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Abstract. Singular fibrations generalize achiral Lefschetz fibrations of 4-manifolds over sur-
faces while sharing some of their properties. For instance, relatively minimal singular fibrations
are determined by their monodromy. We explain how to construct examples of singular fibra-
tions with a single singularity and Matsumoto’s construction of singular fibrations of the sphere
S4. Previous results of Hirzebruch and Hopf on 2-plane fields with finitely many singularities
are outlined in connection with the work of Neumann and Rudolph on the Hopf invariant. Even-
tually, we prove that closed orientable 4-manifolds with large first Betti number and vanishing
second Betti number do not admit singular fibrations.
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1. Introduction

The aim of this chapter is to study smooth maps f : M → N between a compact connected
oriented 4-manifold M4 and a compact oriented surface N2 having only finitely many critical
points. We start with:

Definition 1.1. A singularity p of the smooth map f : M → N is cone-like if p admits a cone
neighborhood in the corresponding fiber V = f−1(f(p)), i.e. there exists some closed manifold
L ⊂ V −{p} and a neighborhood N of p in V which is homeomorphic to the cone C(L) over L.
Recall that C(L) = L× (0, 1]/L× {1}.

Church and Timourian proved (see [10] and another proof in [14]) that all isolated singularities
in codimension at most 2 are cone-like. In particular, isolated critical points of smooth maps f :
M4 → N2 are cone-like. As Takens pointed out in [55], this is not anymore true in codimension
3 or higher.

Definition 1.2. A cone-like singularity of the smooth map f : M → N is regular if it admits
an adapted neighborhood (see section 2.1) which is diffeomorphic to a disk.

By a result of King (see [32, 33]) unless dimM ∈ {4, 5} all cone-like singularities are regular.
When dimM = 4 the general theory developed by King only shows that we can find contractible
adapted neighborhoods.

Definition 1.3. A smooth map f : M → N is a singular fibration if it has only finitely many
critical points, all of them being regular and cone-like.

We will focus in this chapter on singular fibrations M4 → N2. In this case, around each
critical point the map is described by (a generalization of) the local Milnor fibration of a germ
with isolated singularity (R4, 0) → (R2, 0). Such a singularity is topologically locally determined
by a fibered link K ⊂ S3, called the local link of the singularity, see Section 2.1 for details.
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The simplest nontrivial singularity is given by a complex Morse map f : (C2, 0) → (C, 0)
f(z1, z2) = z21 + z22 .

The corresponding local link is the positive Hopf link, having linking number +1. Maps M4 →
N2 admitting a local system of real coordinates which is globally coherently oriented such that
the restriction to every chart is topologically equivalent to a complex Morse map are called
Lefschetz fibrations. Note that we do not require the atlas to be a global complex coordinate
system and in particular Lefschetz fibrations need not be holomorphic.

Taking the complex conjugate of a coordinate we obtain the map f ′(z1, z2) = z21+ z
2
2 which is

equivalent to a complex Morse map by an orientation reversing change of coordinates. Its local
link at the origin is the mirror image of the positive Hopf link, and hence the negative Hopf link
with linking number −1. We call quadratic singularities those critical points which are locally
equivalent to either f or f ′, by orientation preserving changes of coordinates.

Recall that a smooth map f :M4 → N2 whose singularities are quadratic is called an achiral
Lefschetz fibration. Thus achiral Lefschetz fibrations correspond to maps whose singularities
have local links equivalent to Hopf links.

Fibered links arising as local links of complex polynomials or holomorphic functions with
isolated singularities were intensively studied. They are well understood, as all of them are
cabled torus links.

Whether all fibered links can arise as local links of real polynomials or real analytic functions
with isolated singularities seems presently unknown. According to Looijenga ([37]), if K ⊂ S3

is an arbitrary link, then the connected sum K#K is the link of a real polynomial isolated
singularity (R4, 0) → (R2, 0). Moreover, any fibered link K is the link of a semi-algebraic local
isolated singularity, whose components are of the form P (x) + |x|Q(x), where P,Q are real
polynomials and | | denotes the norm.

The present chapter aims at addressing some of the following questions below.

Problem 1.1. Can we classify singular fibrations?

If we fix the topological type of the generic fiber and the number of branch points (i.e. singular
values), then a first step towards an answer, in purely algebraic terms, is provided by Proposition
2.2. This result is a high-dimensional analog of the Hurwitz classification of ramified coverings
between surfaces. Nevertheless, it is rather ineffective as a description of diagonal conjugacy
classes of tuples of elements in the mapping class group is presently lacking. In particular, it
does not lead to insights on:

Problem 1.2. Which closed oriented 4-manifolds admit singular fibrations over surfaces?

Harer proved in [23] that a 4-dimensional manifold with boundary has a handlebody decom-
position with handles of index ≤ 2 if and only if it admits an achiral Lefschetz fibration over
the 2-disk. An analog of Harer’s result was proved recently for the nonorientable case by Miller
and Ozbagci ([42]). In the same vein, Matsumoto proved in [41] that a closed smooth simply
connected 4-manifold which admits a handlebody decomposition without 1-handles and with
at most one 3-handle admits a continuous torus singular fibration over the 2-sphere which is
smooth everywhere except at one point. Moreover, Etnyre and Fuller ([13]) proved that for
any smooth closed simply connected orientable 4-manifold M4, the connected sum M#S2 × S2

admits an achiral Lefschetz fibration over S2.
On the other hand, Gompf and Stipsicz proved that there exist 4-manifolds M4 which do not

admit achiral Lefschetz fibrations over S2, for instance #mS
1×S3 when m ≥ 2 (see [22], Section

8.4). We will show that these manifolds do not admit singular fibrations either, see Proposition
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4.2. The proof uses in an essential way the analysis made by Hirzebruch and Hopf in [25] of the
oriented 2-plane tangent fields with finitely many singularities on 4-manifolds.

Problem 1.3. Suppose that there exists a singular fibration M4 → N2 between closed orientable
manifolds. Does M4 admit an achiral Lefschetz fibration over N2 or another surface?

We say that a singularity is ±-holomorphic if it is locally topologically equivalent to a holo-
morphic germ with an isolated singularity. We emphasize that the local homeomorphism need
not preserve the orientation. It is well-known that the problem above has an affirmative answer
when the singularities are ±-holomorphic, see Proposition 3.1.

Assume that the isotopy type of the generic fiber is fixed. Then we have to look over the set
of singular fibrations X4 → D2 having the same (vertical) boundary fibrations over S1. Such
singular fibrations are called shell equivalent.

Problem 1.4. Describe singular fibrations up to shell equivalence.

Some invariants of shell equivalence classes are derived from the Hopf invariants, see Corol-
laries 4.1 and 4.2. The shell equivalence of singular fibrations D4 → D2, was considered in [45],
where it was called unfolding for the respective collections of local links. The work of Neumann
and Rudolph from [45, 46, 47] provides fibered links which do not unfold to Hopf links, see also
[27].

Let φ(M,N) denote the minimal number of critical points of a smooth map between the
manifoldsM and N . Although there is a large supply of results concerning the minimal number
of singular fibers and hence of singular points for Lefschetz fibrations, see [34, 48], there is little
known about φ(M4, S2). Note that the φ(M4, S2) can be strictly smaller than the number of
critical points in an achiral Lefschetz fibration. Indeed φ(S4, S2) = 1, by the work [40, 41] of
Matsumoto, while the (minimal) number of critical points in an achiral Lefschetz fibration of
S4 over S2 is 2. We set φs(M

4, N2) for the minimal number of critical points of a singular
fibration M4 → N2. Similar invariants counting cone-like critical points have been studied in
higher dimensions in [5, 16] and they are conjecturally the same as φ. We don’t know under
which conditions singularities can merge together to produce a higher singularity and a smaller
number of critical points. In particular, the following might be relevant:

Problem 1.5. Can we characterize 4-manifolds with φs(M
4, N2) = 1, for some N2?

We will provide necessary conditions on the fundamental groups of manifolds with the prop-
erty φs(M

4, S2) = 1 and derive that φs can take values larger than 1. We further give a
satisfactory answer to the problem above in the case of homology spheres, see Propositions 3.5
and 4.6.

Note that there is also a group-theoretical invariant derived out of φs. For any finitely
presented group G there exists at least one closed smooth 4-manifold with π1(M

4) isomorphic
to G. The set of all possible values taken by φs(M

4, S2), in particular the lowest value, is an
invariant of G. However, it is difficult to compute. For instance it is unknown whether:

Problem 1.6. Is it true that any smooth closed simply connected oriented 4-manifold has a
singular fibration over some surface?

The starting point of this article is the work of A’Campo on real morsifications of isolated
singularities of planar curves (see [2]). We were strongly influenced by the papers of Neumann
and Rudolph ([45, 46, 47, 53, 54]) on the Hopf invariant, the Hirzebruch–Hopf results on 2-
plane fields on 4-manifolds ([25]) and Matsumoto’s work on constructing singular fibrations on
4-manifolds ([39, 40, 41]).
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2. Fibered links and the description of singular fibrations

2.1. Fibered links and local models for isolated singularities. Recall that the isotopy
class of the oriented link K ⊂ X3 with a trivial normal bundle is called generalized Neuwirth–
Stallings fibered (or (X3,K) is a generalized Neuwirth–Stallings pair) if, for some trivialization
θ : N(K) → K × D2 of the tubular neighborhood N(K) of K in X3, the fiber bundle π ◦ θ :
N(K) − K → S1 admits an extension to a smooth fiber bundle fK : X3 − K → S1. Here
π : K × (D2 − {0}) → S1 is the composition of the radial projection r : D2 − {0} → S1 with
the second factor projection. This is equivalent to the condition that the closure of every fiber
is its compactification by the binding link. The data E = (X3,K, fK , θ) is then called an open
book decomposition with binding K while K is called a fibered link. We will frequently use the
notation fK for the induced fibration fK : X3−N(K) → S1, whose fiber is now compact. When
X3 = S3 we have the classical notions of Neuwirth–Stallings fibrations and pairs.

An adapted neighborhood around a cone-like isolated critical point of a map f : M4 → N2 is
a compact manifold neighborhood Z4 ⊂M4 containing it with the following properties:

(1) f induces a proper map f : Z4 → D4 onto a disk D2 ⊂ N2;
(2) f−1(x) is transversal to ∂Z4 for x ∈ int(D2) and E = f−1(S1) ∩ Z4 ⊂ ∂Z4;
(3) Let K = ∂Z4∩ f−1(0) and N(K) = ∂Z4∩ f−1(D2

0) a tubular neighborhood of K within
∂Z4, endowed with the trivialization θ induced by f , where D2

0 ⊂ D2 is a small disk
around 0. Then the composition fK = r ◦f : ∂Z4−f−1(0) → S1 of the radial projection
r with f is a locally trivial fibre bundle, so that the data (∂Z4,K, f |K , θ) is an open
book decomposition.

King proved in [32] that all cone-like isolated singularities admit contractible adapted neigh-
borhoods. However, we don’t know whether one can always choose adapted neighborhoods
diffeomorphic to a disk. For this reason we restrict ourselves from now on to those cone-like
singularities which are regular.

Recall now from [37, 31, 53] that an open book decomposition E = (S3,K, fK , θ) gives rise to
a local isolated singularity ψE : (D4, 0) → (D2, 0) by means of the formula:

ψE(x) =


λ(∥x∥)fK

(
x

||x||

)
, if x

||x|| ̸∈ N(K);

λ
(
∥x∥ ·

∥∥∥π2 (θ ( x
∥x∥

))∥∥∥) fK ( x
||x||

)
, if x

||x|| ∈ N(K);

0, if x = 0,

where π2 : K × D2 → D2 is the projection on the second factor and λ : [0, 1] → [0, 1] is any
smooth strictly increasing map sufficiently flat at 0 and 1 such that λ(0) = 0 and λ(1) = 1.

Although ψE is not uniquely defined by this formula, all germs obtained this way are topo-
logically equivalent. This is a direct consequence of the characterization of cone-like isolated
singularities due to King (see [32], Thm. 2 and [33], Thm. 1). Moreover, they are also smoothly
equivalent by germs of diffeomorphisms of Dm \ {0} (see [31], Thm. 1.10, for k = 2). We call
such ψE local models of isolated singularities.

If K is in generic position, namely the space generated by vectors in R4 with endpoints in K
coincides with the whole space R4, then (dψE)0 = 0, i.e. ψE has rank 0 at the origin.

