexes K and maps u : U → K and d : K → U such that d ◦ u is

homotopic to the identity of U .

The projective class group functor K̃0 associates to a group π the abelian group K̃0(π) of stable isomorphism

classes of finitely generated projective left modules over Z[π]. Wall proved in [62, 63] that each finitely dominated

CW complex X determines a class σ(X) ∈ K̃0(π1(X)) which vanishes if and only if X has the homotopy type of

a finite complex.

We denote by Wh the Whitehead functor which associates to a group π the abelian group K̃1(π)/π = K1(π)/(±π),

namely the quotient of GL(Z[π]) by the subgroup generated by the elementary matrices, elements of π and −1.

Note that the subgroup generated by the elementary matrices coincides with the derived subgroup of GL(Z[π]).
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It is well-known that for every homotopy equivalence of finite CW complexes f : K → L there exists an element

τ(f) ∈ Wh(π1(L)), called the Whitehead torsion of f , which vanishes if and only if f is a simple homotopy

equivalence.

The previous obstructions have natural extensions to the case of infinite complexes. Let F be one of the two

functors above. IfX is a topological space andXi denote its connected components we set F (X) = ⊕iF (π1(Xi)).

Note that base points are irrelevant as F sends inner automorphisms into identity maps. For a complex X one

defines the limit of the F functor at the ends ε(X) of X as the projective limit:

F (ε(X)) = lim
←

(F (π1(X − C))C⊂X,C compact

Set also F 1(ε(X)) be the first derived functor of projective limit applied to the inverse system (F (π1(X −
C)))C⊂X,C compact, also called the attenuation of F . Recall that the derived limit of an inverse sequence G0

p1←
G1

p1← G2
p1← · · · is the quotient:

lim
←

1(Gi, pi) =
∏∞
i=0Gi

〈(xi − pi+1(xi+1))i∈Z+ , xi ∈ Gi〉

Note that F 1(ε(X)) vanishes if and only if the inverse system (F (π1(X − C))C⊂X,C compact is equivalent to an

inverse system with surjective bonding maps.

Let nowM be an open manifold which we suppose to be inward tame at infinity. Choose a compact manifold

exhaustion Mi ⊂ int(Mi+1) of M . Define σ∞(M) ∈ K̃0(ε(M)) to be the class of (σ(M − int(Mi))i∈Z+ . This is a

well-defined and independent on the chosen exhaustion (see [19]).

Let τi denote the image of the Whitehead torsion τ(Mi+1 − int(Mi), ∂Mi) into Wh(π1(M − int(Mi))) by the

map induced by the inclusion Mi+1 − int(Mi) ↪→M − int(Mi).

The Chapman-Siebenmann obstruction τ∞(M) ∈ Wh1(ε(M)) is the image of (τi)i∈Z+ ∈
∏∞
i=1 Wh(π1(M −

int(Mi)) in the quotient Wh1(ε(M)).

Note that in [56] there is a more general definition of the obstructions σ∞ and τ∞ for proper homotopy equiv-

alences of locally finite complexes, while the one in [19] mainly concerns Q-manifolds.

2.2. Semistability. Recall that the inverse limit of an inverse sequence of groups

G0
p1← G1

p2← G2
p3← · · ·

is defined as:

lim
←

(Gi, pi) = {(xi)i∈Z+ ∈
∞∏
i=0

Gi; pi+1(xi+1) = xi, i ∈ Z+}

The inverse limit is an invariant of the pro-equivalence class of the inverse system. Here the sequence (Gi, pi)
and (Hi, qi) are pro-equivalent, if, after passing to subsequences (namely replacing some pi by a composition

of arrows) and reindexing there exist homomorphisms Hi+1 → Gi+1 and Gi+1 → Hi producing commutative

diagrams:
Gi ←− Gi+1 ←−

↖ ↙ ↖
←− Hi ←− Hi+1

An inverse sequence is stable if it is pro-equivalent to a constant sequence (H, id). An inverse sequence is

semistable if it is pro-equivalent to an inverse sequence (Hi, qi) where all bonding morphisms qi are surjective.
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In [33] the author introduced another meaningful related notion, as follows. An inverse sequence is perfectly

semistable if it is pro-equivalent to an inverse sequence (Hi, qi) where Hi are finitely presented, the bonding

morphisms qi are surjective and ker qi are perfect. Note that in the case of perfectly semistable sequence each

ker qi is the normal closure of a finitely generated subgroup (see [33], Lemma 2), but this subgroup might not be

perfect.

Further we define an inverse sequence to be strongly perfectly semistable if it is pro-equivalent to an inverse

sequence (Hi, qi) where Hi are finitely presented, the bonding morphisms qi are surjective, ker qi are perfect and

for all i ≤ j the subgroup ker(qi ◦ qi+1 ◦ · · · ◦ qj) ⊂ Hi is the normal closure in Hi of a finitely generated perfect

subgroup.

For a one ended open manifold M we consider the inverse system π1(ε(M)) of fundamental groups of

π1(M −K), where K are compact subcomplexes of M . The refined semistability conditions above extend then

accordingly to open manifolds by requiring π1(ε(M)) to fulfill them.

The main result of [35] is the following characterization of pseudo-collarable manifolds:

Proposition 1 ([35]). An open manifold M of dimension n ≥ 6 is pseudo-collarable if and only if it satisfies the following

conditions:

(1) M is inward tame at infinity;

(2) π1(ε(M)) is perfectly semistable;

(3) Wall’s finiteness obstruction σ∞(M) ∈ K̃0(ε(M)) vanishes.

2.3. Homology manifolds. Let G be an abelian group.

Definition 6. LetX be a locally compact topological spaceX with finite cohomological dimension overG. Then

X is a (generalized) homology G-manifold with boundary of dimension n if

Hi(X,X − {x};G) ∼= 0, if i 6= n

and for each x ∈ X the group Hn(X,X −{x};G) is either isomorphic to G or 0. The boundary ∂X of a homology

G-manifold with boundary of dimension n consists of the set of points x ∈ X for which Hn(X,X − {x};G)
vanishes.

Homology manifolds are the same as homology Z-manifolds. An example of a homology manifold that is not

a topological manifold is the suspension of a homology sphere that is not a sphere.

3. PLUS CONSTRUCTIONS

A classical construction by Quillen gives a way to kill normal subgroups of the fundamental group of a CW

complex while keeping the homology unaltered, as follows:

Proposition 2. Suppose that X is a finite CW complex and π1(X) → π is a surjective homomorphism onto the finitely

presented group π perfect kernel. Then there exists a CW complex Y and a continuous map f : X → Y , unique up

to homotopy equivalence, which induces the given epimorphism π1(C) → π at the level of fundamental groups and is a

Z[π]-homology equivalence.



CAT(0) METRICS ON CONTRACTIBLE MANIFOLDS 9

The space Y is said to be obtained by the plus construction out of X and the given epimorphism; sometimes

it will be denoted by X+.

The plus construction could also be performed in other categories, e.g. for topological manifolds. To this

purpose we need the following:

Definition 7. The compact cobordism (W,M,N) of topological manifolds is a plus cobordism if

(1) the inclusion N ↪→W is a simple homotopy equivalence;

(2) the map π1(M)→ π1(W ) induced by inclusion is surjective;

(3) the inclusion N ↪→W is a Z[π1(W )]-homology equivalence.

Following Hausmann ([38], section 3), we have:

Proposition 3. Given a closed topological manifold M of dimension n ≥ 5 and a surjective homomorphism π1(M) → π

onto a finitely presented group with perfect kernel, then there exists an unique plus cobordism (W,M,N) such that the

map induced by the inclusion M →W is π1(M)→ π, up to homeomorphism relative to M .

Moreover N has the homotopy type of the Quillen plus construction M+. If M had a PL or smooth structure,

then W is unique up to PL homeomorphism and diffeomorphism rel M , respectively.

This construction can be realized also by embedded codimension zero cobordisms in a given manifold with

boundary (see [36]) and all these constructions could be performed by asking N ↪→ W be a homotopy equiva-

lence with a prescribed torsion in Wh(π1(W )) (see [59]).

We can relax the plus cobordism definition following Guilbault (see e.g. [33]), to a notion essential for pseudo-

collarable manifolds:

Definition 8. The compact cobordism (W,M,N) of topological manifolds is a one sided h-cobordism if the

inclusion N ↪→W is a homotopy equivalence.

It is a well-known consequence of a result of Hausmann (see [39], Lemma 2.0, [23], Lemma 2.5., [33], Lemma

6) that the map π1(M) → π1(W ) induced by inclusion is surjective with perfect kernel and N ↪→ W is a Z-

homology equivalence, i.e. H∗(W,M) = 0.

