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Abstract. We introduce subgroups Bg < Hg of the mapping class
group Mod(Σg) of a closed surface of genus g ≥ 0 with a Cantor set
removed, which are extensions of Thompson’s group V by a direct limit
of mapping class groups of compact surfaces of genus g.

We first show that both Bg and Hg are finitely presented, and that
Hg is dense in Mod(Σg). We then exploit the relation with Thompson’s
groups to study properties Bg and Hg in analogy with known facts
about finite-type mapping class groups. For instance, their homology
coincides with the stable homology of the mapping class group of genus
g, every automorphism is geometric, and every homomorphism from a
higher-rank lattice has finite image.

In addition, the same connection with Thompson’s groups will also
prove that Bg andHg are not linear and do not have Kazhdan’s Property
(T), which represents a departure from the current knowledge about
finite-type mapping class groups.

1. Introduction

There has been a recent surge of activity around mapping class groups of
infinite-type surfaces, namely those whose fundamental group is not finitely
generated. These groups share many properties with their finite-type coun-
terparts (e.g. [5, 37]), but also show rather different behaviour (e.g. [3, 43]).

Here we will focus our attention on the mapping class group Mod(Σg) of
the surface Σg, namely the closed orientable surface of genus g ≥ 0 with a
Cantor set C removed. This group is related to the homeomorphism group
Homeo(C) through the short exact sequence (see Section 4 for details):

(1) 1→ PMod(Σg)→ Mod(Σg)→ Homeo(C)→ 1,

where PMod(Σg) is the pure mapping class group, namely the subgroup of
Mod(Σg) whose elements fix C pointwise.

In this article we study two countable subgroups Bg < Hg < Mod(Σg),
whose elements asymptotically preserve a rigid structure on Σg. We remark
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that B0 and H0 were previously introduced in [27, 29] under the names B
and B1/2, respectively. We now give a brief description of these groups,
referring the reader to Section 2 for a complete definition.

We first need to introduce the notion of a rigid structure; for this purpose,
it will be convenient to start with the genus-zero case. The reader should
keep Figure 1 in mind. A rigid structure on Σ0 is a triple (P,A,Σ+

0 ), where:

• P is a pants decomposition of Σ0,
• A is a set of pairwise-disjoint properly embedded arcs such that (the

closure of) every connected component of S−P , referred to as a pair
of pants, is intersected by exactly three arcs in A, and
• Σ+

0 is a choice of one of the two connected components of Σ0 −⋃
a∈A a.

Figure 1. The rigid structure on Σ0.

Let Σ1
0 be the result of puncturing Σ0 once. A rigid structure on Σ1

0 is a
rigid structure on the surface (homeomorphic to Σ0) obtained by filling in
the isolated puncture of Σ1

0.
A rigid structure on Σg (g ≥ 1) consists of a simple closed curve α which

cuts off a once-puncture surface of genus g, together with a rigid structure
for the component of Σg − α homeomorphic to Σ1

0.

The group Bg. Fix, once and for all, a rigid structure on Σg. A homeomor-
phism f : Σg → Σg is asymptotically rigid if it preserves the rigid structure
outside some compact subsurface Z(f) of Σg; see Section 3 for a complete
definition. We define Bg as the subgroup of Mod(Σg) whose elements have
at least one asymptotically-rigid representative. Obviously, every element of
Mod(Σg) with compact support belongs to Bg, although the converse is not
true. Indeed, denote by PModc(Σg) the subgroup of PMod(Σg) generated
by compactly-supported elements, which is a direct limit of mapping class
groups of compact genus-g subsurfaces of Σg. In Proposition 4.2 we will
generalize a result of [27] to prove that the sequence (1), when restricted to
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Bg, reads:

(2) 1→ PModc(Σg)→ Bg → V → 1,

where the rightmost non-trivial group is Thompson’s group V (see e.g. [19]).
This sequence reveals a fascinating connection between mapping class groups
and Thompson’s groups, and will be a key ingredient in the proofs of most
of our results.

Remark 1.1. We remark that the notation PModc(Σ) is somewhat redun-
dant, for if an element of Mod(Σ) has compact support then it automatically
belongs to PMod(Σ). However, we will use the notation PModc(Σ) to em-
phasize the connection with the sequence (1)

The group Hg. The group Hg is defined in a similar fashion: its elements
are those mapping classes which have a representative which preserve (P,A)
outside some compact subsurface. Observe that Bg < Hg, although the
inclusion is strict: for instance, a half-twist lies in Hg \ Bg. For this reason,
the group Hg is sometimes referred to as the group of half-twists [29]. Using
the same reasoning as above, equation (1) restricts to a short exact sequence

(3) 1→ PModc(Σg)→ Hg → V2[Z2]→ 1,

where V2[Z2] is the Higman-Thompson group V2[Z2] (see [11] and Section
4). A surprising result of Bleak-Donoven-Jonušas [11] asserts that V and
V2[Z2] are conjugate as subgroups of Homeo(C) through an explicit home-
omorphism of C (a cellular automaton).

A large part of the motivation for considering Hg comes from the study of
smooth mapping class groups. Put a differentiable structure on the closed
orientable surface Sg of genus g, and realize C as the the middle-third Cantor
set on a smoothly-embedded interval on Sg. Let Mods(Sg, C) denote the
smooth mapping class group of the pair (Sg, C), namely the group of isotopy
classes of smooth diffeomorphisms of Sg preserving globally the Cantor set
C. The following is a recent result of Neretin and the second author [28]:

Theorem ([28], Cor. 2). For every g ≥ 0, we have Hg ∼= Mods(Sg, C).

In particular, Mods(Sg, C) is countable; observe that, in stark contrast,
the “topological” mapping class group Mod(Σg) is uncountable.

1.1. Results. As we will see, the topological restrictions on the elements
of Bg and Hg impose strong finiteness conditions on the groups. More con-
cretely, we will prove:

Theorem 1.2. For every g ≥ 0, Bg and Hg are finitely presented.

We remark that the case g = 0 of the above theorem was proved by
Kapoudjian and the second author in [27]; in fact, it will serve as the base
case for the inductive argument behind the proof of Theorem 1.2.

In spite of the above result, we will prove that Hg serves as a good ap-
proximation for the mapping class group:
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Theorem 1.3. For every g ≥ 0, Hg is dense in Mod(Σg).

This theorem should be compared with a recent result of Patel-Vlamis
[43] which asserts that PModc(Σg) is dense in PMod(Σg)

Next, we turn our attention to the study of properties of the groups Bg
and Hg, through the comparison with known/expected/desired properties
of mapping class groups of finite-type surfaces.

1.1.1. Homological stability. Let Sg,n denote the surface of genus g with n
boundary components. A celebrated result of Harer [34] asserts that, for
a fixed genus g ≥ 3, the k-th homology group of the mapping class group
PMod(Sg,n) is independent of n, provided that k is “sufficiently small” with
respect to g (by a result of Boldsen [13], k ≤ 2g/3 suffices). For this reason,
this homology group is called the k-th stable homology group of the mapping
class group of genus g. Using a translation of the proof of [26, Theorem 3.1]
to our setting, we will show:

Theorem 1.4. For every k ≤ 2g/3, Hk(Bg,Z) and Hk(Hg,Z) are isomor-
phic to the k-th stable homology group of the mapping class group of genus
g.

Powell [44] proved that Mod(Sg) is perfect, i.e. has trivial abelianization.
As a consequence of the proof of Theorem 1.4, we have:

Corollary 1.5. Bg and Hg are perfect for every g ≥ 3.

1.1.2. Isomorphic classification. With a few well-understood exceptions, map-
ping class groups of finite-type surfaces are isomorphic if and only if the
underlying surfaces are homeomorphic. To see this, one may compare the
virtual cohomological dimension of the mapping class group [35] with the
maximal rank of a free-abelian subgroup [10]. In the case of the groups Bg
and Hg both these quantities are infinite. However, we will prove:

Theorem 1.6. If 0 ≤ g < h and 2 ≤ h, then there are no surjective
homomorphisms Bh → Bg.

As will become transparent, the same argument will yield that there are
no surjective maps Hh → Hg (resp. Hh → Bg, and Bh → Hg). As a
consequence of Theorem 1.6, Bg ∼= Bh (resp. Hg ∼= Hh) if and only if g = h.
In light of this, an obvious question is:

Question 1.7. Are Bg and Hg isomorphic?

We stress that, although the results from [11] might suggest a positive
answer to the question above, the answer remains unknown for all values
of g. In a more general situation, however, if we replace the binary Cantor
set C by the set of ends of a regular tree of valence higher than 3 then
the corresponding Thompson groups groups V and V [Z2] might be non-
isomorphic; compare with [11].
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1.1.3. Rigidity. A celebrated theorem of Ivanov [38] states that the mapping
class group of a (sufficiently complicated) finite-type surface is rigid: every
automorphism is induced by a surface homeomorphism. This has recently
been extended to the infinite-type setting by Patel-Vlamis [43] and Bavard-
Dowdall-Rafi [5]. Along similar lines, our next result asserts that Bg and
Hg are also rigid. Given a group G and a subgroup H, write Aut(G) for the
automorphism group of G, and denote by NG(H) the normalizer of H in G.
We have:

Theorem 1.8. For every g ≥ 0, Aut(Bg) ∼= NMod(Σg)(Bg) and Aut(Hg) ∼=
NMod(Σg)(Hg).

