
COHOMOLOGICAL REPRESENTATIONS OF AUTOMORPHISMS GROUPS

LOUIS FUNAR

Abstract. We survey several representations of automorphisms groups which arise in a unified
manner from a construction due to Long and Moody.
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1. Tangent representations from moduli spaces

1.1. Mapping class groups as (outer) automorphisms groups. Set Σr
g,k for the orientable

surface of genus g with k boundary components and r marked points. We denote by Γrg,k the
mapping class group of Σr

g,k, namely the group of isotopy classes of orientation preserving home-
omorphisms that fix pointwise the boundary components and preserve globally the set of marked
points. The pure mapping class group PΓrg,k conists of those classes of homeomorphisms which fix
pointwise both the boundary components and each of the marked points.

We set πrg,k for the fundamental group of the closed surface Σr
g,k. Recall that, by the Dehn-

Nielsen-Baer theorem Γ1
g is the group of orientation preserving automorphisms of πg, namely those

which preserve the relator (conjugacy class) instead of reversing it. Further Gg = Out+(πg) =
Aut+(πg)/Inn(πg), where Inn(πg) is the subgroup of inner automorphisms of πg.

Denote by γj and δj the loops around the punctures and respectively the boundary components
and by [z] the conjugacy class in πrg,k of the element z. Let Aut+(πrg,k;C1, . . . , Cs) denotes the
subgroup of automorphisms fixing globally each set of conjugacy classes in C1, C2, . . . , Cs.

We denote then by Pr the set of all peripheral conjugacy classes [γj ] and by Pr the vector

consisting of these peripheral conjugacy classes. Similarly, P ∂k is the set of all boundary conjugacy

classes [δj ] and by P∂
k the vector consisting of these peripheral conjugacy classes. We have then

the following general statement for the Dehn-Nielsen-Baer theorem:

Γrg = Out(πrg , Pr) = Aut+(πrg,k;Pr)/Inn(πrg)

The notation is intended to specify that each boundary conjugacy class is fixed, while the peripheral
conjugacy classes are only globally invariant. If we fix the base point of the fundamental group to
be among the marked points, it will be automatically invariant by the pure mapping class group
so that:

PΓr+1
g = Aut+(πrg ;Pr)

Now, let Γr,1g,k ⊂ Γr+1
g,k denote the index r+1 subgroup of mapping classes of those homeomorphisms

which fix one marked point. Then we have the more general statement:

Γr|1g = Aut+(πrg,k;Pr)

Here Pr consists of the r conjugacy classes of peripheral loops with the exception of the one around
the marked basepoint.

Then we have the following commutative diagram consisting of two exact sequences correspond-
ing to Birman’s exact sequence, connected by isomorphisms provided by the Dehn-Nielsen-Baer

Date: November 17, 2017.

1



2 LOUIS FUNAR

theorem:
1 → πrg/Z(πrg) → PΓr+1

g → PΓrg → 1
↓ ↓ ↓

1 → πrg/Z(πrg) → Aut+(πrg ;Pr) → Out+(πrg,k;Pr) → 1

We have also a similar commutative diagram in the non pure case:

1 → πrg/Z(πrg) → Γ
r|1
g → Γrg → 1

↓ ↓ ↓
1 → πrg/Z(πrg) → Aut+(πrg,k;Pr) → Out+(πrg,k, Pr) → 1

The group πrg is either a free group of rank 2g+ r− 1, if r > 0 or else a surface group. In particular
it is centerless when 2g + r − 2 > 0, which we suppose to be the case from now on.

We further consider a surface with one boundary component Σr
g,1 and we take the basepoint on

the boundary component. Therefore, the basepoint is automatically invariant by the pure mapping
class group. It follows that we also have the alternative description:

Γrg,1 = Aut+(πrg,1; [∂Σr
g,1], Pr),

Notice that homeomorphisms of Σr
g,1 automatically preserve the orientation. Denote by

τ : Γrg,1 → Aut+(πrg,1; [∂Σr
g,1], Pr),

the natural isomorphism, which generalizes the usual Artin representation. The following is rather
well-known:

Lemma 1.1. There is an isomorphism between Γ
r|1
g,1 and the semi-direct product πrg,1oτ Γrg,1, if and

2g+ r−1 > 0, which restricts to an isomorphism between the pure mapping class group PΓr+1
g,1 and

semi-direct product πrg,1 oτ PΓrg,1.

