
Braided Houghton groups as mapping class groups∗

Louis Funar

Institut Fourier BP 74, UMR 5582

University of Grenoble I

38402 Saint-Martin-d’Hères cedex, France

e-mail: funar@fourier.ujf-grenoble.fr

To the memory of my friend Gheorghe Ionesei

In [9] we introduced the braided Ptolemy-Thompson group T ∗ playing the role of a mapping class group for
an infinite planar surface and proved that T ∗ is finitely presented. The group T ∗ is a somewhat simplified
version of the mysterious acyclic extension considered earlier by Greenberg and Sergiescu (see [13]), whose
algebraic properties are still poorly understood today.

The aim of this note is to use the method introduced in [9] in order to recover the braided Houghton groups
as mapping class groups of infinite surfaces. In particular the braid group on infinitely many strands is
realized as the commutator subgroup of an explicit finitely presented group. This has been done previously
by Dynnikov who used the so-called three pages representations of braids and links in ([7]). Our groups are
slightly different from those considered by Dynnikov and their presentation is of different nature, because it
comes from a geometric description in terms of mapping classes. Moreover, we obtain that the word problem
of the braided Houghton groups is solvable. A version of our construction was used by Degenhardt, who
introduced the braided Houghton groups BHn in his (unpublished) thesis [6]. Then Kai-Uwe Bux described
a conjectural approach to the finiteness properties of these groups in [4].

In order to define the mapping class group of an infinite surface we need to fix the behaviour of home-
omorphisms at infinity. The main ingredient used in [9] consists of adjoining rigid structures, as defined
below:

Definition 1. A rigid structure d on the surface Σ is a decomposition of Σ into 2-disks with disjoint
interiors, called elementary pieces. We suppose that the closures of the elementary pieces are still 2-disks.

We assume that we are given a family F of compact subsurfaces of Σ such that each member of F is a finite
union of elementary pieces, and called the family of admissible subsurfaces of Σ.

Given the data (Σ, d, F ) we can associate the asymptotic mapping class group M(Σ, d, F ) as follows. We
restrict first to those homeomorphisms that act in the simplest possible way at infinity.

Definition 2. A homeomorphism ϕ between two surfaces endowed with rigid structures is rigid if it sends
the rigid structure of one surface onto the rigid structure of the other.

The homeomorphism ϕ : Σ → Σ is said to be asymptotically rigid if there exists some admissible subsurface
C ⊂ Σ, called a support for ϕ, such that ϕ(C) ⊂ Σ is also an admissible subsurface of Σ and the restriction
ϕ|Σ−C : Σ − C → Σ − ϕ(C) is rigid.

As it is customary when studying mapping class groups we consider now isotopy classes of such homeomor-
phisms.

Definition 3. The group M(Σ, d, F ) of isotopy classes of asymptotically rigid homeomorphisms is called
the asymptotic mapping class group of Σ corresponding to the rigid structure d and family of admissible
subsurfaces F .

Remark 1. Two asymptotically rigid homeomorphisms that are isotopic should be isotopic among asymp-
totically rigid homeomorphisms.
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Example 1. One of the simplest nontrivial examples of infinite surface with a large symmetry group is
obtained by thickening the planar binary tree in the plane. The ribbon tree D obtained this way has a
natural rigid structure.

The elementary pieces of the rigid structure are hexagons obtained by thickening the tripodes issued from
the vertices of the binary tree, each one made of three mid-edges going from the vertex to the midpoints of
the adjacent edges, as in the picture below:

The family of admissible subsurfaces consists of those subsurfaces of D that are unions of finitely many
elementary pieces.

The asymptotic mapping class group of D with this rigid structure can be identified with the so-called
Ptolemy-Thompson group T . Notice that T is a simple finitely presented group which admits an alternative
description as the group of piecewise linear homeomorphisms of the circle S1 = [0, 1]/{0 ∼ 1}, mapping im-
ages of dyadic into images of dyadic numbers, differentiable outside finitely many images of dyadic numbers,
with derivatives powers of 2.

