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1 Introduction and statements

The aim of this paper is to study the images of the mapping class groups by quan-

tum representations. Some results in this direction are already known. We refer

the reader to [30] and [19] for earlier treatments of quantum representations. In [8]

we proved that the images are infinite and non-abelian (for all but finitely many ex-

plicit cases) using earlier results of Jones who proved in [17] that the same holds

true for the braid group representations factorizing through the Temperley–Lieb

algebra at roots of unity. Masbaum then found in [24] explicit elements of infinite

order in the image. General arguments concerning Lie groups actually show that

the image should contain a free non-abelian group. Furthermore, Larsen and Wang

showed (see [21]) that the image of the quantum representations of the mapping

class groups at roots of unity of the form exp.2�i
4r
/, for prime r � 5, is dense in

the projective unitary group.

In order to be precise we have to specify the quantum representations we are

considering. Recall that in [2] the authors defined the TQFT functor Vp, for every

p � 3 and a primitive root of unity A of order 2p. These TQFT should correspond
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2 L. Funar and T. Kohno

to the so-called SU.2/-TQFT, for even p and to the SO.3/-TQFT, for odd p (see

also [21] for another SO.3/-TQFT).

Definition 1.1. Let p 2 ZC, p � 3, such that p 6� 2 (mod 4). The quantum repre-

sentation �p is the projective representation of the mapping class group associated

to the TQFT V p
2

for even p and Vp for odd p, corresponding to the following

choices of the root of unity:

Ap D

´
� exp

�
2�i
p

�
; if p � 0 (mod 4);

� exp
� .pC1/�i

p

�
; if p � 1 (mod 2):

Notice that Ap is a primitive root of unity of order p when p is even and of order

2p otherwise.

Remark 1.2. The eigenvalues of a Dehn twist in the TQFT Vp, i.e., the entries of

the diagonal T -matrix, are of the form

�l D .�Ap/
l.lC2/;

where l belongs to the set of admissible colors (see [2, 4.11]). The set of admissi-

ble colors is ¹0; 1; 2; : : : ; p
2

� 2º for even p and is ¹0; 2; 4; : : : ; p � 3º for odd p.

Therefore the order of the image of a Dehn twist by �p is p.

We will now consider the Johnson filtration by the subgroups Ig.k/ of the map-

ping class group Mg of the closed orientable surface of genus g, consisting of

those elements having a trivial outer action on the k-th nilpotent quotient of the

fundamental group of the surface, for some k 2 ZC. As is well known the Johnson

filtration shows up within the framework of finite type invariants of 3-manifolds

(see e.g. [11]).

Our next result shows that the image is large in the following sense (see also

Propositions 3.2 and 3.5):

Theorem 1.3. Assume that we have g � 3 and p 62 ¹3; 4; 8; 12; 16; 24º or g D 2

and p 62 ¹3; 4; 8; 12; 16; 24; 40º. Then for any k, the image �p.Ig.k// of the k-th
Johnson subgroup by the quantum representation �p contains a free non-abelian
group.

The values of p which are excluded correspond to the TQFTs V3;V2;V4;V6,

V8 and V12 and it is known (see [23, 32, 33], where the authors determined ex-

plicitly the images of quantum representations for V8 and V12) that the images of

quantum representations are finite in these cases. When g D 2 and p is odd, p � 7,
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Free subgroups within the images of quantum representations 3

our proof is not effective and relies entirely on the result of [21] and Tits’ theorem

(see Section 3.1). Eventually, the exclusion of the case g D 2 and p D 40 seems

to be an artefact of our method.

The idea of proof for this theorem is to embed a pure braid group within the

mapping class group and to show that its image is large. Namely, a 4-holed sphere

suitably embedded in the surface leads to an embedding of the pure braid group

PB3 in the mapping class group. The quantum representation contains a particular

sub-representation which is the restriction of Burau’s representation (see [8]) to

a free subgroup of PB3. One way to obtain elements of the Johnson filtration is to

consider elements of the lower central series of PB3 and extend them to all of the

surface by identity. Therefore it suffices to find free non-abelian subgroups in the

image of the lower central series of PB3 by Burau’s representation at roots of unity

in order to prove Theorem 1.3.

The analysis of the contribution of mapping classes supported on small sub-

surfaces of a surface, which are usually holed spheres, to various subgroups of

the mapping class groups was also used in an unpublished paper by T. Oda and

J. Levine (see [22]) for obtaining lower bounds for the ranks of the graded quo-

tients of the Johnson filtration.

Our construction also provides explicit free non-abelian subgroups (see Theo-

rems 3.10 and 3.12 for precise statements).