By language abuse we will speak of fibered links K as being links which admit an open book
structure. We emphasize that, in general, ψE depends on the choice of the fibration fK and the



SINGULAR FIBRATIONS 5

trivialization θ, not of the embedding of K alone. However, it is specific to dimension 3 that
the fiber F ⊂M3 \K determines not just the binding K = ∂F but also the fibration fK up to
isotopy relative to F . This follows from a classical result of Waldhausen stating that homotopic
fibrations are actually isotopic. It is actually known that the oriented fibered link K ⊂M3 in a
homology sphere M3 determines uniquely its open book fibration, up to isotopy (see [19], p.99).

Looijenga in [37] proved that a Neuwirth–Stallings pair (S3, L, fL, θ) can be realized by a real
polynomial map if L is invariant and the open book fibration fL is equivariant with respect to
the antipodal map. In particular, for any fibered link K the connected sum K#K is a Neuwirth-
Stallings pair isomorphic to the link of a real polynomial isolated singularity ψK : (R4, 0) →
(R2, 0).

2.2. Fiber connectedness. It was noted by Gompf and Stipsicz in [22] that singular fibrations
behave in many respects like achiral Lefschetz fibrations, in particular we have the following
analog of the long exact sequence in homotopy:

Lemma 2.1. For any singular fibration f : M4 → N2 with generic fiber F there is an exact
sequence:

π1(F ) → π1(M
4) → π1(N

2) → π0(F ) → 0.

Proof. See [22, Prop. 8.1.9 and Ex.8.1.10.(b)]. □

In particular the image of π1(M
4) in π1(N

2) has always finite index. When the fiber F is
not connected, f lifts to a singular fibration of M4 to a finite cover of N2 such that the induced
map between fundamental groups is surjective and hence the generic fiber is now connected.

Henceforth we only consider singular fibrations with connected generic fibers, throughout this
chapter.

2.3. Singular fibrations. The method used in [15, 14, 16] to globalize a local picture was to
glue together a patchwork of such local models to obtain maps M4 → N2 with finitely many
critical points. We obtain this way a complete description of singular fibrations in terms of
algebraic data. For the sake of simplicity consider below the case when N2 = S2.

Let Kj ⊂ S3 be fibered knots whose associated open books have the fibers F 2
j and the

associated smooth maps ψKj : (D4
j , 0) → (D2, 0). Consider some abstract surface Z2 with

∂Z2 = ⊔jKj . We now define the expansion of the fiber by means of Z as follows. We glue
together the copies D4

j of the 4-disk with the product Z × D2 along part of their boundaries

by identifying ⊔jN(Kj) with ∂Z × D2. The identification has to respect the trivializations
⊔jN(Kj) → D2 and hence one can take them to be the same as in the double construction.
Note that N(Kj) = Kj ×D2 and thus identifications respecting the trivialization correspond to
homotopy classes [⊔jKj ,Diff+(D2, ∂)] = 1.

We then obtain a manifold with boundary X = (∪jD
4
j ) ∪ (Z ×D2) endowed with a smooth

map f(Kj) : X → D2 which restricts to ψKj on each disk D4
j and with the second projection

on Z ×D2. Then f(Kj) has finitely many critical points, all of them lying in the same singular

fiber over the origin 0 ∈ D2. Its generic fiber is the surface F obtained by gluing together
(∪jFj) ∪ Z. We call then the pair (X, f(Kj)) a disk block. Its boundary ∂X inherits a fibration

f(Kj)|∂X : ∂X → S1.
We say that a collection of fibrations over the circle with the same fiber are cobounding in

N2 if they extend to some fibration over N2 \ ⊔p
i=1D

2
i . Let now fi : Xi → D2

i , 1 ≤ i ≤ p be
a set of disk blocks with the same fiber F whose boundary fibrations are cobounding. We can
then glue together the disk blocks and a fibration E over N2 \ ⊔p

i=1D
2
i extending the boundary
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fibrations of disk blocks. We want the gluing diffeomorphisms to respect the fibration structure
on the boundaries. Therefore we obtain a closed manifold M(f1, f2, . . . , fp, E) endowed with
a map with finitely many critical points into N2. We will drop E from the notation when
its choice is implicit. In most cases below E will be a trivial fiber bundle. Moreover, the
resulting manifold depends on the gluing parameters: for each circle ∂D2

i we have a (fixed)
gluing diffeomorphism of the fiber F over a base point and the homotopy class of a loop in the
space of diffeomorphisms of F isotopic to the identity. Recall, after Earle and Eells (see [12]),
that the space of diffeomorphisms isotopic to the identity is homotopy equivalent to SO(3), if
F = S2, to a torus, if F is a torus and contractible, when F has higher genus. Note that the
extension fibration E is not unique, in general. However, when N2 = S2, if an extension E
exists, then it is unique.

Conversely, every singular fibrationM4 → N2 is equivalent to some singular fibration obtained
by the previous construction, of the form M(f1, f2, . . . , fp, E) → N2.

We can replace each local model ψKj by left composing it with some diffeomorphism in

Diff+(D2, ∂) sending the origin 0 ∈ D2 into some point pj , such that the points pj are distinct.
Then the critical points of the new map f(Kj) : X → D2 are now sitting in distinct fibers. If
we are only interested in the diffeomorphism type of the 4-manifold M it suffices therefore to
consider the case when there is a single critical point in every singular fiber. In this situation each
disk block map fi : Xi → D2

i is obtained from ψKi : D
4
i → D2

i by expanding the local Milnor fiber
Fi using boundary connected sums with some surface Zi. In other terms the singular fibrations
whose singular points have distinct images are completely determined by the fibration part E,
the gluing parameters, the decompositions of the generic fiber F as the boundary connected
sums Fi∪Zi and the monodromies of the open book decompositions associated to the knots Ki.

Alternatively we can consider the fiber-sum of the disk blocks fi : Xi → D2
i and obtain a disk

block f : #iXi → #iD
2
i = D2, where D2 ⊂ N2 is a disk containing all singular values. The

manifold M(f1, f2, . . . , fp, E) is then obtained as the result of gluing together the disk block X
with the restriction of the fibration E to N2 \D2.

We denote by M(F ) the mapping class group of the surface F . Choose now a base point ∗
on S2 and a system of disjoint embedded arcs connecting it to base points on ∂D2

i . This data
permits to describe a fibration E over S2 \ ⊔p

i=1D
2
i by means of the p-tuple of the monodromies

ϕj along the loops issued from ∗ which follow the given arcs and encircle once clockwise the
singular value in D2

j . Note that (ϕj) ∈ M(F )p is well-defined, up to diagonal conjugation by

M(F ).
Now, a collection of fibrations over the circle is cobounding in N2 if and only if the total

monodromy ϕ1ϕ2 · · ·ϕp is the product of g commutators in M(F ), where g is the genus of N2.
In particular, it is cobounding in S2 if and only if the monodromy along a loop encircling all
critical values is trivial:

ϕ1ϕ2 · · ·ϕp = 1 ∈M(F ).

2.4. Singular fibrations over S2. Throughout this section singular fibrations are required to
have singular points with distinct images.

Definition 2.1. Two singular fibrations f, g : M4 → S2, are equivalent if there exists some
homeomorphisms H : M4 → M4 and φ : S2 → S2 such that H ◦ f = g ◦ φ. When φ can be
taken to be isotopic to the identity rel the branch locus, we say that the singular fibrations are
strongly equivalent.

Let B ⊂ S2 denote the set of critical values of a singular fibration f : M4 → S2. Then the
holonomy of the fiber bundle f |M\f−1(B) :M \ f−1(B) → S2 \B provides us with a monodromy
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homomorphism:

π1(S
2 \B) →M(F ),

which is well-defined up to conjugacy by M(F ).
Observe first that the monodromy of singular fibrations of oriented manifolds with generic

fiber S2 is trivial. In the study of Lefschetz fibrations one usually restricts to relatively minimal
Lefschetz fibrations. In particular, no vanishing cycle bounds a disk in a generic fiber.

By analogy, we say that a singular fibration whose generic fiber is a torus is relatively minimal
if the complement F \ int(F0) of the local Milnor fiber within the generic fiber F does not have
any disk component. The following extends the classification of genus one Lefschetz fibrations
due to Moishezon ([44]):

Proposition 2.1. Relatively minimal singular fibrations on S2 with branch locus B, generic fiber
a torus T 2 and surjective monodromy, up to strong equivalence are in one-to-one correspondence
with the set of classes MT 2(S2 \B) of surjective homomorphisms π1(S

2 \B) → SL(2,Z) sending
peripheral loops into Dehn twists, modulo the conjugacy action by SL(2,Z). Furthermore, the
classes of these relatively minimal singular fibrations up to equivalence are in one-to-one corre-
spondence with the set MT 2(S2 \B) of orbits of the mapping class group M(S2 \B) action on
MT 2(S2 \B) by left composition.

Proof. The proof is an adaptation of Moishezon’s proof from [44, Part II, section 2]. Since the
fiber F is a torus every local Milnor fiber F0 is an annulus, since its complement contains no
disks. Therefore peripheral loops are sent into powers of Dehn twists. However, the monodromy
of a fibered link whose fiber is an annulus is a (left or right) Dehn twist.

We have to prove next that a disk block X → D2 with torus fibers extends uniquely over
the complementary disk of D2 within S2. Since the boundary fibration is trivial the gluing
parameters correspond to homotopy classes of fiberwise diffeomorphisms of S1 × T 2, namely to
elements of the fundamental group π1(Diff0(T

2)) of the group of diffeomorphisms of T 2 which
are isotopic to the identity. According to [12] the map which associates to (m,n) ∈ Z ⊕ Z the
fiberwise diffeomorphism Lm,n : S1 × T 2 → S1 × T 2

Lm,n(θ, α, β) = (θ, α+mβ, β + nθ), θ ∈ S1, (α, β) ∈ S1 × S1 = T 2,

induces an isomorphism between Z⊕Z and π1(Diff0(T
2)). If f :M → S2 is a singular fibration

and (m,n) ∈ Z⊕Z, we denote by f(m,n) :M(m,n) → S2 the result of excising a regular neighbor-

hood D2 × T 2 of a regular fiber and gluing it back by twisting the boundary identification by
Lm,n and extending the restriction of the singular fibration f by the second factor projection.
This is the so-called multiplicity one logarithmic transform in the case of Lefschetz fibrations.

Let γ be a based loop in S2 \ B which encircles once the singular value q and D2 a disk
centered at the base point. Then there exists an isotopy ϕt of S2 which is the identity on a
neighborhood of q such that ϕ1 sends D2 in itself, which drags D2 along the curve γ. Let
ρ : π1(S

2 \ B) → SL(2,Z) be the monodromy of the singular fibration f . The isotopy ϕt lifts
to M and provides a strong equivalence between the singular fibrations fm and fρ(γ)m, for
any m ∈ Z ⊕ Z. Moreover, fm+m′ is equivalent to (fm)m′ . Since ρ is surjective, we obtain
successive equivalences between f(m,n), f(m+n,n),

(
f(m+n,0)

)
(0,n)

,
(
f(m+n,0)

)
(−n,0)

, f(m,0), f(m,m),(
f(m,0)

)
(0,m)

,
(
f(m,0)

)
(−m,0)

and f(0,0). This proves the claim. □

Before we proceed with the higher genus singular fibrations, we have to introduce more no-
tation. Let A(F ) ⊂ M(F ) denote the set of mapping classes arising as monodromies of fibered
knots in S3 with fibers which are subsurfaces contained in F .
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Let now ϕ ∈ A(F ). The question to be addressed is whether ϕ determines uniquely the isotopy
class of the subsurface F0 ⊂ F , which is the local Milnor fiber of the fibered link determined by
ϕ.

To this purpose we define the support sup(ϕ) of the mapping class ϕ as follows. For any
subsurface F0 ⊂ F , there is an induced homomorphism ιF0 : M(F0) → M(F ). The support
sup(ϕ) is the smallest essential subsurface F0, defined up to isotopy in F , with the property that
ϕ ∈ ιF0(M(F0)).

