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The aim of this paper is to present some ingredients necessary for the quantization of Teichmüller spaces (see
[5, 7, 10]), from an elementary perspective. We refer to ([4, 1, 6, 12]) for the most recent advances concerning
this subject.

1 Thurston-Bonahon-Penner-Fock coordinates on the Teichmüller

spaces

1.1 Preliminaries on fatgraphs

Let Γ be a finite graph. We denote by VΓ and EΓ the set of its vertices and edges respectively.

Definition 1.1 An orientation at a vertex v is a cyclic ordering of the (half-) edges incident at v. A fatgraph
(sometimes called ribbon graph) is a graph endowed with an orientation at each vertex of Γ. A left-hand-turn
path in Γ is a directed closed path in Γ such that if e1, e2 are successive edges in the path meeting at v, then
e2, e1 are successive edges with respect to the orientation at v. The ordered pair e1, e2 is called a left-turn. We
sometimes call faces of Γ the left-hand-turn paths and denote them by FΓ.

A fatgraph is usually represented in the plane, by assuming that the orientation at each vertex is the counter-
clockwise orientation induced by the plane, while the intersections of the edges at points other than the vertices
are ignored. There is a natural surface, which we denote by Γt obtained by thickening the fatgraph. We usually
call Γt the ribbon graph associated to Γ. We replace the half-edges around a vertex by thin strips joined at
the vertex, whose boundary arcs have natural orientations. For each edge of the graph we connect the thin
strips corresponding to the vertices by a ribbon which follows the orientation of their boundaries. We obtain an
oriented surface with boundary. The boundary circles are in one-to-one correspondence with the left-hand-turn
paths. If one caps each left-hand-turn path by a 2-disk we find a closed surface Γc, and this explains why
we called these paths faces. The centres of the 2-disks will be called punctures of Γc and Γo = int(Γt) is
homeomorphic to the punctured surface.

There is a canonical embedding Γ ⊂ Γt, and one can associate to each edge e of Γ a properly embedded
orthogonal arc e⊥ which joins the two boundary components of the thin strip lying over e. The dual arcs e⊥

divide the ribbon Γt into hexagons. When we consider the completion Γc, we join the boundary points of these
dual arcs to the punctures within each 2-disk face and obtain a set of arcs connecting the punctures, denoted
by the same symbols. Then the dual arcs divide Γc into triangles. We set ∆(Γ) for the triangulation obtained
this way. The vertices of ∆(Γ) are the punctures of Γc. Remark that ∆(Γ) is well-defined up to isotopy. Now
the fatgraph Γ ⊂ Γt can be recovered from ∆(Γ) as follows. Mark a point in the interior of each triangle, and
connect points corresponding to adjacent triangles. This procedure works for any given triangulation ∆ of an
oriented surface and produces a fatgraph Γ = Γ(∆) with the property that ∆(Γ) = ∆. The orientation of Γ
comes from the surface.

If Γo is the surface Σsg of genus g with s punctures then by Euler characteristic reasons we have: ]VΓ = 4g−4+2s,
]EΓ = 6g − 6 + 3s, ]FΓ = s.
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1.2 Coordinates on Teichmüller spaces

Marked ideal triangles Let us denote by D the unit disk, equipped with the hyperbolic metric. Recall that
any two ideal triangles are isometric, since we may find a Möbius transformation, which takes one onto the
other. Choose a point on each edge of the ideal triangle. The chosen points will be called tick-marks.

Definition 1.2 A marked ideal triangle is an ideal triangle with a tick-mark on each one of its three sides. An
isomorphism between two marked ideal triangles is an isomorphism between the ideal triangles which preserves
the tick-marks. A standard marked ideal triangle is one which is isometric to the marked ideal triangle whose
vertices in the disk model are given by v1 = 1, v2 = ω, v3 = ω2 and whose tick-marks are t1 = −(2−

√
3), t2 =

−(2 −
√

3)ω, t3 = −(2 −
√

3)ω2, where ω = e2πi/3.

The ideal triangle and its tick-marks are pictured below in both the half-plane model and the disk model; they

correspond each other by the map z 7→ z−(ω+1)
z−(ω̄+1) .

0
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Coordinates on the Teichmüller space of punctured surfaces Set T s
g for the Teichmüller space of

surfaces of genus g with s punctures. Let Γ be a fatgraph with the property that Γc is a surface of genus g with
s punctures and let S denote the surface Γc endowed with a hyperbolic structure of finite volume, having the
cusps at the punctures.

As already explained above we have a triangulation ∆(Γ) associated to Γ. One deforms the arcs of ∆(Γ) within
their isotopy class in order to make them geodesic. We shall associate a real number te ∈ R to each edge of ∆(Γ)
(equivalently, to each edge of Γ). Set ∆v and ∆w for the two triangles sharing the edge e⊥. We consider next
two adjacent lifts of these triangles (which we denote by the same symbols) to the hyperbolic space H2. Then
both ∆v and ∆w are isometric to the standard ideal triangle of vertices v1, v2 and v3. These two isometries
define (by pull-back) canonical tick-marks tv and respectively tw on the geodesic edge shared by ∆v and ∆w.
Set te for the (real) length of the translation along this geodesic needed to shift tv to tw. Notice that this
geodesic inherits an orientation as the boundary of the ideal triangle ∆v in H2 which gives te a sign. If we
change the role of v and w the number te is preserved.