2 Burau’s representations of B3 and triangle groups

In what follows, let Bn denote the braid group on n strands with the standard gen-

erators g1; g2; : : : ; gn�1. Squier was interested to compare the kernel of Burau’s

representation ˇq at a k-th root of unity q with the normal subgroup BnŒk� of Bn

generated by gk
j , 1 � j � n � 1. Recall that:

Definition 2.1. The (reduced) Burau representationˇ W Bn ! GL.n�1;ZŒq; q�1�/

is defined on the standard generators

ˇq.g1/ D

 
�q 1

0 1

!
˚ 1n�3;

ˇq.gj / D 1j �2 ˚

0
B@
1 0 0

q �q 1

0 0 1

1
CA˚ 1n�j �2; for 2 � j � n � 2;

ˇq.gn�1/ D 1n�3 ˚

 
1 0

q �q

!
:
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4 L. Funar and T. Kohno

The paper [10] is devoted to the complete description of the image of Burau’s

representation of B3 at roots of unity. Similar results were obtained in [20,24,26].

For the sake of completeness we review here the essential tools from [10] to be

used later.

Let us denote by A D ˇ�q.g
2
1/ and B D ˇ�q.g

2
2/ and C D ˇ�q..g1g2/

3/. As

is well known PB3 is isomorphic to the direct product F2 � Z, where F2 is freely

generated by g2
1 and g2

2 and the factor Z is the center of B3 generated by .g1g2/
3.

It is simple to check that

A D

 
q2 1C q

0 1

!
; B D

 
1 0

�q � q2 q2

!
; C D

 
�q3 0

0 �q3

!
:

Recall that PSL.2;Z/ is the quotient of B3 by its center. Since C is a scalar ma-

trix, it follows that the homomorphism ˇ�q W B3 ! GL.2;C/ factors to a homo-

morphism PSL.2;Z/ ! PGL.2;C/.

We will be concerned below with the subgroup ��q of PGL.2;C/ generated by

the images ofA andB in PGL.2;C/. When ˇ�q is unitarizable, the group ��q can

be viewed as a subgroup of the complex-unitary group PU.1; 1/.

Before we proceed we make a short digression on triangle groups. Let � be a

geodesic triangle in the hyperbolic plane of angles �
m

, �
n

, �
p

, so that 1
m

C 1
n

C 1
p
< 1.

The extended triangle group ��.m; n; p/ is the group of isometries of the hyper-

bolic plane generated by the three reflections R1; R2; R3 with respect to the edges

of �. It is well known that a presentation of ��.m; n; p/ is given by

��.m; n; p/ D hR1; R2; R3 IR2
1 D R2

2 D R2
3 D 1;

.R1R2/
m D .R2R3/

n D .R3R1/
p D 1i:

The second type of relations have a simple geometric meaning. In fact, the product

of the reflections with respect to two adjacent edges is a rotation by the angle which

is twice the angle between those edges. The subgroup �.m; n; p/ generated by

the rotations a D R1R2, b D R2R3, c D R3R1 is a normal subgroup of index 2,

which coincides with the subgroup of isometries preserving the orientation. One

calls�.m; n; p/ the triangle (also called triangular, or von Dyck) group associated

to �. Moreover, the triangle group has the presentation

�.m; n; p/ D ha; b; c I am D bn D cp D 1; abc D 1i:

Observe that �.m; n; p/ also makes sense when m;n or p are negative integers,

by interpreting the associated generators as clockwise rotations. The triangle �

is a fundamental domain for the action of ��.m; n; p/ on the hyperbolic plane.

Thus a fundamental domain for�.m; n; p/ consists of the union�� of� with the

reflection of � in one of its edges.
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Free subgroups within the images of quantum representations 5

Proposition 2.2 ([10]). Letm < k be such that gcd.m; k/ D 1 where k � 4. Then
the group �� exp. ˙2m�i

2k
/ is a triangle group with the presentation

�� exp. ˙2m�i
2k

/ D hA;B I Ak D Bk D .AB/k D 1i:

If n is odd n D 2k C 1, then the group ��q is a quotient of the triangle group

associated to �, which embeds into the group associated to some sub-triangle �0

of �.

Proposition 2.3 ([10]). Let 0 < m < 2kC 1 be such that gcd.m; 2kC 1/ D 1 and
k � 3. Then �� exp. ˙2m�i

2kC1
/ is isomorphic to the triangle group�.2; 3; 2kC1/ and

has the following presentation (in terms of our generators A;B):

�
� exp. ˙2m�i

2kC1
/

D hA;B IA2kC1 D B2kC1 D .AB/2kC1 D 1;

.A�1Bk/2 D 1; .BkAk�1/3 D 1i:

Proof. Here is a sketch of the proof. Deraux proved in [5, Theorem 7.1] that the

group �.2kC1
2 ; 2kC1

2 ; 2kC1
2 /, which is generated by the rotations a; b; c around

the vertices of the triangle�, embeds into the triangle group associated to a smaller

triangle �0. One constructs �0 by considering all geodesics of � joining a vertex

and the midpoint of its opposite side. The three median geodesics pass through the

barycenter of � and subdivide � into six equal triangles. We can take for �0 any

one of the six triangles of the subdivision. It is immediate that�0 has angles �
2kC1

,
�
2

and �
3

so that the associated triangle group is �.2; 3; 2k C 1/. This group has

the presentation

�.2; 3; 2k C 1/ D h˛; u; v I ˛2kC1 D u3 D v2 D ˛uv D 1i;

where the generators are the rotations of double angle around the vertices of the

triangle �0.

