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Abstract One considers the set of radii (called spectrum) of topological
ball packings on a Riemannian manifold and computes explicitly such spec-
tra for 2-packings of flat tori. We show that the volume is determined by
the spectrum and that any manifold has a metric whose 2-spectrum is that
of the sphere.
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1 Introduction

1.1 The aim of this paper is to consider some metric invariants for mani-
folds which are related to the basic geometric invariants like the curvature,
diameter and volume. It is known that the latter alone does not suffice
to characterize Riemannian spaces in general. Recent results brought to the
attention some invariants related to the ball packings on length spaces (see
[2,7,4,5]). These authors considered for instance the q-th packing radius
packq(M) of the metric space M , which is the greater radius a set of q
equal and disjoint metric balls can have in M . One of their major recog-
nition result states then ([7]) that a n-manifold of sectional curvature ≥ 1
and packn−1(M) > π

4 is diffeomorphic to the sphere Sn. Such results for
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low values of the parameter q in packq(M) should have an interesting coun-
terpart for very large q, since as mentioned in [7] these invariants seem to
be also responsible for the global shape of the manifold. The results below
try to comfort such a viewpoint.

Our strategy is to consider also packings with non-necessarily equal balls.
The space of n-packings in the metric space (M,d) is the subset TCn ⊂M×
Rn

+, of those n-tuples of (pi, ri)i=1,n for which the metric balls B(pi, ri) =
{x; d(x, pi) < ri} are disjoint, where d states for the distance function.
We will be concerned henceforth with the case of domains in Riemannian
manifolds endowed with the induced metric structure.

1.2 Definition.The image Cn(M) ⊂ Rn
+ under the projection of TCn on

the second factor is the (extended) packing spectrum Cn of order n of
M .

1.3 Remark.When n = 1 the spectrum so defined would be R+, but one
sets by convention C1(M) = [0, d], where d is the diameter.

It seems that one cannot read from Cn(M) (for small values of n) too much
things about the topology of M . One introduces then some related spectra,
which might be responsible for the small scale geometry of the manifold,
by asking the metric balls be genuine topological balls:

1.4 Definition.Set Cb∗ (respectively Cs∗) for the subset obtained when we
ask that the closed metric balls cl(B(pi, ri)) (respectively B(pi, ri)), and all
smaller copies B(pi, r) for r < ri be homeomorphic to the standard closed
(respectively open) ball.

If M has non-empty boundary, then as the radius of a ball grows, it
might happen that the ball reaches the boundary but the topology of the
closed ball cl(B(p, r) does not change. However B(p, r) ∩ ∂M 6= ∅, hence
this ball contributes to Cb∗ but not to Cs∗ .

One might not ask that all smaller balls B(pi, r), r < ri be topological
balls. In this case, for fixed p, the set of admissible r might be non-connected;
jumps appear when one reaches non-essential critical points of the distance
function to p.

1.5 Remark.The balls B(p, r) contributing to Cbn are those satisfying r <
c(p) where c(p) is the first positive critical value of the function d(p, ∗).
According to ([3], p.361-363), if the distance function d(p, ∗) has no critical
values in [0, r] then cl(B(p, r)) is a topological ball.

1.6 The main question we want to address here is to what extent the knowl-
edge of the packing spectra for all n determines the isometry type of the
manifold. This is weaker than asking about the relevance of the q-packing
radii sequence for the recognition problem, because the spectra contain more
information about the metric geometry. We should mention that really in-
teresting results in the vein of [7] have been obtained by restricting the
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set of spaces under consideration to those which satisfy some nice curva-
ture conditions (e.g. bounded from bellow by a positive constant). We work
instead in a general context but ask for infinitely many measurements of
metric invariants. Notice that it should be a close connection between the
packing spectra, the packing radii and the length spectrum. The packing
radii have been proved an useful tool in the presence of positive curvature
and the length spectrum in the case of negatively curved manifolds (see e.g.
[8] where it is proved that the marked length spectrum is a complete invari-
ant for non-positive curved surfaces). We expect therefore that the packing
spectrum be useful in all cases.