An equivalent way to encode the translation parameters is to use the cross-ratios of the four vertices of the
glued quadrilateral ∆v ∪∆w, which are considered as points of RP 1. It is convenient for us to consider RP 1 as
the boundary of the upper half-plane model of H2, and hence the ideal points have real (or infinite) coordinates.
Let assume that ∆v is the ideal triangle determined by [p0p−1p∞] and ∆w is [p0p∞p]. We consider then the
following cross-ratios:

ze = [p−1, p∞, p, p0] = [p, p0, p−1, p∞] = log− (p0 − p)(p−1 − p∞)

(p∞ − p)(p−1 − p0)
.

This cross-ratio reflects both the quadrilateral geometry and the decomposition into two triangles. In fact the
other possible decomposition into two triangle of the same quadrilateral leads to the value ze.

The relation between the two translation parameters te and ze is immediate. Consider the ideal quadrilateral
of vertices −1, 0, ez and ∞, whose cross-ratio is ze = z, where e = [0∞]. The left triangle tick-mark is located
at i, while the right one is located at ie−z, after the homothety sending the triangle into the standard triangle.
Taking in account that the orientation of the edge e is up-side one derives that te is the signed hyperbolic
distance between i and e−zei, which is ze.
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Proposition 1.1 The map tΓ : T s
g → REΓgiven by tΓ(S) = (te)e∈EΓ

is a homeomorphism onto the linear

subspace REΓ/FΓ ⊂ REΓ given by equations:

tγ :=
n

∑

k=1

tek
= 0,

for all left-hand-turn closed paths γ ∈ FΓ, which is expressed as a cyclic chain of edges e1, ..., en.

Remark 1.1 Notice that there are exactly s left-hand-turn closed paths, which lead to s independent equations
hence the subspace REΓ/FΓ from above is of dimension 6g − 6 + 2s.

Proof. The map tΓ is continuous, and it suffices to define an explicit inverse for it. Let Γ be a trivalent fatgraph
whose edges are labelled by real numbers r = (re)e∈EΓ

. We want to paste one copy ∆v of the standard marked
ideal triangle on each vertex v of Γ and glue together by isometries these triangles according to the edges
connections. Since the edges of an ideal triangle are of infinite length we have the freedom to use arbitrary
translations along these geodesics when gluing together adjacent sides. If e = [vw] is an edge of Γ then one can
associate a real number te ∈ R as follows. There are two tick-marks, namely tv and tw on the common side of
∆v and ∆w. We denote by te the amount needed for translating tv into tw according to the orientation inherited
as a boundary of ∆v . Given now the collection of real numbers r we can construct unambiguously our Riemann
surface S(Γ, r), which moreover has the property that tΓ(S(Γ, r)) = r. Furthermore it is sufficient now to check
whenever this constructions yields a complete Riemann surfaces. The completeness at the puncture determined
by the left-hand-turn path γ is equivalent to the condition tγ = 0, and hence the claim. The cusps of S(Γ)
are in bijection with the left-hand-turn paths in Γ, and the triangulation of S(Γ) obtained by our construction
corresponds to Γ.

Remark 1.2 W.Thurston associated to an ideal triangulation a system of shearing coordinates for the Te-
ichmüller space in mid eighties (see [20]). However, the systematic study of such coordinates appeared only later
in the papers of F.Bonahon [3] and from a slightly different perspective in Penner’s treatment of the decorated
Teichmüller spaces ([17]). V.Fock unravelled the elementary aspects of this theory which lead him further to the
quantification of the Teichmüller space.

The Fuchsian group associated to Γ and r The surface S(Γ, r) is uniformized by a Fuchsian group
G = G(Γ, r) ⊂ PSL(2,R), i.e. S(Γ, r) = H2/G(Γ, r). We can explicitly determine the generators of the Fuchsian
group, as follows.

We have natural isomorphisms between the fundamental group π1(S(Γ, r) ∼= π1(Γ
t) ∼= π1(Γ). Any path γ in Γ is

a cyclic sequence of adjacent directed edges e1, e2, e3, ..., en, where ei and ei+1 have the vertex vi in common. We
insert between ei and ei+1 the symbol lt if ei, ei+1 is a left-hand-turn, the symbol rt if it is a right-hand-turn
and no symbol otherwise (i.e. when ei+1 is ei with the opposite orientation). Assume now that we have a
Riemann surface whose coordinates are tΓ(S) = r. We define then a representation ρr : Π1(Γ) → PSL(2,R) of
the path groupoid Π1(Γ) by the formulas:

ρr(e) =

(

0 e
re
2

−e− re
2 0

)

, and ρr(lt) = ρr(rt)
−1 =

(

1 1
−1 0

)

.

This is indeed well-defined since ρr(e)
2 = −1 = 1 ∈ PSL(2,R), and hence the orientation of the edge does not

matter, and ρr(lt)
3 = ρr(rt)

3 = 1. Furthermore the fundamental group π1(Γ) is a subgroup of Π1(Γ).