Lemma 2.4. The natural embedding of�.2kC1
2
; 2kC1

2
; 2kC1

2
/ into�.2; 3; 2kC1/

is an isomorphism.

Proof. A simple geometric computation shows that

a D ˛2; b D v˛2v D u2˛2u; c D u˛2u2:

Therefore

˛ D akC1 2 �

�
2k C 1

2
;
2k C 1

2
;
2k C 1

2

�
:

From the relation ˛uv D 1 we derive akC1uv D 1, and thus u D akv. The

relation u3 D 1 reads now ak.vakv/akv D 1 and replacing bk by vakv we find

that v D akbkak 2 �.2kC1
2
; 2kC1

2
; 2kC1

2
/.
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6 L. Funar and T. Kohno

Further

u D akv D a�1bkak 2 �

�
2k C 1

2
;
2k C 1

2
;
2k C 1

2

�
:

This means that�.2kC1
2
; 2kC1

2
; 2kC1

2
/ is actually�.2; 3; 2kC1/, as claimed.

It suffices now to find a presentation of �.2; 3; 2k C 1/ that uses the generators

A D a, B D b. It is not difficult to show that the group with the presentation of the

statement is isomorphic to �.2; 3; 2k C 1/, the inverse homomorphism sending ˛

into AkC1, u into A�1BkAk and v into AkBkAk .

A direct consequence of Propositions 2.2 and 2.3 is the following abstract de-

scription of the image of Burau’s representation:

Corollary 2.5. If q is not a primitive root of unity of order in ¹1; 2; 3; 4; 6; 10º, then
�q is an infinite triangle group.

Alternatively, we obtain a set of normal generators for the kernel of Burau’s

representation, as follows:

Corollary 2.6. Let n 62 ¹1; 6º and let q be a primitive root of unity of order n. We
denote by N.G/ the normal closure of a subgroup G of hg2

1; g
2
2i. Then the ker-

nel kerˇ�q W hg2
1; g

2
2i ! PGL.2;C/ of the restriction of Burau’s representation

is given by
´
N.hg2k

1 ; g2k
2 ; .g2

1g
2
2/

ki/; nD 2k;

N.hg
2.2kC1/
1 ; g

2.2kC1/
2 ; .g2

1g
2
2/

2kC1; .g�2
1 g2k

2 /2; .g2k
2 g

2.k�1/
1 /3i/; nD 2kC1:

3 Johnson subgroups and proof of Theorem 1.3

3.1 Proof of Theorem 1.3

For a group G we denote by G.k/ the lower central series defined by

G.1/ D G; G.kC1/ D ŒG;G.k/�; k � 1:

An interesting family of subgroups of the mapping class group is the set of higher

Johnson subgroups defined as follows.

Definition 3.1. The k-th Johnson subgroup Ig.k/ is the group of mapping classes

of homeomorphisms of the closed orientable surface †g whose action by outer

automorphisms on �=�.kC1/ is trivial, where � D �1.†g/.

Thus Ig.0/ D Mg , Ig.1/ is the Torelli group commonly denoted by Tg , while

Ig.2/ is the group generated by the Dehn twists along separating simple closed
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Free subgroups within the images of quantum representations 7

curves and considered by Johnson and Morita (see e.g. [16, 27]), which is often

denoted by Kg .

The proof of Theorem 1.3 follows from the same argument as in [8], where we

proved that the image of the quantum representation �p is infinite for all p in the

given range.

Before we proceed, we have to make the cautionary remark that �p is only a

projective representation. Here and henceforth when speaking about Burau’s rep-

resentation we will mean the representation ˇq W B3 ! PGL.2;C/ taking values

in matrices modulo scalars.

We will first consider the generic case where the genus is large and the 10-th

roots of unity are discarded. This will prove Theorem 1.3 in most cases. Specifi-

cally we will prove first:

Proposition 3.2. Assume that g � 4. Then the image �p

�
.hg2

1; g
2
2i/.k/

�
contains a

free non-abelian group for every k and p 62 ¹3; 4; 8; 12; 16; 24; 40º.

Proof. The first step of the proof provides us with enough elements of Ig.k/ hav-

ing their support contained in a small subsurface of †g .

Specifically we embed †0;4 into †g by means of curves c1; c2; c3; c4 as in the

figure below. Then the curves a and b which are surrounding two of the holes of

†0;4 are separating.

c1 c2
c3

c4a b

The pure braid group PB3 embeds into M0;4 using a non-canonical splitting of

the surjection M0;4 ! PB3. Furthermore, M0;4 embeds into Mg when g � 4, by

using the homomorphism induced by the inclusion of†0;4 into†g as in the figure.