Let F0 and F1 be two subsurfaces such that ϕ ∈ ιFi(M(Fi)), i ∈ {0, 1}. We can use isotopies
such that isotopic boundary components of F0 and F1 coincide and nonisotopic boundary com-
ponents are transverse. Transverse boundary components are either disjoint or intersecting in
the minimal possible number of points within their isotopy classes. If there are no intersections
between ∂F0 and ∂F1, then F0 ∩ F1 is a subsurface strictly contained in both Fi whose Euler
characteristic must be strictly larger. Moreover, ϕ ∈ ιF0∩F1(M(F0 ∩ F1)). If two components
Ci ⊆ ∂Fi have nontrivial intersection number, then the arc C1 ∩ F0 should be essential in F0.
It follows that the surface F2 obtained from F0 by removing a regular neighborhood of the arc
C1 ∩ F0 has strictly larger Euler characteristic. Moreover ϕ ∈ ιF2(M(F2)). These arguments
prove the existence of the support for any ϕ ∈ M(F ). Note that sup(ϕ) is trivial if only if ϕ is
the identity.

We further define M(F )∗ ⊂ M(F ) to be the set of those ϕ for which the support sup(ϕ)
is connected. If F0 is a connected subsurface and ϕ is the image by ιF0 of a pseudo-Anosov
mapping class, then ϕ ∈ M(F )∗. On the other hand the product of at least two Dehn twists
along disjoint simple closed curves does not belong to M(F )∗.

The classification of singular fibrations M4 → S2 whose generic fiber F has genus g is then
similar to that of Lefschetz fibrations, if we restrict the peripheral monodromies. Set A(F )∗ =
M(F ∗) ∩ A(F ). A singular fibration is admissible if its peripheral loop monodromies belong to
A(F )∗.

Consider now a critical point of a singular fibration, whose local Milnor fiber is F0 and the
generic fiber F has genus g ≥ 2. We say that the singular point is relatively minimal if the
complement F \ int(F0) of the local Milnor fiber within the generic fiber F is injective, namely
it does not contain neither disk nor annular components. Moreover the singular fibration is
relatively minimal if all its singular points are relatively minimal.

Proposition 2.2. Relatively minimal admissible singular fibrations on S2 with branch locus B,
generic fiber F of genus g ≥ 2, up to strong equivalence are in one-to-one correspondence with
the set MF (S

2 \B) of homomorphisms π1(S
2 \B) →M(F ) sending peripheral loops into A(F )∗

modulo the conjugacy action by M(F ). Furthermore, the classes of these relatively minimal
singular fibrations up to equivalence are in one-to-one correspondence with the set MF (S

2 \B)
of orbits of the mapping class group M(S2 \B) action on MF (S

2 \B) by left composition.

Proof. A singular fibration whose singular points have distinct images is obtained from the fiber
sum of several disk blocks fi : Xi → D2

i , by gluing the trivial bundle F × D2 in a fiberwise
way. When g ≥ 2, any diffeomorphism of S1 ×F should send S1 ×∗ to itself, up to isotopy and
orientation reversing. Gluing D2 × F amounts therefore to first adjoin a 2-handle along this
curve with its natural framing and further adding 3-handles and 4-handles corresponding to the
handle decomposition of F . According to [36] the second step can be done in a unique way. This
implies that the 4-manifold M(f1, f2, . . . , fn) is uniquely determined, up to diffeomorphism, by
the disk blocks involved.
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It remains to see that a disk block f : X → D2 with a single critical point is determined by its
boundary fibration. This is generally not true, unless the singular point is relatively minimal, as
we shall see later. The monodromy of its boundary fibration over S1 is an element ϕ ∈ A(F )∗.
We claim that ϕ already determines the local Milnor fiber F0 and hence the fibered knot K.
Let F0 ⊂ F be the support of ϕ, so that ϕ = ιF0(ϕ0), for some ϕ0 ∈ M(F0), to be called the
restriction of ϕ to F0. The restriction is uniquely determined because the map induced by the
inclusion M(F0) →M(F ) is injective according to the main result of [49].

Assume first that ϕ0 is the monodromy of a fibered link K0, namely that the mapping torus
Mϕ0 is homeomorphic to S3 − K0. Let D4 be the 4-disk bounded by S3. We claim that by
augmenting the support F0 to a larger subsurface F0 ⊂ F1 ⊆ F the corresponding expansion ϕ1 of
ϕ0 by the identity on F1 −F0 is not anymore a fibered link monodromy, unless Σ = F1 \ int(F0)
is a disjoint union of annuli, each annulus intersecting F0 in a single boundary component.
Indeed, we need that X4 = D4 ∪N(K0) Σ×D2 be homeomorphic to D4, where N(K0) denotes a

tubular neighborhood of K0 within S3 = ∂D4. The fundamental group π1(X
4) must be trivial

and hence, by Van Kampen, each connected component of K0 belongs to a single connected
component of Σ. By Mayer–Vietoris, H1(Σ) ∼= H1(N(K0)). If one component of Σ were a disk,
then F0 would be inessential in F . Thus all components of Σ have nontrivial homology and
hence they all must be annuli.

Consider next the case when ϕ0 is not the monodromy of a fibered knot, namely that the
compact mapping torusMϕ0 is not homeomorphic to a link complement in S3. This is equivalent
to the fact that Dehn surgery on Mϕ0 produces a 3-manifold M3 ̸= S3. On the other hand the
cores of the solid tori arising in the Dehn surgery process form a link K0 ⊂M3 which is fibered
with monodromy ϕ0. By hypothesis there exists some surface Σ such that the expansion of Mϕ0

by Σ, namely, E =Mϕ0 ∪N(K0) Σ×S1, is homeomorphic to the closed complement S3 −N(K1)

of some link K1 ⊂ S3. Moreover, S3−N(K1) has a fibration over S1 with fiber F1 which is part
of an open book decomposition. Now S3 bounds a disk D4 which contains the trivial product
Σ × D2 ⊂ D4. The embedding of Σ × D2 into D4 is such that Σ × S1 ⊂ E is the standard
inclusion. Therefore, the closure Z4 of D4 − Σ ×D2 is a 4-manifold with boundary M3. Now
π1(Z

4 ∪N(K0) Σ × D2) = π1(D
4) = 1 and by Van Kampen each connected component of K is

contained in a single connected component of Σ. Moreover, the normal closure of the image of
π1(K) into π1(Σ) should be the whole group π1(Σ) and thus π1(K) → π1(Σ) is onto. Therefore
Σ consists of annuli. It follows that F1 is homeomorphic to F0 and actually Z4 is just a smaller
copy of D4, contradicting our assumptions. □

Remark 2.1. The assumption that sup(ϕ) be connected is necessary in order to have uniqueness
of the fiber subsurface F0 with monodromy ϕ. Indeed, let F be a surface of genus g ≥ 3 and
c, d ⊂ F be two simple curves which bound together a 2-holed torus embedded in F . Let a, b, c, d
be a pants decomposition of this 2-holed torus into two pairs of pants F1 and F2. Then the
product of the two Dehn twists along the simple curves a and b is the monodromy of a fibered
link with fiber which can be either one of the subsurfaces Fi.

Remark 2.2. Mapping classes ϕ ∈ M(F ) having essential/injective support sup(ϕ) strictly
smaller than F cannot be torsion. Indeed M(F0) is torsion free, when F0 has boundary. Note
that there exist examples of holomorphic maps on complex surfaces whose associated mon-
odromy is torsion, as is the case of elliptic fibrations. However, these critical points are not
relatively minimal. For instance Kodaira singularities of type II, III and IV have local Milnor
fibers 1-holed, 2-holed and 3-holed tori, respectively. The generic torus fiber F is obtained by
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capping off the boundary circles by disks in each case and the monodromies are of finite order(
1 1
−1 0

)
,

(
0 1
−1 0

)
and

(
0 1
−1 −1

)
, respectively.

Remark 2.3. Note that we can as well consider instead of closed manifoldsM4 more general open
manifolds, as complements of 2-complexes into closed 4-manifolds and singular fibrations over
higher genus surfaces instead of the 2-sphere. The generic fiber is then a possibly punctured
surface F which might have boundary. Braided surfaces as considered in [18, 30] are then
particular cases of singular fibrations whose generic fibers are punctured disks.

Remark 2.4. We considered above the topological equivalence of singular fibrations. One rea-
son is that the local link K determines uniquely the germ ψK up to topological equivalence.
Morse singularities are known to be locally smoothly equivalent, but there are germs of isolated
singularities which are topologically equivalent while not smoothly equivalent. However, the
topological equivalence of singular fibrations can be upgraded to smooth equivalence if we fix
for each fibered knot K a local model like ψK and restrict ourselves to those singular fibrations
which are locally smoothly equivalent to one of the given local models.

3. Constructing singular fibrations

3.1. Deformations of singular fibrations. We say that a singularity is ±-holomorphic if
it is locally topologically equivalent to a holomorphic germ with an isolated singularity. We
emphasize that the local homeomorphism need not preserve the orientation. Problem 1.3 above
has an affirmative answer when the singularities are ±-holomorphic, a result which seems folklore
(see e.g. [2, 45]):

Proposition 3.1. If there exists f : M4 → N2 with finitely many ±-holomorphic singularities
then M4 admits an achiral Lefschetz fibration on N2.

Proof. Let p be a critical point of the smooth map f : M4 → N2. There exist some open
neighborhoods p ∈ U ⊂M , f(p) ∈ V ⊂ N such that, up to left/right composition by diffeomor-
phisms, the restriction f : U → V is ±-holomorphic with an isolated singularity at p and we
can assume that U ⊂ C2, V ⊂ C. Therefore there exists some Milnor ball B ⊂ U , such that for
a small enough disk D ⊂ f(B) ⊂ V centered at f(p) the local fiber f−1(z) is transverse to ∂B
for any z ∈ Dδ.

Moreover, Milnor has proved that for small enough D and B the tube T = f−1(D) ∩ B
is actually diffeomorphic to a 4-disk. A word of caution is needed, since ∂T is a piecewise
smooth 3-sphere. Actually int(T ) is diffeomorphic to int(D4) by a diffeomorphism extending to
a piecewise smooth homeomorphism between the closures.

Let L : C2 → C be a linear map. It is well-known (see [24]) that ft = f + tL : C2 → C
has only finitely many critical points in T for small t. Moreover, for generic L we can choose
µ > 0 with the property that ft has only a finite number of nondegenerate critical points for all
0 < t ≤ µ, we have D ⊂ ft(B) ⊂ V and for any z ∈ D the local fiber f−1

t (z) is transverse to
∂B. In particular, we find again that Tt = f−1

t (D) ∩ Bε is diffeomorphic to a 4-disk ambiently
isotopic to D.

Up to composing with an ambient isotopy sending T into Tt we can assume that Tt = T .
This means that f |T is isotopic rel boundary to a map ft having only quadratic singularities and
f |∂T = ft|T . Replacing f |T by ft|T we obtain a continuous map with only quadratic singularities.

In order to obtain a smooth function one should note that not only Tt is isotopic to T but also
the link f−1(z)∩∂B is isotopic to f−1

t (z)∩∂B and the corresponding open book decompositions
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are isotopic. This provides an isotopy between f |T and a map which coincides with the restriction
of ft to a slightly smaller ball T ′ ⊂ T and which has no critical points within T \ T ′.

Consequently we can change f by a small isotopy centered around a critical point such that
the new function has only quadratic singularities (of either orientation). □

Remark 3.1. Note that if f were holomorphic, the modified map is not necessarily holomorphic
anymore.

3.2. Shells. We can refine the computation of φs(M
4, N2) by restricting the family of maps

f : M4 → N2 allowed, for instance by prescribing the topological type of the generic fiber F .
Note that the isotopy type of the embedding F ⊂M4 is independent of the choice of the fiber,
for a singular fibration.

We observed in the previous section that the topology of a singular fibration f : M4 → N2

is captured by a disk block f : X4 → D2 over some disk D2 ⊂ N2 containing all the critical
values, along with a fibration over N2 \ int(D2). Thus singular fibrations with the same isotopy
classes of generic fibers all come from distinct singular fibrations of a disk block with prescribed
monodromy.

Definition 3.1. The shell of a disk block X4 → D2 is the homeomorphism type of the manifold
X4 along with its vertical boundary fibration ∂X4 \ int(∂F × D2) → S1. Then, two singular
fibrations X4 → D2 are shell equivalent if they have isomorphic shells, namely if there is a
homeomorphism between the disk blocks which restricts to an isomorphism between the vertical
boundary fibrations lifting the identity.

