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Cubulations mod bubble moves

Louis Funar

Abstract. The aim of this paper is to consider the set of cubical decomposi-
tions of a compact manifold mod out by some combinatorial moves (bubble)
analogous to the bistellar moves earlier considered by Pachner. We prove that,
in general there are obstructions for two cubulations of the same PL-manifold
to be related by bubble moves, answering negatively a question of Habegger.

1. Introduction

In the twenties Alexander proved that any two triangulations of a polyhedron
(or equivalently of two PL-homeomorphic manifolds) are related by a set of com-
binatorial moves, called stellar moves. After seventy years Alexander’s moves were
refined to a set of finite local moves on the triangulations of manifolds which were
used to prove that certain state-sums associated to a triangulation provide topolog-
ical invariants of 3-manifolds, the so-called Turaev-Viro invariants. The new moves
are the bistellar moves and Pachner ([27]) has proved that they relate any two
triangulations of a polyhedron, settling a long standing conjecture in combinatorial
topology. Basically such a move in dimension n corresponds to replace a ball B by
another ball B′, where B and B′ are complementary balls, unions of simplexes in
the boundary of the standard (n + 1)-simplex. For a nice exposition of Pachner’s
result and various extensions, see [22].

On the other hand Alexander’s theorem becomes trivial in the context of some
more general cell decompositions (“cellulation régulière”) considered by Sieben-
mann [28] where the analogous moves are called “bisections”. Here the cells are
convex subsets in some Euclidean space, with an arbitrary number of vertices.

The Turaev-Viro invariants carry less information than the Reshetikhin-Turaev
invariants, which are defined using Dehn surgery presentations of the manifolds
instead of triangulations. Actually the latter have a strong 4-dimensional flavor, as
explained by the theory of shadows developed by Turaev (see [31]). This motivates
the study of state-sums based on cubulations, as an alternative way to get intrinsic
invariants possibly containing more information (e.g. the phase factor). In order to
apply the state-sum machinery to these decompositions we need an analogue of the
Alexander’s or Pachner’s theorems. Specifically, N.Habegger asked (see problem
5.13 from R.Kirby’s list ([18])) the following:

Problem 1. Suppose M and N are PL-homeomorphic cubulated n-manifolds.
Are they related by the following set of moves: excise B and replace it by B ′,
where B and B′ are complementary balls (union of n-cubes) in the boundary of the
standard (n + 1)-cube?
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Figure 1. Bubble moves for n = 1 and n = 2

These moves will be called bubble moves in the sequel. Those bubble moves
for which at least one of B and B′ does not contain parallel (when viewed in the
n + 1-cube) faces are called np-bubble moves. There are n + 1 distinct np-bubble
moves bk, k = 1, 2, ..., n+ 1 and their inverses, bk replacing B which is the union of
exactly k cubes by its complementary. For n = 2 there is one bubble moves which
is not a np-bubble (see picture 1).

Set C(M) for the the set of cubulations of a closed manifold M (without bound-
ary), CBB(M) for the equivalence classes of cubulations mod np-bubble moves and
CB(M) for the equivalence classes of cubulations mod bubble moves.

For n = 1 the move b1 divides an edge into three smaller edges and it follows
that: CB(

⊔
n S1) = CBB(

⊔
n S1) = (Z/2Z)n, where n is the number of compo-

nents. Thus there are non-trivial obstructions for two cubulations be np-bubble
(bubble) equivalent. Assume from now on, that the manifolds considered are con-
nected unless the contrary will be specified.

In the following section we will describe similar obstructions in higher dimen-
sions. The set of all transforms of a given f -vector f under np-bubble/bubble moves
is f + Λ(n), where Λ(n) ⊂ Zn+1 is a sublattice, depending only on the dimension.
Therefore the class of f ∈ Zn+1/Λ(n) is an invariant taking values in a finite Abelian
group. Our first result states that

Theorem 2. The obstruction in Zn+1/Λ(n) is not trivial.

We cannot expect the obstruction map f : CB(M) −→ Zn+1/Λ(n) be injective
in high dimensions.
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2. Other statements and comments

2.1. Elementary obstructions. We want to identify obstructions, similar
to that for the 1-dimensional case, in higher dimensions: set for x ∈ C(M), and
M of dimension n, fi(x) = card{i-dimensional cubes in x}. We obtain a map
f : C(M) −→ Zn+1 whose components are fi, and it is usually called the f -vector
in the theory of polytopes. Notice that once we start transforming a cubication
of f -vector f by using all np-bubble/bubble moves we obtain a set of possible f -
vectors having the form f + Λ(n) ⊂ Zn+1, where Λ(n) is a lattice. Therefore the
first obstruction we encounter is the class of f ∈ Zn+1/Λ(n). The latter is a finite
Abelian group and we will see that it is non-trivial.