Then the group generated by the Dehn twists a and b is identified with the free

subgroup generated by g2
1 and g2

2 into PB3. Moreover, PB3 has a natural action

on a subspace of the space of conformal blocks associated to †g as in [8], which

is isomorphic to the restriction of Burau’s representation at some root of unity

depending on p. Notice that the two Dehn twists above are elements of Kg .

We will need the following proposition whose proof will be given in Section 3.1.

Proposition 3.3. The above embedding of PB3 intoMg sends .PB3/.k/ into Ig.k/.
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8 L. Funar and T. Kohno

Recall now that hg2
1; g

2
2i is a normal free subgroup of PB3. The second ingredi-

ent needed in the proof of Proposition 3.2 is the following proposition which will

be proved in Section 3.1:

Proposition 3.4. Assume that g � 4. Then the image �p

�
.hg2

1; g
2
2i/.k/

�
contains a

free non-abelian group for every k and p 62 ¹3; 4; 8; 12; 16; 24; 40º.

Thus the group �p

�
.PB3/.k/

�
contains �p

�
.hg2

1; g
2
2i/.k/

�
and so it also contains

a free non-abelian group. Therefore, Proposition 3.3 above implies that �p.Ig .k//

contains a free non-abelian subgroup, which will complete the proof of Proposi-

tion 3.2.

We further consider the remaining cases and briefly outline in Section 3.2 the

modifications needed to make the same strategy work also for small genus surfaces

and for those values of the parameter p which were excluded above, namely:

Proposition 3.5. Assume that g and p verify one of the following conditions:

(i) g D 2, p is even and p 62 ¹4; 8; 12; 16; 24; 40º,

(ii) g D 3 and p 62 ¹3; 4; 8; 12; 16; 24; 40º,

(iii) g � 4 and p D 40.

Then �p.Mg / contains a free non-abelian group.

Then Propositions 3.2 and 3.5 above will prove Theorem 1.3.

Proof of Proposition 3.3

Choose the base point � for the fundamental group �1.†g / on the circle c4 that

separates the sub-surfaces †3;1 and †g�3;1. Let ' be a homeomorphism of †0;4

that is the identity on the boundary and whose mapping class b belongs to the

group PB3 � M0;4. Consider its extension e' to †g by identity outside †0;4. Its

mapping class B in Mg is the image of b in Mg .

In order to understand the action of B on �1.†g / we introduce three kinds of

loops based at �:

(i) Loops of type I are those included in †g�3;1.

(ii) Loops of type II are those contained in †0;4.

(iii) Begin by fixing three simple arcs �1; �2; �3 embedded in †0;4 joining � to

the three other boundary components c1; c2 and c3, respectively. Loops of

type III are of the form ��1
i x�i , where x is some loop based at the endpoint

of �i and contained in the 1-holed torus bounded by ci . Thus loops of type III

generate �1.†3;1;�/.
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Free subgroups within the images of quantum representations 9

Now, the action of B on the homotopy classes of loops of type I is trivial. The

action of B on the homotopy classes of loops of type II is completely described

by the action of b 2 PB3 on �1.†0;4;�/. Specifically, let A W B3 ! Aut.F3/ be

the Artin representation (see [1]). Here F3 is the free group on three generators

x1; x2; x3 which is identified with the fundamental group of the 3-holed disk†0;4.

Lemma 3.6. If b 2 .PB3/.k/, then

A.b/.xi / D li .b/
�1xi li.b/; where li .b/ 2 .F3/.k/.

Proof. This statement is folklore. Moreover, it is valid for any number n of strands

instead of 3. Here is a short proof avoiding heavy computations. It is known that

the set PBn;k of those pure braids b for which the length m Milnor invariants of

their Artin closures vanish for all m � k is a normal subgroup PBn;k of Bn. Fur-

thermore, the central series of subgroups PBn;k verifies (see e.g. [29])

ŒPBn;k ;PBn;m� � PBn;kCm; for all n; k;m;

and hence, we have .PBn/.k/ � PBn;k .

Now, if b is a pure braid, then A.b/.xi / D li .b/
�1xi li.b/, where li.b/ is the

so-called longitude of the i -th strand. Next we can interpret Milnor invariants as

coefficients of the Magnus expansion of the longitudes. In particular, this corre-

spondence shows that b 2 PBn;k if and only if li.b/ 2 .Fn/.k/. This proves the

claim.

The action of B on the homotopy classes of loops of type III can be described

in a similar way. Let a homotopy class a of this kind be represented by a loop

��1
i x�i . Then ��1

i '.�i / is a loop contained in the surface†0;4, whose homotopy

class �i D �i .b/ depends only on b and �i . Then it is easy to see that

B.a/ D ��1
i a�i :

Let now yi and zi be standard homotopy classes of loops based at a point of ci

which generate the fundamental group of the holed torus bounded by ci , so that

¹y1; z1; y2; z2; y3; z3º is a generator system for �1.†3;1;�/, which is the free

group F6 of rank 6.