We can use surgery on disk blocks having the same shell, in order to simplify singular fibrations
without changing the source and target. To understand disk blocks having the same shell we
need a description of the topology of the disk block X4 along with the boundary monodromy.
Although these two invariants are related, they do not determine each other.

3.3. Spines. Recall that C(L) denote the cone over L. To every surface F and a collection
Γ = {Γi} of graphs embedded in F we associate the 2-polyhedron:

Π(F,Γ) = F ∪ ∪iC(Γi).

Let f : X4 → D2 be a disk block with generic fiber F and Fi the local Milnor fibres of its
singularities. We write A↘ B if there is a triangulation of A for which A collapses onto B. Let
Γi ⊂ Fi be a trivalent spine of Fi, namely, an embedded graph whose vertices are of degree 3
such that Fi ↘ Γi. To such a collection Γ = {Γi} of graphs we associate the polyhedron:

Π(f) = Π(F,Γ).

Proposition 3.2. If f : X4 → D2 is a disk block, then X4 ↘ Π(f).

Proof. Note that a singular fiber around the singularity pi is homeomorphic to the cone over ∂Fi.
Thus the singular fiber is homeomorphic to the quotient F/Fi. Let

∨
i Ii denote the bouquet of

intervals Ii = [0, 1] having the endpoints 0i of each Ii identified together.
The polyhedron (F ×

∨
i Ii) ∪ ∪iC(Fi), where C(Fi) is attached to F × 1i is identified with

the preimage f−1(
∨

i Ii), where
∨

i Ii ⊂ D2 is a bouquet of intervals embedded in D2 such that
the points 1i coincide with the critical values of f . Moreover, X4 retracts onto the polyhedron
(F ×

∨
i Ii) ∪ ∪iC(Fi). Note that Π(F,Γ) embeds in X4 and(
F ×

∨
i

Ii

)
∪ ∪iC(Fi) ↘ F × {0} ∪i (Fi × Ii ∪ C(Fi)) ∼= F ∪ ∪iC(Fi) ↘ F ∪ ∪iC(Γi).
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Neumann and Rudolph ([45], section 2, Lemma 2.1) described this collapse by pictures in the
case when f is the restriction of a singular fibration D4 → D2. □

By using isotopies we can assume that the graphs Γi have pairwise transverse intersections.
In particular Γ = ∪iΓi ⊂ F is a graph whose vertices have valence 3 or 4.

3.4. Shadows. When Γi are all simple closed curves, i.e. f is an achiral Lefschetz fibration,
then Γ is a 4-valent graph. In this case Π(f) is a simple 2-polyhedron without boundary, namely
every point of it has a neighborhood homeomorphic to either a plane (regular point), the union
of three half-planes meeting along a common boundary line (edge point) or the cone over the
1-dimensional skeleton of a tetrahedron (vertex point). The set of singular points of Π(f) is the
graph Γ. Note that the embedding of Π(f) in X4 is locally flat, namely around each point there
exists a PL embedded R3 in which the neighborhood in Π(f) is homeomorphic to one of the
standard embeddings of the 3-dimensional local models above.

The 2-polyhedron Π(f) does not determine uniquely the disk block X4. Since X4 retracts
onto the 2-polyhedron Π(f), X4 is a 2-handlebody, namely it has a handlebody decomposition
with only 0, 1 and 2-handles. Turaev defined in [57, chap. IX] an integer shadowed polyhedron
structure on simple spines of 2-handlebodies.

The connected components of the set of regular points of a simple polyhedron Π are called
regions. The inclusion of the closure R of a region R into Π extends to a local homeomorphism

from a simple polyhedron R̃ ⊃ R into Π whose image is a regular neighborhood of R. The

polyhedron R̃ is obtained from R by adjoining a number of annuli and Möbius bands to each
boundary component of R and is uniquely determined by Π. The parity of the number of
Möbius bands required for each region R is an intrinsic invariant of Π, called the Z/2Z-gleam.
The Z/2Z-gleam is not necessarily trivial, though X4 is an orientable 4-manifold. The presence
of Möbius bands is precisely the obstruction for the 2-polyhedron to admit a thickening to a
3-manifold, see ([26], p.38-39).

An integral shadow on the simple polyhedron Π is the choice of a half-integer, called gleam, for
each region of Π lifting the canonical Z/2Z-valued gleam on Π, namely, such that the difference
with half of the Z/2Z-gleam is an integer for each region.

When Π is a simple locally flat polyhedron in a 4-manifold X4 there is a natural integer
gleam gl on Π , see [57, chap IX, section 1.6]. We consider the 4-dimensional neighborhood of

R̃ induced from X4. Then R̃ − R defines a line normal to R along ∂R and hence a section of
the projectivized normal bundle over R. The obstruction to extending this section over R is an
element of H2(R, ∂R;Z) which can be identified to Z, by fixing an orientation on R. The value
of the gleam on R is then half of this integer.

Given an integer shadowed 2-polyhedron (with empty boundary) (Π, gl) Turaev defined in [57,
chap IX, section 6] a canonical thickening Θ(Π, gl), which is well-determined up to orientation-
preserving PL homeomorphism. The canonical thickening permits to recover the disk block of
an achiral Lefschetz fibration:

X4 = Θ(Π(f), gl(f))

The Matveev-Piergallini moves on simple 2-polyhedra permit to relate any two simple polyhe-
dra having the same 3-deformation type. Shadow equivalence amounts to relate integer shadowed
2-polyhedra by natural extension of these moves, as defined by Turaev in [57, chap VIII, section
1.3]. However, two integer shadowed simple spines of the same 2-handlebody are not necessarily
shadow equivalent. The stabilization of an integer shadowed 2-polyhedron is obtained by gluing
a number of disks along boundaries of disks away from the singular set, with trivial gleam. The
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canonical thickening of a stabilization corresponds to boundary connected sum with copies of
S2 ×D2.

The following is then equivalent to [57, Thm.1.7, Thm. 6.2, chap.IX]:

Theorem 3.1. If the disk blocks of the achiral Lefschetz fibrations f and g are PL homeomorphic
then the integer shadowed polyhedra (Π(f), gl(f)) and (Π(g), gl(g)) have stabilizations which are
shadow equivalent.

Further, if the integer shadowed polyhedra (Π(f), gl(f)) and (Π(g), gl(g)) associated with achi-
ral Lefschetz fibrations f and g are shadow equivalent, then the corresponding disk blocs are PL
homeomorphic.

A’Campo considered in [1] a construction of a large family of fibered links from a connected
divide, namely a curve immersion into the disk. The monodromy of these fibered links can
be recovered directly in terms of the combinatorics of the underlying divide (see [1], Section 3,
Thm. 2). Ishikawa and Naoe explained in [29] how a shadowed polyhedron is associated with any
admissible divide. The corresponding 4-manifold associated with such a shadowed polyhedron
admits a natural Lefschetz fibration which is isomorphic to the Lefschetz fibration associated
with the admissible divide. We wonder whether, more generally, two shell equivalent achiral
Lefschetz fibrations f and g have shadow equivalent integer shadowed polyhedra (Π(f), gl(f))
and (Π(g), gl(g)). This is not true if we do not require the polyhedra to have the same vertical
boundary monodromy.

Remark 3.2. Recall that for a disk block f : X4 → D2 the source manifold X4 is a 2-handlebody.
On the other hand according to [23] X4 has an achiral Lefschetz fibration over g : X4 → D2 if
and only if X4 is a 2-handlebody. However f and g are not necessarily shell equivalent, since
the vertical boundary fibrations might differ.

Remark 3.3. The shell equivalence class of a disk block X4 → D2 containing a single critical
point is determined by the monodromy mapping class, up to conjugacy, and the embedding of
the local Milnor fiber into the generic fiber. More generally, the shell equivalence class of a disk
block having several critical points is determined by the diagonal conjugacy class of the ordered
local monodromies (depending on a fixed system of arcs) and the embeddings of the local Milnor
fibers in the generic fiber. In particular, the global monodromy of the vertical boundary fibration
might not be enough to determine the diffeomorphism type of the disk block.

Remark 3.4. To recover X4 from its spine Π(f) in general we also need the corresponding
monodromies ϕi ∈M(Fi) of the local links of singularities, subject to the relation ϕ1ϕ2 · · ·ϕn =
ϕ, where ϕ is the monodromy of the vertical boundary fibration.

3.5. Unfoldings. The case when the disk block f : X4 → D2 is the singular fibration associated
with an adapted neighborhood of a cone-like singularity is particularly interesting. In this
situation X4 = D4 and the disk block is described by the (open book decomposition of the)
local link K of its singularity. In [45] Neumann and Rudolph defined an unfolding of the fibered
link K into the collection of fibered links K1,K2, . . . ,Kp as being a shell equivalent singular
fibration whose singular points have local links K1,K2, . . . ,Kp. Note that Kj are actually
oriented links, because oriented fibered links in S3 are endowed with open book decompositions
well-defined up to isotopy.

For instance a complex algebraic link K (i.e. the link of an isolated singularity of a complex
polynomial map C2 → C) unfolds to the collection of µ(K) positive Hopf links, where µ(K)
denotes the Milnor number of K, namely the first Betti number of its local Milnor fiber. In
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([46], p. 110-111) the authors note that more generally closures of homogeneous braids are links
which unfold completely into Hopf links. We will see later that the Hopf invariant λ(K) of
oriented fibered links K (see [53] and the next section) is preserved in unfoldings, namely it is
the sum of λ(Ki) for any unfolding of K into a collection Ki of links. Furthermore λ(K) vanishes
for all local links of isolated singularities of holomorphic maps. Moreover, λ(K) is positive for
the mirror images of local links of isolated singularities of holomorphic maps. Neumann and
Rudolph and later Inaba ([27, 47]) constructed fibered links occurring as local links of real
algebraic isolated singularities with arbitrarily prescribed λ(K) ∈ Z. When λ(K) is negative,
the link K cannot unfold to a collection of local links of ±-holomorphic maps, in particular to
(positive or negative) Hopf links.

Given a disk block f : D4 → D2, we can construct an achiral Lefschetz fibration g : X4 → D2

with the same monodromy ϕ, by choosing a sequence of simple curves γi and εi ∈ {−1,+1} such
that ϕ =

∏
i T

εi
γi . However, X

4 might not be anymore diffeomorphic to D4, unless the associated

2-polyhedron Π(F,Γ) is collapsible (see [45, Thm. 2.4]). Observe that X4 is obtained from F ×
D2 by adjoining 2-handles along the curves γ1, γ2, . . . , γn, with the framings −ϵ1,−ϵ2, . . . ,−ϵn,
respectively (see [22], 8.2).

A collection of fibered links is an unfolding of a connected sum of its members. Instead of
the fiber-sum above we can therefore use Murasugi sums of disk blocks fi : D

4 → D2, i = 1, 2
with collapsible spines Π(fi). Set F = F1#DF2 for the union along a disk D of the fibers Fi

such that ∂D ⊂ ∂F1∪∂F2. Observe that Π(f1)#DΠ(f2) is also collapsible and hence its regular
neighborhood is PL homeomorphic to D4. Therefore, when expanding the fibers Fi we obtain
a disk block f : D4 → D2 with generic fiber F and monodromy ιF1(ϕ1)ιF2(ϕ2), where ϕi are
the monodromies of the fi. This construction corresponds to the Murasugi sum of links, when
fi are Milnor fibrations. Thus a collection of fibered links is an unfolding of any Murasugi sum
of its constituents. Recall that one uses the term plumbing, when each ∂Fi contains two arcs of
∂D.

Neumann and Rudolph ([47]) considered the Grothendieck group of isotopy classes of oriented
fibered links, where K is the formal sum of Ki if K unfolds to the collection Ki. Specifically,
two links are stably unfolding equivalent if they become unfolding equivalent after summing with
the same collection of links. The Grothendieck group of fibered links was described by Giroux
and Goodman in [19]:

Theorem 3.2. Two collections of oriented links in S3 are stably unfolding equivalent if and
only if their total Milnor number µ and total Hopf invariant λ agree.

Actually Giroux-Goldman proved in [19] the stronger result that any two fibered links in S3

can be obtained one from another by plumbing and deplumbing Hopf bands. As an immediate
corollary we derive:

Corollary 3.1. A collection of fibered links is stably unfolding equivalent to a collection of Hopf
links if and only if 0 ≤ λ(f) ≤ µ(f), where λ(f) and µ(f) denote the total Hopf invariant and
the total Milnor number of the associated local links.