Proof. The embedding of Σr
g,1 into Σr+1

g,1 as the complement of a punctured annulus Σ1
0,2 induces

injective homomorphisms π1(Σ
r
g,1, ∗) → π1(Σ

r+1
g,1 , ∗) and Γrg,1 → Γ

r|1
g,1. Here ∗ is a basepoint on

the boundary component of the punctured annulus. This provides a splitting of the Birman exact
sequence above. Moreover, the action of the subgroup Γrg,1 on the subgroup π1(Σ

r
g,1, ∗) coincides

with τ . Therefore Γ
r|1
g,1 is isomorphic to the given semi-direct product. �

It is easy to see that there is a more general version, in which we consider mapping class groups
instead of pure ones (see e.g. [5]). The corresponding semi-direct product is now isomorphic to the
stabilizer of the last puncture in the mapping class group of the surface with one extra puncture,
provided the surface has boundary.

1.2. Geometric actions of (outer) automorphisms groups on moduli spaces. Let π be a
finitely generated group, G a connected Lie group. We denote by Hom(π,G) the space of repersen-
tations of π. The group Aut(π) acts on Hom(π,G) by right composition:

(ϕ · ρ)(x) = ρ(ϕ−1(x)), for ϕ ∈ Aut(π), ρ ∈ Hom(π,G), x ∈ π

This is a real algebraic action. Let now Mπ,G be the character variety of representations π → G,
or the GIT quotient Hom(π,G)/G. Then the action

Aut(π)×Hom(π,G)→ Hom(π,G)

above passes to a quotient action of

Out(π)×Mπ,G →Mπ,G

Let F be a finitely generated group. Fix a surjective homomorphism ρ : π → F whose kernel
ker ρ is denoted K and consider its stabilizer, i.e. the subgroup of those elements whose induced
action on F via ρ is trivial:

Aut(π, ρ) = {ϕ; ρ(ϕ(x)) = ρ(x), for any x ∈ π} ⊂ Aut(π)
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Note that Inn(K) ⊂ Aut(π, ρ). The image of Aut(π, ρ) in Out(π) will be denoted as Out(π, ρ).
However Inn(π) does not preserve ρ. In order to fix this probem consider the following quotient:

˜Out(π, ρ) = Aut(π, ρ)/Inn(K)

Then ˜Out(π, ρ) has a well-defined action on Mπ,G and keeps the class [ρ] invariant. Note that we
have an exact sequence:

1→ F → ˜Out(πg, ρ)→ Out(π, ρ)→ 1

For any homomorphism r : F → G the group Aut(π, r◦ρ) fixes r◦ρ ∈ Hom(π,G). Therefore there
is an induced action of the level of Zariski tangent spaces. This provides a linear representation of
Aut(πg, r ◦ ρ) on the Zariski tangent space TρHom(π,G) at r ◦ ρ, which will be called the tangent
representation at r ◦ ρ. Recall that Weil identified Tr◦ρHom(π,G) with the space of twisted 1-
cocycles Z1(π, gAd r◦ρ) with coefficients in the Lie algebra g twisted by the composition of the
adjoint representation Ad of G with r ◦ ρ. This linear representation

Aut(π, r ◦ ρ)→ GL(Z1(π, gAd r◦ρ))

could be defined directly at the level of twisted cocycles ψ : π → gAd r◦ρ, as a right composition.

We explained above that Õut(π, r ◦ ρ) acts on Mπ,G and stabilizes the class [r ◦ ρ] of r ◦ ρ. We

derive then a linear action of Õut(π, r ◦ ρ) on the Zariski tangent space T[ρ]Mπ,G. By Weil, this
amounts to a linear representation:

Õut(π, r ◦ ρ)→ GL(H1(π, gAd r◦ρ))

For non-reductive G, for instance when G = C∗, we have to modify slightly this setting, as it
will be explained below.

This setting also extends to families of representations using intermediary quotients. Let us
consider the map ιF : Hom(F,G) → Hom(π,G), given by ιF (r) = r ◦ ρ. We denote by VF =
ιF (Hom(F,G)) ⊂ Hom(π,G) the closed subset consisting of all those ρ with ρ(πg) isomorphic to a
quotient of F . For any homomorphism r : F → G we have Aut(πg, r ◦ ρ) ⊂ Aut(πg, ρ). The group
action of Aut(πg, ρ) on Hom(πg, G) keeps globally invariant the subvariety VF . Note that VF is not
pointwise invariant. Consider the Gunning sheaf TVF = ∪ρ∈VF TρHom(πg, G). As an immediate
consequence Aut(πg, ρ) acts both on TVF and the pull-back ι∗FTVF .