4. TAMENESS OF METRIC SPHERES

4.1. Subanalytic geometry. The theory of subanalytic sets originates in the work of Lojasiewicz [46] and was

elaborated by Gabrielov [31], Hironaka [40, 41], Hardt [37] and Shiota [54]. We recall here some key ingredients

of subanalytic geometry following [7, 41, 46, 54] and refer to these for details. Let V be an analytic manifold, most

often the Euclidean space. A set X ⊆ V is a subanalytic subset of V if any point of V has some neighborhood U

and finitely many proper real analytic maps fi, gi defined on real analytic manifolds with values in U such that

X ∩ U =
p⋃
i=1

Im(fi)− Im(gi).

Semianalytic sets, i.e. subsets of analytic manifolds locally defined by a finite set of analytic equalities or in-

equalities are subanalytic. A set X is subanalytic if it is locally the projection of a semianalytic set. Locally finite

unions and products, intersections and set differences of subanalytic sets are subanalytic sets. The closure, in-

terior and the frontier of a subanalyic set are subanalytic. The set of components of a subanalytic set is locally
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finite and each connected component is still subanalytic. These properties allow us to define subanalytic subsets

of subanalytic sets, which are themselves subanalytic. A map is said subanalytic if its graph is subanalytic in

the product. Inverse images of subanalytic sets by subanalytic maps and images of subanalytic sets by proper

analytic maps are still subanalytic. A result of Hironaka actually tells us that any closed subanalytic set is the

image of an analytic manifold by some proper analytic map.

We will need in the sequel the following result of Tamm ([60], Prop. 1.3.9):

Proposition 4. Let ϕ̌A(f)(x) = inf{f(u);u ∈ ϕ−1(x) ∩ A}, where f : M → R, ϕ : N → M is a subanalytic function,

A a subanalytic set and ϕ : A → M is proper. Then for any subanalytic function f : M → R, the function ϕ̌A(f) is

subanalytic.

The subanaliticity was defined above for subsets X of some given analytic manifold V . We now say that

X ⊂ V is locally subanalytic if it has some open neighborhood V ′ ⊆ V such that X is subanalytic in V ′. Compact

locally subanalytic sets are subanalytic but noncompact locally subanalytic sets are not analytic if they are not

closed. All results above about subanalytic sets have immediate reformulations in the local subanalytic case.

4.2. Locally subanalytic sets and polyhedra. The main property of subanalytic sets needed in this paper is their

triangulability. There are several far reaching generalizations including the simultaneous subanalytic triangula-

bility of locally finite collections of subanalytic sets see [7, 37, 41, 46]. The simplest version states that a closed

subanalytic set is homeomorphic to a polyhedron and in particular it is a CW complex and hence an ANR.

A basic example of a locally subanalytic set of Rn is a PL embedded polyedron. We can also provide a

subanalytic structure on every finite dimensional polyhedron by considering a proper PL embedding into an

Euclidean space of large dimension. In this respect PL maps between polyhedra are locally subanalytic maps.

In the reverse direction, note that there exist analytic maps between analytic manifolds which are not piecewise

linearizable, i.e. PL with respect to some triangulations up to homeomorphisms at the source and target.

We record here for further use the following version of the triangulation result alluded above, following Hardt

(see [37]), Thm. 2) along with Shiota and Yokoi (see [53], Cor.4.3):

Proposition 5. For every locally closed and locally subanalytic subsetX of Rn there exists some locally subanalytic isotopy

of Rn which transforms X into a polyhedron in Rn. Moreover, this polyhedron is unique up to PL homeomorphism.

4.3. Metric spheres are subanalytic. Let us recall after [9] some properties of the metric on a Mκ-polyhedral

complex K, abridged metric polyhedron. Such a complex is the result of successive gluings of convex cells by

means of isometries of their faces, where each cell is the convex hull of a finite set of points in the hyperbolic or

Euclidean space of curvature κ ≤ 0. By passing to a subdivision we can assume that the complex is simplicial.

There are two natural pseudometrics that can be defined. Each cell inherits a natural metric and K is the

quotient of the disjoint union of all cells by the equivalence relation induced by gluing. The quotient pseudometric

is the infimal total length of paths in the union of cells which project onto a path in the quotient. A particularly

convenient collection of paths is defined as follows. An m-string in K joining two points a and b is a sequence

of m + 1 points starting with a and ending with b such that two consecutive points belong to some simplex.

The intrinisc pseudometric between two points is the shortest length of strings joining them, where the distance

between consecutive points is the hyperbolic/Euclidean distance within the corresponding simplex. Since the

cells are convex in M the pseudometric above is a metric and coincides with the quotient metric on M .
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An m-string is called taut if there is no simplex containing three consecutive points and the concatenation of

two consecutive segments is a gedesic segment in the union of the two simplices that contain them.

Under the assumption that there are only finitely many isometry classes of cells in K one proved in [9] that

every metric polyhedron K is a complete geodesic length space. Moreover, geodesic paths are given by taut

strings and the number of points of a taut string is commensurable with the distance between the two points.

This implies that for each x, y ∈M there is some m = m(x, y) such that the distance d(x, y) is the minimal length

of all taut m-strings joining them.

Proposition 6. If M is a metric polyhedron with finitely any isometry classes of cells, then the distance function is

subanalytic.

Proof. By ([9], Thm. I.7.19) M is a complete geodesic space. A taut m string determines then a sequence of m

simplices each simplex containing two consecutive points. Let us consider all taut m-strings xi joining a and

b, with x0 = a, xm = b associated with a fixed sequence of simplices. Each intermediary point of the string

should belong to some simplex contained in the boundary of some simplex from the fixed sequence. Fixing

these boundary simplices Ai too, the corresponding taut strings have to minimize the function f(a, b, (xi)) =∑m−1
i=0 d(xi, xi+1), over all configurations xi ∈ Ai, 1 ≤ i ≤ m− 1.

Note that this function f : M ×M ×
∏m−1
i=1 Ai is subanalytic, since the distance function on a geodesic simplex

of constant curvature is analytic. Consider the projection map ϕ : M × M ×
∏m
i=1Ai → M × M , which is

obviously subanalytic. Then Proposition 4 implies that the shortest length of taut strings with given constraints

xi ∈ Ai, 1 ≤ i ≤ m− 1 is a subanalytic function.

By ([9], Cor.I.7.30) there is a constant α such that every tautm string onM has length at least αm−1. Therefore,

if a and b belong to two relatively compact open subsets of M there are only finitely many simplex sequences

which can contain a geodesic between a and b. Since there are only finitely many configurations of simplices

possible and the infimum of a finite set of subanalytic functions is still subanalytic it follows that the distance

function is subanalytic. �

4.4. Geodesic contraction. The geodesic contraction is the map cr : M − int(B(p, r)) → ∂B(p, r) sending a point

q ∈ M − int(B(p, r)) into the point cr(q) ∈ ∂B(p, r) lying on the geodesic segment joining p and q which is at

distance r from p. Its restriction to a metric sphere provides the geodesic contraction map cR,r : ∂B(p,R) →
∂B(p, r), for any r < R. The goal of this section is to prove:

Proposition 7. Let M be a metric polyhedron with finitely many isometry classes of cells whose polyhedral metric is

CAT(0). Then the fibers of the geodesic contraction cR,r : ∂B(p,R)→ ∂B(p, r) are acyclic ANR.

Before to proceed with the proof we need the following key lemma:

Lemma 1. Let M be a metric polyhedron with finitely many isometry classes of cells whose polyhedral metric is CAT(0).

Then the geodesic retraction map ∂B(p,R)→ ∂B(p, r) is subanalytic.

Proof. The retraction map is well-defined and continuous since the space is CAT(0). Since the distance is sub-

analytic, the metric balls B(p,R) and metric spheres ∂B(p,R) are subanalytic subsets and hence the product

∂B(p,R)× ∂B(p, r) ⊂M ×M is subanalytic. The graph of the geodesic retraction map is identfied with:

{(x, y) ∈ ∂B(p,R)× ∂B(p, r); d(x, y) = R− r}
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By Proposition 6 the distance function on M ×M is subanalytic and its restriction to an analytic subset is still

subanalytic. It follows that the graph of the geodesic retraction is subanalytic, as claimed. �

Proof of Proposition 7. The metric spheres in M are subanalytic subsets of the polyhedron M and hence within

some Euclidean space where M has a proper PL embedding. The inverse image of one point of a subanalytic

set by a subanalytic map is a subanalytic set of the Euclidean space. By Proposition 5, this inverse image is

homeomorphic to a polyhedron and hence an ANR, as claimed.

Moreover, the map cR,r has acyclic point inverses (see [26], Proof of Thm. 3d.1 and [61], Cor. 2.10) and hence

it is a degree one map between homology manifolds with the homology of a sphere, for all r < R. This implies

that point inverses of the geodesic contraction cR,r are acyclic ANR. �

5. NECESSARY CONDITIONS FOR CAT(0) METRICS

The aim of this section is to prove the first part of Theorem 1, which we restate here for completeness:

Theorem 3. An open topological n-manifold M with n ≥ 5 carrying a complete polyhedral CAT(0) metric satisfies the

following conditions:

(1) M is pseudo-collarable;

(2) The Chapman-Siebenmann obstruction τ∞(M) ∈Wh1(ε(M)) vanishes;

(3) π1(ε(M)) is strongly perfectly semistable.