An immediate consequence of Ivanov’s theorem in the finite-type case is
that the outer automorphism group of Mod(Sg,n) is finite; in fact, it is trivial
for all but finitely many surfaces. However, in Corollary 1.9 we will see that
this is no longer true for the groups Bg and Hg. Denote by Out(G) the outer
automorphism group of a group G, that is, the group of conjugacy classes
of automorphisms of G. We will prove:

Corollary 1.9. For every g ≥ 0, Out(Bg) and Out(Hg) are infinite.

Example 1.10. Let P be the pants decomposition underlying the rigid
structure on Σ1

0, and consider the element t∞ ∈ Mod(Σ1
0) obtained as the

product of all (say left) half-twists about the curves of P . We further em-
bed Σ1

0 in Σg in such way that the pants decomposition P underlying the
rigid structure of Σ1

0 is sent to the pants decomposition underlying the rigid
structure of Σg. We will show later (see Lemma 8.3) that the image of t∞
under the homomorphism induced by the embedding Σ1

0 → Σg produces an
infinite-order element of NMod(Σg)(Bg) lying in the kernel of the homomor-
phism Out(Bg)→ Out(V ).

1.1.4. Homomorphisms from lattices. Building up on work of Ivanov [40] and
Kaimanovich-Masur [41], Farb-Masur [23] proved that any homomorphism
from a higher-rank lattice to a finite-type mapping class group has finite
image (see also [8, 32] for different proofs of this result). Using this result,
we will prove:

Theorem 1.11. Let Γ be a lattice in a semisimple Lie group G of real
rank at least two, where G has no compact factors isogenous to SU(1, n) or
SO(1, n). For every g ≥ 0, any homomorphism from Γ to Bg or Hg has
finite image.

1.1.5. Kazhdan’s Property (T). A compactly generated group has Kazhdan’s
Property (T) if every unitary representation that has almost invariant vec-
tors also has an invariant vector. Since we will not need any further details
about Property (T), we simply refer the reader to the book [7] for details. It
is expected [1] that mapping class groups of finite-type surfaces do not have
Property (T). Using similar arguments to the ones in the proof of Theorem
1.11, we will observe:
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Theorem 1.12. Bg and Hg do not have Kazhdan’s Property (T) for any
g ≥ 0.

1.1.6. Non-linearity. A well-known open question asks whether finite-type
mapping class groups are linear. The only known result in this direction is a
theorem of Bigelow-Budney [9], who proved that the mapping class group of
the closed surface of genus two is linear, by exploiting its relation with braid
groups. In sharp contrast, in Proposition 11.1 we will see that Bg contains
an isomorphic copy of Thompson’s group F , for all g ≥ 0. Combining this
with Theorem 1.2, we have:

Theorem 1.13. Bg is not linear for any g ≥ 0. In particular, Hg is not
linear either.

Plan of the paper. In Section 2 we give some basic definitions and set
the notation used in the rest of the paper. In Section 3 we will define the
groups Bg and Hg. In Section 4 we will explore their relation to Thompson’s
group V , which will be a key ingredient in the proof of many of our main
results. We then proceed to prove the results mentioned in the introduction.
In this direction, Theorem 1.2 will be proved in Section 5, and Theorem 1.3
in Section 6. Section 7. will deal with the proof of Theorem 1.4. In Section
9 we will prove Theorem 1.6, while Section 8 is concerned with the proof of
Theorem 1.8. In Section 10 we will establish Theorems 1.11 and 1.12.

Acknowledgements. We thank Y. Antoĺın, J. Bavard, L. Bowen, J.
Hernández, C. Kapoudjian, T. Koberda, C. Mart́ınez-Pérez, H. Parlier, P.
Patel, J. Souto, and N. Vlamis for conversations. We are indebted to Juan
Souto for suggesting the proof of Lemma 8.4 and to the referee for carefully
reading our paper and his numerous comments and corrections. Parts of
this paper were written while the first author was visiting Yale University,
to which he is grateful for its hospitality.

2. Preliminaries

In this section we recall some of the basic definitions about surfaces and
their mapping class groups.

2.1. Curves and surfaces. Let S be a connected orientable surface, of
finite or infinite topological type. If S has punctures, we will regard them
either as marked points on S or as topological ends of S, and we will feel
free to switch between the two viewpoints without any further mention. We
will denote by Spg,n the compact surface of genus g ≥ 0 with n ≥ 0 boundary
components and p ≥ 0 punctures. Similarly, let Σp

g,n the closed surface of
genus g ≥ 0 with a Cantor set removed, with n ≥ 0 boundary components
and p ≥ 0 isolated punctures. If either n or p is equal to zero we will simply
omit it from the notation.

By a curve on S we mean the isotopy class of a simple closed curve on S
which does not bound a disk, a once-punctured disk, or an annulus whose
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other boundary curve is a boundary component of S. We say that two
curves are disjoint if they have disjoint representatives on S; otherwise we
say that they intersect. Given curves a, b ⊂ S, we define their intersection
number i(a, b) as the minimal number of points of intersection between rep-
resentatives. Note that i(a, b) is always finite, even on a surface of infinite
topological type, as curves are compact.

A multicurve on S is a set of pairwise disjoint curves on S. We say that a
multicurve M is locally finite if any compact subsurface of S intersects only
finitely many elements of M . A pants decomposition of S is a locally-finite
multicurve that is maximal with respect to inclusion; as such, its complement
on S is a disjoint union of 3-holed spheres, or pairs of pants.

Finally, an arc on S is a non-trivial isotopy class of properly embedded
arcs on S.

2.2. Mapping class group. Let S be a connected orientable surface, possi-
bly of infinite type. The mapping class group Mod(S) is the group of isotopy
classes of self-homeomorphisms of S, where homeomorphisms and isotopies
are required to fix the boundary of S pointwise. We record the following
immediate observation for further use:

Lemma 2.1. For g ≥ 0 and n ≥ 1, Mod(Sg,n) < Mod(Σg).

In what follows, we will need to make use of the following further sub-
groups of Mod(S). The pure mapping class group PMod(S) is the subgroup
of Mod(S) whose elements fix every topological end of S. The compactly
supported mapping class group PModc(Σg) is the subgroup of PMod(Σg)
whose elements are the identity outside a compact subsurface of Σg. The
following is an easy observation:

Lemma 2.2. Let g ≥ 0. Consider any family {Si} of compact subsurfaces
of Σg whose union equals Σg, partially ordered with respect to inclusion.
Then PModc(Σg) ∼= lim−→(PMod(Si)).

3. Asymptotic mapping class groups

In this section we define the groups Bg and Hg. We start by introducing
the notion of rigid structure, which appeared originally in [27].

3.1. Rigid structures. As in the introduction, it will be convenient to
start with the genus-zero case. The reader should keep Figure 1 in mind. A
rigid structure on Σ0 is a triple (P,A,Σ+

0 ), where:

• P is a pants decomposition of Σ0, called the pants decomposition
underlying the rigid structure,
• A is a set of pairwise-disjoint arcs on Σ0 such that for every pair

of pants Y of P (that is, the closure of a connected component
of Σ0 − P ), there are exactly three elements of A intersecting Y
essentially, each connecting a different pair of boundary curves of Y ,
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• Σ+
0 is one of the two connected components of Σ0 −

⋃
a∈A a, called

the visible side of Σ0.

Observe that, up to the action of Mod(Σ0), there is only one rigid struc-
ture on Σ0.

It will be useful to extend the definition of rigid structure to the surface
Σp

0 obtained from Σ0 by removing a finite collection of p ≥ 1 points. In this
case, we define a rigid structure on Σp

0 as a rigid structure on the surface
(homeomorphic to Σ0) obtained from Σp

0 by filling every isolated puncture,
subject to the condition that every isolated puncture of Σp

0 is contained in the
same connected component of Σ0 − P , where P is the pants decomposition
underlying the rigid structure of Σ0.

Finally, consider the case of 1 ≤ g <∞. A rigid structure on Σg consists
of a curve c ⊂ Σg that cuts off a disk containing every puncture of Σg,
together with a rigid structure for the planar component of Σg − c, namely
the one homeomorphic to Σ1

0.

3.2. The groups Bg and Hg. We now define the groups Bg and Hg. As
mentioned above, we stress that the case g = 0 was previously introduced
in [27, 29]. Fix, once and for all, a rigid structure on Σg, and write P for
the pants decomposition underlying it. We say that a compact subsurface
Z ⊂ Σg is P -suited if ∂Z ⊂ P , namely each boundary curve of Z is an
element of the pants decomposition P .

Definition 3.1. A homeomorphism f : Σg → Σg is asymptotically rigid if
there exists a P–suited genus-g subsurface Z ⊂ Σg with f(Z) also P–suited,
and such that the restriction homeomorphism f : Σg−Z → Σg−f(Z) sends:

• P ∩ (Σg − Z) to P ∩ (Σg − f(Z)),
• A ∩ (Σg − Z) to A ∩ (Σg − f(Z)),
• The visible side of Σg − Z to the visible side of Σg − f(Z).