Proof. Recall that λ equals 1 for the positive Hopf link and 0 for the negative Hopf link (see
[53]), while both Hopf links have µ = 1. □

This suggests that the answer to Problem 1.3 should be negative for general 4-manifolds.

Remark 3.5. It seems unknown for which pairs (a, b) ∈ Z ⊕ Z there exists some fibered link K
such that (λ(K), µ(K)− λ(K)) = (a, b). However, examples from ([47], Prop. 9.3 and p.96) of
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fibered links consisting of pairs of co-axial torus knots show that λ(K)/µ(K) is unbounded. In
particular, if S is a set of links such that every fibered link unfolds to a collection of links from
S, then S should be infinite.

3.6. Group complexity. We can derive a group theoretical invariant out of this construction.
A surface presentation of the group G is its realization as a fundamental group of some poly-
hedron Π(F,Γ), for some closed orientable surface F and a collection of simple closed curves
Γ.

Proposition 3.3. Every finitely presented group G admits a surface presentation.

Proof. Gompf proved in [20, Thm. 4.1] that any finitely presented group G is the fundamental
group of a closed 4-dimensional manifold M4 endowed with a symplectic form, whose class in
H2(M4) can be assumed to be integral. By a theorem of Donaldson (see [11]) there exists a
Lefschetz pencil on M4 with symplectic fibers homologous to a multiple of the Poincaré dual of
the class of the symplectic form. By blowing up the base locus we obtain a Lefschetz fibration
f of M4#kCP2. Let X4 → D2 be the disk block containing all singularities of f . Then X4

retracts onto a 2-polyhedron homotopy equivalent to Π(f), which is of the form Π(F,Γ), for
some closed orientable surface F and a collection of simple closed curves Γ, as claimed. □

We can go further and define a surface-graphs presentation of the group G as its realization
as a fundamental group of some polyhedron Π(F,Γ), for some closed orientable surface F and a
collection Γ of connected graphs.

It is then clear that the number φs(M
4, S2) is bounded below by the minimal number of

graph-relators in a surface-graphs presentation of π1(M).

3.7. Singular fibrations with a single critical point. We now aim at explaining how the
classification of essential singular fibrations given in Proposition 2.2 can fail when nonessential
singularities occur. To this purpose we consider now singular fibrations over S2 with a single
critical point. We first observe that not every closed oriented 4-manifold admits such a fibration:

Proposition 3.4. (1) IfM4 is a closed oriented 4-manifold and φs(M,S2) = 1, then π1(M)
is the quotient of a free product of finitely generated free groups and surface groups by a
subgroup isomorphic to Z.

(2) Let M4 be a complex projective surface M4 with trivial first Betti number whose funda-
mental group is neither trivial nor cyclic. If M4 is not homeomorphic to a fiber bundle
over the 2-sphere, then φs(M

4, S2) is finite and larger than 1.

Proof. (1) Let X be the disk block containing the critical point of the singular fibrationM → S2

with generic fiber F . If F1 is the local Milnor fiber of the critical point, then Π(f) is homotopy
equivalent to F/F1. It follows that π1(X) ∼= π1(F/F1) is a free product of finitely generated
free groups and surface groups. Furthermore, M is the union of X and F ×D2 along the trivial
boundary fibration and hence, by Van Kampen,

π1(M) = π1(X) ∗π1(F×S1) π1(F ×D2) ∼= π1(X)/π1(S
1).

(2) A complex projective surface has holomorphic maps onto CP1. These have isolated sin-
gularities and hence φs(M

4, S2) is finite.
We now claim that a 4-manifold M4 as in the statement cannot be a fiber bundle over the

2-sphere. Suppose the contrary and let F be the fiber. We can suppose that F is not a 2-sphere,
as π1(M

4) is nontrivial. From the long exact sequence in homotopy we derive:

0 → π2(M
4) → Z → π1(F ) → π1(M

4) → 0.
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If π2(M
4) = 0, then π1(M

4) is a quotient of a surface group by Z and hence must be trivial
since its rational abelianization is trivial, which is a contradiction. Otherwise, π2(M

4) ⊂ Z is
isomorphic to Z. As π1(F ) is torsion-free, the homomorphism π2(M

4) → Z must be onto and
hence π1(M

4) is isomorphic to a surface group. This contradicts our hypothesis again and hence
our claim follows.

Eventually, assume that φs(M
4, S2) = 1. By the first statement of the proposition π1(M

4)
is the quotient of a group G, which is a free product of free groups and surface groups, by a
single relation. Since H1(M

4;Q) = 0, the Kähler manifold M4 is of non-fibered type, i.e. it
does not admit holomorphic maps onto a Riemann surface of genus at least 2. By [3], every
presentation of the fundamental group of a non-fibered compact Kähler manifold with trivial
first Betti number has positive deficiency, namely the number of relators is larger than or equal
to the number of generators. This implies that G is either trivial or isomorphic to Z and hence
π1(M

4) is trivial or cyclic. This proves the second statement of the proposition. □

Remark 3.6. Fake projective planes, also called Mumford surfaces, are well-known examples of
complex projective surfaces with trivial first Betti number (see [51]). Their fundamental groups
are arithmetic lattices in PU(2, 1), satisfying the conditions in Proposition 3.4. Therefore,
φs(M

4, S2) is finite and larger than 1, whenever M4 is a fake projective plane.

We now provide a construction for singular fibrations over S2 with a single critical point.
Let K be the local link of such a singularity, F0 its Milnor fiber, ϕ ∈ M(F0) its open book
monodromy and F the generic fiber of the singular fibration. Denote by F1 and F2 the result
of adjoining to the surface F0 all disk components and all disk and annular components of
F \ int(F0), respectively. By language abuse we call the components of ∂F0 spherical or annular
if they belong to disks or annuli in F \ int(F0). Two annular components form an annular pair
if they bound an annulus. The remaining components will be called generic.

In the sequel we shall assume that F1 has nonempty boundary.
A braid-like link L in the product F1 × S1 is the closure of a braid on F1, namely a link L

which intersects transversely every slice F ×∗ in the same number of points. Let F̂1 denote the
surface F1 with all its annular boundary components capped off by 2-disks. Given a braid-like

link L ⊂ F1 × S1 we consider L̂ ⊂ F̂1 × S1 to be the disjoint union of L with Q× S1, where Q

are the centers of the disks attached to the annular points. Suppose that the monodromy ϕ̂ of L̂
is the product of ιF1(ϕ) with a product of Dehn twists along the annular boundary components
of ∂F1, where ϕ is the monodromy of L.

Since F0 has nonempty boundary, the mapping class ϕ induces an automorphism of the free
group π1(F0), well-defined up to conjugacy. Consider a1, a2, . . . , aN be a system of free generators
for π1(F0). We also denote by b1, b2, . . . , br the homotopy classes of based loops encircling once
each one of the r boundary components of ∂F0. It is wellknown that we can choose generators
such that bi = ai, for all i, if the genus of F0 is positive. However, when the genus of F0 is zero,
we can take bi = ai, for i ≤ r − 1, while br = (a1a2 · · · ar−1)

−1. We keep this notation in order
to have a unified treatment of both cases below.

Let now n be the number of disk components in F \ int(F0) and m be the number of annuli.
Then S3 \ N(K) is identified with the mapping torus Mϕ = F0 × [0, 1]/(x,0)≃(ϕ(x),1) of a

homeomorphism lifting ϕ. The only constraint on ϕ is the fact that the result of Dehn surgery
on S3 \ N(K) corresponding to adding back solid tori N(K) must be a 3-sphere. This gluing
procedure is canonical. We glue back S1 × D2 along a boundary torus c × S1 of the mapping
torus Mϕ, where c is a component of ∂F , such that S1 × p, p ∈ ∂D2 is sent into c and q × ∂D2,
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q ∈ S1 is sent into the longitude, i.e. the image of the arc q′ × [0, 1] ⊂ F0 × [0, 1] in the quotient
Mϕ, where q

′ ∈ ∂F .
We then denote ℓs the (free) homotopy class of the longitude associated with the connected

component of ∂F0 indexed by s. Our aim is to compute explicitly the longitudes ℓs when the

link K arises as L̂, for some braid-like link in F1×S1. In this case the monodromy of K projects
onto some element k ∈ Zn+2m which counts the number of left twists on each spherical and
annular boundary component of F0. The indices are such that j and j +m correspond to pairs
of annular boundary components, when j ≥ n+ 1.

Proposition 3.5. Let M4 be a closed oriented 4-manifold and assume that there is a singular
fibration f :M4 → S2 with a single critical point. Then

(1) the fibered link associated with the singularity is braid-like, namely S3 \N(K) is home-
omorphic to the complement of a braid-like link in F1 × S1;

(2) the monodromy ϕ is the product of some element of the framed pure braid group FP (F1, n)
with products of pairs of opposite Dehn twists along annular boundary components of F0;

(3) Assume that F1 has nonempty boundary, namely all components of F \ int(F0) are not
disks. Then the following

G(ϕ) = ⟨t, a1, . . . , aN ; tait
−1 = ϕ(ai), for 1 ≤ i ≤ N,

tbkii = 1, for 1 ≤ i ≤ n+ 2m, t = 1, if n+ 2m < r⟩

is a presentation of the trivial group and moreover kj + km+j = 0, if j ≥ n+ 1;

Conversely, if ϕ is a framed braid on n strands over F1 such that G(ϕ) = 1 and kj + km+j = 0,
for j ≥ n + 1, then ϕ is the monodromy of a fibered link of a singular fibration with a single
singularity.

Proof. Paris and Rolfsen determined in [49] the kernel of the homomorphism M(F0) → M(F )
induced by the embedding F0 → F . More precisely, M(F2) → M(F ) is injective while
ker(M(F1) → M(F2)) is freely generated by the products of opposite Dehn twists along an-
nular pairs in ∂F1. Eventually, K = ker(M(F0) →M(F )) is the so-called framed pure braid on
n strands on F1. Let A ⊂M(F0) be the free abelian group generated by the products of opposite
Dehn twists along annular pairs in ∂F0. Then ker(M(F0) →M(F )) is the subgroup KA, which
is identified with K ×A, because A is central. We supposed above that F1 has boundary.

Further, according to [6] the framed pure braid group K is isomorphic to the direct product
P (F1, n)×Zn of the pure braid group P (F1, n) on n strands on F1 and the free abelian group of
Dehn twists along the spherical components. Note that the factor Zn corresponds to the group
of Dehn twists along spherical components of ∂F1. Hence ker(M(F0) → M(F )) is isomorphic
to the product P (F1, n)× Zn × Zm. Here Zm is the subgroup of the group Z2m of Dehn twists
along annular components of elements k with kj + kj+m = 0, when n+ 1 ≤ j ≤ n+m.

Consider now ϕ ∈ ker(M(F0) → M(F )) and k ∈ Zn+2m as above. Then the fundamental
group of the mapping torus Mϕ is the HNN extension of the free group π1(F0) in the generators
ai, which admits the presentation:

π1(Mϕ) = ⟨t, a1, . . . , aN ; tait
−1 = ϕ(ai), 1 ≤ i ≤ N⟩.

Further, π1(Mϕ ∪N(K)) is the fundamental group of the graph of groups with one root vertex
labeled π1(Mϕ), the other vertex groups being Z and N edges connecting the root to the vertices,
all labeled Z⊕Z. Therefore π1(Mϕ ∪N(K)) is obtained from π1(Mϕ) by adjoining all relations
corresponding to longitudes. However the class of a longitude associated to a component of ∂F0
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in π1(Mϕ) reads either tbkii , tb
±mj

j or t, according to whether it is a spherical, an annular or a

generic component, respectively. Thus π1(Mϕ ∪N(K)) has the presentation:

⟨t, a1, . . . , aN ; tait
−1 = ϕ(ai), for 1 ≤ i ≤ N, tbkii = 1, for 1 ≤ i ≤ n+ 2m,

t = 1, if n+ 2m < r⟩.
By Perelman’s solution to the Poincaré conjecture, π1(Mϕ ∪ N(K)) is trivial if and only if
Mϕ ∪N(K) is a sphere, namely the fibration of Mϕ over S1 comes from an open book structure
of a fibered link in S3. This settles the proposition. □

Computing the longitudes ℓi in π1(Mϕ) seems more complicated when F1 has no boundary,
as the framed pure braid group does not split as a product (see [6]).