Acknowledgements Part of this work was done during first author’s visit at Uni-
versity of Palermo and then at Tokyo Institute of Technology, whose support and
hospitality are gratefully acknowledged. We are thankful to the referee for pointing
out an error in the previous version of this paper.

2 Examples

We denote by Rn
+ the open cone of n-tuples of positive reals.

2.1 Dimension 1. Consider the circle S1 of length l. Then Cbn = int(Csn),
and

Cn = Csn = {(r1, ..., rn) ∈ Rn
+; r1 + r2 + ...+ rn ≤ l/2}.

2.2 Consider M an interval of length d. Then, for n ≥ 3 we have:

Cn = Cbn = {(r1, ..., rn) ∈ Rn
+;∃i 6= j such that ri + rj + 2

∑
k 6=i,j

rk ≤ d},

and

C2 = {(r1, r2) ∈ R2
+; r1 + r2 ≤ d}.

Moreover

Csn = {(r1, ..., rn) ∈ Rn
+; r1 + r2 + ...+ rn ≤ d/2}.

2.3 The subsets C∗∗ ⊂ Rn
+ have a conical structure i.e. λC∗∗ ⊂ C∗∗ for

0 < λ ≤ 1.

2.4 2-packings. For any closed manifold M of diameter d one has

C2(M) = {(r1, r2) ∈ R2
+; r1 + r2 ≤ d}.

Proof: Consider two disjoint balls B(pi, ri), i = 1, 2. Then d(p1, p2) ≤ d but
d(p1, p2) ≥ r1 +r2. Further, if we have two points a and b sitting at distance
d one from the other then the balls B(a, r1) and B(b, r2) are disjoint, for
each r1 + r2 ≤ d. 2



4 L.Funar, R.Grimaldi

2.5 Remark.The difficulty in computing the subsets Cn begins with n = 3.
We have an obvious inclusion

C3(M) ⊂ {(r1, r2, r3) ∈ R3
+; r1 + r2 + r3 ≤ 3d/2},

but the precise description might be rather tricky, even for nice metrics, like
the flat ones. The qualitative estimates of the sets Cn(M) for n ≥ 4 are even
more delicate since they are directly related to the curvature properties of
the manifold.

2.6 Rectangles. Let D = Da,b, for a ≤ b, be the a× b planar rectangle. If
na ≤ b, n ∈ Z then Csk(D) = (0, a/2]k, for k ≤ n. If a ≤ b ≤ 2a then

Cs2(Da,b) = {(r1, r2) ∈ R2
+; r1 + r2 ≤ a+ b−

√
2ab, 0 < r1, r2 ≤ a/2}.

Proof: Let us call a configuration of balls extremal if we cannot increase
simultaneously all radii. Since the spectra are conical it suffices to determine
the extremal configurations. The extremal configuration with two balls in
the rectangle are of two types: either two balls sitting in opposite corners,
and touching each other, or else one of maximum radius and the second one
in a corner. In the first case one derives that the radii fulfill

r1 + r2 = a+ b−
√

2ab,

while the second case yields the restrictions

r1 = a/2, r2 ≤ re =
a+ 2b− 2

√
2ab

2
.

These prove the claim. 2

2.7 Let T be a planar triangle of angles αj and edges lj . Then

Cs2(T ) = {(r1, r2) ∈ R2
+; r1(1 + coth(αj)) + r2(1 + coth(αk)) ≤ li,

∀i 6= j 6= k 6= i, 0 < r1, r2 ≤ r, }

where r is the incircle radius.

Contrasting to this situation (see also 2.3) for manifolds without boundary
one has:

2.8 Set cM for the (infimum on p of the) first positive critical value of
the distance function (to some point p). Then for a closed homogeneous
manifold M one has

Cbn(M) = Cn(M) ∩ {rj < cM ,∀j = 1, n}.