If we drop the last requirement we say that f is asymptotically quasi-rigid.

Notation. Given an asymptotically rigid (resp. quasi-rigid) homeomor-
phism f as above, we will refer to the subsurface Z in the definition above
as a defining subsurface for f .

Remark 3.2. Observe that if f : Σg → Σg is asymptotically (quasi-) rigid
and Z is a defining surface for f , then any P -suited surface containing Z is
also a defining surface for f . This observation will be heavily used in the
rest of the paper, without further mention.

We are finally in a position to define the groups we are interested in:

Definition 3.3. Let g, p ≥ 0. We define Bg (resp. Bp0) as the subgroup of
Mod(Σg) (resp. Mod(Σp

0)) consisting of those elements that have at least
one asymptotically rigid representative.

In turn, the group Hg is the subgroup of Mod(Σg) consisting of those
elements that have at least one asymptotically quasi-rigid representative.
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Observe that PModc(Σ) ⊂ Bg, by definition. However, the inclusion is
proper, as a general element of Bg may permute the components of the
complement of every defining subsurface.

Remark 3.4. The group of mapping classes of asymptotically quasi-rigid
homeomorphisms of the disk punctured along a Cantor set coincides with the
braided Thompson group considered by Brin [16] and Dehornoy [21]. The
subgroup BV of mapping classes of asymptotically rigid homeomorphisms
of the disk punctured along a Cantor set can be realized as a subgroup of
B0 (see [27], section 7).

4. The relation with Thompson’s groups

As mentioned in the introduction, the groups Bg and Hg are strongly
related to Thompson’s groups. This is a manifestation of a more general
phenomenon, which we now explain.

Observe that any homeomorphism of Σg induces a homeomorphism of the
space of ends (see, for instance, [15]) of Σg, which by definition is the Cantor
set C. Thus we have a continuous homomorphism

(4) ε : Homeo(Σg)→ Homeo(C),

which is surjective when both homeomorphism groups are endowed with
their respective compact-open topologies.

Now, every Cantor set on the plane is tame, meaning that, up to homeo-
morphism, it is contained in some line; in particular, it is homeomorphic to
the standard triadic Cantor set. A theorem of Scěpin (see e.g. [49, Theo-
rem 1]) states that any homeomorphism of the standard triadic Cantor set
C ⊂ [0, 1] ⊂ R2 extends to a homeomorphism of R2; moreover, this home-
omorphism can be assumed to be the identity outside a large enough ball.
In particular, we have:

Lemma 4.1. The homomorphism ε : Homeo(Σg)→ Homeo(C) is onto.

Moreover, Homeo(C) is a simple group [2], and thus the connected com-
ponent of the identity in Homeo(C) is trivial. Therefore, ε descends to a
continuous surjective homomorphism (using a slight abuse of notation)

(5) ε : Mod(Σg)→ Homeo(C),

where Mod(Σ) has been endowed with the quotient topology coming from
the compact-open topology on Homeo(Σg). Observe that the kernel of this
homeomorphism is exactly the pure mapping class group PMod(Σg), and
thus we have a short exact sequence

(6) 1→ PMod(Σg)→ Mod(Σg)→ Homeo(C)→ 1

We are now going to give the version of the exact sequence (6) when
Mod(Σg) is replaced by Bg or Hg. As we will see, the subgroup which
appears on the right will be (isomorphic to) Thompson’s group V . We start
by giving a definition of this group.



10 JAVIER ARAMAYONA AND LOUIS FUNAR

4.1. Thompson’s group V . Recall that Thompson’s group V is the group
of right-continuous bijections of the unit circle that map the set of dyadic
rationals to itself, are differentiable except at finitely many points, and on
every interval of differentiability they are affine maps whose derivatives are
powers of 2. The group V is well-known to be finitely presented, with respect
to an explicit presentation. We refer the reader to the standard reference [19]
for a thorough discussion on the different Thompson’s groups. Extending
results of [27, 26], we will prove:

Proposition 4.2. For every g ≥ 0, there is a short exact sequence

(7) 1→ PModc(Σg)→ Bg → V → 1.

Remark 4.3. As mentioned in the introduction, Proposition 4.2 is shown
in [27] in the case when g = 0, where it is also shown that it splits over
Thompson’s group T ; compare with Proposition 11.1.

In order to prove Proposition 4.2, it will be useful to work with a different
incarnation of the group V (see [19] also). Namely, V is the group of self-
transformations of the rooted 3-valent tree T whose elements are encoded
by equivalence classes of triples (T, T ′, σ), where T and T ′ are finite rooted
subtrees of T with the same number of leaves, and σ is a bijection between
the set of leaves of T and T ′. Such a triple extends to a transformation of
T , and the equivalence relation responds to the fact that different triples
may extend to the same transformation of T .

Every element of V induces a homeomorphism of the space of ends of T ,
which is homeomorphic to the Cantor set C. Thus V < Homeo(C). Armed
with this alternate description, we adapt the arguments of [27, Section 2] in
order to prove Proposition 4.2

Proof of Proposition 4.2. As mentioned above, the case g = 0 is covered in
[27], so assume that g ≥ 1. Fix a rigid structure on Σg, and let c be the sep-
arating curve used to define it. The dual graph of the pants decomposition
P underlying the rigid structure is naturally isomorphic to T , where the
root corresponds to the unique pair of pants of Σg−P having c as boundary
curve.

We now define a homomorphism Bg → V as follows. Let f ∈ Bg and con-
sider a defining subsurface Z for f . We associate to f the triple (T, T ′, σ) ∈
V , where T (resp. T ′) is the subtree of T contained in Z (resp. f(Z)), and σ
is the bijection between the sets of leaves of T and T ′, respectively, induced
by the permutation between the sets of boundary components of Z and f(Z)
given by f . At this point, one easily checks that this correspondence gives
rise to a well-defined surjective homomorphism Bg → V .

We claim that the kernel of this homomorphism is exactly PModc(Σg).
Indeed, suppose f ∈ Bg maps to the identity in V , and so in particular
fixes every end of Σg. Consider a defining subsurface Z for f . Since f does
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not permute ends we may assume, up to replacing Z by a suitably larger
defining subsurface, that every component of Σg − Z is mapped to itself.
Therefore, after further enlarging Z if necessary, we deduce that f is the
identity outside Z, and hence has compact support, as desired. �

Next, observe that if we replace Mod(Σg) by the asymptotic mapping
class group Bg in equation (6), we obtain:

(8) 1→ PMod(Σg) ∩ Bg → Bg → HomeoBg(C)→ 1,

where HomeoBg(C) denotes the image of Bg in Homeo(C) under the homo-
morphism ε of (5). By the same argument that we used to determine the
kernel of the homomorphism Bg → V , we have:

Lemma 4.4. For every genus g, we have PMod(Σg) ∩ Bg = PModc(Σg).

At this point, the combination of equations (7) and (8) yields:

Corollary 4.5. HomeoBg(C) is isomorphic to Thompson’s group V .

In particular, we have deduced that the restriction of the short exact
sequence (1) to Bg is precisely the sequence (7).

4.2. A related Higman-Thompson group. We now give a brief descrip-
tion of the subgroup V2[Z2] of Homeo(C) that appears when restricting the
exact sequence (1) to Hg. The elements of V2[Z2] are transformations of T
encoded by equivalence classes of tuples (T, T ′, σ, ε), where T, T ′ are sub-

trees, σ : ∂T → ∂T ′ is a bijection and ε ∈ (Z/2Z)∂T
′
. The group V2[Z2] is

an example of the Higman-Thompson groups Vn[G], where n ∈ N and G a
subgroup of the symmetric group on n elements [25, 11]. More concretely,
it is associated to the subgroup G = Z2 of permutations of n elements gen-
erated by the involution exchanging j and n− j, for all j. (We remark that
V = V2[Id] in this context.) Observe that we have an obvious inclusion
V < V2[Z2]. However, by a surprising result of Bleak-Donoven-Jonušas [11]
we have that, in fact, V ∼= V2[Z2], via an explicit element of Homeo(C) (a
cellular automaton).

Finally, we stress that V2[Z2] also appeared in [28] as the group of those
homeomorphisms of a Cantor set embedded in S2 which extend to smooth
diffeomorphisms of the sphere.

Using the same reasoning as in the proof of Proposition 4.2, we have:

Proposition 4.6. For every g ≥ 0, the restriction to the sequence (1) to
Hg yields a short exact sequence

(9) 1→ PModc(Σg)→ Hg → V2[Z2]→ 1.

5. Finite presentability

In this section we prove Theorem 1.2. As mentioned in the introduction,
the case g = 0 was settled in [27], and will be a key ingredient in our proof:

Theorem 5.1 ([27]). The group B0 is finitely presented.
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It will be useful for us to give a brief description of the arguments used
in [27] for proving Theorem 5.1. The first ingredient, which will also play a
central rôle here, is the following well-known result of Brown [17]:

Theorem 5.2 ([17]). Let G be a group acting on a connected and simply-
connected two-dimensional CW-complex X by permuting its cells. Suppose
that:

(1) The stabilizer of each vertex of X is finitely presented;
(2) The stabilizer of every edge of X is finitely generated;
(3) X/G is compact.