In order to understand better this correspondence we remark that T almost acts on the infinite binary tree.
One introduces an almost automorphism as an automorphism in the complement of a finite subtree. Then
the group T is generated by the following almost automorphisms α, β of the binary tree: β is the order
three rotation around a vertex and α is the order four rotation around an edge midpoint. The subgroup
〈α2, β〉 ⊂ T is actually the modular group PSL(2, Z) acting on its Bass-Serre tree.

More about Thompson’s groups can be found in [5, 11].

Example 2. A more intricate example was considered and studied extensively in [9]. We shift from the ribbon
tree D to the punctured ribbon tree D∗ by adding infinitely many punctures on D located at the midpoints
of the edges. Then the ribbon tree D∗ inherits a natural rigid structure from D.

The ribbon tree D∗ inherits a natural rigid structure from D for which the elementary pieces are punctured
hexagons, as in the picture below:

The family of admissible subsurfaces consists of those subsurfaces of D∗ that are unions of finitely many
elementary pieces.

The asymptotic mapping class group of D∗ with this rigid structure is the braided Ptolemy-Thompson group
T ∗ considered in [9]. It is proved there that there exists an exact sequence

1 → B∞ → T ∗ → T → 1

where B∞ is the group of braids with compact support in the punctures of D∗. Thus B∞ is the direct limit
of the sequence of braid groups associated to an ascending sequence of punctured admissible subsurfaces of
D∗.
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We want to turn to simpler examples obtained from thickening trees in the plane and show that interesting
groups could be obtained this way. Consider the planar ribbon Yn, which is a 2-dimensional neigborhood
of the wedge of n half-lines (or rays) in the plane that intersect at the origin. Assume that every half-line
is endowed with a linear coordinates system in which the origin corresponds to 0 and that the rotation of
order n sends them isometrically one into the other.

Let Y ∗

n (respectively Y ]
n) be the punctured ribbon obtained from Yn by puncturing it along the set of points

of positive (respectively nonnegative) integer coordinates on each half-line. Punctures are therefore identified
to nonnegative integers along each ray. The origin has coordinates 0 on all half-lines and does appear only
in Y ]

n .
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There is a family of parallel arcs associated to each ray, by drawing a properly embedded segment orthogonal
to the respective half-line and passing through the puncture labelled n, for every n ∈ Z+ − {0}.

The surface Yn (respectively Y ∗

n , Y ]
n) is then divided by these arcs into elementary pieces, which are of

two types: one central (respectively punctured for Y ∗

n ) 2n-gon containing the origin and infinitely many
(respectively punctured) squares which sit along the half-lines. One defines the admissible subsurfaces of Yn

(respectively Y ∗

n , Y ]
n) to be those (punctured) 2n-gons which contain the (punctured) central 2n-gon and

are made of finitely many elementary pieces.

Let M(Yn) (respectively M(Y ∗

n ), M(Y ]
n)) denote the asymptotic mapping class group of Yn (respectively

Y ∗

n , Y ]
n) with the above rigid structure.

The group M(Yn) has a particularly simple form. In fact any element of M(Yn) corresponds to a triple
((P, Q), r), where P and Q are admissible 2n-gons and r is an order n rotation that gives the recipe for
identifying the boundary arcs of P and Q. Moreover, an admissible 2n-gon P ⊂ Yn is completely determined
by the vector vP ∈ (Z+−{0})n recording the coordinates of those punctures that lie on the boundary arcs of
P , one coordinate for each ray. The cyclic group of rotations Z/nZ acts on Z

n by permuting the coordinates
and preserves the subgroup Z

n−1 ⊂ Z
n of the vectors having the sum of their coordinates zero. The map

that sends the pair ((P, Q), r) into (vQ − r(vP ), r) ∈ Z
n

o Z/nZ induces an isomorphism of M(Yn) onto the
subgroup Z

n−1
o Z/nZ.