Proposition 1.2 The Fuchsian group G(Γ, r) is ρr(π1(Γ)) ⊂ PSL(2,R).

Proof. We can begin doing the pasting without leaving the hyperbolic plane, until we get a polygon P , together
with a side pairing. We may think of each triangle as having a white face and a black face, and build the
polygon P such that all the triangles have white face up. We attach to each side pairing (si, sj) an orientation
preserving isometry Aij , such that Aij(si) = sj , Aij sends tick-marks into the tick-marks shifted by re, and
P ∩ Aij(P ) = ∅. Denote by G the subgroup of ISO+(D) generated by all the side-pairing transformations. In
order to apply the Poincaré Theorem all the vertex-cycle transformations must be parabolic. This amounts to
ask that for every left-hand-turn closed path γ we have tγ = 0. Then by the Poincaré theorem G is a discrete
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group of isometries with P as its fundamental domain and H2/G is the complete hyperbolic Riemann surface
S(Γ, r).

We need now the explicit form of the matrices Aij . We obtain them by composing the isometries sending a
marked triangle into the adjacent one, in a suitable chain of triangles, where consecutive ones have a common
edge. If e is such an edge we remark that ρr(e) do the job we want, because it sends the triangle [−1, 0,∞] into
[ere ,∞, 0]. Moreover the quadrilateral [−1, 0, ere,∞], with this decomposition into two triangles, has associated
the cross-ratio re. We need next to use ρr(lt) which permutes counter-clockwise the tick-marks and the vertices
−1, 0 and ∞ of the ideal triangle. Then one identifies the matrices Aij with the images of the closed paths by
ρr.

Remark 1.3 We observe that the left-hand-turn paths are preserved under an isomorphism of graphs which pre-
serves the cyclic orientation at each vertex. Thus any automorphism of the fatgraph Γ induces an automorphism
of S(Γ).

Belyi Surfaces Let assume now that S is endowed with the structure of Riemann surface. It is well known
that there exists a non-constant meromorphic function on S, ϕ : S → CP

1. The Riemann surface S is called
a Belyi surface if there exists a ramified covering ϕ : S → CP1, which is branched only over 0, 1 and ∞. A
surprising theorem of Belyi ([2]) states that S is a Belyi surface if and only if it is defined over Q i.e. as an
algebraic curve in CP

2 its minimal polynomial lies over some number field.

Following [17, 15] we can characterise Belyi surfaces in terms of fat graphs as follows: A Riemann surface S can
be constructed as S(Γ) = S(Γ,0) for some trivalent fatgraph Γ if and only if S is a Belyi surface.

Coordinates on the Teichmüller space of surfaces with geodesic boundary Set Tg,s;or for the Te-
ichmüller space of surfaces of genus g with s oriented boundary components. Here or denotes the choice of
one orientation for each of the boundary components. Since the surface has a canonical orientation, we can set
unambiguously or : {1, 2, ..., s} → Z/2Z by assigning or(j) = +1 if the orientation of the j-th component agrees
with that of the surface and or(j) = −1, otherwise. We suppose that each boundary component is a geodesic
in the hyperbolic metric, and possibly a cusp (hence in some sense this space is slightly completed). Let Γ be
a fatgraph with the property that Γt is a surface of genus g with s boundary components and let S denote
the surface Γt endowed with a hyperbolic structure, for which the boundary is geodesic. Assume that, in this
metric, the boundary geodesics bj have length lj .

Consider the restriction of the hyperbolic metric to int(Γt) = Γo. Then Γo is canonically homeomorphic
to the punctured surface Γc − {p1, ..., ps}. In particular there is a canonically induced hyperbolic metric on
Γc−{p1, ..., ps}, which we denote by S∗. Moreover this metric is not complete at the punctures pj . Suppose that
the punctures pj corresponds to the left-hand-turn closed paths γj , or equivalently the boundary components
geodesics bj , of length lj . Assume that we have an ideal triangulation of S∗ by geodesic simplices, whose ideal
vertices are the punctures pj . Then the holonomy of the hyperbolic structure around the vertex pj is a non-
trivial, and it can be calculated in the following way (see [19], Prop.3.4.18, p.148). Consider a geodesic edge
α entering the puncture and a point p ∈ α. Then the geodesic spinning around pj in the positive direction
(according to the orientation of the boundary circle) is intersecting again α a first time in the point hpj

(p). The
hyperbolic distance between the points p and hpj

(p) is the length lj of the boundary circle in the first metric.
Moreover the point hpj

(p) lies in the ray determined by p and the puncture pj . Notice that if we had chose the
loop encircling the puncture to go in opposite direction then the iterations hpj

(p) would have gone faraway from
the puncture, and the length would have been given the negative sign. Set therefore loj∗ for the signed length.

We construct as above the geodesic ideal triangulation ∆(Γ) of the non-complete hyperbolic punctured surface
S∗. We can therefore compute the holonomy map using the thick-marks on some edge abutting to the puncture
pj . It is immediately that the the holonomy displacement on this edge is given by tγj

, where γj is the left-hand-
turn closed path corresponding to this puncture. In particular we derive that:

|tγj
| = lj , for all j ∈ {1, 2, ..., s}.