Then G is finitely presented.

In [27], Funar-Kapoudjian applied Theorem 5.2 to the action of B0 on
a modification of the so-called pants complex [36] of Σ0. More concretely,
they first consider a graph P0 whose vertices are (isotopy classes of) pants
decompositions of Σ0 which differ from the pants decomposition underlying
the rigid structure in a finite number of curves. An edge of P0 is given by
two pants decompositions that are related by an elementary move, meaning
that they differ in exactly two curves, which intersect exactly once (resp.
twice) if their union fills a one-holed torus (resp. a four-holed sphere); see
[36] for details.

Using the same proof of the main result of Hatcher-Thurston [36], one
deduces that the graph P0 is connected, and that it becomes a simply-
connected 2-complex after gluing a 2-cell to every triangle, square, and pen-
tagon of P0. However, it turns out that the action of B0 on P0 is not co-
compact, as there are infinitely many B0-orbits of squares [27, Proposition
5.4]; in particular, Theorem 5.2 cannot be applied to this situation. In order
to overcome this, Funar-Kapoudjian construct a modification of P0, called
the reduced pants complex, by considering only two combinatorial types of
squares, and show that P0 is still simply connected. They then prove that
B0 acts on P0 satisfying all the hypotheses of Theorem 5.2, as desired.

In fact, a minor variation of the arguments in [27] serves to prove the
following strengthening of Theorem 5.1, which will be crucial for us:

Proposition 5.3. For every b ∈ N∪ {0}, the groups Bb0 and Hb0 are finitely
presented.

Sketch proof. The definition of the reduced pants complex from [27] makes
sense also for Σb

0, with arbitrary b. By the same arguments as in [36], this
complex is connected and simply-connected and, using the same reasoning
as in [27], the groups Bb0 andHb0 each act cocompactly on it. The stabilizer of
every cell is an extension of a finite permutation group by a finitely generated
free-abelian group, and in particular finitely presented. At this point, the
result follows from Theorem 5.2. �

We now turn to the proof of Theorem 1.2, whose statement we now recall:

Theorem 1.2. The groups Bg and Hg are finitely presented for every g ≥ 0.
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In light of Theorem 5.1, it suffices to show the result for g positive. In
order to do so, we will also use Brown’s Theorem 5.2, this time using the
action of Bg (resp. Hg) on the so-called cut-system complex Kg of Σg. We
remark that cut-system complexes of finite-type surfaces were in fact used
by Hatcher-Thurston [36] and Wajnryb [50] in order to compute finite pre-
sentations of mapping class groups.

We now introduce the complex Kg. For concreteness, we choose to write
the definitions for the surface Σg, although they make sense for an arbitrary
connected orientable surface, of finite or infinite type.

A cut system of Σg is a set of g non-separating curves whose union does
not separate Σg. Let Kg be the simplicial graph whose vertices are cut
systems on Σg, and where two cut systems are adjacent in Kg if they differ
in exactly two curves, which intersect exactly once.

Moreover, similar to the case of the pants complex, Kg will become a
simply-connected 2-complex after gluing a 2-cell to certain circuits in Kg.
Before explaining this, we need to borrow some definitions from [36, 50]. A
triangle in Kg consists of three pairwise-adjacent vertices of Kg; geometri-
cally, a triangle corresponds to three curves that pairwise intersect exactly
once. A square in Kg is a closed path with four vertices v1, . . . , v4 such that
vi and vj are adjacent in Kg if and only if |i− j| = 1 mod 4; geometrically,
a square corresponds to two elementary moves that occur in two disjoint
one-holed tori. Finally, a pentagon in Kg consists of five vertices v1, . . . , v5

such that vi and vj are adjacent in Kg if and only if |i− j| = 1 mod 5; geo-
metrically, a pentagon is determined by five curves c1, . . . , c5 on Σg such that
both ci and ci+1 belong to the cut system vi and i(ci, ci+2) = 1, counting
indices modulo 5.

Armed with these definitions, we construct a 2-complex by gluing a 2-
cell to every triangle, square, and pentagon of Kg. By a slight abuse of
notation, we will denote the resulting complex by Kg also. The following
result is essentially due to Hatcher-Thurston [36] and Wajnryb [50]:

Theorem 5.4 ([36, 50]). For every g ≥ 1, the complex Kg is connected and
simply-connected.

Proof. First, Hatcher-Thurston [36] and Wajnryb [50] proved that the cut-
system complex of a finite-type surface is connected and simply-connected.
To see that this is also the case for Kg observe that, for every finite set of
vertices A ⊂ Kg, the union of the curves defining the elements of A together
fill a finite-type subsurface of Σg. �

We are finally in a position to prove Theorem 1.2:

Proof of Theorem 1.2. We prove the result for Bg; the same argument, re-
placing every instance of B by H, will give the result for Hg. As mentioned
earlier, we are going to apply Theorem 5.2 to the action of Bg on Kg.

First of all, Theorem 5.4 tells us thatKg is connected and simply-connected.
Now, the classification theorem for infinite-type surfaces [46] and the fact
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that vertices are defined by a finite set of curves, together imply that Bg
acts transitively on the set of vertices of Kg. Since edges and 2-cells of Kg
are defined in terms of intersection numbers, and by a finite set of curves,
we deduce that Bg acts cocompactly on Kg.

Thus, it remains to justify why the stabiliser of a vertex (resp. edge)
is finitely presented (resp. finitely generated). Consider first the case of
the stabiliser of a vertex u of Kg. Fix an orientation on each curve of u.
Up to passing to a subgroup of finite index, and abusing notation, we may
assume that every element of Stab(u) fixes every curve of u together with
its orientation. Now, cutting Σg open along the elements of u we obtain a

surface homeomorphic to Σ2g
0 , and a short exact sequence

1→ Zg → Stab(u)→ B2g
0 → 1,

where Zg is the group generated by the Dehn twists along the elements of u.
Now, an extension of a finitely presented group by a finitely presented group
is also finitely presented and thus Proposition 5.3 yields that (a finite-index
subgroup of) Stab(u) is finitely presented, as desired.

Observe that the surface obtained from Σg by cutting the surface along

the curves defining an edge of Kg is homeomorphic to Σ2g−1
0 . In light of

this, as above we deduce that (a finite-index subgroup of) the stabiliser of
an edge e ∈ Kg fits in a short exact sequence

1→ Zg−1 → Stab(e)→ B2g−1
0 → 1.

Therefore, the stabiliser of an edge is finitely presented, and in particular
finitely generated. This finishes the proof of Theorem 1.2. �

6. The group of half-twists is dense

The goal of this final section is to prove Theorem 1.3, whose statement
we now recall:

Theorem 1.3. Hg is dense in Mod(Σg).

Remark 6.1. In light of the result of Neretin and the second author [28]
mentioned above, when g = 0 this result may be interpreted as stating that
homeomorphisms of the sphere minus a Cantor set may be approximated
by diffeomorphisms.

As it turns out, Theorem 1.3 will be a consequence of a slightly stronger
result, namely Theorem 6.4 below. Before we state it, we need some prelim-
inaries. Fix, once and for all, a rigid structure on Σg. Recall from section
3 that the rigid structure is given by a separating curve on Σg, which will
be denoted c(∅) for reasons that will become apparent below, plus a rigid
structure on the planar component Σ∗g of Σg − c(∅). Let P be the pants
decomposition underlying the rigid structure on Σ∗g.

Similar to the situation in subsection 4.1, there is an infinite rooted tree
T ′ associated to P , whose vertices are the curves of P , with the root being
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c(∅). As such, every vertex of T ′ is naturally labelled by a word w in the
free semigroup F (L,R) generated by the two letters L (left) and R (right).
We denote by c(w) the curve of P labelled by the word w ∈ F (L,R), and
write h(w) for the half-twist about c(w).

In turn, this labelling induces a labelling of the set of pairs of pants of Σ∗g
by words in F (L,R). Indeed, we set P (w) to be the unique P -suited pair of
pants of Σ∗g that has c(w) as boundary component and is contained in the
planar component of Σg − c(w).

Finally, set S(−∞) to be a fixed compact genus-g subsurface of Σg which
contains c(∅). In addition, for each w ∈ F (L,R), let S(w) be a P -suited
(therefore compact) subsurface whose interior is contained in Σ∗g−c(w), and
which has c(w) as a boundary component. Observe that the choice is far
from unique; however, for any such choice, the set

{S(w) | w ∈ F (L,R) ∪ {−∞}}
is proper, in the sense that every compact subsurface of Σg intersects only
finitely many elements of this set. Because of this, we will refer to any
set {S(w) | w ∈ F (L,R) ∪ {−∞}} as above as a proper exhaustion by
subsurfaces.

After all this discussion, we have the following definition:

Definition 6.2 (Proper sequence of mapping classes). A proper sequence
of mapping classes is a sequence {fn}n∈N ⊂ Mod(Σg), where

fn =
∏

w∈F (L,R)∪{−∞}
|w|≤n

f(S(w))h(w)εw ,

where:

(1) f(S(w)) is an element of PMod(S(w)),
(2) |w| denotes the length of the word w,
(3) εw ∈ {−1, 0, 1} for all w,
(4) The product is ordered lexicographically, and is defined from left to

right.