Following the example 2 one expects M(Y ∗

n ) and M(Y ]
n) to be extensions of M(Yn) by an infinite braid group

B∞. If M(Yn) were abelian then the infinite braid group B∞ would be the commutator of the extension
group. However the semi-direct product Z

n−1
o Z/nZ is not direct for n ≥ 3, and hence it is convenient to

restrict to those mapping classes in the groups above coming from end preserving homeomorphisms.

Consider therefore the subgroups M∂(Yn) (respectively M∂(Y ∗

n ), M∂(Y ]
n)) generated by those homeomor-

phisms which are end preserving i.e. inducing a trivial automorphism of the ends of Yn. Alternatively, the
homeomorphisms should send each ray into itself, at least outside of a large enough compact.

It follows from above that M∂(Yn) is isomorphic to Z
n−1.

The groups M∂(Y ∗

n ) are isomorphic to the braided Houghton groups considered by Degenhardt and Dyn-
nikov. It is known that these are finitely presented groups for all n ≥ 3. The same result holds for the larger
related groups M∂(Y ]

n):

Theorem 1. The groups M(Y ]
n) and M∂(Y ]

n) are finitely presented for n ≥ 3. The commutator subgroup
of M∂(Y ]

n) is the infinite braid group B∞ in the punctures of Y ]
n .

Proof. Consider the case of M∂(Y ]
n), the other one being similar. We can express the groups as an extension

by the infinite braid group, as follows:
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Proposition 1. There is an exact sequence

1 → B∞ → M∂(Y ]
n) → Z

n−1 → 1

where B∞ = limk→∞ Bkn+1 is the limit of the braid groups of an exhausting sequence of admissible subsur-
faces of Y ]

n .

Proof. A mapping class ϕ ∈ M∂(Y ]
n) sends a support 2n-gon into another support 2n-gon, by translating

the arc on the half-line lj of kj units towards the centre. Since the support hexagons should contain the same
number of punctures we have k1 + k2 + · · · + kn = 0. The map sending ϕ to (k1, k2, . . . , kn) is a surjection
onto Z

n−1. The rest of the proof is immediate.

Let the line lj be punctured along the points pj(i) at distance i from the origin. Consider the mapping class
of the homeomorphism dj which translates all punctures of the line lj ∪ lj+1 one unit in the counterclockwise
direction, as in the figure below:
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We use the convention that the groups acts on the right: thus the composition ab denotes a followed by b.
Moreover, the set of indices corresponding to the rays is {1, 2, . . . , n}, which is naturally identified to Z/nZ;
let then < denote the cyclic order on Z/nZ.

Proposition 2. Set ui = didi+1d
−1
i d−1

i+1. Then the group M∂(Y ]
n) is generated by the d1, d2, . . . , dn and

admits the presentation:
d1d2d3 · · · dn = 1

ui1ui2ui3ui1 = ui2ui3ui1ui2 = ui3ui1ui2ui3 , if i1 < i2 < i3

d−1
i−1uidi−1 = diuid

−1
i for all i

uiujui = ujuiuj , for all i, j

d−1
i−1uidi−1uid

−1
i−1uidi−1 = uid

−1
i−1uidi−1ui, for all i

[diuid
−1
i , uj ] = 1, for all i 6= j

[diuid
−1
i , dj ] = 1, for all i < j < i − 1

[djuid
−1
j = uiuju

−1
j , for all i < j < i − 1

Proof. Let a, b be adjacent punctures. We denote by σab the standard braid that interchanges a and b
moving them counterclockwise. Remark that ui = σ0pi(1) is the braid twisting 0 and pi(1). Moreover, one

proves by recurrence that σpi(k)pi(k+1) = d−k
i−1uid

k
i−1. Thus Mδ(Y

]
n) is generated by the djs since their

images generate both the quotient Z
n−1 and the kernel B∞. The group B∞ is identified with the braid