Moreover the observation for 2.5. extends more generally to:

2.9 If n ≤ d
cM

, where d is the diameter of the homogeneous M then

Cbn(M) = (0, cM )n.
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Proof: Since the manifold is homogeneous one can pack n disjoint balls of
radius cM having their centers along a diameter. 2
Actually d

cM
is a very rough approximation for the range of triviality of

Cbn(M). One can choose instead the maximal number n(M, cM ) of disjoint
balls of radius cM which can be packed in M .

2.10 If iM denotes the injectivity radius of the manifold M then iM ≤ cM .
In fact the critical points of the distance function are contained in the cut
locus (see e.g. [3], p.361). Recall that the point x is critical for the function
d(p, ∗) if, for any vector v in the tangent space at x, there exists a geodesic
segment from x to p whose tangent vector at x makes an angle α ≤ π

2 with
v. For instance, if iM equals half the length of shortest closed geodesic then
iM = cM .

3 2-packings for flat tori

3.1 2-packings for homogeneous manifolds. If M is a flat torus then

Cb2(M) = {(r1, r2); r1 + r2 ≤ d, 0 < r1, r2 <
iM
2
},

where d is the diameter and iM the injectivity radius (of any of its points).

In fact for flat tori the injectivity radius equals half the length of the shortest
geodesic loop, and one uses 2.10.

3.2 Theorem. Let Tτ be the flat torus C/Z⊕Zτ . One can always choose τ
such that Re(τ) > 0 and Im(τ) ∈ [0, 1). Let us assume that |τ |2 + |1−τ |2 ≥
1. Then the following holds:

Cb2(Tτ ) = {r1 + r2 ≤
|1− τ |

2 sin(arg(τ))
, 0 < r1, r2 <

1

2
min(|τ |, 1, |1− τ |)}.

Proof: Using the previous claim one has to determine the diameter d(Tτ )
and the injectivity radius iTτ .

3.3 The diameter of Tτ . If |τ |2 + |1− τ |2 ≥ 1 then

d(Tτ ) =
|1− τ |

2 sin(arg(τ))
.

Suppose that |τ |2 + |1− τ |2 ≤ 1.

• if |τ | ≥ |1− τ | then

d(Tτ ) =
|τ |

2 cos(arg(τ))
,

• and if |τ | ≤ |1− τ | then

d(Tτ ) =
|1− τ |

2 cos(arg(1− τ))
.
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Proof: Take two points at distance d on Tτ . The parallelogram of vertices
0, τ, 1, 1 + τ is a fundamental domain for the action of the lattice Z⊕Zτ on
the plane. One can suppose that one of the two points is the origin 0. The
diagonal joining τ to 1 is the smallest of two and divides the parallelogram
into two equal triangles. By symmetry one can assume that the other point
belongs to the triangle T of vertices 0, 1, τ . One seeks then for the point in
T which maximizes the minimum of the three distances at the vertices of
the triangle. The way we chose τ implies that T has two acute angles with
respect to the horizontal axis.

Assume first that the third angle (at τ) is also acute, which is equivalent
to ask that |τ |2 + |1 − τ |2 ≥ 1 holds. Then there exists an unique point in
plane situated at equal distance from all three vertices, and this point lies
in T . Thus the diameter is the distance from this point to the origin. An
elementary computation yields the desired formula for the diameter.

The other alternative is when |τ |2 + |1− τ |2 ≤ 1 holds, and so the third
angle is greater than π

2 . Then the point sitting at equal distance from the
vertices lies outside the triangle T . However a simple argument shows that
the point in T solving the minimax problem is the unique point of the
segment [0, 1] which is at equal distance from τ and the other endpoint of
the longest edge among [τ, 0] and [τ, 1]. Again an elementary check proves
the claim.2

One has now to compute the length of the smallest closed geodesic for
flat tori, or alternatively, the smallest non-zero Euclidean distance between
two points of the lattice Z⊕Zτ . This is a classical problem equivalent to the
computation of the non-zero infimum a positive definite bilinear form over
the integers. There is no close formula for a general binary form, but only
estimations (due to Minkowski) of the infimum, and an algorithm permitting
to compute it in finitely many steps. Our result below, based on a geometric
argument, is slightly more general than the classical one for reduced binary
forms (see [1], Theorem II, p.33):

3.4 The injectivity radius. If |τ |2 + |1− τ |2 ≥ 1 then

iTτ =
1

2
min(|τ |, 1, |1− τ |)}.