Observe that if {fn}n∈N ⊂ Mod(Σg) is a proper sequence, then {fn}n∈N ⊂
Hg as well. In addition, since the defining subsurfaces of the fn form a proper
exhaustion of subsurfaces of Σg, we have:

Lemma 6.3. If {fn}n∈N ⊂ Hg is a proper sequence, then it has a limit in
Mod(Σg).

Recall that Mod(Σg) his equipped with the quotient topology coming
from the compact-open topology on Homeo(Σg). We will prove:

Theorem 6.4. Every element of Mod(Σg) is a limit of a proper sequence
in Hg.

Observe that Theorem 6.4 obviously implies Theorem 1.3.
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Proof of Theorem 6.4. Let f ∈ Mod(Σg) be an arbitrary mapping class. We
will use an inductive argument, which we call a straightening of f , to produce
a proper sequence of mapping classes whose limit is f .

Consider c(∅). By the classification of infinite-type surfaces [46], there
exist a P -suited genus-g subsurface S(−∞), and an element f−∞ such that
f−∞f sends c(∅) to itself. We say that f−∞f straightens c(∅).

Next, consider the curves c(L) and c(R). Again, there exists a P -suited
planar subsurface S(∅) and an element f∅ ∈ PMod(S(∅)) such that f∅f−∞f
sends the set {c(L), c(R)} to itself. Therefore, up to precomposing with
the half-twist h(∅) about c(∅) if necessary, we may in fact assume that c(L)
(resp. c(R)) is sent to itself. We say that f∅f−∞f straightens the pair of
pants P (∅).

We continue this process inductively to find, for all n, a proper ex-
haustion by (compact) P -suited subsurfaces S(w) and elements f(S(w)) ∈
PMod(S(w)) such that, setting

fn :=
∏

w∈F (L,R)∪{−∞}
|w|≤n

f(S(w))h(w)εw ,

the mapping class

(fnf)n∈N

straightens every pair of pants P (w) for |w| ≤ n.
By Lemma 6.3, the sequence (fn)n∈N converges to an element f∗ ∈

Mod(Σg), in such way that f∗f fixes c(∅) and every curve of P . More-
over, by composing with an appropriate power of a Dehn twist at each step,
we may assume that f∗f induces the trivial twist on each curve of P . There-
fore, f∗f is an element of PMod(S(−∞)). In other words, we have shown
that, up to precomposing f∅ with the inverse of this element, the sequence
fn converges to f in Mod(Σg), as desired. �

7. Stable homology

In this section, we adapt the methods of [26] to prove Theorem 1.4. First,
observe that for n ≥ 1, gluing a pair of pants to a boundary component of
Sg,n gives rise to an injective homomorphism

PMod(Sg,n)→ PMod(Sg,n+1).

In particular, one has a homomorphism

(10) Hk(PMod(Sg,n),Z)→ Hk(PMod(Sg,n+1),Z)

between the corresponding homology groups, which has a one-sided inverse
coming from the capping homomorphism [23] and is therefore injective. In
[34], Harer proved that the k-th homology group of PMod(Sg,n) does not
depend on n, provided k is sufficiently small with respect to g. The current
best bound for what “sufficiently small” means is due to Boldsen [13] who,
building up on unpublished work of Harer [33], proved the following: :
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Theorem 7.1 ([34, 13]). Let g, n, k ∈ Z, with g ≥ 0 and n, k ≥ 1. Then,
the homomorphism (10) is an isomorphism for every k ≤ 2g/3.

At this point, Lemma 2.2 and Theorem 7.1 together imply that

Hk(PModc(Σg),Z) ∼= Hk(PMod(Sg,n),Z)

for all n ≥ 1, provided k ≤ 2g/3. For this reason, we will refer to the
homology group Hk(Modc(Σg),Z) as the stable k-th homology group of the
mapping class group of genus g.

We are finally in a position to give a proof of Theorem 1.4, whose state-
ment we now recall:

Theorem 1.4. Let g ≥ 1. For every k ≤ 2g/3, Hk(Bg,Z) (resp. Hk(Hg,Z))
is isomorphic to the k-th stable homology group of the mapping class group
of genus g.

Proof. We adapt the proof of [26, Theorem 3.1] to our setting. We treat the
case of Bg only, the other one being a direct translation. It is well-known
that PMod(Sg,n), where n ≥ 1, is torsion free and has a finite dimensional
classifying space, which can be taken to be manifold (see e.g. [14, 31]). Thus
their integral homology is of finite type and by Harer’s Stability Theorem
Hk(PModc(Σg),Z) is finitely generated for every k.

Now, we apply the Lyndon-Hochschild-Serre spectral sequence method to
the short exact sequence (7), which reads

1→ PModc(Σg)→ Bg → V → 1.

In other words, there is a spectral sequence approximating the homology of
Bg whose second page is

E2
pq = Hp(V,Hq(PModc(Σg),Z)).

We now claim that V acts trivially on Hq(PModc(Σg),Z) for all q. Accepting
this claim for the moment, it follows that the only non-zero terms of the
spectral sequence above for the rational homology are those with p = 0,
because V is acyclic (see [48, 18]). In particular, the spectral sequence for
the homology of Bg collapses at the second page, which implies that

Hq(Bg,Z) ∼= Hq(PModc(Σg),Z)

for all q, as desired. Thus it remains to show:

Claim. V acts trivially on Hq(PModc(Σg),Z).

Proof of claim. SinceHk(PModc(Σg),Z) is a finitely generated abelian group,
we get a finite-dimensional representation V → GL(N,Q). As V is sim-
ple, it follows that this representation is either trivial or injective. On the
other hand, every finitely-generated subgroup of GL(N,Q) is residually fi-
nite, while V is not. In particular, the given representation is trivial. �

This finishes the proof of Theorem 1.4. �
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Proof of Corollary 1.5. By the sequence (7), plus the fact that PModc(Σg)
(g ≥ 3) and V are both perfect, we obtain that Bg and Hg are perfect. �

8. Rigidity

The goal of this section is to prove Theorem 1.8. As mentioned above
Aut(G) will denote the automorphism group of the group G.

8.1. Automorphisms of PModc(Σg). The first ingredient in the proof of
Theorem 1.8 is the following:

Proposition 8.1. Suppose g ≥ 0. Then Aut(PModc(Σg)) = Mod(Σg).

Remark 8.2. We note that, prior to this work, this result had been obtained
by Patel-Vlamis [43] for g ≥ 4.

Before explaining a proof of Proposition 8.1, we note the following easy
observation:

Lemma 8.3. PModc(Σg) is a normal subgroup of Mod(Σg) for every g ≥ 0.

Proof. Let g ∈ PModc(Σg) and let Z be a support for g. Consider an ar-
bitrary h ∈ Mod(Σg), noting that any P -suited subsurface W containing
h(Z) is a support for hgh−1. Moreover, hgh−1 induces the trivial permu-
tation on the set of boundary components of W , and therefore hgh−1 ∈
PModc(Σ). �

In order to prove Proposition 8.1, we follow Ivanov’s strategy for proving
that automorphisms of (sufficiently complicated) finite-type mapping class
groups are conjugations. First, we observe:

Lemma 8.4. Every automorphism of PModc(Σg) sends Dehn twists to
Dehn twists.

We stress that, if 4 ≤ g < ∞, then Lemma 8.4 quickly follows from [4,
Corollary 1.5] plus the fact that PModc(Σg) is a direct limit of P -suited
subsurfaces of Σg (Lemma 2.2). We now present a simpler argument, valid
for arbitrary g, which was suggested to us by Juan Souto:

Proof. Let φ ∈ Aut(PModc(Σg)). We take an arbitrary P -suited subsurface
Z ⊂ Σg of genus g; in addition, we will assume that Z has at least seven
boundary components (note that the latter assumption is only relevant if
g < 3). Since Mod(Z) is finitely presented and PModc(Σg) is a direct
limit of pure mapping class groups of P -suited subsurfaces of genus g, by
Lemma 2.2, we deduce that there exists a P -suited subsurface W ⊂ Σg

such that φ(Mod(Z)) < Mod(W ). Let W ∗ be the (compact) subsurface
of W supporting φ(Mod(Z)); in particular, this implies that φ(Mod(Z)) <
Mod(W ∗), and that Mod(W ∗) and φ(Mod(Z)) have the same centralizer in
PModc(Σg).
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Now, observe that, given a compact subsurface Y ⊂ Σg, the rank of the
center of the centralizer of Mod(Y ) in PModc(Σg) is equal to the number of
boundary components of Y . In particular, since Mod(Z) and φ(Mod(Z)) are
isomorphic, the discussion of the previous paragraph implies that W ∗ and
Z have the same number of boundary components. Again, [4] or [20] imply
that they have equal genus, as Z has genus g and φ(Mod(Z)) < Mod(W ∗).
In other words, Z and W ∗ are homeomorphic. We claim:

Claim. The isomorphism φ : Mod(Z) → Mod(W ∗) is induced by a homeo-
morphism Z →W ∗.

Proof of Claim. If Z has genus ≥ 2, then the claim is [20, Theorem 9]. We
now sketch an argument valid for arbitrary genus.