Note that the result is true also when n ≤ 4, because polyhedral homology manifolds of dimension at most 3

are actually manifolds.

5.1. CAT(0) metrics necessitate pseudo-collarability. We first argue that the condition of pseudo-collarability

is necessary.

Proposition 8. An open topological n-manifold M , with n ≥ 5, which admits a polyhedral CAT(0) metric is pseudo-

collarable.

This result is known for n ≥ 6: it follows from Remark 5 of [33] and the main Theorem in [35]. Here is an

alternative proof, covering the case n = 5, as well.

Proof. The closed metric ball centered at p ∈ M of radius r is denoted by B(p, r). Its interior int(B(p, r)) is the

open metric ball of radius r.

Now, Alexandrov proved ([10], Prop. 8.2-8.3 and [61], Prop. 2.) that any geodesic space endowed with a

CAT(0) metric which is a homology manifold also has the geodesic extension property, namely every geodesic

segment can be extended to a bi-infinite geodesic (see also [9], ch. II.5, Prop. 5.12). This property is also called

geodesic completeness. Therefore the metric sphere of radius r coincides with the frontier ∂B(p, r), namely with

the set of points q ∈ B(p, r) such that int(B(q, ε)) ∩ (M \B(p, r)) 6= ∅, for every ε > 0.

Lemma 2. The metric sphere ∂B(p, r) is homotopy equivalent to M \B(p, r).

Proof. Indeed ∂B(p, r) is a strong deformation retract of M \B(p, r) (see [9], ch. II.2, Prop. 2.4.(4)). �
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We shall see next that there exists a manifold approximation of ∂B(p, r) sharing the same property.

Lemma 3. When the CAT(0) metric is polyhedral, the metric sphere ∂B(p, r) is an ANR homology (n − 1)-manifold

having the homology of a (n− 1)-sphere.

Proof. According to ([61], Prop. 2.7) B(p, r) is a homology n-manifold with boundary, whose boundary ∂B(p, r)
as homology manifold coincides with the metric sphere sphere of radius r and hence with its frontier. According

to Mitchell theorem from [48] the metric sphere ∂B(p, r) is a homology (n − 1)-manifold. Since B(p, r) has the

homology of a n-ball, its boundary ∂B(p, r) has the homology of a (n− 1)-sphere.

We already noted in the proof of Proposition 7 that the metric sphere ∂B(p, r) is homeomorphic to a polyhe-

dron and hence an ANR, as a consequence of Propositions 5 and 6, when there are only finitely many isometry

classes of cells.

Let us give below a proof which does not require finitely many ismetry classes of cells. The metric ball B(p, r)
is convex, namely the geodesic segment determined by two points of it is contained in B(p, r). Note that every

closed cell e of a polyhedral CAT (k) simplicial complex is convex and its metric coincides with the restriction

of the intrinsic metric. Therefore the intersection B(p, r) ∩ e with a closed cell e of ∆ is a convex subset of e. A

compact convex set in Rn or Hn is homeomorphic to a ball Dm, of dimension m ≤ n. It follows that B(p, r)∩ e is

homeomorphic to a ball. There is no loss of generality in assuming thatB(p, r) intersects nontrivially the interior

of e in a set of maximal dimension.

Consider a polyhedral cell f which is contained in B(p, r) ∩ e. For the sake of simplicity we can suppose that

the curvature is κ = 0 and f is obtained from e by a homotethy with center p, where p is a point in the interior

of f . The radial projection from the point p induces a homeomorphism φ : ∂(B(p, r) ∩ e) → ∂f . We denote by

F = φ(∂B(p, r) ∩ e) and J = φ(B(p, r) ∩ ∂e). It follows that ∂f is the union A ∪ B. Now, J is the union of

Ji = φ(B(p, r) ∩ ∂ei), where ei denote the facets of e. Note that Ji are images of convex subsets of the facets ei
and hence they are convex subsets within the facets fi of f .

We will show that there exists a straightening isotopy of ∂f sending J into a polyhedron. To this purpose we

prove by induction on m that there is a straightening isotopy of ∂f such that the intersections of the image of J

with every m-cell in ∂f is a polyhedron. When m = 1, the convex subsets of segments are also segments and

hence the claim automatically holds. To prove the induction step we observe that given a maximal dimension

convex subset of a simplex which intersects the simplex boundary along polyhedra can be isotoped rel the

boundary to the convex hull of the union of these polyhedra and possibly some additional points for dimensions

reasons. Then the corresponding straigthening isotopies can be extended from the m-skeleton of some (m+ 1)-

cell to the (m+ 1)-cell, by the Alexander trick.

It follows that the closed complement F of J within ∂f is homeomorphic to a polyhedron embedded into ∂f .

In particular ∂B(p, r)∩e is a CW complex and hence an ANR. AsB(p, r) intersects nontrivially only finitely many

cells, ∂B(p, r) is homeomorphic to a finite union of polyhedra which pairwise intersect along subpolyhedra and

hence a polyhedron itself. This implies that ∂B(p, r) is a CW complex and hence an ANR. �

Next we will extend the result of Ferry (see [28, 29]) to an approximation theorem of resolvable generalized

homology manifolds in codimension one. We have first:

Lemma 4. For generic radii r the ANR homology manifold ∂B(p, r) admits a resolution.
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Proof. Quinn’s resolution theorem ([64]) states that there exists a locally defined obstruction invariant in 1 +
8Z which detects precisely when a generalized homology sphere has a resolution. As above, the intersection

B(p, r)∩ewith a closed cell e of ∆ is convex. Furthermore, since the metric is piecewise smooth, then for generic

r the frontier of B(p, r) ∩ e is a convex hypersurface. The later contains an open dense set which is a piecewise

linear submanifold. Therefore ∂B(p, r) contains manifold points. In particular Quinn’s obstruction is trivial. �

We now want to prove that there exist arbitrarily close approximations of the generalized homology manifold

∂B(p, r), for generic r, by locally flat topological submanifolds of M . Namely, there exists by Lemma 4 a closed

(n− 1)-manifold S endowed with a surjective cell-like map g : S → ∂B(p, r).

Lemma 5. For generic r and for every ε > 0 there exists a topologically flat embedding hε : S → M , such that hε(S) is

ε-close to ∂B(p, r). Moreover, there exists an ambient homotopy H : M × [0, 1]→M , with the property that H1 = id, Ht

is a homeomorphism for any t > 0, Hε(h1(S)) = hε(S) and H0(h1(S)) = ∂B(p, r).

Proof. Observe that ∂B(p, r) is separatingM . Consider the ENRM ′ = B(p, r)∪∂B(p, r)× [0, 1]∪M− int(B(p, r)),

which is a generalized homology manifold. There is a proper cell-like map q : M ′ → M which collapses

∂B(p, r)× [0, 1] to ∂B(p, r). Further M ′ admits a resolution, as it contains manifolds points; namely there exists

a proper cell-like map p : P → M ′ from a manifold P . Let f : P → M be the composition q ◦ p. Then f

is a proper cell-like map. By a classical result of Siebenmann (see [55], Approximation Thm. A) f is a limit

homeomorphism. This means that there exists a level preserving cell-like map F : P × [0, 1] → M × [0, 1] such

that F (x, t) = (ft(x), t), where ft : P →M for 0 ≤ t < 1 are homeomorphisms ε-close to f and f1 = f .

As ∂B(p, r) is a codimension one compact polyhedron, the combinatorics of the intersections with a triangu-

lation subjacent to the polyhedral complex ∆, and hence its homeomorphism type, will not change in a small

neighborhood of the generic r. It follows that ∂B(p, r) × (−ε, ε) is embedded in M and hence it is a manifold.

The product map g×id : S×(ε, ε)→ ∂B(p, r)×(ε, ε) is proper and cell-like. Since both polyhedra are topological

manifolds, g × id is a limit homeomorphism, by the result of Siebenmann cited above. By the same argument

map p|p−1(∂B(p,r)×(ε,ε)) is also a limit homeomorphism. Therefore there exists a codimension zero embedding

gε : S × (ε, ε)→ P .

It follows that f1−ε ◦ gε(S × {0}) is a locally flat approximation of ∂B(p, r) (see also ([29], Thm.1). We put

hε = f1−ε ◦ gε. The ambient homotopy H is constructed from F , by identifying P and M by means of F0.