3.8. Explicit examples. We will analyze the case when F0 is a 3-holed sphere. ThenM(F0) =
Z3 is freely generated by the Dehn twists along the boundary components. In this case we do
not need F1 to have nonempty boundary. Let the monodromy be ϕ = T k1

γ1 T
k2
γ2 T

k3
γ3 , where γi are

the boundary curves. By direct inspection the group G(ϕ) is trivial if and only if

k1k2 + k2k3 + k3k1 ∈ {−1, 1}.
Then, up to a permutation of the ki’s we have:

(k1, k2, k3) ∈ {(±1,±1, 0), (2,−1, 3), (−2, 1,−3), (1,−1, n); n ∈ Z}.
Every integral solution (k1, k2, k3) provides a fibered link K, with prescribed monodromy. We
retrieve the description of 3-component fibered links of genus zero obtained by Rogers (see [52]).

In order to expand the local Milnor fibration we first can adjoin 2-disks on all boundary
components of F0, so that the associated generic fiber is a F = S2. For those integral solutions
where two coordinates have opposite values, we can also adjoin an annulus and further one
2-disk along the remaining component F0 so that the generic fiber is a torus. These solutions
correspond to:

(k1, k2, k3) ∈ {(1,−1, n); n ∈ Z}.
Eventually, if n = 0, we could also replace the 2-disk by any surface with boundary. Note that
the corresponding link is the pretzel link (2,−2, 2n) with the natural orientation induced from
its Seifert surface. Expanding the local Milnor fiber to F yields a disk block X → D2 whose
boundary fibration is trivial. The corresponding closed manifold M4 is obtained by gluing
together this disk block with F ×D2 fiberwise.

Remark 3.7. Specifying a fibered link alone (without the orientation) is not enough for describing
the singularity, even in the case of pretzel links. For instance, the pretzel link (2,−2, 2) has an
open book decomposition which is different from that given above. As the closure of a full
twist on 3 strands, which is a homogeneous braid, we can use Stalling’s construction to describe
an open book decomposition with a 3-holed torus as fiber. However, the orientations induced
by the two fibrations above on the pretzel link are different. When capping off the boundary
components of the 3-holed torus by disks we obtain a torus singular fibration corresponding to
a type IV singularity in the Kodaira classification.

3.9. Singular fibrations of S4. Recall that φ(M,N) denotes the minimal number of critical
points of a smooth map between the manifoldsM and N . To obtain upper bounds for φ we need
specific constructions of maps with finitely many critical points. Note that there is a smooth
map S4 → S2 with 2 critical points. Let H : S4 → S3 be the suspension of the Hopf fibration
and h : S3 → S2 be the Hopf fibration. The composition h ◦ H : S4 → S2 is the Matsumoto



SINGULAR FIBRATIONS 19

singular fibration by tori (see [39, 40]). According to the position of the two critical values of H
with respect to the fibers of h, we have two cases:

(1) critical values belong to the same fiber; then h ◦H has one critical value;
(2) critical values belong to distinct fibers and thus h ◦H has two critical values.

In both cases we have a smooth map with 2 critical points. The generic fiber is a torus and the
critical fibers correspond to

(1) the union of two 2-spheres intersecting transversely at two points with opposite orienta-
tion, called the Montesinos twin singularity in [40];

(2) two immersed spheres with transversal intersections, with one having self-intersection
+1 and the other one -1.

It follows that h ◦H is an achiral Lefschetz fibration of S4 over S2.
Note that the φ(M4, S2) can be strictly smaller than the number of critical points in an achiral

Lefschetz fibration. The simplest example is the following one, which is due to Matsumoto ([41]):

Proposition 3.6. We have φ(S4, S2) = 1, while the number of critical points in an achiral
Lefschetz fibration of S4 over S2 is 2.

Proof. If S4 had an achiral Lefschetz fibration with at most one critical point, then up to a
change of orientation on S4 we may suppose that the critical fiber has positive self-intersection.
Thus S4 suitably oriented would have a Lefschetz fibration over S2, which is well-known to
be false. For instance, a Lefschetz fibration induces an almost-complex structure (see [22], Ex.
8.1.6) and in particular b1 − b+2 should be odd, by the Noether formula for almost-complex
structures (see [22], Thm. 1.4.13) contradicting the vanishing of the first two Betti numbers of
S4.

The inequality φ(S4, S2) ≤ 1 follows from a construction due to Matsumoto ([41]) of gen-
eralized torus fibrations S4 → S2 with a single singular point. Note that locally this map
is equivalent to the germ of the isolated singularity (R4, 0) → (R2, 0) expressed in complex
coordinates by the mixed polynomial:

f(z1, z2) = z1z2(z1 + z2).

The local Milnor fiber is a pair of pants F0 = Σ0,3 and its link L is the pretzel link (2,−2, 2).
If the link components are respectively denoted C0,K0 and K1, then the monodromy of the
corresponding open book structure is written in M(Σ0,3) as the product of the Dehn twists:

TC0T
−1
K0
TK1 .

We consider the expansion of F0 ⊂ T to a torus T by adjoining the surface Z = D2 ∪ A,
where A = S1 × [0, 1], in such a way that the component K1 is capped off by a disk and
the components C0 and K0 by an annulus A. One obtains then a 4-manifold with boundary
X = D4 ∪N(L) Z ×D2 endowed with a smooth map f : X → D2. Note that the monodromy of

the boundary fibration f |∂X : ∂X → S1 is trivial and hence the boundary fibration extends over
D2 providing a singular fibration X ∪S1×T D

2 × T → S2 with a single critical point. It remains
to see that M(f) = X ∪S1×T D

2 × F is diffeomorphic to S4.
To this purpose note that S4 is obtained by adding to D4 first a 2-handle over an unknot

with zero framing a cancelling 3-handle and then a 4-handle. After adding the 2-handle we
obtain D2×S2. The union of the complementary 3-handle and the 4-handle is diffeomorphic to
D3 × S1.

Let F1 be the result of expanding F0 to an annulus by adjoining D2 along the component K1

and Y = D4∪N(K1) (F1−F0)×D2. Then Y is the result of adding a 2-handle along the K1 with



20 L.FUNAR

zero framing. Remark that K1 is an unknot in S3 and hence Y is diffeomorphic to D2 × S2.
Moreover, the monodromy of the boundary fibration ∂Y \N(K0∪C0) → S1 by annuli is trivial.
On the other hand we obtain M(f) from Y by gluing back first Z − int(Y ) = D2 × A which is
a trivial fibration in annuli over D2 and second the torus product D2 × T . The union of these
two pieces is

D2 × T 2 ∪A×∂D2 A×D2 = (D2 × S1 ∪∂D2×[0,1] [0, 1]×D2)× S1.

Note that [0, 1]×D2 is half of a solid torus S1 ×D2, which is glued together to the solid torus
D2 × S1 by identifying meridians to longitudes. Thus

D2 × S1 ∪∂D2×[0,1] [0, 1]×D2 = S3 \ [0, 1]×D2 = D3.

It follows that M(f) is obtained from S2×D2 by adjoining D3×S1 and thus it is diffeomorphic
to S4, as claimed.

The opposite inequality φ(S4, S2) ≥ 1 is a consequence of the well-known fact that there is
no Serre fibration f : S4 → S2 (see e.g. [4]). □

4. Homotopical obstructions to singular fibring

4.1. The index of a 2-plane field after Hirzebruch, Hopf and Rudolph. We have an
action of S3 × S3 on R4 given by

(q1, q2)(x) = q1 · x · q−1
2 , x ∈ R4, (q1, q2) ∈ S3 × S3,

where R4 is identified with the field of quaternions, S3 with the subgroup of unit quaternions
and · denotes the multiplication of quaternions. This provides an exact sequence:

1 → Z/2Z = ⟨(−1,−1)⟩ → S3 × S3 Q→ SO(4) → 1

identifying S3 ×S3 with the universal covering of SO(4), namely the Spin(4) group. If S1 ⊂ S3

denotes the subgroup of unit complex numbers, then

Q(S1 × S1) = SO(2)× SO(2) ⊂ SO(4).

Now R4 with the complex structure induced by the multiplication by i is identified with C2 and
the unitary matrices form a subgroup U(2) ⊂ SO(4). The above description yields Q(S1×S3) =
U(2). On the other hand the image Q(S3 × S1) = U(2)′ is another copy of U(2) embedded in
SO(4). Obviously U(2) ∩ U(2)′ = SO(2)× SO(2).

The quotient of the S1-action on S3 by left multiplication of quaternions coincides with the
sphere S2, as the base space of the Hopf fibration. It follows that

SO(4)/U(2) = Q(S3 × S3)/Q(S1 × S3) = S3/S1 ∼= S2

and in a similar way

SO(4)/U(2)′ = Q(S3 × S3)/Q(S3 × S1) = S3/S1 ∼= S2.

The Grassmann variety G̃2(R4) of oriented 2-planes in R4 is SO(4)/SO(2)×SO(2). By direct
inspection the natural map

G̃2(R4) → SO(4)/U(2)× SO(4)/U(2)′ ∼= S2 × S2

is a canonical diffeomorphism. Fixing an orientation on S3 we obtain a canonical isomorphism
π3(S

3) → Z, given by the degree. Using the Hopf map derived from the left multiplication
above we derive a canonical isomorphism π3(S

2) → Z. Then the diffeomorphism above induces
a canonical isomorphism

π3(G̃2(R4)) → Z⊕ Z.
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Consider now a smooth oriented 4-manifoldM and let ξ be a 2-plane field overM with finitely
many isolated singularities at P = {p1, p2, · · · , pn}. The restriction of ξ to a small sphere S3

around a singularity p ∈ P yields a map S3 → G̃2(R4). We denote by (−λp, ρp) ∈ Z⊕Z the class

in π3(G̃2(R4)) of this restriction and call it the index of the 2-plane field at the singularity p (see
[56]). Moreover, the (global) index (−λ, ρ) of ξ is the sum of the indices of all singularities.

The main result of Hirzebruch and Hopf from [25] expresses the index of a 2-plane field in
terms of homotopy invariants of the manifold. To this purpose we need to introduce more
notation. Let S be the intersection pairing defined on the quotient H = H2(M ;Z)/Tor by its
torsion subgroup. Recall that w ∈ H is characteristic if S(w, x) ≡ S(x, x)(mod 2), for every
x ∈ H. Set W be the set of characteristic elements of H with respect to S and

Ω(M) = {S(w,w);w ∈W} ⊂ Z.

When H = 0 we put Ω(M) = 0. Note that

Ω(M) ⊆ σ(M) + 8Z,

where σ(M) denotes the signature of the intersection pairing S. Let e(M) denote the Euler
characteristic of the manifold M . We can now state:

Theorem 4.1 ([25], Satz 4.3). The pair (−λ, ρ) ∈ Z ⊕ Z is the index of an oriented 2-plane
field with isolated singularities on the closed oriented manifold M4 if and only if there exist
α, β ∈ Ω(M) such that

4λ = 2e(M) + 3σ(M)− α, 4ρ = 2e(M)− 3σ(M) + β.

Consider now a singular fibration f : M4 → N2 over some closed orientable surface N . We
can associate to f the oriented 2-plane field ξ = kerDf . The index of this 2-plane field at a
critical point p of f coincides then with the pair (−λ(f)p, ρ(f)p), where λ(f)p, ρ(f)p are the
invariants associated by Rudolph in [53, Definition 1.4] and called enhanced Milnor numbers
there. Note the change in the sign of the first component λ, with respect to the convention in
[25] needed in order to follow [53].

Furthermore let us denote by µ(f)p the Milnor number of the local germ of f at p, namely the
first Betti number of the local Milnor fiber. We will use next the following result of Rudolph:

Theorem 4.2 ([53], Corollary 2.6). If the germ f : R4 → R2 has an isolated singularity at p,
then we have:

µ(f)p = λ(f)p + ρ(f)p.

We denote by µ(f) the sum of local Milnor numbers µ(f)p over all singularities p of f .