The center CZ of Mod(Z) is the free abelian group generated by the
Dehn twists along the boundary components of Z. Observe that φ induces
an isomorphism

(11) Mod(Z)/CZ → Mod(W ∗)/CW ∗ ,

and that Mod(Z)/CZ is isomorphic to the pure mapping class group of the
surface which results from gluing a punctured disk to every boundary compo-
nent of Z. By the work of numerous authors (see, for instance, [6, Theorem
1.3] for a comprehensive statement), the isomorphism (11) is induced by a
homeomorphism f between the punctured surfaces. To see that f extends
to a homeomorphism Z → W ∗ inducing φ, we use the well-known lantern
relation (see, for instance, [23, Section 5]). Indeed, since we are assuming
that Z has at least seven boundary components, given a boundary compo-
nent a ⊂ ∂Z we may find a collection b1, . . . , b6 of six curves, all of them
essential in Z, such that the Dehn twist along a is expressed as a product
of (suitable powers of) Dehn twists along the bi’s, via the lantern relation.
Thus the claim follows. �

The claim above implies that φ : Mod(Z) → Mod(W ∗) is induced by a
homeomorphism Z → W ∗, and in particular sends Dehn twists to Dehn
twists. The lemma now follows since Z was arbitrary and every curve on
Σg is contained in some P -suited subsurface of genus g. �

Continuing with the arguments towards a proof of Proposition 8.1, we
next claim that every automorphism of PModc(Σg) induces an automor-
phism of the curve complex C(Σg); we refer the reader to the articles [37, 5]
for various features of these complexes in the infinite-type setting.

Indeed, let φ : PModc(Σg) → PModc(Σg) be an automorphism. By
Lemma 8.4, given a curve c ∈ Σg there exists a curve d such that φ(Tc) = Td,
where Ta denotes the (left) Dehn twist about the curve a. Since Ta = Tb if
and only if a = b, we get that the curve d above is in fact unique, and hence
φ induces a well-defined map

φ∗ : C(Σg)→ C(Σg)
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by the rule φ∗(c) = d. Observe that the map φ∗ is simplicial, since two Dehn
twists commute if and only if the defining curves are disjoint. Moreover, it
is bijective, with inverse the simplicial self-map of C(Σg) induced by φ−1.

Now we need the following analogue of Ivanov’s celebrated result [38] on
automorphisms of the curve complex:

Theorem 8.5 ([37, 5]). The automorphism group of C(Σg) is isomorphic
to Mod(Σg).

We are finally in a position to prove Proposition 8.1:

Proof of Proposition 8.1. We wish to show that the natural homomorphism

Λ : Mod(Σg)→ Aut(PModc(Σg))

is an isomorphism. We first prove that Λ is surjective. To this end, let
φ ∈ Aut(PModc(Σg)), and consider the automorphism φ∗ : C(Σg) → C(Σg)
induced by φ. By Theorem 8.5, there exists a unique f ∈ Mod(Σg) with
f(c) = φ∗(c) for all c ∈ C(Σg). Note that ψ := f−1φ is an element of
Aut(PModc(Σg)), and that ψ∗(c) = c for all c ∈ C(Σg).

Using again a direct translation of a classical argument in the finite-type
setting, we will prove that the automorphism ψ is trivial, so that φ is in
fact the conjugation by f . To this end, let h ∈ Mod(Σg), and choose an
arbitrary curve c on Σg. We have:

ψ(hTch
−1) = ψ(Th(c)) = Tψ∗(h(c)) = Th(c).

On the other hand:

ψ(hTch
−1) = ψ(h)ψ(Tc)ψ(h)−1 = ψ(h)Tψ∗(c)ψ(h)−1 = Tψ(h)(c)

Combining both equations, we obtain that h(c) = ψ(h)(c) for every curve c
on Σg. By Theorem 8.5 we deduce that h = ψ(h) for every h ∈ PModc(Σg).
In other words, ψ is the identity on PModc(Σg), as desired. �

8.2. Proof of Theorem 1.8. We now embark in the proof of Theorem 1.8.
The key ingredient is the following unpublished result of Kapoudjian:

Lemma 8.6 (Kapoudjian). Let f ∈ Bg. Then f ∈ PModc(Σg) if and only

if for any finite set {fi} ⊂ Bg there exists h ∈ Bg such that [h, fiff
−1
i ] = 1

and f belongs to the normal closure of h in Bg.

Proof. Let f ∈ Bg. Suppose first that f ∈ PModc(Σg), and let {fi} ⊂ Bg be
an arbitrary finite set. Choose a minimal support Z for f , so that f(Z) = Z
and f is identity outside Z. Observe that fi(Z) is a support for fiff

−1
i .

Then we may take h0 ∈ B such that h0(Z) ∩ fi(Z) = ∅ for all i, and set
h = h0fh

−1
0 , which commutes with fiff

−1
i .

For the opposite direction let Z be a defining surface for f ; recall this
means that f sends Z to f(Z), and is rigid in the complement of Z ∪ f(Z).
Up to enlarging Z if necessary, we may assume that Z has at least five
boundary components. We now choose some finite set {fi} ⊂ Bg as in the
statement, and which furthermore satisfies that the fi all send Z to itself,
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and that the group generated by the fi induces every possible permutation
of the set of boundary components of Z.

Seeking a contradiction, suppose that f /∈ PModc(Σg). Then there exists
a connected component of Σg − Z whose image by f is disjoint from itself.
This implies that every defining surface of any h ∈ Bg as in the statement
must be contained in Z. Furthermore, the permutation of the set of bound-
ary components of Z induced by h must commute with every element of the
conjugacy class of the (nontrivial) permutation induced by f .

Now, we claim that if a permutation σ in the symmetric group on k ≥ 5
elements commutes with every conjugate of a fixed nontrivial permutation
σ0, then σ is the trivial permutation. Indeed, σ commutes then with every
element of the normal subgroup generated by σ0; as k ≥ 5 this normal
subgroup contains the alternating group. Further, σ cannot be even as the
alternating group is center-free. It follows that σ commutes with the even
permutation τσ and hence σ commutes with τ , for any transposition τ .
Then σ is in the center of the symmetric group which is trivial.

In particular, the permutation induced by h is the trivial one, and h ∈
PModc(Σg). Hence f belongs to the normalizer of PModc(Σg) in Bg, con-
tradicting our assumption. �

As an immediate consequence we get:

Corollary 8.7. PModc(Σg) is a characteristic subgroup of Bg.

Remark 8.8. The statement of Lemma 8.3 and the proof are still valid
when we replace Bg by Hg. This implies that PModc(Σg) is characteristic
in Hg also.

In light of Corollary 8.7, every automorphism of Bg (resp. Hg) induces an
automorphism of PModc(Σg), which we have already determined in Propo-
sition 8.1. Now, in order to calculate the automorphism group of Bg and Hg
from this, we will make use of the following small technical result – this is
surely well-known, but we include a proof for completeness.

Lemma 8.9. Let H be a normal subgroup of a group G, and suppose it has
trivial centralizer in G. Suppose ψ : G → G is an injective homomorphism
of G such that ψ|H = idH . Then ψ = idG.

Proof. Since ψ is the identity on H and H is normal in G we have that, for
every f ∈ G and every h ∈ H,

fhf−1 = ψ(fhf−1) = ψ(f)ψ(h)ψ(f−1) = ψ(f)hψ(f−1).

Since h is arbitrary, it follows that ψ(f−1)f belongs to the centralizer of H
in G, and therefore ψ(f) = f , by hypothesis. Since f is also arbitrary, the
result follows. �

The motivation for Lemma 8.9 is the following claim:

Lemma 8.10. The centralizer of PModc(Σg) in Mod(Σg) is trivial.
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Proof. Suppose f ∈ Mod(Σg) commutes with every element of PModc(Σg),
and in particular with every Dehn twist. In particular, we have that

Ta = fTaf
−1 = Tf(a),

for every curve a on Σg. But, as we mentioned in the proof of Proposition
8.1, the Alexander method of [37] implies that every element of Mod(Σg)
that fixes every curve on Σg is the identity. �

We need the following definition before proving Theorem 1.8. Suppose
Z is an orientable surface with non-empty boundary ∂Z, where we assume
that every connected component of ∂Z has been parametrized by means
of a map ϕ : ∂Z → S1, which is a homeomorphism on each component.
A homeomorphism F : Z → Z respects the boundary parametrization if
ϕ ◦ f |∂Z = ϕ. The parametrized mapping class group Mod∗(Z) is the group
of isotopy classes of self-homeomorphisms of Z respecting the boundary
parametrization, modulo isotopies which are the identity on the boundary.
Observe that Mod(Z) < Mod∗(Z) is a finite index normal subgroup and
that, as a by-product of the definition, an element of Mod∗(Z) may induce
a non-trivial permutation on the set of boundary components of Z.

Proof of Theorem 1.8. We prove the result for Bg, as the case of Hg is dealt
with along similar lines. We first show that the natural homomorphism

NMod(Σg)(Bg)→ Aut(Bg)

is surjective. To this end, let φ : Bg → Bg be an automorphism. By Corollary
8.7, φ induces an automorphism

φc : PModc(Σg)→ PModc(Σg),

which is the restriction of φ to PModc(Σg). Proposition 8.1 implies that
there exists Φ ∈ Mod(Σg) such that φc is conjugation by Φ, denoted AdΦ.