Lemma 3.7. If b 2 .PB3/.k/, then �i .b/ 2 .F6/.2k/.

Proof. It suffices to observe that �i .b/ is actually the i -th longitude li .b/ of the

braid b, expressed now in the generators yi and zi instead of the generators xi . We

also know that xi D Œyi ; zi �. Let then � W F3 ! F6 be the group homomorphism

given on the generators by �.xi / D Œyi ; zi �. Then �i .b/ D �.li .b//. Eventually, if

li .b/ 2 .F3/.k/, then �.li .b// 2 .F6/.2k/ and the claim follows.
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10 L. Funar and T. Kohno

Therefore the class B belongs to Ig.k/, since its action on every generator of

�1.†g ;�/ is a conjugation by an element of �1.†g ;�/.k/.

Proof of Proposition 3.4

First we want to identify some sub-representation of the restriction of �p to the

group PB3 � Mg . Specifically we have:

Lemma 3.8. Let p � 5. The restriction of the quantum representation �p to the
group PB3 � M0;4 has an invariant 2-dimensional subspace such that the corres-
ponding sub-representation is equivalent to the Burau representation ˇ�qp

, where
the root of unity qp is given by

qp D

8
ˆ̂<
ˆ̂:

�A�4
p D � exp

�
�8�i

p

�
; if p � 0 (mod 4);

�A�4
5 D � exp

�
�4�i

5

�
; if p D 5;

�A�8
p D � exp

�
�8.pC1/�i

p

�
; if p � 1 (mod 2); p � 7:

Proof. For even p this is the content of [8, Proposition 3.2]. We recall that in this

case the invariant 2-dimensional subspace is the space of conformal blocks associ-

ated to the surface†0;4 with all boundary components being labeled by the color 1.

The odd case is similar. The invariant subspace is the space of conformal blocks

associated to the surface †0;4 with boundary labels .2; 2; 2; 2/, when p D 5 and

.4; 2; 2; 2/, when p � 7 respectively. The eigenvalues of the half-twist can be com-

puted as in [8].

Thus the image �p.PB3/ of the quantum representation projects onto the image

of the Burau representation ˇ�qp
.PB3/.

Up to a Galois conjugacy we can assume that ˇ�qp
is unitarizable and after

rescaling, it takes values in U.2/. Consider the projection of ˇ�qp

�
.PB3/.k/

�
into

U.2/=U.1/ D SO.3/.

A finitely generated subgroup of SO.3/ is either finite or abelian or else dense in

SO.3/. If the group is dense in SO.3/, then it contains a free non-abelian subgroup.

Moreover, solvable subgroups of SU.2/ (and hence of SO.3/) are abelian. The

finite subgroups of SO.3/ are well known. They are the following: cyclic groups,

dihedral groups, tetrahedral group (automorphisms of the regular tetrahedron), the

octahedral group (the group of automorphisms of the regular octahedron) and the

icosahedral group (the group of automorphisms of the regular icosahedron or dode-

cahedron). All but the last one are actually solvable groups. The icosahedral group

is isomorphic to the alternating group A5 and it is well known that it is simple (and

thus non-solvable). As a side remark this group appeared in relation with the non-

solvability of the quintic equation in Felix Klein’s monograph [18].
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Free subgroups within the images of quantum representations 11

Lemma 3.9. If q is not a primitive root of unity of order in the set ¹1; 2; 3; 4; 6; 10º,
then .�q/.k/ is non-solvable and thus non-abelian for any k. Moreover, .�q/.k/

cannot be A5, for any k.

Proof. If .�q/.k/ were solvable, then �q would be solvable. But one knows that �q

is not solvable. In fact if q is as above, then �q is an infinite triangle group by Cor-

ollary 2.5.

Now any infinite triangle group has a finite index subgroup which is a surface

group of genus at least 2. Therefore, each term of the lower central series of that

surface group embeds into the corresponding term of the lower central series of �q ,

so that the latter is non-trivial. Since the lower central series of a surface group of

genus at least 2 consists only of infinite groups, it follows that no term can be

isomorphic to the finite group A5 either.

Lemma 3.9 shows that whenever p is as in the statement of Proposition 3.4, the

group ˇ�qp

�
.hg2

1; g
2
2i/.k/

�
is neither finite nor abelian, so that it is dense in SO.3/

and hence it contains a free non-abelian group. This proves Proposition 3.4.

Explicit free subgroups

The main interest of the elementary arguments in the proof presented above is that

the free non-abelian subgroups in the image are abundant and explicit. For instance

we have:

Theorem 3.10. Assume that g � 4, p 62 ¹3; 4; 12; 16º and p 6� 8 (mod 16). Set
x D �p.Œg

2
1; g

2
2�/ and y D �p.Œg

4
1; g

2
2�/. Then the group generated by the iterated

commutators

Œx; Œx; Œx; : : : ; Œx; y�� : : :� and Œy; Œx; Œx; : : : ; Œx; y�� : : :�

of length k � 3 is a free non-abelian subgroup of �p.Ig.k//.