Proposition 2.1. There exist some natural numbers ai(n) ∈ Z+ such that:

(1) All the ai(n) are non-trivial, and divisible by 2.
(2) The map f induces a well-defined map fb : CBB(M) −→

∏n
i=0 Z/ai(n)Z

by
fb(x) = (fi(x)(mod ai(n))i=0,1,...,n.

(3) The greatest such numbers ai(n) verify

an(n) = 2, an−1(n) = 2n, an−2(n) = 2, a0(n) = 2, a1(n) = 3 + (−1)n, (n > 2)

We computed the vector a(n) whose components are ai(n) for small dimensions:
a(2) = (2, 4, 2), and a(3) = (2, 2, 6, 2). After some messy computations we obtain
a(4) = (2, 4, 2, 8, 2), a(5) = (2, 2, 4, 2, 10, 2), and a2(6) = 6. We denote by fb(2) the
values of fb reduced mod (2, 2, 2, ..., 2, 2n, 2) .

Next we can extend this result on obstructions to bubble moves:

Proposition 2.2. There exist some natural numbers ãi(n) ∈ Z+ such that:

(1) All the ãi(n) are non-trivial, and divisible by 2.
(2) The map f induces a well-defined map fb : CB(M) −→

∏n

i=0 Z/ãi(n)Z
by

fb(x) = (fi(x)(mod ãi(n))i=0,1,...,n.

(3) The greatest such numbers ãi(n) verify

ãn(n) = 2, ãn−1(n) = 2n, ãn−2(n) = 2, ã0(n) = 2, ã1(n) = 3 + (−1)n, (n > 2)

The two sequences aj and ãj are not identical since we have:

ã2(6) = 2 6= a2(6), ã2(4) = 2 6= a2(4).

Notice that fn−1(x) = nfn(x) for all x. This means that the image of fbn−1 is
Z/2Z ∼= {0, n} ⊂ Z/2nZ. By the way the component fbn−1 is determined by fbn.
Notice that for n = 2 the image of fb is determined by f0, and for n = 3 by f0 and
f1.

A natural problem now is to know the images fb(CB(M)), fbb(CBB(M)),
or at least their mod 2 reduction. This will give a hint about how much these
invariants are powerful. We are far from having a complete answer now, and this
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problem is more difficult than it seems at first glance. There are some partial results
for the case of the mod 2 reductions fb(2)(CB(M)) and fbb(2)(CBB(M)). Actually
this is equivalent to characterize those f -vectors mod 2 which can be realized by
cubulations of the manifold M . Obviously there are constraints for the existence of
a simplicial polyhedra with a given f -vector and fixed topological type. For convex
simplicial polytopes we have for instance the McMullen conditions (conjectured
by McMullen in [23] and proved in [4, 5, 29]; the reader may consult also other
proofs and results in [23, 3, 24, 25]). The complete characterization of the f -
vectors of simplicial polytopes (and PL-spheres) was obtained by Stanley in [30].
The analogous problem of the realization of f -vectors by cubical polytopes has also
been addressed in some recent papers, for example [7, 2, 16, 17] and references
therein. The Dehn-Sommerville equations have a counterpart for cubical polytopes
as in [15]. The lower bound conjecture and the upper bound conjecture have
counterparts in the cubical case. The new feature is that, unlike in the simplicial
case, there are parity restrictions on the f -vectors. This was firstly observed in [7].
Remark that it is exactly these restrictions in which we are interested. We have,
as a simple application of the Dehn-Sommerville equation, a first constraint on the
range of the mod 2 image:

Proposition 2.3. The rank of the affine module fb(2)(CB(M)) is at most[
n+1

2

]
.

The relationship between cubical PL n-spheres and the immersions was de-
scribed in the following beautiful result of Babson and Chan (see [2]):

Proposition 2.4. Let ϕ : M −→ Sn a codimension 1 normal crossing immer-
sion. Then there exists a PL cubical n-sphere K, such that

fi(K) = χ(Xi(M, ϕ))(mod 2),

where χ denotes the Euler characteristics, and Xi(M, ϕ) = {x ∈ Sn; card ϕ−1(x) =
i}.

As a consequence, there exists a PL cubical n-sphere K with given fi(mod 2)
if and only if there exists a codimension 1 immersion (M, ϕ) in Sn, for which the
Euler characteristic of the multiple point loci Xi(M, ϕ) of degree i equals fi mod 2.

Remark that this result extends immediately to other varieties than the spheres.
We have only to consider immersions ϕ : M −→ N such that the image ϕ(M) is a
spine of N , which means that N − ϕ(M) is an union of balls.