Proof: Let consider the points 1, τ, τ−1,−1,−τ, 1−τ which we label v1, ..., v6.
The half-lines [0vi and [0vi+1 determine an angular sector in the plane,
which we denote by Ai. Here is to be understood that the indices take val-
ues in Z/6Z. The first remark is that the vectors vi and vi+1 generate all
the lattice points in the sector they define:

3.5 One has Z⊕ Zτ ∩Ai = Z+vi ⊕ Z+vi+1.

Proof: It is sufficient to check it for A1. If m+nτ ∈ A1 then n ≥ 0. Assume

that m < 0. Then arg(m+ nτ) = nIm(τ)
nRe(τ)+m > arg(τ) would contradict the

fact that m+ nτ ∈ A1.2
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3.6 If two vectors v and w make an acute angle then |kv+nw| ≥ min(|v|, |w|),
for k, n ∈ Z+.

The proof is obvious. 2
Now this lemma shows that the smallest distance from the origin, in each
acute angle sector is obtained for one of the two base vectors. The angles
around the origin are the same as those of the triangle T , which are then
less than π

2 . This leads to the claimed value for the injectivity radius. 2
The advantage of this method is that it generalizes immediately to the
higher dimensional cases:

3.7 Flat (acute-angled) n-tori. Let TΛ = Rn/Λ, where Λ is a lattice of
basis v1, v2, ..., vn. Assume that the simplex spanned by the vectors vi has
all its face angles acute, or equivalently that the following conditions are
fulfilled:

(vi, vj) ≥ 0, i 6= j, (vi − vj , vi − vk) ≥ 0, i 6= j 6= k 6= i,

where ( , ) denotes the inner product in Rn. Then

iTΛ = min(|vi|, |vi − vj |, i 6= j ∈ {1, ..., n}).

Proof: Using the obvious reflections of the lattice one divides the Euclidean
space into infinite cones, which are spanned by the vectors vi−vj and vj , for
i 6= j ∈ {1, ..., n}. In each infinite cone the lattice points can be expressed as
linear combinations with positive integers coefficients from the basis vectors
spanning the cone (the analogue of 3.4). The angle between two spanning
vectors is less than π

2 , hence 3.5 shows that in each cone the minimum length
is reached on its respective basis vectors.2

4 The volume and the spectrum

In this section one proves that (a subset of) the metric spectrum determines
the volume for domains in homogeneous manifolds:

4.1 Theorem. Let D1 and D2 be domains in a homogeneous manifold M .
If their spectra agree then vol(D1) = vol(D2).

Proof: Since the isometry group of M is transitive it follows that the volume
of the radius r ball is a function f(r) depending only on r (and M). Consider
then the function f : Cn(Md) −→ R+ given by f(r1, ..., rn) = f(r1) + ...+
f(rn) which is the volume of the packed balls. Consider next voln(M) =
sup(ri)∈Cnf(r1, ..., rn). The claim follows from:

4.2 We have supn voln(M) = vol(M).

Proof: This result is valid more generally, without the homogeneity assump-
tion, by setting voln(M) for the maximal volume of a n-packing. Roughly
speaking it says that we can approximate as close as we want the volume
of a domain by a packing with balls (see also a similar argument in [2],
p.20-24).
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4.3 Let H ⊂M be compact, or such that the scalar curvature is bounded.
There exists a constant cH > 0 such that: for any domainD ⊂ H there exists
some r > 0 and a packing with radius r balls b1, b2, ..., bk ⊂ D satisfying

vol(b1) + vol(b2) + ...+ vol(bk) ≥ cHvol(D).