It is well known that the order of the matrix ˇ�q.gi /, i 2 ¹1; 2º, in PGL.2;C/

is the order of the root of unity q, namely the smallest positive n such that q is a

primitive root of unity of order n.

We considered in Lemma 3.8 the root of unity qp with the property that ˇ�qp
is

a sub-representation of the quantum representation �p. We derive from Lemma 3.8

that the order of the root of unity qp is 2o.p/ where

o.p/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

p
4
; if p � 4 (mod 8);

p
8
; if p � 0 (mod 16);

p
16 ; if p � 8 (mod 16);

p; if p � 1 (mod 2); p � 5:
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12 L. Funar and T. Kohno

Therefore ˇ�qp
.hg2

1; g
2
2i/ is isomorphic to the triangle group�.o.p/; o.p/; o.p//.

Notice that in general o.p/ 2 1
2 C Z and o.p/ is an integer if and only if p has the

property that p 6� 8 (mod 16), as we suppose from now on. Observe also that the

order of ˇ�qp
.g2

1/ is a proper divisor of the order p of a Dehn twist �p.g
2
1/, when

p is even.

In the proof of Theorem 3.10 we will need the following result concerning the

structure of commutator subgroups of triangle groups:

Lemma 3.11. The commutator subgroup�.r; r; r/.2/ of a triangle group�.r; r; r/,
r 2 Z � ¹0; 1; 2º, is a 1-relator group with generators fcij , for 1 � i; j � r � 1,
and the relation

fc11 � fc21
�1 � fc22 � fc32

�1 � � � Acr r�1
�1 � fcrr D 1:

Proof. The kernel K of the abelianization homomorphism

Z=rZ � Z=rZ ! Z=rZ � Z=rZ

is the free group generated by the commutators. Denote byea andeb the generators

of the two copies of the cyclic group Z=rZ. Then the kernelK is freely generated

by fcij D Œeai ;ebj �, where 1 � i; j � r � 1. The group �.r; r; r/ is the quotient of

Z=rZ � Z=rZ by the normal subgroup generated by the element .eaeb/rea�reb�r ,

which belongs to K. This shows that �.r; r; r/.2/ is a 1-relator group, namely the

quotient of K by the normal subgroup generated by the element .eaeb/rea�reb�r . In

order to get the explicit form of the relation we have to express this element as

a product of the generators of K, i.e., as a product of commutators of the form

Œeai ;ebj �. This can be done as follows:

.eaeb/rea�reb�r D Œea;eb�Œeb;ea2�Œea2;eb2� � � � Œear�1;ebr�1�Œebr�1;ear �Œear ;ebr �:

Hence �.r; r; r/.2/ has a presentation with generators fcij , where 1 � i � j � r ,

and the relation in the statement of the lemma holds.

Proof of Theorem 3.10. Recall the classical Magnus Freiheitsatz, which states that

any subgroup of a 1-relator group which is generated by a proper subset of the set

of generators involved in the cyclically reduced word relator is free.

Assume that o.p/ 2 Z and o.p/ � 4. Then ˇ�qp
.Œg2

1; g
2
2 �/ and ˇ�qp

.Œg4
1; g

2
2�/

are the elements fc11 and fc21 of �.o.p/; o.p/; o.p//.2/ respectively.

An easy application of the Freiheitsatz to the commutator subgroup of the in-

finite triangle group �.o.p/; o.p/; o.p// gives us that the subgroup generated by

ˇ�qp
.Œg2

1; g
2
2 �/ and ˇ�qp

.Œg4
1; g

2
2�/ is free. This implies that the subgroup gener-

ated by x and y is free.
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Free subgroups within the images of quantum representations 13

Eventually the k-th term of the lower central series of the group generated by

x and y is also a free subgroup which is contained in �p

�
.PB3/.k/

�
� �p.Ig.k//.

This proves Theorem 3.10.

When p � 8 (mod 16), o.p/ is a half-integer and ˇ�qp
.hg2

1; g
2
2i/ is isomorphic

to the triangle group �.2; 3; 2o.p//. If gcd.3; 2o.p// D 1, then

H1.�.2; 3; 2o.p/// D 0;

so the central series of this triangle group is trivial. Nevertheless �.2; 3; 2o.p//

has many normal subgroups of finite index which are surface groups and thus con-

tain free subgroups. In particular, any subgroup of infinite index of�.2; 3; 2o.p//

is free. There is then an extension of the previous result in this case, as follows:

Theorem 3.12. Assume that g � 4, p 62 ¹8; 24; 40º and p � 8 (mod 16) so that
p D 8n, for odd n D 2kC1 � 7. Consider the following two elements of hg2

1; g
2
2i:

s D g2k
1 g2k

2 g
2.k�k2/
1 g�2

2 g2k
1 g�2

2 g
2.k�k2/
1 g2k

2 g2k
1 ;

and
t D g2k

1 g2k
2 g

2.k�k2/
1 g�2

2 g
2.kC1/
1 g2

2g
2.kCk2/
1 g2k

2 g10k
1 :

Let N.s; t/ be the normal subgroup generated by the elements s and t in hg2
1; g

2
2i.