An alternative proof using an argument provided to us by the referee is as follows. The uniqueness part

of Quinn’s resolution theorem ([64]) implies that C = p−1(∂B(p, r) × [0, 1]) is homeomorphic to S × [0, 1] by a

homeomorphism which identifies p|C to g×id[0,1]. Thus an approximation of q◦p : P →M by a homeomorphism

h : P →M will take a bicollared copy of S arbitrarily closed to ∂B(p, r). �

Let V be the closure of the unbounded component of M \ h1(S). It follows that for all j ≥ 1 we have:

πj(V, h1(S)) ∼= πj(Ht(V ), Ht(h1(S))), for all t > 0.

As h1(S) has codimension one and H1 is a hereditary homotopy equivalence we can pass to the limit t → 0 to

obtain:

πj(V, h1(P )) ∼= πj(M \B(p, r), ∂B(p, r)) = 0.

This shows that V is a manifold pseudo-collar, as claimed.
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�

5.2. CAT(0) metrics need trivial Chapman-Siebenmann obstruction. Any locally compact ANR, in particular

a manifold M with a CAT(0) metric has a Z-compactification (see [3], Ex.6, Rk.1). It follows that the product

M ×Q with the Hilbert cube Q has a Z-compactification. The main theorem of [19] shows that τ∞(M ×Q) = 0.

On the other hand τ∞ is a proper homotopy invariant and hence τ∞(M) = 0.

5.3. Strong perfect semistability. By Proposition 7 the fibers of the geodesic contraction cR,r : ∂B(p,R) →
∂B(p, r) are acyclic ANR, when the CAT(0) metric is polyhedral.

We shall now use the following extension of a result from ([23], Prop.4.8):

Lemma 6. Suppose that f : N1 → N2 is an acyclic map between (n − 1)-dimensional homology manifolds without

boundary such that f−1(y) is an ANR for every y ∈ N2. Assume moreover that N1 is an ANR. Then the kernel ker f∗ of

the map f∗ : π1(N1)→ π1(N2) induced by f at the level of fundamental groups is the normal closure of a finitely generated

perfect group.

Proof. The proof is similar to that presented in [23] for topological manifolds but we include it here for the sake

of completeness. For every y ∈ N2 the preimage f−1(y) being an ANR by our assumptions admits an open

neighborhood U ⊂ N1 which deformation retracts onto f−1(y). As f is surjective, since acyclic, the collection of

open sets U is a covering of N1. As N1 is compact we can extract a finite cover {Ui} corresponding to the points

yi ∈ N1. We can join a base point z0 ∈ N1 with f−1(yi) by means of pairwise disjoint arcs which only intersect

∪if−1(yi) at their end points. Denote by Y the union of ∪if−1(yi) with these arcs based at z0.

Then Y is a compact acyclic ANR. By a theorem of West ([66]) any compact metrizable ANR is homotopy

equivalent to a finite cell-complex and hence each π1(f−1(yi) is finitely presented and hence π(Y ) is finitely

presented and perfect.

Moreover, ker f∗ is normally generated by the image of π1(Y ) under the map π1(Y )→ π1(N1) induced by the

inclusion Y ↪→ N1. Thus ker f∗ is the normal closure of a finitely generated perfect group. �

We obtained so far a compact exhaustion of M by homology manifolds for which the fundamental pro-group

at infinity is given by a sequence of surjective homomorphisms, each bonding map having its kernel normally

generated by a finitely generated perfect subgroup.

The homology manifolds arising as boundaries admit arbitrarily close approximations by locally flat topolog-

ical submanifolds of M , by Lemma 5. Using notation from this lemma, we know that for generic pairs r1 > r2

there exist topologically flat embeddings hε : Si →M such that hε(Si) are ε-close to ∂B(p, ri) and an ambient ho-

motopy H : M × [0, 1]→M such that H1 = id, Hε is a homeomorphism for every ε > 0 and Hε(h1(Si)) = hε(Si),

while H0((h1(Si)) = ∂B(p, ri). Let Z be the manifold bounded by h1(S1) t h1(S2) and V the closure of the

unbounded component of M − h1(S2). Recall from the last lines of the proof of Proposition 8 that V is a pseudo-

collar.

As H1 is a hereditary homotopy equivalence we have an identification between the sequence of maps:

π1(∂B(p, r1))→ π1(B(p, r1)− int(B(p, r2)))→ π1(M − int(B(p, r2)))→ π1(∂B(p, r2))

and

π1(h1(S1))→ π1(Z)→ π1(V )→ π1(h1(S2))



16 KARIM A. ADIPRASITO AND LOUIS FUNAR

Therefore the map π1(h1(S1))→ π1(h1(S2)) is surjective and its kernel is normally generated by a finitely gener-

ated perfect group. Thus we can replace replace metric spheres by their topologically flat approximation, while

keeping the same fundamental pro-group at infinity for the associated exhaustions.

This implies that M is strongly perfectly semistable.

6. EXHAUSTIONS OF PSEUDO-COLLARS BY PLUS COBORDISMS

6.1. Exhaustions of pseudo-collars with trivial τ∞. We start by recalling the following result of Guilbault:

Proposition 9 ([33]). An open manifold is pseudo-collarable if and only if it is union of one-sided h-cobordisms with

disjoint interiors.

This section aims at refining this characterization as follows:

Proposition 10. An open manifold is pseudo-collarable and its Chapman-Siebenmann obstruction τ∞(M) ∈Wh1(ε(M))
vanishes if and only if it is the union of one-sided h-cobordisms with trivial torsion and disjoint interiors.

The if part is trivial, as unions of one-sided cobordisms with vanishing torsion have trivial Chapman-Siebenmann

obstruction.

For the converse we first record, following [33, 35]:

Lemma 7. If the open contractible manifold M is pseudo-collarable then there exists an exhaustive filtration Mi, i ≥ 0 of

M with the following properties:

(1) Mi are compact contractible manifolds;

(2) the inclusion maps M \Mj ↪→M \Mi for j > i induce surjections at the level of fundamental groups, and

(3) the inclusions ∂Mi ↪→M \Mi induce isomorphisms at the level of fundamental groups.

Recall now from [33] that any pseudo-collar W can be written as the union of 1-sided h-cobordisms Wi with

disjoint interiors. This means that Wi is a cobordism with left boundary Ji and right boundary Ji+1, so that

J1 = ∂W , with the property that Ji ⊂ Wi is a homotopy equivalence. The 1-sided h-cobordism Wi is said to

be a plus cobordism (see [49, 52]) if the inclusion Ji ⊂ Wi is a simple homotopy equivalence, namely the torsion

τ(Wi, Ji) vanishes in the Whitehead group Wh(π1(Ji)). One key property needed in the construction below is

the following:

Lemma 8. A pseudo-collar manifold W is the union of plus cobordisms with disjoint interiors if (and only if) τ∞(W ) = 0.

Proof. Our proof follows closely the one given in [19] for Q-manifolds. We start with:

Lemma 9. Let N be a closed (n− 1)-manifold, n 6= 4 and µ ∈Wh(π1(N)). Then there is a decomposition of N × [0, 1] =
Z1 ∪ Z2 into two h-cobordisms Z1 and Z2 with disjoint interiors such that

τ(Z1, N × {0}) = µ, τ(Z2, Z1 ∩ Z2) = −µ

Proof. There exist h-cobordisms Z1 and Z2 with prescribed torsions. Their composition then has trivial torsion:

τ(Z1 ∪ Z2, N × {0}) = τ(Z1, N × {0}) + τ(Z2, Z1 ∩ Z2) = 0

By the topological s-cobordism theorem Z1 ∪ Z2 is homeomorphic to N × [0, 1]. �
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Assume now that we have a filtration Mi of the pseudo-collar M with the property that Mi+1 − int(Mi)
are one sided h-cobordisms (see e.g. [33], Prop.2). Let τi ∈ Wh(M − int(Mi)) denote the image of τ(Mi+1 −
int(Mi), ∂Mi) ∈ Wh(π1(Mi+1 − int(Mi)) in the group Wh(M − int(Mi)), by means of the inclusion induced

homomorphism.

By hypothesis τ∞(M) = 0 and hence there exist (µ1, µ2, . . .) ∈
∏∞
i=1 Wh(M − int(Mi)), such that for every i

µi − pi(µi+1) = τi

where pi : Wh(M − int(Mi+1))→Wh(M − int(Mi)) is the induced homomorphism.

The only reason to consider this obstruction is the fact that although the group maps are surjective the corre-

sponding maps between the Whitehead groups is not necessarily surjective.

Recall that ∂Mi ↪→M− int(Mi) is a homotopy equivalence. Let then µ′i ∈Wh(∂Mi) be a class whose image by

the inclusion induced homomorphism is µi ∈Wh(M − int(Mi)). The previous lemma gives us a decomposition

of a collar ∂Mi × [0, 1] ⊂Mi+1 − int(Mi) as the union of two h-cobordisms Z1
i ∪ Z2

i with disjoint interiors, such

that

τ(Z1
i , ∂Mi) = τ ′i , τ(Z2

i , Z
1
i ∩ Z2

i ) = −τ ′i
We set now M ′i = Mi ∪ Z1

i . Then ∂M ′i ↪→M ′i+1 − int(M ′i) is a homotopy equivalence.