There is a wide literature on immersions, and especially on the following func-
tion θn, considered first by Freedman ([13]), where θn(ϕ) is the number of multiple
n-points mod 2. The beginning of this theory was the result of Banchoff [1] saying
that the number of normally triple points of a closed surface immersed in R3 is
congruent mod 2 with its Euler characteristic. The function θn is easily seen to be
well-defined as a function on the Abelian group Bn of bordism classes of immersions
of (n − 1)-manifolds in Sn. We have therefore an induced homomorphism:

θn : Bn −→ Z/2Z.

Remark that the question on whether θn is surjective (i.e. nontrivial) is equivalent

to find the image of fb
(2)
n−1(S

n). From the results concerning the function θn ob-
tained in [13, 10, 11, 12, 20, 21, 8, 9] we deduce that the f -vectors of a n-sphere
have the following properties (see also [2]):
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(1) For n = 2 we have f0 = f2(mod 2) and f1 = 0(mod 2) and thus
fb(2)(CB(S2)) = fb(2)(CBB(S2)) = Z/2Z.

(2) For n = 3, f0 = f1 = 0(mod 2), f2 = f3(mod 2). From the existence
of Boy’s immersion j : RP 2 −→ S2, with a single degree 3 intersection
we find that there exists a PL 3-sphere with an odd number of facets.
Therefore fb(2)(CB(S3)) = fb(2)(CBB(S3)) = Z/2Z.

(3) The problem of characterizing the image fb
(2)
n−1(S

n) is reduced to a ho-
motopy problem. Namely, the image is Z/2Z if and only if
(a) either n is 1, 3, 4 or 7.
(b) or else n = 2a − 2, with a ∈ Z+, and there exists a framed n-

manifold with Kervaire invariant 1. The latter is known to be true
for n = 2, 6, 14, 30, 62.

(4) If we consider only the class of edge orientable cubulations in the sense of

[16] the problem of characterizing the image fb
(2)
n−1(S

n) is also reduced to
a homotopy problem, which is completely solved. In fact the condition of
edge orientability is equivalent to ask that the associated manifold M im-
mersed in Sn be orientable. Thus we have to consider only the restriction
of the map θn at the subgroup of oriented bordism classes of immersions,
as originally considered by Freedman [13]. Away from the trivial cases
n = 1, 2 the only case when the restriction of θn remains surjective in the
orientable context is n = 4. Thus fn−1 = 0(mod 2) if n 6= 1, 2, 4.

Thus, at this time only a finite number of n is known, for which the last component
of fb(2) is nontrivial. Anyway the remarks from above show that the invariants fb
and fbb are interesting and nontrivial. Notice that fb does not determine the class
of the f -vector in Zn+1/Λ(n), since the lattice Λ(n) is not a product, in general.
We have for instance:

Proposition 2.5. The complete f -obstruction for 3-manifolds is specified by
(f0, f1) ∈ Z/2Z and the additional f0 + f1 ∈ Z/4Z.

2.2. The 2-dimensional case. In the 2-dimensional case the image of the
immersion associated to a cubulation C is an union of immersed circles Ki.

Proposition 2.6. The collection of homotopy classes of the circles Ki is np-
bubble invariant.

Proof. The local pictures of the moves b1, b2, b3, on the boundary of the 3-ball
are relative homotopy equivalences. Since the moves have their supports in small
disks (part of the cubulated surface) we are done.

Notice that we have a collection, and not a set, since some elements can be mul-
tiple. It follows that CBB(M) is infinite provided that the genus of M is at least
1. This generalizes also in higher dimensions for manifolds with nontrivial topol-
ogy. This makes the np-bubble equivalence too rigid: for manifolds with nontrivial
topology the homothetic cubulations M and λM will be np-bubble nonequivalent.
Thus the np-bubble equivalence is interesting only for spheres. We say that a two
dimensional cubulation is simple if the associated circles Ki are individually embed-
ded in the respective surface. A cubulation is called now semi-simple if each image
circle ϕ(Ki) has an even number of double points, which form cancelling pairs, i.e.
pairs of double points connected by two distinct and disjoint arcs bounding a disk.
We have the following characterization of CB(S2):
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Proposition 2.7. The np-bubble moves act transitively on the set of simple
cubulations of S2. The orbit of the cubulation ∂Cn+1 is the set of semi-simple
cubulations. The map fb(2) is an isomorphism between CB(S2) and Z/2Z.

Proof. The moves b2, b3 act like the second and the third Reidemester moves
in plane, and b1 creates (its inverse destroys) a circle. There is a complication due
to the presence of some other arcs in the diagrams, which remain untouched by the
moves. A combinatorial analysis shows that all immersed circles can be reduced
to some standard circles similar to the framed versions of the unknot, with exactly
one curl for each component. The move b3,1 can add several components and then
creating new cancelling pairs which can be annihilated by np-bubbles. The details
are given in [14].