Proof: Let consider a maximal packing of D using only radius r balls. Then
the balls having the same centers and radius 2r will cover D, since otherwise
one contradicts the maximality. We derive therefore

n∑
i=1

vol(B(pi, r)) ≤ vol(D) ≤
n∑
i=1

vol(B(pi, 2r)),

where n is the number of balls, and pi are the centers. However, for r close
to zero one has

vol(B(p, 2r))

vol(B(p, r))
∼ ω(2r)

ω(r)

1− (2r)2S2r/6 +O(r3)

1− r2Sr/6 +O(r3)
,

where Sρ is the integral scalar curvature on the radius ρ ball and ω(r) is the
volume of the Euclidean ball of radius r. If the scalar curvature is bounded
there exists some r0(H) such that for r ≤ r0(H) one has vol(B(p,2r))

vol(B(p,r)) ≤
2ω(2r)ω(r) . In particular the volume of the packing is at least ω(r)

2ω(2r)vol(D), and

so cH is bounded below by a universal constant. 2
Now the proof of 4.2 is clear: take a packing with disjoint balls in M ,

whose reunion is P1 and the volume covered is at least cMvol(M). Take
further another packing P2 covering at least cMvol(M −P1) , and continue.
At the nth step the remaining domain not covered yet has volume less than
(1 − cM )nvol(M). This ends the proof. As the balls can be chosen small
enough the claim is true for Cb∗ and Cs∗ as well. 2

5 Prescribing 2-packing spectra

5.1 Theorem. For any closed n-manifold M there exists a metric with
respect to which one has Cb2(M) = Cb2(Sn).

Proof: Let us consider p ∈M and B ⊂M be a small open ball around p. The
manifold with boundary M−B has a (n−1)-dimensional spine K ⊂M−B
on which it collapses. Moreover K should be connected. Consider a metric
tubular neighborhood of K in M , consisting of the points having distance
at most ε to K. For small enough ε this is a regular neighborhood of K.
Since M − B is also a regular neighborhood of K there exists an ambient
isotopy carrying the metric tubular neighborhood into M −B. One induces
then a metric on M −B for which M −B = {x ∈M ; d(x,K) ≤ ε}. In this
metric all points of ∂B are at distance ε far from K.

Consider now the ball B, which inherits a boundary metric structure
g∂B from M −B. One extends g∂B all over B by using a cone construction:
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gAB = f(r)g∂B + Ad r2. For general differentiable f(r) the metric gB is
smooth everywhere but at the origin. One chooses f(r) = r for r ≥ δ > 0,
and vanishing fast enough at 0 in order to make the metric smooth at p,
and A very large, in comparison to the size of the boundary ∂B.

One use a similar metric blowing-up at K. Let Nλ be the metric tubular
neighborhood around K of radius λε. If s is the local parameter describing
the distance to K, we can decompose locally the initial metric gM−B =
gλ + d s2, where gλ = g|∂Nλ , by using the fact that M −B −K is an open
cylinder. Let now deform the metric radially: set gAM−B = h(s)gλ + Ad s2,
where h(s) = 1, for s ≥ δ > 0 is decreasing fast enough to make gAM−B
smooth at the points of K. One glue the two metrics gAB and g

A/ε
M−B and get

a metric on M with the following properties:

• geodesics emanating from p are radial and have length A.
• from each point of ∂B there exists an unique minimal geodesic to a point

of K which realizes the distance to K, and so it has length A.