By the formula of the torsion of a composition we have:

τ(M ′i+1 − int(M ′i), ∂M ′i) = τ(Z2
i , ∂Mi) + τ(Mi+1 − int(Mi), ∂Mi) + j∗τ(Z1

i+1, ∂Mi+1)

= −µi + τi + pi+1(µi+1) = 0

where j∗ is the map induced from inclusion Z1
i+1 ↪→ M − int(Mi). It follows that M is the union of one-sided

h-cobordisms with trivial torsion. �

6.2. Exhaustions by plus cobordisms. The aim of this section is to provide the following key ingredient in the

proof of Theorem 1:

Proposition 11. An open contractible n-manifold W , n ≥ 6, which is pseudo-collarable, has strongly perfectly semistable

fundamental group at infinity and has a vanishing Chapman-Siebenmann obstruction τ∞ is the union of plus cobordisms

with disjoint interiors. Moreover, the plus cobordisms are homeomorphic to mapping cylinders of acyclic maps between the

boundaries.

Remark 3. Chapman and Siebenmann considered in [19] the notion of mapping telescope of an inverse sequence

of compact metric spaces fi : Xi+1 → Xi, by sewing together the mapping cylinders M(fi) along their naturally

identified boundaries. Proposition 11 states that Wn is a mapping telescope of an inverse sequence of acyclic

maps with X0 being a point and Xi closed (n− 1)-manifolds.

Lemma 10. Assume that the open manifold M is strongly perfectly semistable at infinity and union of plus cobordisms

with disjoint interiors. Then there exists a compact exhaustion Mi such that Mi+1 − int(Mi) are one sided h-cobordisms

with trivial torsion and moreover each ker(π1(∂Mi+1) → π1(∂Mi)) is the normal closure in π1(∂Mi+1) of some finitely

generated perfect subgroup.

Proof. We start with a compact exhaustion Mi such that ∂Mi ↪→Mi+1− int(Mi) are homotopy equivalences. We

can change the exhaustion by passing to subsequences and relabelling such that the the kernel ker(π1(∂Mi+1)→
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π1(∂Mi)) is the normal closure in π1(∂Mi+1) of some finitely generated perfect subgroup, while keeping the

property that ∂Mi ↪→ Mi+1 − int(Mi) are homotopy equivalences. We are then in the situation of lemma 8.

We alter the decomposition into one sided h-cobordisms by adjoining h-cobordisms. However these changes

preserve the fundamental groups involved and hence the new decomposition fulfills all required conditions.

By hypothesis there exists a compact exhaustion Mi of M such that the kernel ker(π1(∂Mi+1) → π1(∂Mi)) is

the normal closure in π1(∂Mi+1) of some finitely generated perfect subgroup. We can change the exhaustion by

passing to subsequences and relabelling such that the fundamental inverse sequence

· · · ← π1(M − int(Mi))← π1(M − int(Mi+1))← π1(M − int(Mi+1))← · · ·

has surjective bonding maps and consists of finitely generated groups with perfect kernels which are normal

closures of finitely generated perfect subgroups. Then ([33], Lemma 8) provides a new compact exhaustion

whose associated inverse sequence matches a subsequence of the inverse sequence above and moreover has the

additional property that inclusion maps induce isomorphisms π1(∂Mi)→ π1(M − int(Mi)). By the generalized

(n− 3)-neighborhoods theorem ([33], Thm. 5 and Lemma 10) we can find another compact exhaustion Mi such

that the inverse sequence does not change while πk(M − int(Mi), ∂Mi) = 0, for k = 1, 2, . . . , n − 3. Eventually

the proof of [35], Thm.1) shows that we can alter the exhaustion whitout changing the fundamental groups such

that πk(M − int(Mi), ∂Mi) = 0, for k ≤ n− 2 and hence obtaining a pseudo-collar whose system of fundamental

groups matches a subsequence of the inverse sequence representing the fundamental group at infinity. �

Thus ∂Mi ↪→Mi+1 − int(Mi) are simple homotopy equivalences.

6.3. Mapping cylinders. Before to proceed, recall that the extended mapping cylinder Me(f) of a continuous map

f : M → N is the union M × [0, 1] ∪(x,1)∼(f(x),1) N × [1, 2]. Further, we will need the following key result from

([23], Thm. 5.2):

Proposition 12. Suppose that (M,N1, N2) is an n-dimensional cobordism, n ≥ 6, such that N2 ↪→ M is a homotopy

equivalence and the kernel of the map induced by inclusion π1(N1) → π1(M) is the normal closure in π1(M) of a

finitely generated perfect group. Then there exists an acyclic map f : N1 → N ′2 to a closed manifold N ′2 such that M

is homeomorphic to Me(f) ∪N ′2×{1}M
′, where Me(f) is the extended mapping cylinder of f and (M ′, N ′2 × {1}, N2) is

an h-cobordism.

This shows that every cobordism Mi+1 − int(Mi) obtained from an exhaustion as provided by Lemma 10 is

homeomorphic to the composition of the mapping cylinder Ci of some acyclic map ∂Mi+1 → Ni composed with

an h-cobordism Zi with boundary ∂Zi = Ni t ∂Mi. Here Ni is some closed manifold homotopy equivalent to

∂Mi.

Now, after identifying the groups π1(Ni), π1(∂Mi), π1(Mi+1 − int(Mi)) and π1(Zi) we have in Wh(π1(∂Mi)):

τ(Mi+1 − int(Mi), ∂Mi) = τ(Ci, Ni) + τ(Zi, ∂Mi)

On the other hand

τ(Mi+1 − int(Mi), ∂Mi) = 0

because Mi+1 − int(Mi) is a plus cobordism.

We will use now the following:
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Lemma 11. If f : M → N is an acyclic map whose extended mapping cylinder Me(f) is a manifold, then the retraction

map π : Me(f)→ N is a simple homotopy equivalence and hence τ(Me(f), N) = 0.

Proof. We use Chapman’s simple homotopy type of compact ANR spaces (see [16]). Every metrizable topological

manifold has the proper homotopy type of a locally finite simplicial complex (see [44], Thm. 4.1.3, p.123). Thus

the product of a compact topological manifold and the Hilbert cube Q is a compact Hilbert cube manifold.

According to a deep result of ([65], Thm. 2 and section 4, [57], Thm. 3.4), the retraction map π × idQ :
Me(f)×Q→ N×Q is homotopic to a homeomorphism of Hilbert cube manifolds. Further, Chapman’s theorem

([17, 18]) says that π is a simple homotopy equivalence. As the inclusion N ↪→Me(f) is a homotopy inverse for

the retraction map, we derive that τ(Me(f), N) = 0.

Alternatively, we can use the fact that a cell-like map between compact ANR’s is a simple homotopy equiva-

lence (see [45], Thm. 4.3, following Chapman and West). The retraction map Me(f)→ N is obvious cell-like, as

the point preimage of y ∈ N is the wedge of a cone over f−1(y) and a segment. �

Now τ(Ci, Ni) = 0 and hence τ(Zi, ∂Mi) = 0. By the s-cobordism theorem Zi is homeomorphic to a product

and hence Mi+1 − int(Mi) is homeomorphic to a mapping cylinder Ci.

Note that we don’t know if we can perturb the acyclic map f to an acyclic PL map having the same extended

mapping cylinders, up to a homeomorphism; if this were true, then its mapping cylinder would be homeomor-

phic to a simplicial mapping cylinder and hence it would PL collapse onto ∂Mi.

6.4. Acyclic maps. We will need later the description of f following [23] and [22]. Let Qi+1 ⊂ π1(∂Mi+1) be a

finitely generated perfect subgroup whose normal closure within π1(∂Mi+1) is ker(π1(∂Mi+1) → π1(∂Mi)). By

Hausmann’s trick there exists Q∗i+1 a finitely presented perfect group of deficiency 0 equipped with a surjection

onto Qi+1 (see [38], section 2.1) . Let Di+1 be a 2-dimensional complex associated to a balanced presentation of

Q∗i+1, which is then acyclic. We embed Di+1 within ∂Mi+1 such that the induced map on fundamental groups

is the composition Q∗i+1 → Qi+1 ⊂ π1(∂Mi+1). Then the boundary ∂N∂Mi+1(Di+1) of a regular neighborhood

N∂Mi+1(Di+1) of Di+1 within ∂Mi+1 is a codimension one homology sphere.