2.3. Around bordisms. Let now consider the set I(M) (respectively I+(M)
in the orientable case) of bordisms of codimension 1 nc (i.e. normal crossings)
immersions into a differentiable manifold M . Two nc-immersions fi : Ni −→ M of
the n−1-dimensional manifolds Ni are bordant if there exists a proper nc-immersion
f : N −→ M × [0, 1] from some cobordism N between N1 and N2 such that the
restriction of f to Ni is isotopic to fi. Notice that the transversality allows us to
get rid of the nc-assumption.

We define now a marked cubulation as a cubulation C of the manifold M , en-
dowed with a PL-homeomorphism of the subjacent space |C|, |C| −→ M up to an
isotopy. We ask for simplicity the compatibility of the PL and DIFF structures
on the image, and M to be a DIFF manifold. The set of marked combinatorial

cubulations is denoted by C̃B(M). We can associate to each marked cubulation
C of the DIFF manifold M (compatible with the DIFF structure) a codimension 1
nc-immersion ϕC : NC −→ M . We associate to each cube the set of n section hyper-
planes, each of them splitting it into two equal halves. The union of all these section
hyperplanes form the image of a normal crossings codimension 1-immersion after a
suitable smoothing. If the cubulation C is edge-orientable (following [16]), and M

is oriented then NC is an oriented manifold. We denote therefore by C̃B
+
(M) and

CB+(M) the associated objects in the oriented case. We have then the following
result:

Proposition 2.8. There are applications I : C̃B(M) −→ I(M), and in the

oriented case C̃B
+
(M) −→ I+(M), given by C → ϕC .

The map I is always surjective (see [14]) and injective for the 2-sphere (see
above).

Proof. We consider the local picture of a bubble move, viewed in the boundary
of the n + 1-cube. The set of sections which make the immersion on the boundary
are intersections of the section hyperplanes of the n+1-cube with the faces. The n-
balls B and B′ (interchanged by the bubble move) form the boundary of the sphere
Sn. We infer between B and B′ a short cylinder which identifies the n+1-ball with a
cobordism between B and B′. When adding to this picture the hyperplane sections
(trivially extended over the cylinder) we find a bordism (with normal crossings)
between the immersions ϕB and ϕB′ into the n-ball.

A partial result about the converse direction was obtained in [2]. We think

that C̃B(M) depends only on the homotopy type of M and the functor C̃B which
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associates to M the set C̃B(M) is (homotopically) representable, i.e. there exists

a space CB such that C̃B(M) = [M, CB].

Notice that CB(M) = C̃B(M)/M(M), where M(M) is the mapping class
group of M , i.e. the group of diffeomorphisms of M up to an isotopy. However
the description of I(M) is not a simple task. The classical Pontryagin-Thom con-
struction (see e.g. [32]) implies that we have a homotopical description as follows:
I(M) = [Mc, Ω

∞S∞RP∞], and I+(M) = [Mc, Ω
∞S∞S1], where Mc is the one

point compactification, Ω is the loop space, S the reduced suspension and the
brackets denote the homotopy classes of maps. Moreover I+(M) = π1(Mc) can be
identified then with the first cohomotopy group π1(Mc), which is however hard to
compute. There are some cases when the cohomotopy groups could in principle be
computed, for instance in the case of spheres. This gives I(Sn) = πs

n(RP∞), where
πs

n(RP∞) is the n-th stable homotopy group, and I+(Sn) = πs
n(S1) = πs

n−1. For
instance we can use πs

1(RP∞) = πs
2(RP∞) = Z/2Z, and πs

3(RP∞) = Z/8Z, and
few values of the stable stems are tabulated below:

n 0 1 2 3 4 5 6 7 8
πs

n Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2 ⊕ Z/2

Eventually let us introduce the bordism set of cubulations C(M) of the man-
ifold M : two cubulations C1 and C2 are bordant if there exists a cubulation C
of M × [0, 1] whose restrictions on the boundaries are Ci. Notice that this defini-
tion has a strong combinatorial flavor, since the topology of the cobordant cubula-
tion is fixed. Observe that the identity induces a map CB(M) −→ C(M),and we
would like to know whether there is an inverse arrow. This has some similitudes
with Wall’s theorem about the existence of formal deformations between simple
homotopy equivalent CW complexes of dimension n, by passing throughout n + 1-
dimensional cells (n 6= 2). Remark that any two cubulations become bordant after
suitable subdivisions. Alternatively let us look at cubulations of the sphere Sn