From the proof of Lemma 8.4 for any (compact) P -suited subsurface X ⊂
Σg of genus g, there exists a compact subsurface Y = Φ(X) ⊂ Σg such that
the restriction φc|Mod(X) sends Mod(X) isomorphically onto Mod(Y ).

Observe that for any P -suited subsurface X ⊂ Σg the group Mod∗(X)
admits a canonical embedding into Bg, by extending rigidly classes of home-
omorphisms of X to classes of homeomorphisms of Σg. We claim:

Lemma 8.11. For any P -suited subsurface X ⊂ Σg of genus g, the restric-
tion φ|Mod∗(X) sends Mod∗(X) isomorphically onto some copy of Mod∗(Φ(X)).
Moreover, φ|Mod∗(X) is conjugation by Φ.

Proof of the Lemma. As φ|Mod(X) is conjugation by Φ, we have φ(Tc) =
TΦ(c), when c ∈ ∂X is a boundary circle. The stabilizer of the set {Tc | c ∈
∂X} in Bg is the stabilizer of the simplex of C(Σg) determined by elements of
∂X, with respect to the Bg-action. We call it the stabilizer of the multicurve.

Let Y be a compact subsurface of Σg and denote by S∂Y the permutation
group on the set of boundary components of Y . Looking at the induced
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permutation on the set of boundary components, we obtain canonical ho-
momorphisms:

Mod∗(Y )→ S∂Y , Mod∗(Σg \ int(Y ))→ S∂Y ,

where int(Y ) denotes the interior of Y . We denote by Mod∗(Y ) ×S∂Y

Mod∗(Σg \ int(Y )) the fibred product of the two homomorphisms above,
making the following diagram commutative:

Mod∗(Y )×S∂Y
Mod∗(Σg \ int(Y )) → Mod∗(Σg \ int(Y ))
↓ ↓

Mod∗(Y ) → S∂Y

Assume now that Y has genus g. Then the stabilizer of the multicurve ∂Y
in Mod(Σg) is Mod∗(Y )×S∂Y

Mod∗(Σg \ int(Y )).
Further, the stabilizer in Bg of the multicurve ∂X should be sent by φ into

the stabilizer of the multicurve ∂Y , where Y = Φ(X). Since Mod∗(X) sta-
bilizes ∂X we derive that φ(Mod∗(X)) ⊂ Mod∗(Y )×S∂Y

Mod∗(Σg \ int(Y )).
If π1 and π2 denote, respectively, the projections onto the first and second

factors of the fibred product then we derive a map π1 ◦ φ : Mod∗(X) →
Mod∗(Y ), such that π1 ◦ φ|Mod(X) is the conjugation AdΦ by Φ.

We claim that π1 ◦ φ = AdΦ. By composing with Ad−1
Φ this reduces to

show that if a homomorphism ϕ : Mod∗(X)→ Mod∗(X) restricts to identity
on Mod(X) then ϕ is the identity. If h ∈ Mod∗(X) sends a boundary
component a into b, then

Tb = ϕ(Th(a)) = ϕ(hTah
−1) = ϕ(h)Taϕ(h)−1 = Tϕ(h)a

so that ϕ(h)a = b. Thus the homomorphism S∂X → S∂X induced by ϕ
is identity. Then the Five Lemma implies that ϕ is injective and Lemma
8.9 gives us the desired result, as the centralizer of Mod(X) in Mod∗(X) is
trivial, if the complexity of the surface X is large enough.

Further, the image π2◦φ(Mod(X)) is trivial, since φ(Mod(X)) = Mod(Y ).
Therefore π2 ◦ φ factors through the quotient Mod∗(X)/Mod(X), namely
S∂X , and the map S∂X → Mod∗(Σg \ int(Y ))→ S∂Y is the isomorphism in-
duced by the conjugation AdΦ. This implies that there exists a section
S∂Y → Mod∗(Σ \ Y ) which determines an embedding of Mod∗(Y ) into
Mod(Σg) so that φ(Mod∗(X)) is the image of Mod∗(Y ). �

Continuing with the proof, observe that an immediate consequence of
the proof of Theorem 1.2 is that Bg has a system of generators S con-
sisting uniquely of elements belonging to Mod∗(Xi) for finitely many P -
suited subsurfaces Xi ⊂ Σg. Lemma 8.11 shows that the natural map
φMod∗(X) : Mod∗(X)→ Mod(Σg) coincides with AdΦ|Mod∗(X). In particular,
φ(s) = AdΦ(s), for any s ∈ S. Since both φ and AdΦ are homomorphisms,
we derive that φ(s) = AdΦ(s) for any s ∈ Bg. It follows that AdΦ(Bg) ⊆ Bg,
namely Φ ∈ NMod(Σg)(Bg), as claimed.

To see that the homomorphism NMod(Σg) → Aut(Bg) is injective, suppose
that Φ ∈ Mod(Σg) induces the identity automorphism of Bg. Then Φ also
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induces the identity automorphism of PModc(Σg). At this point, Corollary
8.7 tells us that PModc(Σg) is normal in Bg, since it is characteristic. In
addition, PModc(Σg) has trivial centralizer in Mod(Σg), and therefore in
Bg, by Lemma 8.10. Hence, Lemma 8.9 implies that Φ is the identity. �

8.3. A note on normalizers. We now explore some properties of the nor-
malizer of Bg (resp. Hg) in Mod(Σg); as we will see, these represent a certain
departure from the case of finite-type mapping class groups. First, we have:

Lemma 8.12. Let G be a subgroup of Mod(Σg). Assume that G∩PMod(Σg)
is a normal subgroup of Mod(Σg). Then there is a natural surjective homo-
morphism

NMod(Σg)(G)→ NHomeo(C)(G/G ∩ PMod(Σg)).

Proof. As G∩PMod(Σg) is a normal subgroup of G we derive from the exact
sequence (1) that G/G∩PMod(Σg) is a subgroup of Homeo(C). Then there
is a well-defined homomorphism

NMod(Σg)(G)→ NHomeo(C)(G/G ∩ PMod(Σg))

that sends every element H of the normalizer to its restriction to the space
C of ends of Σg. Let now h ∈ NHomeo(C)(G/G ∩ PMod(Σg)). By the exact
sequence (7) h admits a lift H ∈ Mod(Σg). Conjugation by H sends the
subgroup G ∩ PMod(Σg) into itself, because it was assumed to be a nor-
mal subgroup of Mod(Σg). It follows that H ∈ NMod(Σg)(G), so that the
homomorphism in the statement is surjective. �

Remark 8.13. By a deep theorem of Rubin (see [47]), if G/G∩PMod(Σg)
is sufficiently large, in particular if G ⊇ Bg, then there is an isomorphism

Aut(G/G ∩ PMod(Σg)) ' NHomeo(C)(G/G ∩ PMod(Σg)).

A recent result [12] shows that the outer automorphism group Out(V ) of
V is infinite. Combining this with the lemma above, we obtain:

Corollary 8.14. The homomorphisms Out(Bg)→ Out(V ) and Out(Hg)→
Out(V ) are surjective. In particular, Out(Bg) and Out(Hg) are infinite.

Proof. From the exact sequences (7) and (9) the and Corollary 8.7 Bg ∩
PMod(Σg) = Hg ∩ PMod(Σg) = PModc(Σg). Then Lemma 8.3 shows that
the assumptions of Lemma 8.12 are satisfied. In particular we have surjec-
tive homomorphisms NMod(Σg)(Bg) → NHomeo(C)(V ) and NMod(Σg)(Hg) →
NHomeo(C)(V ). By Rubin’s Theorem NHomeo(C)(V ) ' Out(V ). On the other
hand NMod(Σg)(Bg) ⊂ Out(Bg) and NMod(Σg)(Hg) ⊂ Out(Hg). �

We remark that a theorem of Ivanov [38] mentioned above asserts that
Out(Mod(Sg,n)) is always a finite group (in fact, trivial in all but finitely
many cases). Thus Corollary 1.9 represents a limitation in the dictionary
between asymptotic and finite-type mapping class groups.
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Finally, we prove that the first homomorphism of Corollary 1.9 has infinite
kernel:

Lemma 8.15. For every g ≥ 0, the homomorphism Out(Bg)→ Out(V ) has
infinite kernel.

Proof. As usual, we prove the result for Bg only. Consider first the surface
Σ1

0, which recall that is homeomorphic to a sphere minus the union of a
Cantor set and an isolated puncture. Using a totally analogous argument
to that of Lemma 8.12, we deduce that there is a surjective homomorphism

(12) Out(B1
0)→ Out(V )

Recall the construction of the element t∞ from Example 1.1.3. Let P be
the pants decomposition underlying the rigid structure on Σ1

0, and t∞ ∈
Mod(Σ1

0) obtained as the product of all (say left) half-twists about the curves
of P .