Now, the inclusion induces an isomorphism

π1(∂N∂Mi+1(Di+1))→ π1(N∂Mi+1(Di+1))

Indeed any loop in N∂Mi+1(Di+1) based at a point of the boundary can be homotoped out of Di+1, by general

position. Since N∂Mi+1(Di+1) −Di+1 is homeomorphic to ∂N∂Mi+1(Di+1) × [0, 1) we can further homotope the

loop onto ∂N∂Mi+1(Di+1), proving that the map above is surjective. Further, a null-homotopy 2-disk mapped

properly into (N∂Mi+1(Di+1), ∂N∂Mi+1(Di+1)) can be homotoped off Di+1 by general position and hence into

∂N∂Mi+1(Di+1). This yields the injectivity of the homomorphism above.

We can further homotope the map Di+1 → N∂Mi+1(Di+1) to an embedding of Di+1 in the boundary, namely

such that its image is D∗i+1 ⊂ ∂N∂Mi+1(Di+1), and the induced map on fundamental groups is an isomorphism.

Eventually we consider a collar ∂N∂Mi+1(Di+1)× [0, 1] ⊂ ∂Mi+1 of the boundary and a Cantor set C ⊂ [0, 1].
The setsD∗i+1×C form the set of nondegenerate elements of a upper semi-continuous decomposition U of ∂Mi+1.

The associated quotient space ∂Mi+1/U is the quotient by the equivalence relation induced by U , namely two

points are identified if and only if they belong to the same set of the decomposition.
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We have then:

Proposition 13 ([23] Thm.4.3, [22], section 2, [24]). The space ∂Mi+1/U is a topological manifold and the extended

mapping cylinder Me(fi) of the quotient map fi : ∂Mi+1 → ∂Mi+1/U is a topological manifold.

Proof of Proposition 11. By Proposition 12 and the discussion above it follows that Mi+1 − int(Mi) is homeomor-

phic to the extended mapping cylinder Me(fi) of an acyclic map fi : ∂Mi+1 → ∂Mi, which is a quotient map as

described in Proposition 13.

Since it is acyclic fi is a Z[π1(∂Mi)] homology equivalence. On the other hand fi factors as ∂Mi+1 ↪→Mi+1 −
int(Mi) → ∂Mi, where the second map is the strong deformation retract of the extended mapping cylinder

Me(fi) onto its target boundary ∂Mi. This implies that the inclusion ∂Mi+1 ↪→ Mi+1 − int(Mi) is a Z[π1(∂Mi)]
homology equivalence, and hence this cobordism is a plus cobordism. �

6.5. Arborescence of unions of plus cobordisms with strongly perfectly semistable group at infinity. We

found above that M is endowed with an exhaustion by plus-cobordisms, i.e. an ascending filtration by compact

contractible submanifolds Mi ⊂M such that Mi+1 − int(Mi) is a plus cobordism for every i ≥ 0.

The main result of the previous section states that each plus cobordism Mi+1 − int(Mi) is topologically col-

lapsible. If any of the Questions 1 or 2 has an affirmative answer, then M should be homeomorphic to a PL

manifold which is PL arborescent.

7. CAT(0) METRICS FROM COLLAPSES

7.1. Basic results and techniques. Following [26], it is easy to construct CAT(0) metrics on regular neighbor-

hoods of trees using Gromov’s hyperbolization technique. To this end, we use metrics along Whitehead’s col-

lapsibility (cf. [68]) as a more direct and suitable (but much less elegant) alternative to Gromov’s hyperbolization

technique. We recall two critical criteria:

Lemma 12 (cf. [27]). Consider a locally CAT (κ) and locally compact metric length space X .

(a) Cartan–Hadamard theorem. If κ ≤ 0 and X is simply connected, then X is CAT (κ).

(b) Bowditch criterion. If κ > 0, and every closed curve of length ≤ 2π/κ can be monotonously contracted to a point,

then X is CAT (κ).

7.2. Links and the Gromov-Alexandrov lemma. Recall that the star and link of a face σ in a simplicial complex

Σ are the subcomplexes

stσΣ := {θ; there exists τ ∈ Σ such that σ ⊆ τ ∈ Σ and θ ⊆ τ}

lkσΣ := {θ ∈ stσΣ; θ ∩ σ = ∅}

Although these definitions of stars and links also make sense for any cell complex, we wish to emphasize that

the combinatorial definition used below in the cubical case is slightly different. Specifically let (P,6) be a poset,

namely a partially ordered set. For x ∈ P we denote by
∧
x the order ideal and by

∨
x the filter, namely:∧

x = {y ∈ P ; y 6 x},
∨
x = {y ∈ P ; y > x}

If x ∈ P we define the link of the element x in P to be the poset

lkxP =
∨
x− {x}
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More generally, if A ⊂ P is a sub-poset, then we set:

lkAP =
⋂
x∈A

lkxP

A poset P is called cubical if each order ideal
∧
x is the product of the poset I associated to the interval

I = {0, 1, [0, 1]; 0 < [0, 1], 1 < [0, 1]}

Also recall that a poset is called a lattice if every two elements of it have a least upper bound and a greatest lower

bound.

To a cell complex X one associates the face poset P (X), whose elements are faces (or cells) of X with respect

to the inclusion order relation. One usually use P̂ (X) to denote the poset obtained by adjoining one minimal

element and one maximal element to P (X), elements which can be thought of as ∅ and X itself. With this

definition we see that a cubical complex X is a cell complex whose face poset P (X) is a cubical poset and P̂ (X)
is a lattice, namely every couple of elements has a least upper bound and a greatest lower bound. We therefore define

for an arbitrary cell complex X and σ a face of X the combinatorial link as being the poset:

lkσX = lkσP (X)

In the simplicial case the combinatorial definition matches the geometric one given above, in the sense that the

face poset associated to the geometric link coincides with the combinatorial link. For notation simplicity we will

use the same symbol to denote a simplicial complex and the corresponding poset.

If Σ is a decomposition of a facewise smooth length space, then lkσΣ carries a natural facewise spherical

length metric.

Lemma 13 (Gromov–Alexandrov lemma; cf. [9]). If Σ is a locally finite facewise constant curvature κ length space. If

the link of every face in σ in Σ has a CAT(1) link, then Σ is locally CAT (κ).

The piecewise flat metric on a cube complex is the length metric obtained by endowing each cube with a

metric making it isometric with an unit Euclidean cube.

In the case of cubical complexes the Gromov criterion from above reads:

Lemma 14 (Gromov–criterion for cubical complexes; cf. [9]). The piecewise flat metric on a locally finite cube complex

Σ is locally CAT(0) if and only if the link of every vertex of Σ is flag.

A cube complex which has every vertex link a simplicial flag complex. will be called nonpositively curved.

7.3. Comparison CAT(0) metrics on arborescent complexes. The following is a slight improvement of Theorem

2.

Theorem 4. Let C be any locally finite arborescent simplicial complex. Then there exists a cubical complex C ′ that is PL

homeomorphic to C such that the piecewise flat metric on C ′ is CAT(0).

Let C =
⋃∞
n=1 Cn be the ascending union of subcomplexes obtained one from another by finitely many disjoint elemen-

tary expansions (reverse collapses):

{point} = C0 ↗ C1 ↗ · · ·Cn−1 ↗ Cn ↗ · · ·C

Then Cn are convex subsets of C, when the later is endowed with the CAT(0) metric obtained by pullback from C ′.
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Proof. The proof is by a simple induction, constructing the desired facewise hyperbolic CAT(0)-metric along

elementary expansions. The induction step is provided by the following result:

Proposition 14. Let X be a finite simply connected nonpositively curved cube complex. Let Γ be a PL k-disk which is a

subcomplex of X . Then there exists:

(1) a cubical complex X ′ which contains X as a subcomplex.

(2) a cubical complex ∆ which is a PL (k + 1)-disk containing the subcomplex Γ in its boundary ∂∆

such that the cubical complex X ′ = X ∪Γ ∆ obtained by gluing ∆ to X along Γ is nonpositively curved.

�

7.4. Extensions of nonpositively curved complexes. Let X ′ = X ∪Γ ∆, where ∆ = Γ × [0, 1]. Our Proposition

14 would immediately follow if the links of vertices of ∆ within X were simplicial flag complexes. However,

this might not be true and to achieve it we should allow the cubical complex ∆ be suitably modified, while

preserving the condition that ∆ is a PL (k + 1)-disk containing Γ.

To this purpose, we check the flag condition at each vertex of Γ. If it is not satisfied at some vertex v, then we

define a sequence of modifications eventually producing a new simplicial complex L′v out of the link lkvX , such

that L′v is now flag. The final step is to prove that there is some finite cube complex ∆ with the property that

lkvX ′ is isomorphic to L′v , for any vertex v of Γ and flag for all the other vertices of ∆.

In order to construct ∆ out of the links L′v , for v vertex of Γ, let us introduce more notation. We call an extension

of a simplicial/cubical complex S to be any simplicial/cubical complex containing it. We are concerned with

the following problem: given a cubical complex X and a collection of simplicial complexes Lσ, σ ∈ X , whether

there exists an extension X ′ of X such that lkσX ′ = Lσ , for any σ?