which are bubble equivalent to the standard one. We can view the bubble moves
as the result of gluing and deleting n + 1 cubes (after a suitable thickening) to the
given cubulation. It follows that any such cubulations bounds, i.e. it is the bound-
ary of a cubulation of the n+1-ball. For instance if n = 1 we should have a polygon
with an even number of vertices. It is possible that for n = 2, 3 the converse is also
true: the boundary of a ball cubulation is bubble equivalent to a trivial one. We
don’t expect the same phenomenon for n ≥ 4. let put it another way: it is known
that there exist non-shellable triangulations of the ball for n ≥ 3. We define a
shuffling of a cubulation (triangulation) as being a sequence of moves where alter-
nate shellings (adding iteratively cells which intersect the previous stage union into
balls) and inverse shellings (deleting iteratively cells which intersect the previous
stage boundary into balls). Then Pachner theorem says that all triangulations can
be shuffled. We saw that an obstruction for shuffling is that the cubulation bounds.
However that cubulations of the n + 1-ball which cannot be shuffled actually exist.
For instance consider the connected sum x]x for a cubulation x whose image I(x) is
the generator of the third stable stem. It is proved in [14] that the connected sum
of cubulations makes CB(Sn) a monoid. The connected sum is obtained by remov-
ing one cell from each cubulation and then joining them by a standardly cubulated
cylinder as a piping tube. It is clear that x]x is a cubulated sphere which bounds a
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cubulated ball, namely (x− one cell )× [0, 1]. If x]x could be shuffled then x must
have order 2 in CB(Sn). But the map I is functorial (see [14]) and the bordism
group I+(S4) = Z/24Z hence x cannot have order 2.

3. Proofs

3.1. The proof of Proposition 2.1. At the beginning we make some nota-
tions: D+

k is the union of k cubes (of dimension n) which are the faces of a (n+1)-
dimensional cube, and no two of them are parallel faces, for k = 1, 2, ..., n+ 1. The
complementary union of 2(n + 1) − k cubes is denoted D−

k . So a np-bubble move

bk replaces D+
k by D−

k . Now fp(D
+
k ) is the number of p-dimensional cubes in D+

k .

The number of interior p-cubes is fp(int(D+
k )) = fp(D

+
k ) − fp(∂D+

k ). Notice that
this is a notational convention because it does not count the number of p-cubes in
the interior of D+

k but the number of open such p-cubes sitting in the interior of

D+
k .

In order to find the corresponding ai(n) we have to compute the numbers
fp(bk(x)) − fp(x) = fp(D

+
k ) − fp(D

−
k ) = a(k, n, p); then ai(n) = gcd{fp(bk(x)) −

fp(x), k = 1, 2, ..., n + 1}.
We use the method of generating functions: set FX(T ) =

∑n

p=0 fp(X)T . It is

well-known that fp(Cn) =
(

n

p

)
2n−p for the n-cube Cn so that FCn

(T ) = (2+T )n.

Let ei, i = 1, ..n+1 be the vectors spanning Cn+1 and Li be the n-cube spanned
by e1, e2,..., ei−1, ei+1,..., en+1, where ei is omitted. Then a combinatorial model

for D+
k is

⊔k
i=1 Li. The inclusion-exclusion principle states that:

fp(

k⊔

i=1

Li) =

k∑

i=1

fp(Li) −
k∑

i<j

fp(Li ∩ Lj) + ...

+(−1)l+1
k∑

i1<i2<...<il

fp(Li1 ∩ Li2 ∩ ... ∩ Lil
) + ...

+(−1)k+1fp(L1 ∩ L2 ∩ ... ∩ Lk).

We observe that Li1 ∩ Li2 ∩ ... ∩ Lil
is combinatorially the cube Cn+1−l and we

derive

fp(

k⊔

i=1

Li) =

k∑

i=1

(−1)i+1
(

n − i + 1
p

)(
k

i

)
2n+1−i−p.

It follows that, at the level of generating functions, we have:

FD
+

k

(T ) =

k∑

i=1

(−1)i+1
(

k

i

)
FCn+1−i

(T ) =

k∑

i=1

(−1)i+1
(

k

i

)
(2 + T )n+1−i =

(2 + T )n+1−i

(
(2 + T )k −

k∑

i=1

(−1)i
(

k

i

)
(2 + T )k−i

)
=

(2 + T )n+1 − (2 + T )n+1−k(1 + T )k.