Aut(πg, ρ)× ι∗FTVF → ι∗FTVF

We have a similar action ιF : MF,G → Mπ,G whose image ιF (MF,G) is endowed with a Gunning
sheaf TMF,G = ∪ρ∈MF,G

TρMπg ,G and a fiber-preserving action:

Õut(πg, ρ)× ι∗FTMF,G → ι∗FTMF,G

We ignored above the fact that dimensions of the fibers could be of non-constant dimension. If
we restrict to the non-singular locus of the varieties MF,G or VF , then Gunning sheaves restrict to
fiber bundles. On any open contractible (in the usual topology) non-singular subset U ⊂MF,G or
VF respectively we obtain linear representations

U ×Aut(π, ρ)→ GL(Z1(π, gAd r◦ρ))

and

U × Õut(π, ρ)→ GL(H1(π, gAd r◦ρ))

respectively, parametrized by U .
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1.3. Finite representations. The group Aut+(πg) of orientation preserving automorphisms of
πg acts on Hom(πg, G) by right composition and this action passes to a quotient action of Γg on
Mg,G.

Let now F be a finite quotient of ρ : πg → F . The subgroup Aut+(πg, ρ) is of finite index in
Aut+(πg). If we fix an embedding F ⊂ G then Aut+(πg, ρ) is the stabilizer of ρ on Hom(πg, G).
Its image Γg(ρ) in Γg is also the stabilizer of the class [ρ] of ρ in Mg,G.

Consider the exact sequence associated to ρ:

1→ K → πg → F → 1

where F is finite. We are given a representation r : F → GL(V ) which induces the structure of
πg-module on V . Without loss of generality we can suppose that V is from now on an irreducible
F -module. For the sake of simplicity we consider first that V is a complex vector space.

Following [8] we call ρ redundant if it factors through πg → Fg and the kernel of the homo-
morphism Fg → F contains a free generator. Here Fg is the free group of g generators and the
homomorphism πg → Fg can be taken as the one induced by the inclusion of the surface Σg as the
boundary of a handlebody with g handles.

Furthermore F ⊂ G is adjoint if the composition F → GL(g) by the adjoint representation
Ad : G→ GL(g) is an irreducible representation.

Theorem 1.1. Suppose that ρ is a finite adjoint redundant representation of πg. Then the tangent
action at T[ρ]Mg,G is an arithmetic group of symplectic/orthogonal or linear type.

This is a consequence of the main result of [8]. Specifically, one decomposes the semisimple
algebra Q[F ] into simple algebras:

Q[F ] = Q⊕
p⊕
i=1

Ai

where Ai are ring of matrices mi × mi over a division algebra Di and having center a number
field Li. Each Ai corresponds to a nontrivial irreducible Q-representation of F . Then the authors
of [8] constructed representations of (a finite index subgroup of) Γg(ρ) into the algebraic group

of Vi-automorphisms AutAi(A
2g−2
i , 〈−,−〉) of A2g−2

i endowed with a skew-Hermitian sesquilinear
Ai-valued form. Then the image of this representation is a finite index subgroup of the arithmetic
group AutDi(D

2g−2
i ), where Di ⊂ Ai is the image of Z[F ] by the projection onto Ai and is an order

in Ai.

Proposition 1.1. Assume that V is nontrivial F -module. Then we have an isomorphism

H1(πg, V )→ HomC[F ](V, V )(2g−2) dimV

Proof. The five-term exact sequence reads:

H1(F, V K)→ H1(πg, V )→ H1(K,V )F → H2(F, V K)

We use now the following classical fact (see Prop. 2.1 of [2]): If F is a finite group and V is a
F -module which is also a K-vector space for a field K whose characteristic does not divide the order
of F then Hj(F,M) = 0, when j > 0. In particular, this is true in characteristic zero. This implies
that the restriction homomorphism H1(πg, V )→ H1(K,V )F is an isomorphism.