Using the method from the previous section we know how to associate to any edge e of Γ a real number
te = te(S

∗) measuring the shift between two ideal triangles in the geodesic triangulation of the surface S∗.

Proposition 1.3 The map tΓ : Tg,s;or → REΓ given by tΓ(S) = (te)e∈EΓ
is a homeomorphism.
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Proof. The construction of an inverse map proceeds as above. Given r ∈ REΓ we construct a non-complete
hyperbolic surface S∗ with s punctures with the given parameters, by means of gluing ideal triangles. As shown
in ([19], Prop. 3.4.21, p.150) we can complete this hyperbolic structure to a surface with geodesic boundary S,
such that int(S) = S∗. Further if tγj

> 0, then we assign the orientation of γj for the boundary component bj ,
otherwise we assign the reverse orientation. When tγj

= 0 it means that we have a cusp at pj .

Remark 1.4 The two points of Tg,s;or given by the same hyperbolic structure on the surface Σg,s but with
distinct orientations of some boundary components lie in the same connected component. Nevertheless the
previous formulas shows that a path connecting them must pass through the points of Tg,s;or corresponding to
surfaces having a cusp at the respective puncture.

Set Tg,s for the Teichmüller space of surfaces of genus g with s non-oriented boundary components, i.e. hy-
perbolic metrics for which the boundary components are geodesic. There is a simple way to recover coor-
dinates on Tg,s from its oriented version. Let ψ : REΓ → RFΓ be the map ψ(t) = (tγi

)γi∈FΓ
. Choose

a projector ψ∗ : REΓ → kerψ = REΓ/FΓ , and set ι|.| : RFΓ → RFΓ for the map given on coordinates by
ι|.|(yj)j=1,]FΓ

= (|yj |)j=1,]FΓ
. Then Tg,s is the quotient by the (Z/2Z)FΓ -action on Tg,s;or which changes the

orientation of the boundary components.

Proposition 1.4 We have a homeomorphism tΓ : Tg,s → R6g−6+2s⊕Rs, which is induced from the second line
of the following commutative diagram:

Tg,s;or
(ψ∗⊕ψ)◦tΓ

- REΓ/FΓ ⊕ RFΓ

↓ ↓ id⊕ ι|.|

Tg,s - REΓ/FΓ ⊕ R
FΓ

+

↑ ↑ id⊕ 0

T s
g

- REΓ/FΓ

Remark 1.5 Observe that the embedding T s
g ↪→ Tg,s given in terms of coordinates by adding on the right a

string of zeroes lifts to an embedding T s
g ↪→ Tg,s;or.

Putting together the results of the last two sections we derive that:

Proposition 1.5 The map tΓ : T s
g,n;or → REΓ given by tΓ(S) = (te)e∈EΓ

is a homeomorphism of the Te-
ichmüller space of surfaces of genus g with n oriented boundary components and s punctures onto the linear sub-
space REΓ/F

∗Γ of dimension 6g − 6 + 3n + 2s given by the equations:
tγj

= 0, for those left-hand-turn closed paths γj corresponding to the punctures, γj ∈ F ∗
Γ ⊂ FΓ.

2 The mapping class group action

2.1 General facts about mapping class groups

Consider Σ a surface, possibly with boundary and punctures or marked points, compact and orientable. We
denote by Homeo+(Σ) the group of homeomorphisms of Σ preserving the orientation, endowed with the compact-
open topology.

Definition 2.1 The mapping class group of Σ is Mod(Σ) = Homeo+(Σ)/ ', where f, g : Σ → Σ are equivalent
if they are homotopic. This is equivalent to consider the quotient Homeo+(Σ)/Homeo0(Σ), where Homeo0(Σ)
is the connected component of identity. If Σ has boundary or marked points then one requires that the homeo-
morphisms and the homotopies we are concerned of to fix this boundary/marking data (pointwise or setwise).

It is known since the work of M.Dehn and J.Nielsen that there is a natural isomorphism

Mod(Σg) → Out+(π1(Σg)) = Aut(π1(Σg))/ Inn(π1Σg)

which sends the class of the homeomorphism ϕ into the class of the map ϕ∗ : π1Σg → π1Σg induced by ϕ
in homotopy. Here Inn(Γ) is the set of inner automorphisms (acting by conjugacy), which corresponds to the
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freedom in choosing the base point for the fundamental group. The result can be stated in the case when Σg

has boundary but one needs to add extra conditions on the automorphisms in the right hand side, by asking
them to preserve the conjugacy classes of boundary loops.

There is a close relation between mapping class groups and Teichmüller spaces. By using the identification
between Mod(Σ) and Out+(π,Σ), the mapping class group acts properly discontinuously by left composition
on the space T (Σ). In fact T (Σ) is also the subspace of group representations:

T (Σ) = Hom+
f,d (π1Σ,PSL(2,R)) /PSL(2,R)

where the subscripts f, d mean that we restrict to those representations that are faithful and discrete. Now, we
have the action

Out+(π,Σ) × Hom+
f,d (π1Σ,PSL(2,R)) /PSL(2,R) → Hom+

f,d (π1Σ,PSL(2,R)) /PSL(2,R)

given by
(ϕ, [ρ]) −→ [ρ ◦ ϕ−1]

Moreover, Mod(Σ) acts by real analytic homeomorphisms.