Therefore the generating function counting the interior cubes in D−
k is simply

Fint(D−

k
)(T ) = (2 + T )n+1−k(1 + T )k − T n+1 − kT n.
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In fact the total number of p-cubes in D+
k and D−

k is fp(Cn+1), but there are no

(n + 1)-dimensional faces and also the n-dimensional cubes are not interior in D−
k ,

so k of them have to be removed from the total.
It remains to compute the number of interior p-cubes in D+

k : all of them come as
intersections Li1 ∩Li2 ∩ ...∩Lin−p+1

with the additional condition that n−p+1 ≥ 2.
It follows that

fp(int(D+
k )) =

{ (
k

n − p + 1

)
if n − 1 ≥ p ≥ n − k + 1

0 elsewhere

The generating function is therefore

Fint(D+

k
)(T ) =

n−1∑

p=n−k+1

(
k

n − p + 1

)
T p = T n−k+1[(1 + T )k − kT k−1 − T k].

We find that the series associated to the jumps of the f -vector is

−Fint(D+

k
)(T ) + Fint(D−

k
)(T ) =

(
(2 + T )n+1−k − T n+1−k

)
(T + 1)k.

so that
n∑

p=0

a(k, n, p)T p =
(
(2 + T )n+1−k − T n+1−k

)
(T + 1)k.

As an immediate corollary we derive that all a(k, n, p) are divisible by 2 since
(2 + T )n+1−k − T n+1−k has even coefficients. This prove the first two claims.
Developing the terms we obtain by a simple computation a(k, n, n) = 2(n + 1− k),
a(k, n, n − 1) = 2n(n + 1 − k), and

a(k, n, n − 2) =
n + 1 − k

3
(3n(n − 1) + (n − k)(n − 1 − k)) .

Also

a(k, n, 0) =

{
2n−k+1, if k < n + 1

0 elsewhere

a(k, n, 1) =





2n−k(n + 1 + k), if k ≤ n − 1
2n, if k = n
0 elsewhere

a(k, n, 2) =





2n−k−2 ((n + 1 − k)(n + k) + 4k(k − 1)) , if k < n − 1
2n(n − 1), if k = n − 1
n(n − 1), if k = n

0 elsewhere

A tedious verification ends the proof.

3.2. The proof of Proposition 2.2. Set more generally D+
k,r for the union

of k cubes (of dimension n) which are the faces of a (n + 1)-dimensional cube, and
exactly 2r of them arise in pairs of parallel faces, for k = 1, 2, ..., n+ 1, and 2r ≤ k.
The complementary set is denoted by D−

k,r. Denote by bk,r the bubble move which

replaces D+
k,r by D−

k,r.

Lemma 3.1. The set of all combinatorially distinct unions of k cubes, k ≤ n+1,
of dimension n, which are faces of the n+1-dimensional cube, and are topologically
disks, as well as their complementary sets, is exactly the set of all D+

k,r with 2r ≤ k.
Therefore the bubble moves are the bk,r and their inverses.
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Proof. Let γn be the adjacency graph of the cube ∂Cn+1. Then γn+1 is the
suspension S(γn): this means that there are two new vertices which are connected
with all of γn vertices but there is no edge between them. In fact it suffices to see
that after excising two opposite faces of ∂Cn+1 we obtain ∂Cn×[0, 1], and the latter
has the adjacency graph γn. Alternatively, this shows that γn is the complementary
of the pairing graph Pn as subgraph of the complete graph K2(n+1). The pairing
graph Pn has 2(n + 1) vertices which are connected by n + 1 edges, in pairs. Now
we can use a recurrence argument. If k ≤ n and Γ is the adjacency graph of the
union D of k cubes, then there exists a pair of opposite faces such that none of
them is contained in D. Thus D is contained in ∂Cn × [0, 1]. We can write then

D = D̃ × [0, 1], where D̃ ⊂ ∂Cn is the union of k cubes one dimension lower.

First D̃ is a ball because it has trivial homotopy. The complementary of D inside
∂Cn × [0, 1] should be also a ball, because it is the same as ∂Cn+1 −D without two

cells touching the boundary (which are shelled of). Thus the complementary of D̃
in ∂Cn must be a ball and we can apply the recurrence hypothesis, in order to find
the shape of D.

If k = n+1 there are two cases: either there is again one pair of opposite faces
outside D (and then D ⊂ ∂Cn× [0, 1], and the argument from above works), or else
no such pair exists. Therefore D contains from each pair of opposite faces exactly
one. In this case there is only one such D, up to the cubical symmetries, namely
the n + 1 coordinate hyperplanes intersection with the standard cubes.

We have the following:

Lemma 3.2. For all k, r, p we have the identity:

fp(D
+
k,r) − fp(D

−
k,r) = fp(D

+
k ) − fp(D

−
k )( mod 2).

Proof. Set k = 2r + q. We denote the faces of Cn+1 by Lε
i , where L0

i = Li

and L1
i is the opposite face. Then Dk,r is combinatorially equivalent to some

Dk,r
∼=

r⊔

i=1

L0
i

r⊔

i=1

L1
i

r+q⊔

i=r+1

Lεi

i ,

for some εi. But now the choice of the εi is irrelevant because there is an isometry
of Cn+1 which transforms an εj into 1 − εj and preserve the others. In terms of
coordinates xi this is defined by xi −→ xi for i 6= j, and xj −→ xj . Therefore we
can choose a combinatorial model for Dk,r with all εi = 0.