4.2. Almost complex structures. Consider an oriented 2-plane field τ over the smooth ori-
ented 4-manifold M4 having only finitely many singularities P . Then there exist two almost
complex structures on M∗ =M −P canonically associated with τ , which we call J and J ′ such
that J is compatible with the given orientation of M and J ′ is compatible with the opposite
orientation of M . Assume that M is given a Riemannian metric. Then the tangent bundle TM
splits as τ ⊕τ⊥ and hence the structure group reduces from SO(4) to SO(2)×SO(2). Note that
conversely, if the tangent bundle has a SO(2)×SO(2) bundle structure then it has an associated
oriented 2-plane field. Now, the almost complex structure J is the one obtained when both τ
and τ⊥ are identified with complex line bundles over M . Moreover J ′ is the almost complex
structure where τ is a complex line bundle over M and τ⊥ is the conjugate of the previous
complex line bundle.
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Observe that SO(4)/U(2) is the space of almost complex structures compatible with the
orientation on R4, while SO(4)/U(2)′ is the space of almost complex structures compatible with
the opposite orientation on R4.

Furthermore, consider a germ f : R4 → R2 with an isolated singularity at p. The associated
oriented 2-plane field ξ = kerDf provides then two almost complex structures J(f) and J ′(f) in
U−p, where U is an open neighborhood of the singular point p not containing other singularities.
The following seems to be well-known:

Lemma 4.1. Let f : R4 → R2 be a smooth germ with an isolated singularity at p. Then λ(f)p
vanishes if and only if the induced almost complex structure J(f) extends over the singularity p.
Likewise, ρ(f)p vanishes if and only if the induced almost complex structure J ′(f) extends over
the singularity p.

Proof. Note that λ(f)p is the homotopy class of the map S3 → SO(4)/U(2) which associates to
a point x of the 3-sphere around p the class of J(f) at the point x. This map is null-homotopic if
and only if it extends to the 4-disk, namely it extends over p. The proof is similar for ρ(f)p. □

Let f : M4 → N2 be a singular fibration of a closed oriented 4-manifold M over a closed
oriented surface N2. Then we have two almost complex structures J(f) and J ′(f) on M∗ =
M −P , where P is the set of singular points of f . Let then c1(J(f)) ∈ H2(M∗) and c1(J

′(f)) ∈
H2(M∗) be the first Chern classes of these two almost complex structures. We denote by the
same letters their inverse images in H2(M) under the isomorphism induced by the inclusion
H2(M) → H2(M∗). Eventually let c1(J(f))

2, c1(J
′(f))2 ∈ Z be the images of their squares into

Z by the isomorphism H4(M) ∼= Z.

Lemma 4.2. If (−λ, ρ) ∈ Z⊕Z is the index of the oriented 2-plane field with isolated singularities
associated to the singular fibration f , then c1(J(f)) and c1(J

′(f)) are characteristic classes in
H and

c1(J(f))
2 = 2e(M) + 3σ(M)− 4λ, c1(J

′(f))2 = 4ρ− 2e(M) + 3σ(M)

Proof. This follows from the description of the integers α, β from theorem 4.1, see [25, Satz
3.3]. □

We say that an isolated singularity p of the smooth map f : R4 → R2 is almost complex or
opposite almost complex if λ(f)p = 0 and ρ(f)p = 0, respectively. This terminology extends to
the fibered links occurring as local links of the corresponding isolated singularities. It was shown
in [54] that the closure of a strictly positive braid is an almost complex link. In particular, this
is so for all local links of complex holomorphic isolated singularities. Furthermore, Rudolph
proved in [53] that:

λ(K) = ρ(K), ρ(K) = λ(K)

where λ(K), ρ(K) stands for λ(ϕK)0, ρ(ϕK)0 andK denotes the mirror image ofK. In particular
mirror images of almost complex links are opposite almost complex. Moreover, if the oriented
fibered link K is amphichiral, then λ(K) = ρ(K) = µ(f)/2 and hence it is neither almost
complex nor opposite almost complex, if it has nonzero genus.

Remark 4.1. Assume that the homology class of the generic fiber F of a singular fibration
f : M4 → S2 is nonzero in H2(M

4). Then, there exists a symplectic structure on the open
manifold obtained from M4 by removing the fibers with λ(f)p ̸= 0, assuming at least one exist,
by a theorem of Gromov (see [38, section 4.1]). We don’t know under which conditions the
symplectic structure extends over the singular fiber f−1(p).
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4.3. The index of an oriented 2-plane over a 3-manifold. Let X4 be a compact oriented
4-manifold with boundary ∂X4 = N3. Let us set X∗ = X4\{p}, where p is a point in the interior
of X4. If D4 ⊂ X4 is a small 4-disk embedded in X4, centered at p, let M4 = X4 \ int(D4),
which has boundary ∂M4 = ∂X4 ⊔ ∂D4 = N3 ⊔ S3.

Let ξ be an oriented 2-plane field on the boundary ∂X4 = N3 which is tangent toX4. Suppose
that there exists an extension ξ̃ of ξ to an oriented tangent 2-plane field on X4 which has only
one singularity at the given point p. Let ξ◦ denote the restriction of ξ̃ to the sphere S3 around
p.

The question addressed here is to what extent the homotopy type of the oriented 2-plane
field ξ◦ is well-defined and independent on the choice of the extension ξ̃? Note that there is a
canonical trivialization induced from D4 ⊂ X4 on S3. An oriented 2-plane field on S3 with this
trivialization corresponds to a map S3 → G̃2(R4) and its homotopy class is described by the
index (−λp(ξ◦), ρp(ξ◦)) ∈ Z⊕ Z.

From now on we assume that X4 has a spin structure. Then X4 is almost parallelizable,
namely X∗ is parallelizable. Fix once and for all a trivialization of the tangent bundle TX∗

which induces a trivialization of the tangent bundle on M4 = X4 \ int(D4).
Then a homotopy class of an oriented 2-plane field ξ ⊂ TX4|N3 on N3 corresponds to a couple

of elements of the second cohomotopy set:

[N3, G̃2(R4)] ∼= [N3, S2 × S2] ∼= [N3, S2]× [N3, S2].

The second cohomotopy set [K,S2] of a 3-dimensional complex was described by Pontryagin
in [50]. First, there is a natural map

µK : [K,S2] → H2(K;Z),

which associates to the homotopy class of a map f : K → S2 the pull-back class f∗[S2] ∈
H2(K;Z). Moreover, Pontryagin proved that µK is surjective.

Furthermore, for each β ∈ H2(K;Z) there is a bijection between the homotopy classes in
µ−1(β) and the set H3(K;Z)/ψβ(H

1(K;Z)), where ψβ(α) = 2α ∪ β ∈ H3(K;Z), for α ∈
H1(K;Z). Note that H3(K;Z)/ψβ(H

1(K;Z)) is naturally an affine space. Namely, if two
homotopy classes f, g : K → S2 have the same characteristic class µK(f) = µK(g) = β, then
they differ by some element d(f, g) ∈ H3(K;Z)/ψβ(H

1(K;Z)).
This description holds when we replace K by M4, N3 or S3. Note that the quotient

H3(N3;Z)/ψβ(H
1(N3;Z)) has a simple description, when N3 is an oriented 3-manifold. Con-

sider some class β ∈ H2(N3;Z). If β is torsion, then we set dβ = 0. Otherwise, let dβ ∈ Z
be twice the divisibility of the class β, namely the largest k such that 2β is k times a class
in H2(N3;Z) modulo torsion. Then an orientation on N3 provides a canonical isomorphism
(compare with [21, Prop. 4.1]):

H3(N3;Z)/ψβ(H
1(N3;Z)) = Z/dβZ.

If ξ is the oriented 2-plane field above, we denote by µµµN3(ξ) ∈ H2(N3;Z) ⊕ H2(N3;Z) the
pair of values of µN3 on the corresponding classes in [N3, S2] × [N3, S2]. Given two oriented
2-plane fields ξ and ξ′ with

µµµN3(ξ) = µµµN3(ξ′) = (β1, β2) ∈ H2(N3;Z)⊕H2(N3;Z),

there is a relative invariant:

d(ξ, ξ′) ∈ Z/dβ1Z× Z/dβ2Z,
which vanishes if and only if ξ and ξ′ are homotopic oriented 2-plane fields.
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Proposition 4.1. Assume that X4 is spin, ξ̃ an extension of ξ overM4 and µµµN3(ξ) = (β1, β2) ∈
H2(N3;Z)×H2(N3;Z). Then the index (−λp(ξ◦), ρp(ξ◦)) ∈ Z⊕ Z has a well-defined image in
the quotient

Z/dβ1Z× Z/dβ2Z,
independent of the choice of the extension ξ̃ on X∗.

Proof. The homotopy class of a 2-plane field ξ̃ on M4 corresponds to an element of the set

[M4, G̃2(R4)] ∼= [M4, S2 × S2] ∼= [M4, S2]× [M4, S2].

The restriction to boundary components induces two maps

F : [M4, G̃2(R4)] → [N3, G̃2(R4)], F (f) = [f |N3 ],

P : [M4, G̃2(R4)] → [S3, G̃2(R4)], F (f) = [f |S3 ].

Our question can be rephrased as follows. Is P (ξ̃) well-defined in [S3, G̃2(R4)] and independent

of the choice of a lift ξ̃ ∈ F−1(ξ)?

Since G̃2(R4) ∼= S2 × S2 and the homotopy set functor behaves well with respect to products

at the target, we can look at the factors independently and ask the same question when G̃2(R4)
is replaced by S2.

Pick up some ξ ∈ [N3, S2] with µN3(ξ) = β ∈ H2(N3;Z) and some lift β̃ ∈ H2(M4;Z) of β

under the inclusion induced homomorphism H2(M4;Z) → H2(N3;Z). Let ξ̃ ∈ [M4, S2] be an

extension such that µM4(ξ̃) = β̃ ∈ H2(M4;Z) and denote by ξ◦ the restriction of ξ̃ to S3. We
note first that µS3(ξ◦) = 0 since H2(S3;Z) = 0.

Now, µ−1
S3 (0) admits a natural (i.e. not affine) isomorphism to H3(S3;Z)/ψ0(H

1(S3;Z)) =

H3(S3;Z) = Z. Indeed, we can consider the relative invariant d(ξ) = d(ξ,0) with respect to the
trivial 2-plane field 0, namely the one corresponding to a null-homotopic map S3 → S2.

Consider the map induced by the inclusion:

i∗ : H3(M4;Z) → H3(∂M4;Z) ∼= H3(N3;Z)⊕H3(S3;Z).
The long exact sequence in cohomology associated to the pair (M4, ∂M4) reads:

H3(M4;Z) → H3(∂M4;Z) δ→ H4(M4, ∂M4;Z) → H4(M4) = 0.

Therefore the image of i∗ is the kernel of the boundary homomorphism δ. Now, by standard
arguments H4(M4, ∂M4;Z) ∼= Z and H3(∂M4;Z) ∼= Z ⊕ Z is freely generated by the funda-
mental classes of N3 and S3 with the inherited orientations from X4. Eventually, the boundary
homomorphism δ reads:

δ(a[N3] + b[S3]) = a− b ∈ Z.
This implies that the image of i∗ coincides with the diagonal within Z⊕ Z = H3(∂M4;Z), and
hence the homomorphisms induced by the inclusions

H3(M4;Z) → H3(N3;Z), H3(M4;Z) → H3(S3;Z)
are surjective.

For each β̃ ∈ H2(X4) we choose some ξβ̃ having the properties that µM4(ξβ̃) = β̃ and β̃|S3 = 0.

The existence of such a ξβ̃ ∈ [X4, S2] follows from the surjectivity of the map induced by the

inclusion H3(M4) → H3(S3).
Let d(ξ, ξβ̃|N3) = α ∈ H3(N3;Z)/ψβ(H

1(N3;Z)). Set α̃ ∈ H3(M4;Z)/ψβ̃(H
1(M4;Z))

for the lift d(ξ̃, ξβ̃) of α to M4. Then d(ξ◦) = d(ξ◦,0) ∈ µ−1(0) is the image of α̃ into

H3(S3;Z)/ψ0(H
1(S3;Z)).
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In particular, if we fix the class α ∈ H3(N3;Z), then the image of its lift α̃ ∈ H3(M4;Z) into
H3(S3;Z) is well-defined independently on the lift, because the image of i∗ coincides with the
diagonal within Z⊕ Z.