2.2 The Ptolemy modular groupoid

The modular groupoid was considered by Mosher in his thesis and further as a key ingredient in [13, 14], it is
implicit in Harer’s paper on the arc complex (see [8]) and then studied by Penner (see [17, 18]; notice that the
correct definition is that from [18]) who introduced also the terminology.

Recall that a groupoid is a category whose morphisms are invertible, such that between any two objects there
is at least one morphism. The morphisms from an object to itself form a group (the group associated to the
groupoid).

Remark 2.1 Suppose that we have an action of a group G on a set M . We associate a groupoid G(G,M)
as follows: its objects are the G-orbits on M , and the morphisms are the G-orbits of the diagonal action on
M ×M . If the initial action was free then G embeds in G(G,M) as the automorphisms group of any object.

Assume that we have an ideal triangulation ∆(Γ) of a surface Σs
g . If e is an edge shared by the triangles ∆v

and ∆w of the triangulation then we change the triangulation by excising the edge e and replacing it by the
other diagonal of the quadrilateral ∆v ∪ ∆w, as in figure below. This operation F [e] was called flip in [7] or
elementary by Mosher and Penner.

e
e’

Let IT (Σsg)) denote the set of isotopy classes of ideal triangulations of Σs
g . The reduced Ptolemy groupoid

P sg is the groupoid generated by the flips action on IT (Σsg)). Specifically its elements are classes of sequences
∆0,∆1, ...,∆m, where ∆j+1 is obtained from ∆j by using a flip. Two sequences ∆0, ...,∆m and ∆′

0, ...,∆
′
n are

equivalent if their initial and final terms coincide i.e. there exists a homeomorphism ϕ preserving the punctures
such that ϕ(∆0) ∼= ∆′

0 and ϕ(∆m) ∼= ∆′
n, where ∼= denotes the isotopy equivalence. Notice that any two

(isotopy classes of) ideal triangulations are connected by a chain of flips (see [9] for an elementary proof), and
hence P sg is indeed an groupoid. Moreover P sg is the groupoid G(Ms

g , IT (Σsg)) associated to the obvious action
of the mapping class group Ms

g on the set of isotopy classes of ideal triangulations IT (Σsg)). One problem in

considering P sg is that the action of Ms
g on IT (Σsg)) is not free but there is a simple way to remedy it. For

instance in [13, 14] one adds the extra structure coming from fixing an oriented arc of the ideal triangulation.
A second problem is that we want that the mapping class group action on the Teichmüller space extends to a
groupoid action.

Consider now an ideal triangulation ∆ = ∆(Γ), where Γ is its dual fatgraph. A labelling of ∆ is a numerotation
of its edges σΓ : EΓ → {1, 2, ..., ]EΓ}. Set now LIT (Σsg)) for the set of labelled ideal triangulations. The
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Ptolemy groupoid P sg of the punctured surface Σsg is the groupoid generated by flips on LIT (Σsg)). The flip
F [e] associated to the edge e ∈ EΓ acts on the labellings in the obvious way:

σF [e](Γ)(f) =

{

σΓ(f), if f 6= e′ = F [e](e)
σΓ(e), if f = e′,

According to ([18] Lemma 1.2.b), if 2g− 2+ s ≥ 2 then any two labelled ideal triangulations are connected by a
chain of flips, and thus P sg is indeed a groupoid. Moreover, this allows us to identify P sg with G(Ms

g ,LIT (Σsg)).

Remark 2.2 In the remaining cases, namely Σ3
0 and Σ1

1, the flips are not acting transitively on the set of
labelled ideal triangulations. In this situation an appropriate labelling consist in an oriented arc, as in [13]. The
Ptolemy groupoid associate to this labelling has the right properties, and it acts on the Teichmüller space.

Proposition 2.1 We have an exact sequence

1 → S6g−6+3s → P sg → P sg → 1,

where Sn denotes the symmetric group on n letters. Notice that P 1
1 = P1

1
. If (g, s) 6= (1, 1) then Ms

g naturally
embeds in P sg as the group associated to the groupoid.

Proof. The first part is obvious. The following result is due to Penner ([18],Thm.1.3):

Lemma 2.1 If (g, s) 6= (1, 1) then Ms
g acts freely on LIT (Σsg).

Proof. A homeomorphism keeping invariant a labelled ideal triangulation either preserves the orientation of
each arc or else it reverses the orientation of all arcs. In fact once the orientation of an arc lying in some triangle
is preserved, the orientation of the other boundary arcs of the triangle must also be preserved. Further in the
first situation either the surface is Σ3

0 (when M3
0 = 1) or else each triangle is determined by its 1-skeleton, and

the Alexander trick shows that the homeomorphism is isotopic to identity. In the second case we have to prove
that (g, s) = (1, 1). Since the arcs cannot have distinct endpoints we have s = 1. Let ∆1 be an oriented triangle
and D ⊂ ∆1 be a 2-disk which is a slight retraction of ∆1 into its interior. The image D′ of D cannot lie within
∆1 because the homeomorphism is globally orientation preserving while the orientation of the boundary of D′

is opposite to that of ∂∆. Thus D′ lies outside ∆1 and the region between ∂D′ and ∂∆1 is an annulus, so the
complementary of ∆1 consists of one triangle. Therefore g = 1.