A classical result from [3] gives a description of the F -module H1(K;Q). Another proof is given
in [8]. In the case when πg were replaced by a free group this was a classical result by Gaschútz.
Specifically, for every g ≥ 2 we have an isomorphism of F -modules:

H1(K;Q)→ Q2 ⊕Q[F ]2g−2

Some remarks are in order to understand the action of F on the module H1(K,V ). Indeed F acts
on K by conjugacy and on V through ρ. Classes in H1(K,V ) are represented by homomorphisms
f : K → V , since V is a trivial K-module, and for γ ∈ F , x ∈ K we have:

γ · f(x) = ρ(γ)f(γ̃−1xγ̃)
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where γ̃ ∈ πg is an arbitrary lift of γ. In particular the class of f is F -invariant if for any γ ∈ F
and x ∈ K we have:

f(γ̃xγ̃−1) = ρ(γ)f(x)

By the previous description of the F -action on H1(K,V ) and the Chevalley-Weil description of
H1(K;C) we derive an isomorphism

H1(πg, V )→ HomC[F ](C[F ]2g−2 ⊕ C2, V )

On the other hand, for simple C[F ]-modules V and W we have HomC[F ](W,V ) = 0, unless V
and W are isomorphic, from Schur’s lemma. As a consequence of Maschke’s theorem C[F ] =

C⊕
⊕m

i=1 V
dim(Vi)
i , where Vi are all irreducible C[F ]-modules. It follows that

HomC[F ](C[F ]2g−2 ⊕ C2, V ) = HomC[F ](V, V )(2g−2) dimV

�

Now we have an action of Aut+(πg, ρ) on H1(πg, V ) induced by the left composition, which we
denote by φ : Aut+(πg, ρ) → GL(H1(πg, V )). Notice however that inner automorphisms do not
necessarily act trivially. First, not all inner automorphisms are in Aut+(πg, ρ). Second, if the
conjugacy ια by α ∈ πg does belong to Aut+(πg, ρ), then its image is the automorphism:

φ(ια) = rρ(α)

Since elements in Aut+(πg, ρ) which project onto the same element of Γg(ρ) differ by an inner
automorphism from Aut+(πg, ρ), it follows that we have an induced representation into a quotient
group:

Φ : Γg(ρ)→ GL(H1(πg, V ))/r(F )

This is particularly simple when F is abelian, since r(F ) must be a group of scalar matrices and so
we obtain a projective representation. In the case considered by [8] the authors rather considered
punctured surfaces in order to work directly with the mapping class group Γ1

g ⊂ Aut+(πg). We
have an exact sequence

1→ πg → Γ1
g → Γg → 1

and the representation Φ lifts to

Φ : Γ1
g(ρ)→ GL(H1(πg, V ))

The argument from ([8], section 8.2) shows that its restriction to a suitable finite index subgroup
of Γ1

g(ρ) factors through Γg, so that Φ lifts to a genuine representation after restriction to a finite
index subgroup of Γg(ρ).

The case when F is an abelian group and V a 1-dimensional irreducible representation of it
has been considered by Looijenga in [10] where the associated representations are called Prym
representations. This has to be connected with previous construction by Gunning (see [9] in genus
2 and later extended by Chueshev (see [4]) to all genera, which is based on Prym differentials.

1.4. Magnus representations for free groups. In the case when π = Fn is a free group, there
exists a simple description of these representations at the level of the F . Specifically, we first
consider V = Z[Fn] as a left Fn-module. Then

H1(Fn,Z[Fn]) = I(Fn) = ker(Z[Fn]→ Z)

On the other hand we have an isomorphism

I(Fn)→ (Z[Fn])n

given by the Fox derivatives. Specifically, if zi form a free basis of Fn then we send x ∈ Fn into

(∂x
−1

∂xi
)i=1,n, where the Fox derivatives ∂

∂xi
: Fn → Z[Fn] form a basis of the space of 1-cocycles and

they are determined by
∂xj
∂xi

= δij
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Now any automorphism ϕ of Fn induces an automorphism of I(Fn); under the previous isomorphism
this automorphism is described as an element of GL(n,Z[Fn]) ⊂ GL(V ⊕n) and is given by the
matrix (

∂ϕ(xi)

∂xi

)
∈ GL(n,Z[Fn])

where A is the involution of Z[Fn] sending each x ∈ Fn into x−1.
In particular, given an exact sequence ρ : Fn → F we have a representation

Aut(Fn, ρ)→ GL(H1(Fn,Z[F ]))

which is obtained from the Magnus representation in GL(n,Z[Fn]) by evaluating each entry via
ρ : Z[Fn] → Z[F ]. A similar description holds when we choose a family VF of representations
r : F → GL(V ), in which case the tangent representation

Aut(Fn, ρ)→ GL(H1(Fn, Vr◦ρ))
is obtained by evaluating the Magnus representation entries at points of VF .