We claim that t∞ ∈ NMod(Σ1
0)(B1

0). To see this, observe that if Z is a defin-

ing surface of an element ϕ ∈ Bg, then each connected component of Σ1
0−Z

is preserved by t∞ϕt
−1
∞ ; moreover, this element acts as the identity on every

such component. In particular, t∞ϕt
−1
∞ ∈ B1

0 and thus t∞ ∈ NMod(Σ1
0)(B1

0).

Furthermore, the short exact sequence (7) implies that td∞ 6∈ B1
0 unless

d = 0, since td∞ fixes every end of Σ1
0 but does not have compact support

unless d = 0. Hence it provides an example of an infinite order element in
Out(B1

0). On the other hand, its image under the homomorphism (12) is
obviously trivial, and thus this homomorphism has infinite kernel.

After all this discussion, we treat the case of Σg. To do so, we simply
embed Σ1

0 in Σg in such way that the pants decomposition P underlying
the rigid structure of Σ1

0 is sent to the pants decomposition underlying the
rigid structure of Σg. Using the same arguments as above, we deduce that
the image of t∞ under the homomorphism induced by the embedding Σ1

0 →
Σg produces an infinite-order element in the kernel of the homomorphism
Out(Bg)→ Out(V ). �

9. Surjections between asymptotic mapping class groups

In this section we will prove Theorem 1.6.

Proof of Theorem 1.6. Let 0 ≤ g < h and h ≥ 2. Seeking a contradiction,
suppose there were a surjective homomorphism φ : Bh → Bg.

For any f ∈ PModc(Σh) there exists, by Lemma 2.2, some P -suited
subsurface Sh,n ⊂ Σh such that f is in the image of PMod(Sh,n) within
PModc(Σh). Let a ∈ φ(PModc(Σh)), so that a = φ(f), for some f ∈
PMod(Sh,n). For any finite set {ai} ⊂ Bg we can write ai = φ(fi), with
fi ∈ Bh. According to Lemma 8.6, there exists f ′ ∈ Bh such that f belongs
to the normal subgroup of Bh generated by f ′ and such that [f ′, fiff

−1
i ] = 1.
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This implies that a belongs to the normal subgroup of Bg generated by

b = φ(f ′) and [b, aiaa
−1
i ] = 1. Lemma 8.6 again implies that a ∈ PModc(Σg).

Restricting φ we obtain a homomorphism PMod(Sh,n) → PModc(Σg).
Since PMod(Sh,n) is finitely presented and PModc(Σg) is a direct limit of
finitely presented groups, by Lemma 2.2, we deduce that there is m ∈ N
and a nontrivial map PMod(Sh,n)→ PMod(Sg,m). But every such map has
either a quotient of Z/10Z as image, when h = 2, or trivial image, when
h ≥ 3, by [4, Prop. 7.1] or [20, Thm.7].

Let now h ≥ 3. By the above φ(f) = 1, for any f ∈ PMod(Σh), and
therefore φ factors through V . Let φ′ : V → Bg be the induced surjective
homomorphism. If we compose the projection p : Bg → V with φ′ we obtain
then a surjective homomorphism V → V with nontrivial kernel. Since V
is simple such a homomorphism should be trivial. This contradicts the
surjectivity.

Assume that h = 2. The nested groups φ(PMod(S2,n)) are quotients
of Z/10Z for every n, in particular the sequence is eventually constant and
φ(PModc(Σ2)) is a quotient of Z/10Z. Therefore φ factors through the group
Q = B2/[PModc(Σ2),PModc(Σ2)], yielding a surjective homomorphism φ′ :
Q→ Bg. Observe that the restriction of the sequence (1) to Q reads

1→ Z/10Z = H1(PModc(Σ2))→ Q→ V → 1.

Now, the normal subgroup K = φ′−1(PModc(Σg))CQ is infinite because
it is the inverse image of an infinite subgroup by a surjective homomorphism.
Therefore K cannot be contained in the kernel of the projection homomor-
phism p : Q→ V , which is finite. Since p(K) is a normal subgroup of V and
V is simple, p(K) = V . As ker p is finite, we derive that Q/K must be finite.
On the other hand, K has infinite index in Q, because it is the preimage of
the normal subgroup PModc(Σg) of Bg by the surjective homomorphism φ′.
Hence we get the desired contradiction. �

Remark 9.1. The same reasoning as above along with Remark 8.8 implies
that there are no surjective homomorphisms Hh → Hg (resp. Hh → Bg and
Bh → Hg) if g < h.

10. Homomorphisms from lattices and Property (T)

We start this section by proving Theorem 1.12, which is a direct conse-
quence of the existence of the short exact sequence (7).

Before we prove the result, recall that a discrete group G is said to have
Kazhdan’s Property (T) if every action of G by continuous affine isometries
on a real Hilbert space has a fixed point. On the other hand, G has the
Haagerup property if it admits a proper action by continuous affine isometries
on a Hilbert space. It follows that if G has both properties, then G is
finite. We refer the reader to the book [7] for a thorough exposition of these
properties. We may now prove Theorem 1.12, whose statement we now
recall:
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Theorem 1.12. Let g ≥ 0. Then Bg and Hg do not have Property (T).

Proof of Theorem 1.12. Recall from equation (7) that there is a surjective
homomorphism Bg → V . It is known (see, for instance, [7, Theorem 1.7.1])
that Property (T) is preserved under quotients. On the other hand, a result
of Farley [24] asserts that V has the Haagerup property. Since V is infinite,
it follows that V does not have Property (T), and thus neither does Bg. The
same argument yields the result for Hg. �

We now proceed to give a proof of Theorem 1.11. The proof is again
based on properties of the group V , plus a result of Farb-Masur [23] which
asserts that every homomorphic image of a lattice in a finite-type mapping
class group is finite. More concretely, they proved:

Theorem 10.1 ([23]). Let Γ be an irreducible lattice in a semisimple Lie
group of real rank at least two. For every g, n ≥ 0, every homomorphism
Γ→ Mod(Sg,n) has finite image.

Before giving a proof of Theorem 1.11, we remind the reader of its state-
ment:

Theorem 1.11. Let Γ be a lattice in a semisimple Lie group G of real
rank at least two, where G has no compact factors isogenous to SU(1, n) or
SO(1, n). Then, any homomorphism from Γ to Bg (resp. Hg) has finite
image.

Proof. Let G be a Lie group as in the statement. As such, G has Property
(T) (see [51, Theorem 13.2.4], for instance), and therefore so does Γ (see [7,
Theorem 1.7.1]). For such a lattice Γ, let φ : Γ → Bg be a homomorphism.
Recall again the short exact sequence (7):

1→ PModc(Σg)→ Bg
p→ V → 1.

As in the proof of Theorem 1.12, the fact that V has the Haagerup property
implies that (p ◦ φ)(Γ) is finite. But φ(Γ) ∩ ker(p) is also finite. To see
this, observe that since Γ is finitely presented (see [51, Theorem 4.7.10]),
Lemma 2.2 implies that there exists a finite-type subsurface S of Σg such
that φ(Γ) ∩ ker(p) is contained in PMod(S). At this point, Theorem 10.1
tells us that φ(Γ) ∩ ker(p) is also finite, as desired.

We obtain the result for Hg in an analogous way. �

11. Non-linearity

In this section we will prove Theorem 1.13. As mentioned in the intro-
duction, we will do so by showing that Bg contains a copy of Thompson’s
group F . Recall that F is the group of piecewise-linear self-homeomorphisms
of [0, 1] that preserve rational dyadic numbers, are differentiable except at
finitely many dyadic rationals, and at each interval of differentiability the
slopes are powers of 2.



28 JAVIER ARAMAYONA AND LOUIS FUNAR

A strongly related group which we will also need is Thompson’s group T ,
whose definition is the same as that of F but with the unit circle S1 instead
of [0, 1]. One has the well-known inclusions F ⊂ T ⊂ V ; for a proof, as well
as a detailed discussion on Thompson’s groups, see [19]. We now prove:

Proposition 11.1. Let g ≥ 0. The short exact sequence (7), that is

1→ PModc(Σg)→ Bg → V → 1,

splits over Thompson’s group F .

Proof. The result is known for g = 0 (see [42, 26]), where in addition it is
shown that the sequence (7) splits over Thompson group’s T , identified with
the subgroup of B0 preserving the whole visible side of Σ0.

Consider now a closed disk Σ0,1 with a Cantor set removed from its
interior. The surface Σ0,1 comes equipped with an obvious rigid struc-
ture that comes from that of Σ0 under the natural subsurface embedding
Σ0,1 ↪→ Σ0. The group of asymptotically rigid mapping classes of Σ0,1 is the
pure braided Thompson group BV , a subgroup of the braided Thompson
group considered by Brin [16] and Dehornoy ([21]). When g > 0 the map
Mod(Σ0,1) → Mod(Σg) is injective. As a consequence BV injects into Bg.
On the other hand it is known that BV splits over F (see [16, 27]). �

Finally, we prove Theorem 1.13:

Proof of Theorem 1.13. By Proposition 11.1, Bg contains an isomorphic copy
of Thompson’s group F . Now, F has simple commutator subgroup [19], and
in particular is not residually finite. Since finitely-generated subgroups of
linear groups are residually finite and F is finitely generated, we deduce that
Bg (and thus Hg) is not linear. �
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