Remark 2.3 The punctured torus Σ1
1 has an automorphism which reverse the orientation of each of the three

ideal arcs.

The case of the punctured torus is settled by the following:

Proposition 2.2 Let ∆st = {α1, α2, α3}, where α1 = (1, 0), α2 = (1, 1), α3 = (0, 1) be the standard labelled
ideal triangulation of the punctured torus Σ1

1 = R2/Z2 − {0}.

1. If ∆ = {ασ(1), ασ(2), ασ(3)} is flip equivalent to ∆st then σ is the identity.

2. A mapping class which leaves invariant ∆st is either identity or −id ∈ SL(2,Z) = M1
1.

3. Let ∆ = {γ1, γ2, γ3} be an arbitrary ideal triangulation. Then there exists an unique σ(∆) ∈ S3 such that
∆ is flip equivalent with the labelled diagram {ασ(1), ασ(2), ασ(3)}.

4. In particular if ∆ = ϕ(∆st) then we obtain a group homomorphism σ : SL(2,Z) → S3, given by σ(ϕ) =
σ(ϕ(∆st), whose values can be computed from:

σ

(

1 1
0 1

)

= (23), σ

(

1 0
1 1

)

= (12), σ

(

0 −1
1 0

)

= (13).
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We need therefore another labelling for Σ1
1, which amounts to fix a distinguished oriented edge (d.o.e.) of the

triangulation. The objects acted upon flips are therefore pairs (∆, e), where e is the d.o.e. of ∆. A flip acts on
the set of labelled ideal triangulations with d.o.e. as follows. If the flip leaves e invariant then the new d.o.e. is
the old one. Otherwise the flip under consideration is F [e], and the new d.o.e. will be the image e′ of e, oriented
so that the frame (e, e′) at their intersection point is positive with respect to the surface orientation. The
groupoid Pt

s
g generated by flips on (labelled) ideal triangulations with d.o.e. of is called the extended Ptolemy

groupoid. Since any edge permutation is a product of flips (when (g, s) 6= 1) it follows that any two labelled
triangulations with d.o.e. can be connected by a chain of flips.

The case of the punctured torus is subjected to caution again: it is more convenient to define the groupoid Pt
1
1

as that generated by iterated compositions of flips on the standard (labelled or not) ideal triangulation ∆st of
Σ1

1 with a fixed d.o.e., for instance α1. In fact proposition 2.2 implies that there are three distinct orbits of the
flips on triangulations with d.o.e., according to the the position of the d.o.e. within ∆st.

Remark 2.4 For all (g, s) we have an exact sequence:

1 → Z/2Z → Pt
s
g → P sg → 1.

Moreover Ms
g → P sg lifts to an embedding Ms

g ↪→ Pt
s
g.

Remark 2.5 We can define the groupoid Pt
s
g by considering flips on ideal triangulations with d.o.e. without

labellings.

Remark 2.6 The kernel of the map M1
1 → P 1

1 is the group of order two generated by

(

0 −1
1 0

)

. Therefore

any (faithful) representation of P 1
1 induces a (faithful) representation of PSL(2,Z).

Remark 2.7 One reason to consider P sg instead of P sg is that P sg acts on the Teichmüller space while P sg does

not. The other reason is that Ms
g injects into P sg (if (g, s) 6= (1, 1)). The kernel of Ms

g → P sg is the image of
the automorphism group Aut(Γ) in Ms

g.

Proof. An automorphism of Γ is a combinatorial automorphism which preserves the cyclic orientation at each
vertex. Notice that an element of Aut(Γ) induces a homeomorphism of Γt and hence an element of Ms

g. Now,
if ϕ is in the kernel then ϕ is described by a permutation of the edges i.e. an element of ϕ∗ ∈ S]EΓ

. One can
assume that the orientations of all arcs are preserved by ϕ when (g, s) 6= (1, 1). Then ϕ∗ completely determines
ϕ, by the Alexander trick. Further ϕ induces an element of Aut(Γ) whose image in S]EΓ

is precisely ϕ∗. This
establishes the claim. Notice that the map Aut(Γ) → S]EΓ

is injective for most but not for all fatgraphs Γ. The
fatgraphs Γ for which the map Aut(Γ) → S]EΓ

fails to be injective are described in [15].
We can state now a presentation for Pt

s
g which is basically due to Penner ([18]):

Proposition 2.3 Pt
s
g is generated by the flips F [e] on the edges. The relations are:

1. Set J for the change of orientation of the d.o.e. Then

F [F [e]e]F [e] =

{

1, if e is not the d.o.e.
J, if e is the d.o.e.

2. J2 = 1.

3. Consider the pentagon from picture below, and F [ej ] be the flips on the dotted edges. Let τ(12) denote the
transposition interchanging the labels of the two edges e1 and f1 from the initial triangulation. Then we
have:

F [e1]F [e2]F [e3]F [e4]F [e5] =

{

Jτ(12), if e1 is not the d.o.e.
τ(12), if e1 is the d.o.e.