group associated to the infinite tree given by the reunion of the n half-lines in the plane, whose vertices
are located at punctures. We can use therefore the presentation for B∞ given by Sergiescu (see [16, 1]). In
particular B∞ is generated by the (infinite) set of braids associated to the edges of the tree, namely the
braids σpi(k)pi(k+1). By translating the relations between the braids into relations between the di and ui we
obtain the following set of vertex and edge relations:

ui1ui2ui3ui1 = ui2ui3ui1ui2 = ui3ui1ui2ui3 , if i1 < i2 < i3

uiujui = ujuiuj , for all i, j

diuid
−1
i uidiuid

−1
i = uidiuid

−1
i ui, for all i
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and an additional set of commuting relations between twists with disjoint support edges, reading:

[σpi(k)pi(k+1), σpj (m)pj(m+1)] = 1, when their support edges are disjoint

The twists associated to edges at distance one yield the relations

[d−1
i−1uidi−1, uj ] = 1, for all i 6= j

Further di commutes with σpi(1)pi(2) since they have disjoint supports, which lead us to the last relations
above. The interesting phenomenon is that these relations actually are sufficient to imply all commutativity
relations (between arbitrary far away disjoint twists associated to the edges). We skip the proof, which is a
direct calculation.

It follows that subgroup generated by the uis and their conjugates by the djs is B∞. Further B∞ is a
normal subgroup inside the group given by the presentation above, as the conjugates by dj of the uis can
be expressed in terms of the braid generators σpi(k)pi(k+1). Then we can provide an infinite presentation

of M∂(Y ]
n) by means of Hall’s lemma which puts together the Sergiescu presentation of B∞ and that of

Z
n−1. Then all relations of this infinite presentation are consequences of those from the statement. The

claim follows.

It follows from above that B∞ ⊂ [M∂(Y ]
n),M∂(Y ]

n)] because ui = [di, di+1] and thus each braid generators
σpi(k)pi(k+1) is conjugate to a commutator. Moreover the quotient M∂(Y ]

n)/B∞ is the abelian group Z
n−1

and hence B∞ is the commutator subgroup of M∂(Y ]
n). Notice that the same holds for the braided Houghton

group M∂(Y ∗

n ).

The two versions M∂(Y ]
n) and M∂(Y ∗

n ) of braided Houghton groups are very closed to each other. Let
M∗

∂(Y ]
n) denote the subgroup of those mapping classes fixing the central puncture 0. Therefore

Proposition 3. There is an exact sequence

1 → F → M∗

∂(Y ]
n) → M∂(Y ∗

n ) → 1

where F is a free group on infinitely many generators that is normally generated in M∂(Y ]
n) by one element.

Proof. The projection homomorphism is that induced by the inclusion Y ]
n → Y ∗

n and corresponds to forget-
ting the central puncture. It is classical that the kernel F of this map is isomorphic to π1(Y

∗

n , 0) which is
free on infinitely many generators. The element u2

1 ∈ M∂(Y ]
n) is represented by the closed loop based at

the origin encircling the puncture p1(1). However M∂(Y ]
n) acts transitively by conjugacy on the set of loops

that encircle punctures of Y ∗

n and thus the element u2
1 normally generates the kernel.

Theorem 2. The groups M∂(Y ]
n) (and its versions) have solvable word problem.

Proof. For any word w in the generators di we have that there exists a support of w made of elementary
pieces not farther than |w|+ 1 units from the central 2n-gon. Then the proof given in [9] can be adapted to
our situation. Onserve that we actually use the fact that the word problem is solvable in braid groups.

Remark 2. Let S∞ denote the infinite permutation group of punctures of Y ∗

n obtained as direct limit of finite
permutation groups of punctures in an ascending sequence of admissible subsurfaces.