Then for any choice of f .n/ elements x1; x2; : : : ; xf .n/ from the subgroup N.s; t/
the image �p.hx1; x2; : : : ; xf .n/i/ is a free group. Here the function f .n/ is given
by

f .n/ D jPSL.2;Z=nZ/j �
n � 6

6n

and, in particular, when n is prime, by

f .n/ D
.nC 1/.n � 1/.n � 6/

12
�

Then the group generated by the iterated commutators of length k � 3 is a free
subgroup of �p.Ig .k//.

Proof. Observe that the map PSL.2;Z/ ! PSL.2;Z=nZ/ factors through the tri-

angular group �.2; 3; n/, namely we have a homomorphism

 W �.2; 3; n/ ! PSL.2;Z=nZ/

defined by

 .˛/ D

 
1 �1

0 1

!
;  .u/ D

 
1 �1

1 0

!
;  .v/ D

 
0 �1

1 0

!
:
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14 L. Funar and T. Kohno

The matrices  .˛/; .u/ and  .v/ are obviously elements of orders n; 3 and 2 in

PSL.2;Z=nZ/ respectively. Then the normal subgroup K.2; 3; n/ D ker is tor-

sion free, because every torsion element in �.2; 3; n/ is conjugate to some power

of one the generators ˛; u; v (see [13]). Therefore K.2; 3; n/ is a surface group,

namely the fundamental group of a closed orientable surface which finitely covers

the fundamental domain of �.2; 3; n/. The Euler characteristic �.K.2; 3; n// of

this Fuchsian group can easily be computed by means of the formula

�.K.2; 3; n// D jPSL.2;Z=nZ/j � �.�.2; 3; n//;

where the (orbifold) Euler characteristic �.�.2; 3; n// has the well-known expres-

sion

��.�.2; 3; n// D 1 �

�
1

2
C
1

3
C
1

n

�
D
n � 6

6n
:

It is also known that any ��.G/ C 1 elements of a closed orientable surface

group G generate a free subgroup of G. Thus, in order to establish Theorem 3.12,

it will suffice to show that the images of the elements s and t under Burau’s rep-

resentation ˇ�qp
are normal generators of the group K.2; 3; n/. This is equiva-

lent to showing that these images correspond to the relations needed to impose in

�.2; 3; n/ in order to obtain the quotient PSL.2;Z=nZ/. However, one already

knows presentations for this group (see [4, Lemma 1] and [14]) as follows:

PSL.2;Z=nZ/ D h˛; v; u I ˛n D u3 D v2 D 1; gvgv D g˛g�1˛�4 D 1i;

for odd n, where g D v˛kv˛�2v˛k . The first three relations above correspond to

the presentation of �.2; 3; n/ and the elements gvgv and g˛g˛�4 correspond to

the images of s and t in �.2; 3; n/, by using the fact that ˛ D akC1, v˛2v D b,

v D akbkak (see the proof of Lemma 2.4).

Second proof of Proposition 3.2

We outline here an alternative proof which does not rely on the description of the

image of Burau’s representation in Corollary 2.5. This proof is shorter but less ef-

fective since it does not produce explicit free subgroups and uses the result of [21]

and the Tits alternative, which need more sophisticated tools from the theory of

algebraic groups. On the other hand this proof also works for odd p and g D 2.

The image �p.Mg / in PU.N.p; g// is dense in PSU.N.p; g// if p � 5 is prime

(see [21]), where N.p; g/ denotes the dimension of the space of conformal blocks

in genus g for the TQFT Vp. In particular, the image of the representation �p is

Zariski dense in PU.N.p; g//. By the Tits alternative (see [31]) the image is either

solvable or else it contains a free non-abelian subgroup. However, if the image

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Free subgroups within the images of quantum representations 15

were solvable, then its Zariski closure would be a solvable Lie group, which is a

contradiction. This implies that �p.Mg/ contains a free non-abelian subgroup.

If p is not prime but has a prime factor r � 5, then the claim for p follows from

that for r . If p does not satisfy this condition, then we have again to use the result

of Proposition 3.4 for k D 1. This result can be obtained directly from the compu-

tations in [17] proving that the image of the Jones representation of B3 is neither

finite nor abelian for the considered values of p. This settles the case k D 1 of

Proposition 3.2.

Furthermore, the group �p.Tg / is of finite index in �p.Mg /, and hence it also

contains a free non-abelian subgroup. Results of Morita (see [28]) show that for

any given k � 2 the group Ig.k C 1/ is the kernel of the k-th Johnson homomor-

phism Ig.k/ ! Ak , where Ak is a finitely generated abelian group. This implies

that ŒIg.k/; Ig .k/� � Ig.k C 1/, for every k � 2. In particular, the k-th term of

the derived series of �p.Tg/ is contained into �p.Ig .kC1//. But every term of the

derived series of �p.Tg / contains the corresponding term of the derived series of

a free subgroup and hence a free non-abelian group. This proves Proposition 3.2.