The only difference with the previous case is that

m⋂

s=1

Lεs

is
=

{
Cn+1−m if there are no s1, s2 such that is1

= is2
, εs1

6= εs2

∅ otherwise

Therefore, with respect to the computation we made previously we have to take
into account that some of intersections are void. The void intersections corre-
spond to the combinations of h-tuples L0

i , ..., L
1
i , ... (the remaining h−2 faces being

arbitrary) which has been counted as cubes Cn+1−h previously. In the calcula-

tion of fp(
⊔r

i=1 L0
i

⊔r

i=1 L1
i

⊔r+q

i=r+1 Lεi

i ) we have to see how each term arising in

the inclusion-exclusion principle, namely Xh =
∑

L
εs
is

∈A fp(∩h
s=1L

εs

is
), has changed.

Here A is the set of faces of Dk,r.
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For h = 1 there are no intersections so that this factor is conserved. For h = 2
all the factors L0

i ∩L1
i have been counted before, but now their contribution is zero.

There are r such factors which implies that:

X2 =
(

n − 1
p

)
2n−p−1

((
k
2

)
− r
)

For h = 3 the now vanishing combinations are r(k−2) since a couple can be chosen
among the r pairs and the third can be chosen in k − 2 ways. It follows that :

X3 =
(

n − 2
p

)
2n−p−2

((
k
3

)
− r(k − 2)

)

We continue with h = 4: we have r
(

k − 2
2

)
possibilities to get at least one couple

of parallel faces but the couples L0
i , L

1
i , L

1
j , L

0
j are counted two times. Applying

again the inclusion-exclusion principle we derive that

X4 =
(

n − 3
p

)
2n−p−3

((
k
4

)
− r
(

k − 2
2

)
+
(

r
2

))

This generalizes easily by induction to:

Xs =
(

n + 1 − s

p

)
2n+1−p−s




2j≤s∑

j=1

(−1)j
(

k − 2j

s − 2j

)(
r

j

)



We are able now to write:

fp(D
+
k,r) = fp(D

+
k )+

n−p+1∑

s=2

(−1)s
(

n + 1 − s
p

)
2n+1−p−s




2j≤s∑

j=1

(−1)j
(

k − 2j
s − 2j

)(
r
j

)



Now we need to know how the number of interior p-cubes fp(int(D+
k,r)) has been

changed. Of course these interior p-cubes are always coming as intersections

n−p+1⋂

s=1;Lεs
is

∈A

Lεs

is

Again some of these intersections are void because parallel faces are allowed to be
in A. But the inclusion-exclusion principle gives (in the non-trivial case n − 1 ≥
p ≥ n − k + 1) :

fp(int(D+
k,r)) = fp(int(D+

k,0))

2j≤n−p+1∑

j=1

(−1)j
(

k − 2j
n − p + 1 − 2j

)(
r
j

)

It suffices now to see that the difference fp(D
+
k,r) − fp(int(D+

k,r)) has the same

parity for all r. In the previous formula for fp(D
+
k,r) only the term for s = n−p+1

has not a coefficient divisible by 2. But for s = n − p + 1 the contributing term
in fp(D

+
k,r) is exactly the same as the total contributing term in fp(int(D+

k,r)) and
they cancel each other.

Remark that in fact the greater common divisors of fp(D
+
k,r)−fp(D

−
k,r) are the

analogous ãi(n) of ai(n). It is clear than ãi(n) are divisors of ai(n). However the
explicit computations are more difficult. We omit the annoying details for checking
that ã0(n), ã1(n), ãn−1(n) are exactly those claimed. This ends the proof of the
Proposition 2.2.
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3.3. The proof of Proposition 2.3. Let P n+1
c denotes the family of con-

vex cubical polytopes. Some of the cubulations of the sphere corresponds to the
boundaries ∂P n+1

c of elements from P n+1
c . The last component of the f -vector

of elements in P n+1
c is trivial. Consider the affine Z-submodule (or Z-submodule

coset) An+1
c generated by all the f -vectors of elements of P n+1

c , viewed in Zn+1.

Lemma 3.3. (Dehn-Sommerville Equations) The affine space An+1
c ⊗Q ⊂ Qn+1

is of dimension
[

n+1
2

]
. A set of defining equation is obtained from the Euler-

Poincaré equation
n∑

i=0

(−1)ifi(x) = 1 − (−1)d+1

together with
n∑

j=k

(−1)j
(

j
k

)
2j−kfj = (−1)d−1fk, k = 0, 1, 2, ..., n− 1.