The Houghton groups Hn considered by Brown ([3]) are quotients of M∂(Y ∗

n ) induced from the obvious
homomorphism B∞ → S∞ sending braids into the associated permutations. This means that we have
natural exact sequences

1 → B∞ → M∂(Y ]
n) → Z

n−1 → 1
↓ ↓ ↓

1 → S∞ → Hn → Z
n−1 → 1

Remark 3. The group M∂(Y ]
2 ) (and its variants) is generated by two elements, namely d = d1 = d−1

2 and

u1 = σ0p1(1). However, M∂(Y ]
2 ) is not finitely presented since the commutativity relations coming from

the braid group are independent, namely we have infinitely many relations [dkud−k, dmud−m] = 1, for all

integers m, k with |m − k| ≥ 1. Also M∂(Y ]
2 ) surjects onto the Houghton group H2 which is known to be

infinitely presented. In some sense M∂(Y ]
2 ) is similar to the lamplighter groups.
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Remark 4. Since all generators of B∞ are conjugate the abelianization of B∞ is Z. The abelianization
homomorphism B∞ → Z induces an extension M∂(Y ]

n)ab as follows:

1 → B∞ → M∂(Y ∗

n ) → Z
n−1 → 1

↓ ↓ ↓
1 → Z → M∂(Y ∗

n )ab → Z
n−1 → 1

For n = 2 it follows that M∂(Y ∗

2 )ab is abelian, generated by the images of d and u. In particular, we obtain
that M∂(Y ∗

2 )ab ∼= H1(M∂(Y ∗

2 )) = Z
2.

For n ≥ 3 the group M∂(Y ∗

n )ab is a nontrivial (non-abelian) extension of Z
n−1 by Z.

Remark 5. Degenhardt ([6]) proved that the braided Houghton groups are Fn−1 but not Fn for n ≤ 3 and
conjectured that this holds for all n. This would be a parallel to the results obtained by Brown (see [3]) for
the usual Houghton groups Hn. Progress towards the settlement of this conjecture was made by Kai-Uwe
Bux in [4]. It seems that the groups M∂(Y ]

n) are also Fn−1 but not Fn.

This behavior is in contrast with the case of the Thompson group T (which is FP∞) and its braided version
T ∗ (which is at least FP3 (see [10]) and expected to be FP∞). It is therefore likely that M∂(Y ]

n) are not
combable (hence not automatic) although the result of [10] would suggest that they might be asynchronously
combable with quadratic Dehn function. If the similarity with the braid groups is pushed one step farther
then the braided Houghton groups should have solvable conjugacy problem, as well.

Remark 6. Given three rays in the binary tree we can associate an embedding of Y ∗

3 into D∗ that induces
injective compatible homomorphisms Z

2
o Z/3Z → T and M(Y ∗

3 ) → T ∗.

Remark 7. One does not know which other planar graphs yield finitely presented group asymptotic mapping
class groups. One may enlarge the category of graphs to that of coloured graphs, in which automorphisms
and almost automorphisms are required to preserve the colouring.

An interesting class of coloured planar trees comes from universal coverings of ribbon graphs, associated to
punctured surfaces and 2-dimensional orbifolds. The ribbon structure of the graph is a cyclic order around
each vertex. There is a natural colouring of vertices and edges of the graph by using different colours, and
this induces a colouring on the universal covering tree. Moreover, the tree has a natural embedding in the
plane which uses the induced cyclic order around the vertices.

However P.Greenberg ([12]) showed that asymptotic mapping class groups of universal coverings of (coloured)
ribbon graphs (called projective Thompson groups) have infinitely many generators, as soon as the genus
of the surface is positive. Moreover, if the genus is zero Laget ([15] proved that the asymptotic mapping
class groups are finitely presented groups. It seems that the finite presentability holds more generally for all
the groups obtained from the 2-orbifolds of genus zero. The basic example in this respect is the Thompson
group T which arises from the 2-orbifold associated to the group PSL(2, Z), namely the sphere with a cusp,
one singular point of order 2 and another one of order 3.

Acknowledgements. I’m indebted to C.Kapoudjian and V.Sergiescu for useful discussions.
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