The pentagon equation and mapping class group representations

Rinat Kashaev University of Geneva

"Geometry, Topology and Group Theory" in honor of the 80th birthday of Valentin Poenaru

Autrans, July 1-6, 2012

Motivation: the Yang-Baxter Equation and braid group representations

Definition

An R-matrix is a solution of the Yang-Baxter Equation

$$R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$$

$$R \in \operatorname{End}(V^{\otimes 2}), \quad R_{12} := R \otimes \operatorname{id}_V, \quad R_{23} := \operatorname{id}_V \otimes R$$

Theorem (Jones, Turaev)

Let $R \in \operatorname{Aut}(V^{\otimes 2})$ be an invertible R-matrix. Then, for any $n \in \mathbb{Z}_{>0}$, there exists a canonical representation of the braid group $\rho_n \colon B_n \to \operatorname{Aut}(V^{\otimes n})$ such that $\sigma_1 \mapsto R \otimes \operatorname{id}_{V^{\otimes (n-2)}}$.

Question: how about mapping class groups?

The Pentagon Equation

Definition

A T-matrix is a solution of the Pentagon Equation

$$T_{12}T_{13}T_{23} = T_{23}T_{12}, \quad T \in \text{End}(V^{\otimes 2})$$

Example

Let B be a bialgebra with product $m \colon B^{\otimes 2} \to B$ and coproduct $\Delta \colon B \to B^{\otimes 2}$. Then

$$T^{(B)} := (\mathrm{id}_B \otimes m)(\Delta \otimes \mathrm{id}_B) \in \mathrm{End}(B^{\otimes 2})$$

is a T-matrix.

Theorem (Militaru)

Let $T \in \operatorname{Aut}(V^{\otimes 2})$ be a T-matrix with $\dim(V) < \infty$. Then, there exists a unique finite-dimensional Hopf algebra H such that T is essentially $T^{(H)}$.

Need for extra properties

Definition

A T-matrix $T \in \operatorname{End}(V^{\otimes 2})$ is semisymmetric if there exists a symmetry $A \in \operatorname{Aut}(V)$ and a projective factor $\zeta \in \mathbb{C}_{\neq 0}$ such that $A^3 = \operatorname{id}_V$ and $T(A \otimes \operatorname{id}_V)ST = \zeta A \otimes A$, where $S \in \operatorname{Aut}(V^{\otimes 2})$, $X \otimes Y \mapsto Y \otimes X$.

Remark

No finite-dimensional T-matrix can be semisymmetric.

Theorem

Let $T \in \operatorname{Aut}(V^{\otimes 2})$ be a semisymmetric T-matrix. Then, for any hyperbolic surface $S_{g,s}$ of genus g and s punctures, there exists a canonical projective representation of the mapping class group $\rho_{g,s} \colon \Gamma_{g,s} \to \operatorname{Aut}(V^{\otimes n_{g,s}}), \ n_{g,s} := 4g-4+2s, \ \text{such that the image of the Dehn twist along any non-separating simple closed curve is conjugated to <math>T \otimes \operatorname{id}_{V^{\otimes n_{g,s}-2}}$.

Example from Quantum Teichmüller theory

Let p and q be the (normalized) Heisenberg operators

$$pf(x) := \frac{1}{2\pi i}f'(x), \quad qf(x) := xf(x)$$

For $\hbar \in \mathbb{R}_{>0}$, Faddeev's quantum dilogarithm function is defined by

$$\Phi_{\hbar}(x) = (\bar{\Phi}_{\hbar}(x))^{-1} = \exp\left(\int_{\mathbb{R}+i\epsilon} \frac{e^{-i2xz}}{4\sinh(zb)\sinh(zb^{-1})z} dz\right)$$

where $\hbar = 4(b+b^{-1})^{-2}$. Choosing $V = L^2(\mathbb{R})$ ($V^{\otimes n} := L^2(\mathbb{R}^n)$),

$$T=e^{i2\pi p_1q_2}ar\Phi_\hbar(q_1+p_2-q_2)\in\operatorname{\mathsf{Aut}}(V^{\otimes 2})$$

is a unitary semisymmetric *T*-matrix with

$$A = e^{i\pi(\alpha^2 - 1)/3}e^{i3\pi q^2}e^{i\pi(p+q)^2}e^{i2\pi\alpha p}, \quad \zeta = e^{-i\pi(\hbar^{-1} + \alpha^2)/3}, \quad \alpha \in \mathbb{R}$$

Set-theoretical solutions

Definition

Let X be a set.

- A map $t: X^2 \to X^2$ is a set-theoretical T-matrix if $t_{23} \circ t_{13} \circ t_{12} = t_{12} \circ t_{23}$
- A set-theoretical T-matrix is *semisymmetric* if there exists a *symmetry* $a: X \to X$, such that $a^3 = \operatorname{id}_X$ and and $t \circ s \circ (a \times \operatorname{id}_X) \circ t = a \times a$, where $s: X^2 \ni (x, y) \mapsto (y, x) \in X^2$.

If $t: X^2 \ni (x, y) \mapsto (xy, x * y) \in X^2$ is a set-theoretical T-matrix, then

- $(x, y) \mapsto xy$ is associative.
- t is semisymmetric with symmetry $a: X \to X$ iff $x * y = a^{-1}(a(y)a^{-1}(x)), (x * y)a(xy) = a(x),$ and x * (yz) = (x * y)((xy) * z).

Set-theoretical solutions from groups with addition

Definition

A group G is called *group with addition* if it has a commutative and associative binary operation $(x, y) \mapsto x + y$ with respect to which the group product is distributive.

Examples

- $\bullet \ \mathbb{Q}_{>0} \text{ or } \mathbb{R}_{>0}$
- \mathbb{Z} , \mathbb{Q} or \mathbb{R} with tropical addition $\max(x, y)$

$$\bullet \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \middle| x, z \in \mathbb{R}_{>0}, y \in \mathbb{R} \right\}$$

Theorem

Let G be a group with addition, $c \in G$ a central element, and $X = G^2$. Then, there exists a semisymmetric set-theoretical T-matrix $t: X^2 \ni (x,y) \mapsto (x \cdot y, x * y) \in X^2$ with symmetry $a: X \ni (x_1, x_2) \mapsto (cx_1^{-1}x_2, x_1^{-1}) \in X$ and $x \cdot y = (x_1y_1, x_1y_2 + x_2)$.