The action of τ(12) on triangulations with d.o.e. is at follows: if none of the permuted edges e, f is the
d.o.e. then τ(12) leaves the d.o.e. unchanged. If the d.o.e. is one of the permuted edges, say e, then
the new d.o.e. is f oriented such that e (with the former d.o.e. orientation) and f with the given d.o.e.
orientation form a positive frame on the surface. Notice that [F [e1]F [e2]F [e3]F [e4]F [e5] = τ(12) even if
f1 is the d.o.e.
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4. If e and f are disjoint edges then F [e]F [f ] = F [f ]F [e].

5. The relations in a Z/2Z extension of the symmetric group, expressed in terms of flips. To be more specific,
les us assume that the edges are labelled and the d.o.e. is labelled 0. Then we have:

τ2
(0i) = J, τ2

(ij) = 1, if i, j 6= 0, τ(st)τ(mn) = τ(mn)τ(st) if {m,n} ∩ {s, t} = ∅,

τ(st)τ(tv)τ(st) = τ(tv)τ(st)τ(tv), if s, t, v are distinct.

6. F [τ(e)]τF [e] = τ , for any label transposition τ (expressed as a product of flips as above), which says that
the symmetric group is a normal subgroupoid of P sg .

e e

e

1 2

4

e

 

F[   ]

    

55

4
3

2

1

F[e  ]  F[e  ]

F[e  ]
F[e  ]

2

1

1

1

2
2

2

2

3
e

1

15
e

f
f

f

f

1

2

3

4

f
5

Proof. We analyse first the case where labellings are absent:

Lemma 2.2 P sg is generated by the flips on edges F [e]. The relations are:

1. F [e]2 = 1, which is a fancy way to write that the composition of the flip on F [e](e) with the flip on e is
trivial.

2. F [e1]F [e2]F [e3]F [e4]F [e5] = 1, where F [ei] are the flips considered in the picture 2.2.

3. Flips on two disjoint edges commute each other.

Proof. This result is due to Harer (see [8]). It was further exploited by Penner ([17, 18]).
The complete presentation is now a consequence of the two exact sequences from proposition 2.1 and remark
2.4, relating P sg , P sg and P

s
g.

Remark 2.8 By setting J = 1 above we find the presentation of P sg , with which we will be mostly concerned in
the sequel.

2.3 The mapping class group action on the Teichmüller spaces

In order to understand the action on T s
g we to consider also Tg,s;or.

The action of Ms
g on the Teichmüller space extends to an action of P sg to T s

g . Geometrically we can see it as
follows. An element of T s

g is a marked hyperbolic surface S. The marking comes from an ideal triangulation.
If we change the triangulation by a flip, and keep the hyperbolic metric we obtain another element of T s

g .

In the same way the Mg,s action on the Teichmüller space Tg,s;or extends to an action of the Ptolemy groupoid
Pg,s. This action is very easy to understand in terms of coordinates. In more specific terms a flip between
the graphs Γ and Γ′ induces an analytic isomorphism REΓ → REΓ′ by intertwining the coordinate systems
tΓ and tΓ′ . It is more convenient to identify REΓ with a fixed Euclidean space, which is done by choosing
a labelling σ : EΓ → {1, 2, ...]EΓ} of its edges. Thus we have homeomorphism tΓ,σ : Tg,s;or → R]EΓ given
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by (tΓ,σ(S))k = (tΓ(S))σ−1(k)∈EΓ
. Further we can compare the coordinates tΓ,σ and tF (Γ,σ), for two labelled

fatgraphs which are related by a flip.

A result of Negami ([16]) states that any two triangulations of a surface can be be connected by a sequence of
embedded flips, namely those for which the associated quadrilateral is embedded in the surface, at least when
the triangulations have a sufficiently large number of triangles (a linear function in the genus). In particular, it
suffices to consider only embedded flips in the sequel.

Proposition 2.4 An embedded flip acts on the edge coordinates of a fatgraph as follows:

φ( z)

φ( -z)b - 

φ( -z)d - 

z)a +       φ(

cd

a b

-zz

c + 

F

where φ(z) = log(1 + ez). Here it is understood that the coordinates associated to the edges not appearing in the
picture remain unchanged.

Proof. The flip on the graph corresponds to the following flip of ideal triangulations:

P

P

Q

P

Q

-1

3

8

Q

Q
2

4

0

1
P

P

P

Q

P

Q

-1

3

8

Q

Q
2

4

0

1
P

Then the coordinates a, b, c, d, z using the left-hand-side graph are the following cross-ratios: a = [Q3, P∞, P0, P−1],
b = [Q4, P−1P∞, P0], c = [Q1, P0, P∞, P ], d = [Q2, P, P0, P∞], z = [P−1, P∞, P, P0]. Let a′, b′, c′, d′, z′ be the
coordinates associated to the respective edges from the right-hand-side graph, which can again be expressed as
cross-ratios as follows: a′ = [Q3, P∞, P, P−1], b

′ = [Q4, P−1, P, P0], c = [Q1, P0, P−1, P ], d = [Q2, P, P−1, P∞],
z = [P∞, P, P0, P−1]. One uses for simplifying computations the half-plane model where, up to a Möbius
transformation, the points P−1, P∞, P, P0 are sent respectively into −1,∞, ez and 0. The flip formulas follow
immediately.