To this purpose we define a local extension of X to be a collection (Lσ, σ ∈ X) of extensions of the links lkσX
of all proper faces σ of X . This means that the embedding of lkσX into Lσ is part of the data. Moreover, for any

faces τ ⊆ σ of X , we have defined simplicial embeddings maps which will be assimilated to inclusions:

Lσ ↪→ Lτ , if τ ⊂ σ.

If τ ⊂ σ are faces of X and X ′ is any extension of X , then lkτσ has a natural embedding in lkτX : the poset

lkτσ is the poset associated to the face of lkτX corresponding to σ. Therefore we can see lkτσ as a face of the

simplicial complex lkτX and in particular as a face of any extension Lτ of lkτX .

Definition 9. A local extension (Lσ, σ ∈ X) of a simplicial/cubical complexX is said to be coherent if it commutes

with the passage from faces to links, namely for every faces τ ⊂ σ of X the following coherence equation holds:

lklkτσ(Lτ ) = Lσ,

where lkτσ is seen as a face of Lτ .

Note that lkτσ ⊂ lkτX , so that its image into Lτ is already part of the data. The coherence equation then says

that the image of the inclusion Lσ ↪→ Lτ is uniquely determined by the other data.

Definition 10. We say that a cubical complex ∆ is a combinatorial neighborhood of Γ if every k-face of ∆ either

intersects Γ or is contained in a unique minimal face intersecting Γ.
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To any extension X ′ = X ∪Γ ∆ of X we can associate a local extension, called its restriction to X consisting of

the collection of links Lσ = lkσX ′, along with the natural embeddings LσX ↪→ Lσ and Lσ ↪→ Lτ , when τ ⊂ σ

are faces of X . The key ingredient in globalizing a local extension is the following lemma:

Lemma 15. A local extension of a cubical complex X is coherent if and only if it is the restriction of a global extension

which is a combinatorial neighborhood of a subcomplex of X .

Proof. The coherence is satisfied by any extension X ′ of X , since by the definition of the links we have:

lklkτσ(lkτX ′) = lkσX ′

For the nontrivial implication consider a coherent local extension (Lτ , τ ∈ X). Define the cubical cells Cα(τ)
of dimension 1 + dim σ + dimα, where α is a face of Lτ . For fixed τ these cubes are glued together such that

Cα(τ) ∩ Cβ(τ) = Cα∩β(τ), for α, β ∈ Lτ ,

where C∅(τ) = τ . The resulted complex S(τ) should be the closed star of the face τ in the hypothetical global

extension and its underlying space is:

S(τ) =
⋃
α⊂Lτ

Cα(τ)

Recall that for τ ⊆ σ we have an inclusion Lσ ⊆ Lτ . However the natural map between the stars S(σ) ⊆ S(τ)
is not the tautological one.

It is enough to define the embedding S(σ) ⊆ S(τ) by sending Cα(σ) isometrically onto Cα∗lkτσ(σ), where

denotes the join. Note that the image of α in Lτ is contained in lklkτσLτ , by the coherence equations, so that

indeed α ∗ lkτσ is a face of Lτ .

We then define

X ′ =
⋃
τ∈X

S(τ)/ ∼

where the equivalence relation∼ identifies Cα(τ) and Cα∗lkτσ(σ) if τ ⊂ σ. Here we identified α ∈ Lσ to its image

α ∈ Lτ . This complex is well-defined if and only if we have the following commutative diagrams of inclusions:

S(σ) → S(τ1)
↓ ↓

S(τ1) → S(θ)

for every triple of faces θ ⊆ τi ⊆ σ, i = 1, 2. But this is a consequence of the fact that, under the above

assumptions we have:

lkθτ1 ∗ lkτ1σ = lkθτ2 ∗ lkτ2σ

Moreover, the coherence of the local extension insures that after gluing we indeed have lkσX ′ = Lσ , as desired.

Moreover, X ′ is a combinatorial neighborhood of a subcomplex of X , by construction. �

To see how a global extension is constructed out of a local extension consider the following example which

starts from a genuine extension X ∪Γ ∆, where ∆ is a product, as in the figure below. Let then L′σ be the stellar

subdivision of lkσX ′.

Then the collection (L′σ, σ ⊂ X) is a coherent local extension of X and the global extension associated to it is

drawn below:
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X

∆

Figure 1. A local extension obtained by stellar subdivision of links in an extension

Figure 2. The extension obtained from the coherent local extension

This construction then can be used for modifying the links of a given extension. Specifically, we have:

Lemma 16. Assume that the cubical complex X is flag and let Z = (Lτ , τ ∈ X) be a coherent local extension. Then there

is another coherent local extensionW = (L′τ , τ ∈ X) such that:

(1) every L′τ is obtained by subdividing faces of Lτ which are not in lkτ (X);

(2) every link L′τ is flag.

(3) the cubical complex X ′ whose restriction isW = (L′τ , τ ∈ X) is a combinatorial neighborhood of a subcomplex of

X . Moreover, every vertex link of X ′ is also flag.

Before to proceed, recall that a stellar subdivision of a simplex splits it into cones with a common vertex over

the faces, as in the figure 3 below:

Figure 3. One stellar subdivision of a face

Further, a derived subdivision of a simplicial complex ∆ is the composition of stellar subdivisions on the faces

of ∆ in reverse order of inclusion, starting with the maximal faces. Eventually, the relative derived subdivision

(A′, B) of a pair (A,B) of polyhedral complexes with B ⊂ A is the result of stellar subdivisions of all faces of A

which are not faces of B in reverse order of inclusion, starting with the maximal faces. Thus faces of B are not

affected and B ⊂ A′ as in the picture below where we consider the pair (A,B) formed by a 2-cell and one 1-cell:

A A’

B B

Figure 4. Relative stellar subdivision of a pair (A,B)

The following lemma is immediate:

Lemma 17. Consider (A,B) a pair of simplicial complexes such that B is flag. Then the relative derived subdivision

(A′, B) is flag.
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Proof of Lemma 16. For every Lτ we perform a relative derived subdivision and call it L′τ . Lemma 16 shows that

flag properties of links of L′τ are satisfied at all faces intersecting X . Indeed, the claim is immediate at links of

vertices of X and descends to faces of such links.

Further note that for every τ in X , every face of L′τ intersects lkτ (X) in a unique maximal face (which can be

empty). This implies that the local extensionW = (L′τ , τ ∈ X) is coherent and hence there is a cubical complex

X ′ whose restriction isW = (L′τ , τ ∈ X). By Lemma 15 the cubical complex X ′ is a combinatorial neighborhood

of a subcomplex of X .

By above, all links lkFX ′ of faces F contained inX , in particular vertices ofX , are flag. It remains therefore to

check the links of vertices of X ′ which don’t belong to X . To this purpose we will use the following description

of their links:

Lemma 18. Let o be a vertex of X ′ which is not a vertex of X . If F is the minimal face intersecting X and containing o,

then lkoX ′ is the free join of lkoF and lkFX ′.

Proof. It suffices to observe that every face of lkoX ′ is in the star of lkoF . If there were a face F ′ violating

that property then, by the combinatorial neighborhood property, F ′ would intersect X . This contradicts the

minimality of F . �

Now, lkFX ′ is the link of lkF∩XF in lkF∩XX ′ and we noted above that lkF∩XX ′ is flag. Since links of flag

complexes are flag complexes we derive that lkFX ′ is flag.

As lkoF is a simplex and lkFX ′ is flag, their free join is a flag complex as well. Henceforth, by Lemma 18,

lkoX ′ is flag for any vertex o of X ′ which is not a vertex of X . This ends the proof of Lemma 16. �

Remark 4. One single stellar subdivision is enough to make links of vertices of X flag. However, if we stop

here we might obtain new vertices in the corresponding extension X ′ which have not flag links. In the picture

below we have a vertex v of a square 2-cell of Γ, which is a facet of the 3-cube � of ∆. The link lkv� ⊂ lkv∆
is a (spherical) 2-simplex σ. Suppose that we aim at stellar subdividing this 2-simplex, as in figure 3. Then the

3-cube � from stv∆ is replaced by a complex Q(�, v) consisting of the union of three 3-cubes as in figure 5.

v
v

z

Figure 5. One stellar subdivision might create a new vertex whose link is not flag

We can see from the picture that the link of the newly created vertex z of is not flag. To remedy that we have

to continue stellar subdividing all cells of σ which are not cells of lkvX , in decreasing order of their dimensions.

Specifically, in the situation above we should continue to subdivide σ as indicated on figure 4. In this picture the

horizontal edge of the 2-simplex σ in lkv∆ belongs also to lkvX and hence it will be left untouched. Therefore

the 3-cube � from stv∆ is now replaced by the complex consisting of the union of five 3-cubes as in figure 6.
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vv

Figure 6. A relative derived subdivision of a 3-cube

The cubical stellar subdivision of a complex A at a face σ is obtained by removing σ, and gluing in the star

attached along the mapping cylinder of the inclusion map (see [2]). The relative cubical derived subdivision of a

pair (A,B) of cubical complexes is then obtained by performing cubical stellar subdivisions on faces of A which

are not in B, in reverse order of inclusion.