2. Long-Moody twisted cohomological induction

2.1. The construction. Long and Moody considered in [13] a very general recipee for constructing
braid group representations. We generalize his construction here to general automorphisms groups.

Data. Let π be a group, in our case it will be a closed surface group or a free group. Let now
B be a group related to the automorphisms group Aut(π), in the sense that it is endowed with a
homomorphism τ : B → Aut(π).

Our data consists of a (finite dimensional)B-equivariant linear representation, namely ρ : π →
GL(V ) coming along with a linear representation β : B → GL(V ) such that ρ is equivariant with
respect to the source and target actions τ and β:

β(b)ρ(f) = ρ(τ(b)f)β(b), for any b ∈ B, f ∈ π
(Equivariant) twisted cohomological induction. To every B-equivariant representation:

(ρ : π → GL(V ), β : B → GL(V ), τ : B → Aut(π))

we can associate a new representation

β+ : B → GL(V +), where V + = H1
ρ (π, V )

by the explicit formula:

(β+(b)ψ)(f) = β(b)
(
ψ(τ−1(b)(f))

)
for every ψ ∈ Z1

ρ(π, V ), f ∈ π, b ∈ B.

Proposition 2.1. The twisted cohomological induction is well-defined.

Proof. We first have to verify that β+(b)ψ ∈ Z1
ρ(π, V ):

(β+(b)ψ)(fg) = β(b)
(
ψ(τ−1(b)(fg))

)
= β(b)

(
ψ(τ−1(b)(f) · τ−1(b)(g))

)
=

= β(b)
(
ψ(τ−1(b)(f) + ρ(τ−1(b)f)ψ(τ−1(b)(g)

)
=

= β+(b)ψ(f) + β(b)ρ(τ−1(b)f)ψ(τ−1(b)(g) =

= β+(b)ψ(f) + ρ(f)β(b)ψ(τ−1(b)(g) = β+(b)ψ(f) + β+(b)ψ(g)

Moreover this representation on Z1
ρ(π, V ) descends to H1

ρ (π, V ). Indeed, if ψ ∈ B1
ρ(π, V ), say

ψ(g) = ρ(g)v − v, for any g ∈ π for some v ∈ V , then

(β+(b)ψ)(g) = β(b)
(
ψ(τ−1(b)(g))

)
= β(b)(ρ(τ−1(b)g)v − v) =

= β(b)ρ(τ−1(b)(g))v − β(b)v = ρ(g)β(b)v − β(b)v ∈ B1
ρ(π, V )

�
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Lemma 2.1. A couple (ρ : π → GL(V ), β : B → GL(V )) satisfying the B-equivariance is
equivalent to a representation β : π oτ B → GL(V ) of the semi-direct product group π oτ B
obtained by using the action of B on π by means of τ .

Proof. Indeed β|π = ρ, while β|s(B) = β, where s : B → πoτB is a section of the split extension. �

2.2. Examples. Braid group representations. Long and Moody used this method to define from
a series of representations ρn : Bn → GL(Vn) of the braid groups Bn a new series of linear
representations ρ+n+1 : Bn → GL(V n

n+1) (see [13], Thm.2.1). Note the shift in the subscript. We
identify Bn and the mapping class group of the 2-disk with n punctures. The stabilizer of the (first)
puncture is isomorphic to the semi-direct product Fn oτ Bn ⊂ Bn+1, where τ denotes the Artin
representation τ : Bn → Aut(Fn). Then twisted cohomological induction yields a representation
ρ+n+1 : Bn → GL(H1

ρn+1
(π, Vn+1)). As π is the free group on n generators, the standard free

resolution reads (see [2], I.4.4, IV.2, ex.3):

0→ Z[π]n → Z[π]→ Z→ 0

Therefore H1
ρ (π, V ) is isomorphic to V ⊕n. With this identification at hand one could write explicitly

β+ in terms of generators and he values of β (see [13], Thm.2.2).
It is already noticed that there are several embeddings of some semi-direct product π o Bn

within Bn+1. Above we considered the pure braid local system in which π is freely generated by
g1 = σ21, g2 = σ2σ

2
1σ
−1
2 , g3 = σ3σ2σ

2
1σ
−1
2 σ−13 , . . ., gn = σnσn−1 · · ·σ2σ21σ

−1
2 · · ·σ

−1
n−1σ

−1
n . The action

of Bn, which is generated by σ2, σ3, . . . , σn normalizes the subgroup π, and the conjugacy action is
identified to the action of Bn on the fundamental group π of the punctured disk.