Remark 2.9 Similar computations hold for Penner’s λ-coordinates on the decorated Teichmüller spaces. How-
ever the transformations of R6g−6+2s obtained using λ-coordinates are rational functions.
Notice that the action of a non-embedded flip can be computed in the same way (see [4]). For instance, if the
edges corresponding to the labels a and c coincide then we have to replace a + φ(z) by a + 2φ(z); if the edges
corresponding to the labels a and b (respectively d) coincide then we replace a+ φ(z) by a+ z.

Let us denote by Autω(Rm) the group of real analytic automorphisms of Rm.

Corollary 2.1 1. We have a faithful representation ρ : Mg,s → Autω(R6g−6+3s) induced by the Pg,s action
on the Teichmüller space Tg,s;or if (g, s) 6= (1, 1).

2. The groupoid P sg ⊂ Pg,s leaves invariant the Teichmüller subspace T s
g ⊂ Tg,s;or. Therefore the formula

given in proposition 2.4 above for the flip actually yields a representation of P sg into Autω(R6g−6+2s).
The restriction to the mapping class groups is a faithful representation ρ : Ms

g → Autω(R6g−6+2s) if
(g, s) 6= (1, 1), and a faithful representation of PSL(2,R) when (g, s) = (1, 1).

Proof. The representation of Mg,s (respectively Ms
g) is injective because the mapping class group acts effec-

tively on the Teichmüller space. Therefore if the class of any (marked) Riemann surface is preserved by a
homeomorphism then this homeomorphism is isotopic to the identity.
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The invariance of the subspace T s
g ⊂ Tg,s;or by flips is geometrically obvious, but we write it down algebraically

for further use. This amounts to check that the linear equations tγ = 0, for γ ∈ FΓ are preserved. Let γ be a
left-hand-turn path, which intersects the part of the graph shown in the picture, say along the edges labelled
a, z, b. Then the flip of γ intersects the new graph along the edges labelled by a + φ(z) and b − φ(−z). The
claim follows from the equality z = φ(z) − φ(−z). The remaining three cases reduces to the same equation.

Remark 2.10 There is a Pt
s
g-action on the Teichmüller space but it is not free, and actually factors through

P sg .

Remark 2.11 Assume that there exists an element r ∈ T s
g , which is fixed by some ψ ∈ Ms

g, i.e. ϕ(ψ)(r) = r.
Then r is contained in some codimension two analytic submanifold Qsg ⊂ T s

g , and for a given r its isotropy
group is finite. This is a reformulation of the fact that Ms

g acts properly discontinuously on the Teichmüller
space with finite isotropy groups corresponding to the Riemann surfaces with non-trivial automorphism groups
(biholomorphic). Moreover the locus of Riemann surfaces with automorphisms is a proper complex subvariety
of the Teichmüller space, corresponding to the singular locus of the moduli space of curves.

2.4 Deformations of the mapping class group representations

We want to consider deformations of the tautological representation ρ = ρ0 of Ms
g obtained in the previ-

ous section. We first restrict ourselves to deformations ρh : Ms
g → Autω(R6g−6+2s) satisfying the following

requirements:

1. The deformation ρh extends to the Ptolemy groupoid P sg . In particular ρh is completely determined by
ρh(F ) and ρh(τ(ij)).

2. The image of a permutation ρh(τ(ij)) is the automorphism of R6g−6+2s given by the permutation matrix
P(ij), which exchanges the i-th and j-th coordinates.

3. The action of a flip Fh = ρh(F ) on the edge coordinates has the form given in proposition 2.4, but using
the function φh, instead of φ. Moreover limh→0 φh = log(1 + ez).

4. The linear subspace T s
g ⊂ Tg,s;or is invariant by ρh.

Proposition 2.5 The real function φ : R → R yields a deformation of the tautological Ptolemy groupoids
representations above if and only if it satisfies the following functional equations:

φ(x) = φ(−x) + x. (1)

φ(x + φ(y)) = φ(x+ y − φ(x)) + φ(x). (2)

φ (φ (x+ φ(y)) − y) = φ(−y) + φ(x). (3)

Proof. The first equation is equivalent to the invariance of the linear equations defining the cusps. The other
two equations follow from the cumbersome but straightforward computation of terms involved in the pentagon
equation.
Chekhov, Fock ([5]) and Kashaev ([10]) found the existence of nontrivial deformations, as follows:

Proposition 2.6 The meromorphic function

φh(z) = −πh
2

∫ ∞

−∞

e
√
−1tz

sinhπt sinhπht
dt

(where the integral is computed along a contour going along the real axis and bypassing the origin from above)
verifies the functional equations above and limh→0 φh(z) = φ(z).

This function is Faddeev’s quantum dilogarithm. Recently, Bai showed ([1]) that this solution is essentially
unique, under suitable conditions.
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