Therefore, when µ(ξ) is torsion in H2(N3;Z), then the element ξ◦ is well-defined, up to

homotopy, and independent of the choice of the extension ξ̃.
On the other hand, if d(ξ, ξβ̃) is only defined modulo dβ, then d(ξ

◦) is only defined modulo

the image of dβZ ⊆ Z ∼= H3(N3;Z) into H3(S3;Z). By the discussion above its image is a copy
of dβZ ⊆ Z = H3(S3;Z). This settles the claim. □

4.4. Shell invariants. If X4 is a disk block, we can take for N3 any 3-manifold bounding some
4-manifold containing all critical points. Note that X4 is a 2-handlebody and hence it is a
spin manifold. Moreover, it is known that any oriented 2-plane field ξ on ∂X4 extends to an
oriented 2-plane ξ̃ on X4 with a single singularity (see e.g. [21], proof of Lemma 4.4). Every

singular fibration f : X4 → D2 induces an oriented 2-plane field ξ̃ = kerDf with finitely many
singularities. Let D4 ⊂ X4 be an embedded disk containing the singularities. Observe that
ξ̃|X4\int(D4) can be extended over D4 with a single singularity p in order to fit the hypothesis

above. Moreover, the index of ξ̃|S3 is the total index of ξ̃. From Proposition 4.1 we derive:

Corollary 4.1. Let ξ be the restriction of kerDf to N3 and µµµN3(ξ) = (β1, β2). Then

(−λ(ξ), ρ(ξ)) = (−λp(ξ◦), ρp(ξ◦)) ∈ Z/dβ1Z× Z/dβ2Z,

is an invariant of the shell equivalence of X4.

An interesting particular case is when N3 = ∂X4 and the generic fiber is closed. Then the
oriented 2-plane field ξ ⊂ TM4|N3 is actually tangent to N3. The homotopy classes of oriented
2-planes tangent to N3, also called combings, correspond to elements of the set:

[N3, G̃2(R3)] ∼= [N3, S2].

The boundary is collared and we have a splitting of TM4|N3 as the sum of TN3 and a trivial line
bundle, which will be fixed along with the trivialization of TM4. This provides a well-defined
inclusion R3 → R4 between tangent spaces and hence a map G̃2(R3) → G̃2(R4) which induces
an injection:

ιN3 : [N3, G̃2(R3)] → [N3, G̃2(R4)].

Thus the homotopy class of a 2-plane field ξ as above belongs to the image of ι.
Recall that G̃2(R3) = SO(3)/1 × SO(2) is diffeomorphic to S2. In order to retrieve ι it is

enough to describe the inclusion ι : G̃2(R3) ∼= S2 → G̃2(R4) ∼= S2 × S2.
The vector space of purely imaginary quaternions (i.e. with vanishing real part) identifies

with R3 ⊂ R4. Then the group of unit quaternions S3 acts on R3 by means of the formula:

q(y) = q · y · q−1, y ∈ R3, q ∈ S3.

We then have a homomorphism Q : S3 → SO(3) which fits in an exact sequence:

1 → Z/2Z = ⟨−1⟩ → S3 Q→ SO(3) → 1.

We then have a commutative diagram:

S3 Q−→ SO(3)
↓ ↓

S3 × S3 Q−→ SO(4)
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where the vertical maps are ∆ : S3 → S3 × S3 and J : SO(3) → SO(4) given by ∆(x) = (x, x)
and J(A) = 1⊕A.

Therefore G̃2(R3) is identified with Q(S3)/Q(S1) and G̃2(R4) with Q(S3 × S3)/Q(S1 × S1).
Observe that Q(S3)/Q(S1) is homeomorphic to the quotient S3/S1, namely S2 while Q(S3 ×
S3)/Q(S1 × S1) is homeomorphic to the quotient S3 × S3/S1 × S1, namely S2 × S2. It follows
that the map ι : S2 → S2 × S2 is covered by the diagonal ∆ and hence it is identified with the
diagonal inclusion.

Once we have fixed the trivialization of M4 and hence the identifications

[N3, G̃2(R3)] = [N3, S2], [N3, G̃2(R4)] = [N3, S2]× [N3, S2],

we derive that

ιN3(f) = (f, f), f ∈ [N3, S2].

Corollary 4.2. Let X4 be a disk block whose generic fiber F has empty boundary and ξ(f) be
the restriction of kerDf to ∂X4. Let the characteristic class of the combing be µN3(ξ) = β ∈
H2(N3). Then

(−λ(ξ), ρ(ξ)) ∈ Z/dβZ× Z/dβZ,

is an invariant of the shell equivalence class of X4.

An instructive example is the case of a disk block f : X4 → D2 with trivial boundary
monodromy, namely such that ∂X4 = F × S1. The 2-plane field ξ(f) is the tangent plane
at the F factor and hence it is the pull-back of the tangent bundle TF under the projection
F × S1 → F . Let [S1] be the homology class of S1 in H1(F × S1) and PD denote the Poincaré
dual. We derive that the Euler class of ξ(f) is χ(f)PD[S1]. As H2(F × S1) is torsion free
the class µ(ξ(f)) = β is half the Euler class and so dβ = |χ(F )|. Note that both dβ and
(−λ(ξ(f)), ρ(ξ(f))) are independent of the ambient trivialization of X4.

In particular, if the generic fiber F of the disk block is a torus, then the invariants (−λ(ξ), ρ(ξ)) ∈
Z⊕ Z, are well-defined.

Remark 4.2. The previous results suggest a close relation between the index and the (refined)
Gompf invariants of oriented 2-plane fields over ∂X4 (see [21, 35]).

4.5. Manifolds without singular fibrations.

Proposition 4.2. If M4 is a closed orientable 4-manifold with b2(M) = 0 which admits a singu-
lar fibration over a closed oriented surface N2, then b1(M) ≤ 1. In particular, φs(M

4, N2) = ∞,
whenever b1(M) ≥ 2 and b2(M) = 0.

Proof of Proposition 4.2. If H = 0 then σ(M) = 0 and the Hirzebruch–Hopf theorem 4.1 above
shows that the index of ξ is (e(M)/2, e(M)/2). From Rudolph’s theorem 4.2 we derive

µ(f) = e(M) = 2− 2b1(M).

Now the Milnor number of an isolated singularity is always non-negative and hence b1(M) ≤ 1,
as claimed. □

Proposition 4.3. If M4 is a closed orientable 4-manifold with b2(M) = 0 and b1(M) ≤ 1 which
admits a singular fibration over a closed oriented surface N2, then either N2 is a torus, or else
the generic fiber F is a torus.
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Proof. We can compute e(M) by using the polyhedron Π(f), as follows. Let D2 ⊂ N2 be
a disk containing all the critical values of f and X = f−1(D2). Then M is the union of
(N2 − int(D2))× F and X = f−1(D2) along S1 × F . As X retracts onto Π(f), we derive that

e(X) = e(Π(f)).

As Π(f) is obtained from F by adding cones over subsurfaces Fi,

e(Π(f)) = e(F ) + µ(f).

The additivity of the Euler characteristic for unions over F × S1 yields

e(M) = e(N)e(F ) + µ(f).

We noted in the proof of proposition 4.2 that Theorem 4.1 along with Theorem 4.2 imply that

µ(f) = e(M).

Therefore e(F )e(N) = 0, as claimed. □

Proposition 4.4. Let M4 be a smooth closed oriented manifold of dimension 4 with b1(M) = 1
and b2(M) = 0 that admits some singular fibration f : M4 → S2. Then M4 is a topological
fibration by tori over S2.

Proof. We know that µ(f) = 0 by Proposition 4.2. This implies that all local links are unknots
and hence f has no topological critical points. Thus M4 topologically fibers over S2 and the
fibers are tori. □

An example as in the proposition above is S1 × S3 which fibers over S2.
The following is a slight extension of [22, Thm. 8.4.13]:

Proposition 4.5. If M4 is a smooth closed oriented 4-manifold with positive definite intersec-
tion pairing S and f :M4 → N2 is a singular fibration over a closed oriented surface then:

1− b1(M) + b2(M) ≥ λ(f), ρ(f) ≥ 1− b1(M).

Proof. This follows from Lemma 4.2 and the fact that Ω(M) ⊆ σ(M)+ 8Z+, when S is positive
definite, since squares of characteristic elements are at least σ(M). □

4.6. Singular fibrations with a single critical point revisited. Let X1,−1 be the preimage
f−1(D2) of a disk containing the singular values, where f denotes the Matsumoto achiral fibra-
tion by tori f : S4 → S2 from Section 3.9. Let Yn be the result of expanding the Milnor fiber
of the pretzel link (2,−2, 2n), n ∈ Z to a torus. The boundary fibrations f : ∂X1,−1 → S1 and
g : ∂Yn → S1 are trivial. Out of the blocks X1,−1 and Yn we can construct 4-manifolds by gluing
to each of them a trivial fibration S1 × S1 × D2 along their boundaries respecting the trivial
fibrations. The result of gluing might depend on the element in Z ⊕ Z corresponding to the
homotopy class of the loop of gluing diffeomorphisms, as the monodromy map is not surjective
as in the statement of Proposition 2.1. The associated singular fibrations will be called general-
ized Matsumoto fibrations. Note that all manifolds M4 obtained in this way are not necessarily
homology spheres, as we can also obtain S2 × S2 from X1,−1.

Proposition 4.6. Suppose that M is a rational homology sphere of dimension 4 that admits
some singular fibration f : M4 → S2. Then M4 is homeomorphic to one of the manifolds con-
structed above from the blocks X1,−1 and Yn and f is equivalent to the corresponding generalized
Matsumoto singular fibrations by tori.
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Proof. We know that the generic fiber F is a torus and µ(f) = 2. Since µ(f)p is positive, f has
either two critical points p1, p2 with µ(f)pi = 1 or a single critical point with µ(f)p = 2.

Assume first that f has two critical points pi of µ(f)pi = 1. Then the local Milnor fiber
Fi of the singularity pi is an annulus. Therefore, the monodromy of the local Milnor fibration
around pi has the form T ki

γi , where γi is the core of the annulus Fi. Recall that Fi are naturally

embedded in F and hence the simple curves γi are drawn on F . Let D2 ⊂ S2 be a disk
containing both critical values f(pi) and X = f−1(D2). The monodromy of the restriction
f |∂X : ∂X = f−1(∂D2) → ∂D2 should be trivial, as it bounds a trivial fibration over S2\int(D2).
We then have the following relation in the mapping class group of the torus:

T k1
γ1 T

k2
γ2 = 1 ∈M(F )

We claim that γ1 = γ2 and k1 + k2 = 0. Indeed, according to [28] given two essential simple
closed curves γi on the torus, the subgroup ⟨Tγ1 , Tγ2⟩ generated by the two Dehn twists is:

(1) infinite cyclic when γ1 and γ2 are isotopic;
(2) free abelian freely generated by the two Dehn twists when γ1 and γ2 are disjoint up to

isotopy;
(3) a free group freely generated by the two Dehn twists when the intersection number of

the isotopy classes of γ1 and γ2 is at least 2;
(4) isomorphic to SL(2,Z) when the intersection number of the isotopy classes of γ1 and γ2

is 1.

In the case (4) the images of Tγ1 and Tγ2 in SL(2,Z) act as opposite parabolics and so the image

of T k1
γ1 T

k2
γ2 is not trivial unless k1 = k2 = 0. Therefore only the case (1) can occur and this proves

the claim.
Suppose now that f has a single critical point with Milnor number 2. Thus the local Milnor

fiber is either a one-holed torus or a pair of pants.
It is well-known that genus one fibered knots are either the trefoil (with either orientation) or

the figure eight knot (which is amphicheiral), see [7, Prop. 5.14]. There is a unique embedding
of the one holed torus F1 into the torus F . The monodromy of the open books associated with
the trefoil knots and the figure eight knot can be found in [7]. In both cases the corresponding
matrices in SL(2,Z) are nontrivial and so the boundary fibration f |∂X : ∂X = f−1(∂D2) → ∂D2

is not trivial, contradicting our hypothesis. Thus this case cannot be realized.
Further, we saw in Section 3.8 that the fiber of three component fibered links of genus zero

can be expanded to a torus if and only if these are the pretzel links (2,−2, 2n). □

Note that a homology sphere constructed out of X1,−1 has an achiral Lefschetz fibration with
two singular points of opposite signs and hence it must be homeomorphic to S4. However there
are examples of rational homology spheres with nontrivial first homology which admit achiral
Lefschetz fibrations.
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CS 40700, 38058 Grenoble cedex 9, France

Email address: louis.funar@univ-grenoble-alpes.fr