Using these properties it follows that for large enough A the diameter of M
is attained by d = d(p, q) = 2A for any point q ∈ K, since they are all at
the same distance from p. Moreover the open balls B(p, µ) and B(q, d− µ)
are disjoint for µ ≥ A, thereby settling our claim. In fact the boundary of
B(p, d− µ) is the same as ∂Nd−µ and B(q, d− µ) ⊂ Nd−µ. 2

5.2 Remark.The metrics constructed this way are highly non-generic.

5.3 Theorem. Suppose that Cb2(M) = Cb2(Sn) for a complete generic met-
ric on M , and some (generic) metric of convex body on Sn. Then M is
homeomorphic to Sn.

Proof: For a generic metric on M , for each point p there exists at most one
point q such that d(p, q) = d, where d is the diameter. Actually one might
have supposed only that this set is finite (since it should be a spine of the
1-holed manifold, hence connected).

By hypothesis there exists points pn, qn such that the balls B(pn, d− 1
n )

and B(qn,
1
n ) are disjoint topological balls. By extracting a subsequence one

finds the limit points p∞ and q∞ in M which satisfy d(p∞, q∞) = d. The
genericity assumption implies that d(p∞, x) < d for any x ∈M − {q∞}.

Let α = inj rad(q∞) > 0. Then B(q∞, α) is a topological ball containing
q∞. In particular d(p∞, ∂B(q∞, α)) = β > 0. Consider then ε < α/2, and
n ≥ 2/α large enough in order to satisfy d(pn, p∞) < ε and d(qn, q∞) < ε.
From the triangle inequality one derives that d(pn, ∂B(q∞, α)) ≤ ε + d −
α < d− 1

n . This shows that ∂B(q∞, α) ⊂ B(pn,
1
n ). Using then Schoenflies

theorem one derives that the sphere ∂B(q∞, α) bounds a ball in B(pn,
1
n ).

On the other hand ∂B(q∞, α) is the boundary of another ball B(q∞, α),
and their reunion is M . Standard results in manifold topology imply that
M is homeomorphic to a sphere. 2

5.4 A similar argument was used in ([3], Thm.1.12, p.363) for proving that
a manifold for which the distance function d(p, ∗) has only one critical point
is homeomorphic to a sphere.
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5.5 Remark.The small enough balls in a smooth manifold are smooth balls.
If B(p, r) is a topological ball for which the concentric balls B(p, r′) for
r′ < r are smooth balls, then B(p, r) is smoothable. This shows that a
smooth manifold as in 5.3 is actually a twisted sphere.

We didn’t use the full power of the equality of spectra, but just the fact
that there exist balls with radius arbitrary close to the diameter. Therefore
our result states the stability of the topological shape in the presence of a
stable 1-packing radius:

5.6 If M has a generic metric with pack1(M) = pack1(Sn) then M is a
twisted sphere.

5.7 Remark. In this respect the diameter sphere theorem of Grove and
Shiohama ([6]) shows that a much stronger stability holds (i.e. pack1(M) >
1
2pack1(Sn) implies M is a twisted sphere) in the presence of a lower bound
for the sectional curvature sec(M) ≥ 1.

5.8 Remark. The genericity condition in 5.3. could be replaced by any other
condition implying that the set A(p) of points at distance d from p consists
in finitely many points.

5.9 Questions.

• It seems that, given N ≥ 2 and a closed n-manifold M , there exists a
metric on M such that Cbk(M) = Cbk(Sn), for all k ≤ N .

•Whether the condition Cbk(M) = Cbk(Sn), holding for some generic metric,
and all k ≤ N , implies that M and Sn are actually Lipschitz εk-close to
each other, for some constants εk fulfilling limk εk = 0 ? This would be
a step towards the recognition problem for the standard metric of Sn.

• What happens when one relax the equality of spectra to that of packing
radii i.e. packk(M) = packk(Sn), for k ≤ N ? Does then follow that
in the generic situation M is homeomorphic to Sn, or better, that it is
Lipschitz close to Sn ? If one adds conditions like sec(M) ≥ 1 then extra
flexibility is expected, for instance that an inequality like packk(M) >
ckpackk(Sn) implies M is a sphere, where ck ∈ (2−1/n, 1) are some
constants to be determined.
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