If we set g1 = (σ2σ3 · · ·σn)n and then inductively gi+1 = σigiσ
−1
i then the subgroup π generated

by g1, g2, . . . , gn is also free of rank n and the subgroup Bn generated by σ1, σ2, . . . , σn−1 also
normalizes π. This provides the inner automorphism local system π o Bn. Moreover, as we have
an obvious map p : π o Bn → Z o Bn, we can use an arbitrary representation βn : Bn → GL(Vn)
and consider (βn ◦ p)+ : Bn → GL(V ⊕nn ).

Mapping class group representations. According to Lemma 1.1, Γ
r|1
g,1 = πrg,1 o Γrg,1. The Long-

Moody twisted cohomological induction machinery provides then for any representation β : Γr+1
g,1 →

GL(V ) another linear representation

β+ : Γrg,1 → GL(V ⊕2g+r)

Finite index subgroups of mapping class groups. Consider a homomorphism ρ : π → GL(V ) and
B = Aut+(π, ρ), with the usual action on π and the trivial action β on V . Then β+ is the tangent
action of B on Hom(π,GL(V )) at ρ.

Surface braid groups. We can consider the braid group B(Σg,1, r) = ker(Γrg,1 → Γg,1) on the
surface Σg,1 on r strands. The isomorphism from Lemma 1.1 provides an isomorphism between the
stabilizer of the last strand in B(Σg,1, r + 1) and the semi-direct product πrg,1 oB(Σr

g,1).

Magnus representations of Aut(Fn) and of Torelli groups In the case when π = Fn and ρ :
π → F has a characteristic kernel K, Magnus constructed a crossed-homomorphism Aut(Fn) →
GL(n,Z[F ]) whose restriction

Aut(Fn, ρ)→ GL(n,Z[F ])

is a homomorphism (see [14]). Note that Magnus’ homomorphism coincides with the morphism
β+ provided by the construction above to the data ρ and β being the left action of Aut(Fn) on
V = Z[F ], after identifying GL(n,Z[F ]) with a subgroup of GL(V ⊕n) According to ([14], Prop.
3.4)

kerβ+ = ker

(
Aut(Fn)→ Aut

(
Fn

[K,K]

))
By choosing F to be the derived quotients series, the groups Aut(Fn, ρ) form the filtration IAk of
Aut(Fn), each one being the kernel of the Magnus representation of the former group. By choosing
F to be the lower central quotients series we obtain the Andreadakis filtration LkAut(Fn).
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We can restrict this construction to the subgroup Γg,1 = Aut(πg,1, [∂Σg,1]). If F belongs to the

central series quotients we obtain the Johnson filtration JkΓg,1, starting with the Torelli group Tg,1
(for k = 2). Note that we have the exact sequences:

1→ Hom

(
H1(πg,1),

γk(πg,1)

γk+1(πg,1)

)
→ Aut

(
πg,1

γk+1(πg,1

)
→ Aut

(
πg,1

γk+1(πg,1)

)
→ 1

from which we obtain the Johnon homomorphism:

τk+1 : Jk+1Γg,1 → Hom

(
H1(πg,1),

γk(πg,1)

γk+1(πg,1)

)
Note that it has the property that:

ker τk+1 = Jk+2Γg,1

It seems still unknown whether the Magnus homomorphisms

JkΓg,1 → GL

(
2g,Z

[
πg,1

γk+1(πg,1)

])
is faithful or not when k ≥ 3 (see [14] for details).

2.3. Properties.

Proposition 2.2. If π is either a free group or a surface group and β is unitary then β+ is unitary.

Proof. See [13]. �

2.4. Open questions. A linear representation is cohomological if it can be obtained by iterated
Long-Moody induction from the trivial representation.

Problem 2.1. It is true that any quantum representation of the mapping class group Γg,1, g ≥ 3, is
a factor (subrepresentation) of a cohomological representation?

Here by quantum representation we mean a representation obtained from a modular tensor
category with zero anomaly, e.g. obtained from the Turaev-Viro construction.
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