Remark 3.13. Using the strong version of Tits’ theorem due to Breuillard and

Gelander (see [3]) there exists a free non-abelian subgroup of Mg=Mg Œp� whose

image in PSU.N.p; g// is dense. HereMg Œp� denotes the (normal) subgroup gen-

erated by the p-th powers of Dehn twists.

3.2 Proof of Proposition 3.5

If the genus g 2 ¹2; 3º, then the construction used in the proof of Proposition 3.2

should be modified. This is equally valid when we want to get rid of the values

p D 5 and p D 40.

The proof follows along the same lines as Proposition 3.4, but the embeddings

†0;4 � †g are now different. In all cases considered below the analogue of Pro-

position 3.3 will still be true, i.e., the image of the subgroup .hg2
1; g

2
2i/.k/ by

the homomorphisms M0;4 ! Mg will be contained within the Johnson sub-

group Ig.k/.

If g D 2, we use the following embedding †0;4 � †2.

c1
c2 c3 c4

a

b
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16 L. Funar and T. Kohno

Although the homomorphism M0;4 ! M2 induced by this embedding is not

anymore injective, it sends the free subgroup hg2
1; g

2
2i � PB3 � M0;4 isomorphi-

cally onto the subgroup of M2 generated by the Dehn twists along the curves a

and b in the figure above.

Consider for even p the space of conformal blocks associated to †0;4 with

boundary labels .1; 1; 1; 1/. This 2-dimensional subspace is �p.hg
2
1; g

2
2i/-invariant

and the restriction of �p to this subspace is still equivalent to Burau’s representa-

tion ˇ�qp
(see [8]). Therefore Proposition 3.4 shows that �p

�
.hg2

1; g
2
2i/.k/

�
, and

hence also �p.I2.k//, contains a free non-abelian group.

If g D 3 and p � 7 is odd, we consider the following embedding of†0;4 � M3.

c1 c2 c3

c4a
b

The homomorphism M0;4 ! M3 induced by this embedding is not injective,

but it also sends the free subgroup hg2
1; g

2
2i � PB3 � M0;4 isomorphically onto

the subgroup of M3 generated by the Dehn twists along the curves a and b in the

figure above. The space of conformal blocks associated to †0;4 with boundary la-

bels .2; 2; 2; 4/ is a 2-dimensional subspace invariant by �p.hg
2
1; g

2
2i/ and the re-

striction of �p to this subspace is equivalent to Burau’s representation ˇ�qp
. Ap-

plying again Proposition 3.4, we find that �p

�
.hg2

1; g
2
2i/.k/

�
, and hence �p.I3.k//,

contains a free non-abelian group. This also gives the desired results for any g � 3,

and p as in the statement.

Eventually we have to settle the case p D 40 when ˇ�qp
.B3/ is known to have

finite image (see [17]). We will consider instead the representation �p.i.PB4//,

where PB4 embeds non-canonically into M0;5 and M0;5 maps into M3 by the ho-

momorphism i W M0;5 ! M3 induced by the inclusion †0;5 � †g drawn below.

c1 c2 c3 c4

c5

We consider the 3-dimensional space of conformal blocks associated to †0;5

with the boundary labels .1; 1; 1; 1; 2/ when p D 40 and the labels .2; 2; 2; 2; 2/
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Free subgroups within the images of quantum representations 17

when p D 5 respectively. This space of conformal blocks is �p.i.PB4//-invariant.

The restriction of �pjPB4
to this invariant subspace is known (see again [8]) to be

equivalent to the Jones representation of B4 at the corresponding root of unity.

Now we have to use a result of Freedman, Larsen and Wang (see[7]) subse-

quently reproved and extended by Kuperberg in [20, Theorem 1] saying that the

Jones representation of B4 at a 10-th root of unity on the two 3-dimensional con-

formal blocks we chose is Zariski dense in the group SL.3;C/. A particular case

of the Tits alternative says that any finitely generated subgroup of SL.3;C/ is ei-

ther solvable or else contains a free non-abelian group. A solvable subgroup has

also a solvable Zariski closure. The denseness result from above implies then that

�p.PB4/, and hence also �p

�
.PB4/.k/

�
, contains a free non-abelian group. The ar-

guments in the proof of Proposition 3.4 carry on to this setting and this proves

Proposition 3.5.

Corollary 3.14. For any k the quotient group Ig.k/=Mg Œp� \ Ig.k/, and in par-
ticular, Kg=Kg Œp�, for g � 3 and p 62 ¹3; 4; 8; 12; 16; 24º, contains a free non-
abelian subgroup. Here Kg Œp� denotes the normal subgroup of Kg generated by
the p-th powers of the Dehn twist along separating simple closed curves.
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