Equivalently we have the Euler-Poincaré equation and the set of independent equa-
tions

n∑

j=k

(−1)j
(

j
k

)
fj = 0, k ≡ n + 1(mod 2), 1 ≤ k ≤ n − 1.

Proof. See [15], p. 156-159.

In the general case of an arbitrary manifold M , not necessary Sn, we have to
replace the Euler-Poincaré equation by the corresponding:

Lemma 3.4. (Dehn-Sommerville Equations for a manifold) The affine space
An+1

c (M) ⊗ Q ⊂ Qn+1 is of dimension at most
[

n+1
2

]
. A set of equations which

define a flat containing An+1
c (M)⊗Q is obtained from the Euler-Poincaré equation

n∑

i=0

(−1)ifi(x) = χ(M)

together with
n∑

j=k

(−1)j
(

j
k

)
2j−kfj = (−1)d−1fk, k = 0, 1, 2, ..., n− 1.

Equivalently, we have the Euler-Poincaré equation and the set of independent equa-
tions

n∑

j=k

(−1)j
(

j
k

)
fj = 0, k ≡ n + 1(mod 2), 1 ≤ k ≤ n − 1.

This was proved by Klee for simplicial complexes in [19], see also [15], p. 152.
The case of cubulations is similar, and we omit the proof.

As a corollary we derive that the affine Z/2Z-submodule of (Z/2Z)n+1 gener-
ated by fb(2)(CB(M)) has rank at most

[
n+1

2

]
. In fact, the system of independent

equations written above has the determinant 1 mod 2.
In the case M = Sn the affine Z/2Z-submodule is a Z/2Z-submodule because

the only hyperplane which was not incident to the origin was the (Euler-Poincaré)-
hyperplane, but 1 + (−1)d ≡ 0(mod 2), so that also this hyperplane pass through
the origin, when tensorizing with Z/2Z.



CUBULATIONS MOD BUBBLE MOVES 13

Figure 2. A cubulation with odd f2

There exist cubulations of the sphere S2 having an odd number of faces (or
vertices), because immersed circles with an odd number of double points are easy
to construct. An example of a convex cubical polytope with the f -vector (11,18,9)
is drawn in picture 2. This proves that the image is in fact Z/2Z.

3.4. The complete f-obstruction. The complete f -obstruction is the class
of the f -vector in the finite Abelian group Zn+1/Λ(n). In general Λ(n) is not a prod-
uct in Zn+1 so that the projections fb do not contain all the information. In other
words we saw that f(bk(x)) = f(x) + a(k, n), where a(k, n) = (a(k, n, p)p=0,...,n).
Therefore, starting from the f -vector α we will obtain β after some np-bubble moves
if and only if the system of linear equations

n+1∑

k=1

xka(k, n) = β − α = b,

has integer solutions xk ∈ Z. Here xk is the algebraic number of times the move bk

has been used (an inverse move b−1
k counts as -1). Such a linear system has integer

solutions only if gcd(a(k, n, p), k = 1, n + 1) divides bp, for each p = 0, 1, ..., n.
These obstructions on α − β are exactly those described in the first part, namely
fi(mod ai(n)). . From 2.2 our the linear system is under-determined, of rank less
than

[
n+1

2

]
. The complete obstruction is the set of compatibility relations making

this system having solutions.
In the case of our system modeling the transformations of the f -vector by

bubble/np-bubble moves, for n = 1, 2, we do not find any new obstructions. Now
the result of proposition 2.6 can be deduced immediately:

Proof. For n = 3 there is one new obstruction. There are at most two inde-
pendent fi, let choose for instance f0 and f1. Then the np-bubble moves bi have
the matrix a(∗, ∗): (

0 2 4 8
0 6 12 20

)
.

This gives, away from the f0, f1 (mod 2) the that (f0 + f1)(mod 4) is an invariant.
In the case we have to do with the bubble moves, there are two more moves to

add to the previous list, namely b3,1 and b4,1, and the matrix is:
(

0 2 4 8 0 0
0 6 12 20 0 4

)
.

Thus (f0 + f1)(mod 4) is also an invariant for bubble moves.
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Let observe that the standard cubulation of S3 (the boundary of the 4-cube)
has trivial (f0 +f1)(mod 4). On the other hand, CB(S3) is a group whose elements
are of order two, hence 2(f0+f1) = 0(mod 4) for any cubulation of the sphere. This
implies that f0 = f1(mod 2), which agrees with the results of [2] for the polytopes.
Remark however that the obstructions f0(mod 2), f1(mod 2) and (f0 + f1)(mod 4).
are defined on CB(M) for all 3-manifolds M , not only for the sphere.
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