There is a simpler way to obtain the extension discussed here, if we are given the global extension. We can

turn this directly into the desired nonpositively curved extension without a detour through local extensions.

Consider X a nonpositively curved cubical complex, and X ′ = X ∪ ∆ a cubical extension. Then the above

lemma, on a global level, can be understood using a cubical derived subdivision. Now, we modify the extension

(X ′ = X ∪∆, X) as follows:

1. Perform a relative cubical derived subdivision.

2. Remove all cubes not incident to X (which remained unaffected in the subdivision process).

We obtain then the desired non-positively curved cubical extension.

Proof of Proposition 14. The result is a direct consequence of Lemmas 15, 16 and Gromov-Alexandrov’s Lemma

14. �

7.5. Proof of Theorem 4. Consider a sequence of reverse collapses Cn−1 ↗ Cn, C0 = {point}, such that

C =
⋃∞
n=1 Cn. Assume that we constructed CAT(0) cubical complexes C ′i, 0 ≤ i ≤ n such that C ′i are PL

homeomorphic to Ci and moreover C ′j are convex in C ′i, for j ≤ i.

Consider the next elementary expansion Cn ↗ Cn+1, where δ denotes the k-cell attached and set γ = δ ∩ Cn.

As γ is a PL (k− 1)-disk, its image Γ within C ′n by the PL homeomorphism Cn → C ′n is also a PL (k− 1)-disk. By

Proposition 14 there is a PL k-disk ∆ containing Γ embedded within ∂∆ such that C ′n+1 = C ′n ∪Γ ∆ is a CAT(0)

cubical complex. It then follows that the PL homeomorphism C ′n → Cn extends to C ′n+1 → Cn+1. Then the

claim follows by induction on n.

To make sure that C ′n is convex within C ′n+1, we first note that any cubical cell of C ′n+1 intersects C ′n along a

face. Therefore C ′n is locally convex, with respect to the piecewise flat metric on C ′n+1. Moreover C ′n is connected

and it is well-known that a connected simply connected locally convex subcomplex of a CAT(0) cubical complex

is convex, e.g. as a consequence of ([9], Prop II.4.41). Eventually Cn is convex in C as well, as the CAT(0) metric

on Cn won’t be changed when we adjoin new cells.

8. VARIATIONS

8.1. More tameness conditions.
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Definition 11. An open manifold M is weakly geometrically k-connected (see [30]) if M = ∪∞j=1Kj , where Kj ⊂
int(Kj+1), for j ≥ 1, is an exhaustion by compact k-connected PL manifolds. When k =∞we use the term weak

geometric contractibility.

It is obvious that CAT(0) polyhedra are weakly geometrically contractible. It suffices to consider any exhaus-

tion by metric balls, which are convex. To guarantee the filtration is a filtration by manifolds, one merely has to

to pass to the regular neighborhoods of these geometric balls to obtain the desired filtration.

Definition 12. An end is of type Fk (respectively F ) if it admits arbitrarily small clean neighborhoods with the

homotopy type of a CW complex having finite k-skeleton (respectively finitely many cells).

This generalizes the Tucker condition explored in [47] which requires that the complement of any compact

subpolyhedron has finitely generated fundamental group, i.e. is of type F1.

8.2. Weak geometric contractibility is not sufficient. The aim of this section is to construct examples of open

weakly geometrically contractible manifolds which are neither semistable nor with end of type F1.

Definition 13. An open manifold W has injective ends if it admits an ascending compact exhaustion by sub-

manifolds Kj with the property that the maps induced by inclusions π1(∂∗Kj) → π1(Kj+1 − int(Kj)) and

π1(∂∗Kj+1) → π1(Kj+1 − int(Kj)) are injective. Here ∂∗K denotes an arbitrary connected component of ∂K.

The ends of W are strictly injective if none of the maps above are surjective.

It is well-known (see e.g. [32], [34], ex.4.17) that:

Lemma 19. An open manifold with strictly injective ends is not semistable.

Our goal now is to construct geometrically contractible manifolds with strictly injective ends. To this purpose

we introduce more terminology.

We say that the nontrivial pair H ⊂ G of finitely presented groups is tight if the normal closure of H within G

is H itself, i.e. there is no proper normal subgroup of G containing H . The pair is nontrivial if H ⊂ G is proper.

The group G is superperfect if H1(G) = H2(G) = 0. Observe that G is superperfect if and only if G = π1(K),

where K is a finite complex whose integral homology is that of a point.

Lemma 20. Given a nontrivial tight pair H ⊂ G of superperfect finitely presented groups, there exists an open weakly

geometrically contractible manifold W with a contractible compact exhaustion Kj such that the maps π1(∂∗Kj) →
π1(Kj+1 − int(Kj)) and π1(∂∗Kj+1)→ π1(Kj+1 − int(Kj)) are given by the proper inclusions H ⊂ G.

Proof. A classical result of Kervaire ([43]) states that G is the fundamental group of a homology sphere Σn of

dimension n ≥ 5 if (and only) if G is finitely presented and superperfect. Let H = π1(K) be fundamental group

of an acyclic k-complex, k ≥ 2. Choose n ≥ 2k + 1, in order to be able to embed K → Σn such that the map

induced by inclusion π1(K) → π1(Σn) corresponds to the inclusion H ↪→ G. Consider two such embeddings

K1 and K2, which by transversality could be assumed to be disjoint. Let N1 and N2 denote disjoint regular

neighborhoods of K1 and K2 within Σn.

Using general position we derive that π1(Σ − int(N1 t N2)) ∼= π1(Σ) = G and π1(∂Ni) ∼= π1(Ni − Ki) ∼=
π1(Ni) = H . Moreover, the map π1(∂Ni) → π1(Σ) induced by the inclusion is identified with the embedding

H ↪→ G. If H is weakly acyclic then X = Σ− int(N1 tN2) has the homology of a spherical cylinder.
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Now, since ∂N1 is a homology sphere of dimension at least 4, it bounds a compact contractible manifold M .

Then, the result of gluing M ∪ X is acyclic and simply connected and hence contractible. By recurrence we

find that Kj = M ∪ X ∪ X · · · ∪ X , where X occurs j-times, is also contractible. Therefore the open manifold

W = M∪X∪X · · · is weakly geometrically contractible and the exhaustionKj satisfies all the requirements. �

Lemma 21. Any finite superperfect group H is contained in a superperfect group G to form a nontrivial tight pair. In

particular, this is the case for the binary icosahedral group 〈a, b|a5 = b3 = (ab)2〉 ∼= SL2(F5), SL(2,Fp), for odd prime p,

or more generally any finite perfect balanced group.

Proof. Any finite group is contained into some Sn which is contained into Sp(2n,Fq). The finite symplectic group

Sp(2n,F2) is simple (hence perfect) for n ≥ 4 and has trivial Schur multiplier so that it is superperfect. The finite

symplectic groups PSp(2n,Fq) are simple for n ≥ 4 and have Schur multiplier Z/2Z, when q is odd, so that

Sp(2n,Fq) is the universal central extension of PSp(2n,Fq). Therefore it is superperfect. Any proper normal

subgroup of Sp(2n,Fq) should be contained in the center, so that the pair obtained is tight and nontrivial.

Note that SL2(Fp), for odd prime p are perfect and admit balanced presentations (see [14]). Thus their presen-

tation 2-complexes are acyclic since their Schur multiplier is trivial, by an old theorem of Schur.

Alternatively any finite group is contained in the Thompson group V , which is finitely presented, simple and

superperfect ([42]). Moreover V is non co-Hopfian, as it contains copies of V corresponding to stabilizers of

dyadic intervals of the circle, when we identify V with a group of piecewise linear dyadic bijections of the circle.

Therefore these inclusions V ↪→ V are nontrivial tight pairs of infinite groups. �

Remark 5. More examples of superperfect groups are 1-relator torsion-free groups (Lyndon’s theorem) and per-

fect finitely presented groups of deficiency zero, in particular Higman’s groups, whose presentation complexes

are acyclic. Other finite examples are SL2(F8), SL2(F32), SL2(F64), SL2(F27), SL2(F5) × SL2(F5), Â7, etc (see

[15]). More recently the Burger-Mozes examples (see [13]) of simple finitely presented torsion-free groups acting

on products of trees can be written as amalgamated product of free groups over free subgroups. A classical the-

orem of Whitehead ([68]) states that whenever we have aspherical spaces X and Y such that π1(X ∩Y )→ π1(X)
and π1(X ∩ Y ) → π1(Y ) are injective, then X ∪ Y is aspherical. This proves that Burger-Mozes simple groups

are superperfect.
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