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Abstract. We show that every automorphism of the congruence completion of the ex-
tended mapping class group which preserves the set of conjugacy classes of procyclic
groups generated by Dehn twists is inner and that its automorphism group is naturally
isomorphic to the automorphism group of the procongruence pants complex. In the genus
0 case, we prove the stronger result that all automorphisms of the profinite completion of
the extended mapping class group are inner.
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1. Introduction

Let S = Sg,n be a orientable surface of genus g(S) = g with n(S) = n punctures.
We will assume that S has negative Euler characteristic: χ(S) = 2 − 2g − n < 0. Let
then Γ±(S) be the extended mapping class group of S, namely the group of isotopy classes
of diffeomorphisms of S and Γ(S) be the mapping class group of S, i.e. the subgroup of
Γ±(S) consisting of the mapping classes which preserve the orientation of S. We denote,
respectively, by PΓ(S) and PΓ±(S) the pure mapping class group and the pure extended
mapping class group, namely the subgroups of Γ(S) and Γ±(S) consisting of those mapping
classes which fix pointwise the punctures. We also let d(S) = 3g − 3 + n be the modular
dimension of S, that is to say the dimension of the moduli stackM(S) of smooth curves
whose complex models are diffeomorphic to S.
Ivanov (cf. [13] and [14]) proved that all automorphisms of the extended mapping class

group Γ±(S) are inner for g(S) ≥ 3 and for g(S) ≥ 2, n(S) ≥ 1. McCarthy (cf. [18]) showed
that this is still true, for g(S) = 2 and n(S) = 0, if we restrict to those automorphisms
which preserve the set of conjugacy classes of Dehn twists. Korkmaz (cf. [15]) extended
Ivanov’s result to the case g(S) = 1, n(S) ≥ 3 and g(S) = 0, n(S) ≥ 5. The case g(S) = 1,
n(S) = 2 was settled by Luo in [17], where he also gave a new proof for all genera.
The proof of all the above results is based on the study of the complex of curves C(S).

This is the abstract simplicial complex of dimension d(S)−1 whose simplices are the sets of
isotopy classes of essential simple closed curves on S which admit disjoint representatives
(such sets are called multicurves). There is a natural action of the extended mapping class
Γ±(S) on C(S) and the above results are obtained showing that all automorphisms of C(S)
are induced by this action. In fact, this action corresponds to the inner action of Γ±(S) on
the set of Dehn twists, which are parametrized by the vertices of C(S), and, if we denote
by AutI(Γ±(S)) the group of automorphisms of Γ±(S) which preserve the set of conjugacy
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classes of Dehn twists, there is a series of inclusion:

Inn(Γ±(S)) ⊆ AutI(Γ±(S)) ↪→ Aut(C(S)),

which are showed to be all isomorphisms for d(S) > 1 (with the only exception of the
case g(S) = 1 and n(S) = 2). The identity Inn(Γ±(S)) = Aut(Γ±(S)) then follows from
the fact that all automorphisms of Γ±(S), for d(S) > 1, with few low genus exceptions,
preserve the set of conjugacy classes of Dehn twists.

In [19], Margalit determined the automorphism group of a related complex, the so called
pants graph CP (S). This is defined as follows. The vertices of CP (S) are pants decomposi-
tions (i.e. maximal multicurves) of S and correspond to facets (simplices of highest dimen-
sion d(S)−1) of C(S). Two vertices α = (α0, α1, . . . , αd(S)−1) and α

′ = (α′
0, α

′
1, . . . , α

′
d(S)−1)

are connected by an edge if they differ by an elementary move, that is to say: the multi-
curves α and α′ have d(S)− 1 elements in common, so that, up to relabelling, αi = α′

i, for
i = 1, . . . , d(S)− 1, and the surface S ′ obtained cutting S along the curves αi, for i > 0, is
a surface of modular dimension 1, i.e. S ′ = S1,1 or S ′ = S0,4. Then, α0 and α′

0, which are
supported on S ′, should intersect in a minimal way, i.e. they have geometric intersection
number 1, in the first case, and 2, in the second case.

Margalit’s results (cf. Theorem 1 and 2 in [19]) then imply that, for d(S) > 1, the natural
action of Γ±(S) on CP (S) induces a series of isomorphisms:

(1) Inn(Γ±(S)) ∼= AutI(Γ±(S)) ∼= Aut(CP (S)).

In the paper [6], we proved a partial analogue of the above series of isomorphisms in the
setting of procongruence mapping class groups which we now proceed to define.

The profinite mapping class groups Γ̂±(S), Γ̂(S), PΓ̂±(S) and PΓ̂(S) are defined to be the
profinite completions of Γ±(S), Γ(S), PΓ±(S) and PΓ(S), respectively. The procongruence

mapping class groups Γ̌±(S), Γ̌(S), PΓ̌±(S) and PΓ̌(S) are the images of Γ̂±(S), Γ̂(S),

PΓ̂±(S) and PΓ̂(S), respectively, in the profinite group Out(π̂1(S)), where, for an abstract

group G, we denote by Ĝ its profinite completion. By a classical result of Grossman, the
natural homomorphism from each of the above mapping class group to either its profinite or
procongruence completion is injective and we then identify the abstract groups with their
images in the corresponding profinite groups. By the results of [3] and [5], the profinite
and procongruence completion of mapping class groups coincide if g(S) ≤ 2. For g(S) ≥ 3,
this is an open problem. We will then rather stick with the procongruence completion,
since, in contrast with the profinite completion, some basic combinatorial properties are
known, thanks to the results contained in [4] and [5].

In analogy with the topological case, for the study of the automorphism group of pro-
congruence mapping class groups, it is useful to introduce the procongruence curve complex
Č(S). This is an abstract simplicial profinite complex (cf. Definition 3.2 in [4]) of dimension
d(S) − 1, naturally associated to the congruence completion of the mapping class group
and endowed with a natural continuous action of Γ̌(S). Roughly speaking (for the precise
definition we refer the reader to Section 4 of [4] or Section 4.6 in [6]), Č(S) is obtained as
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the inverse limit of the quotients of C(S) by the action of congruence levels of Γ(S), that
is to say finite index subgroups of Γ(S) which are open for the congruence topology.
The set of profinite Dehn twists of PΓ̌(S) is defined to be the closure, inside this group,

of the set of Dehn twists of PΓ(S) ⊂ PΓ̌(S). The key property of Č(S) is then that its set

of k-simplices parameterizes the profinite set {Îσ|σ ∈ Č(S)k} of closed abelian subgroups
of PΓ̌(S) of rank k + 1, topologically generated by the profinite Dehn twists of PΓ̌(S) (cf.

Theorem 6.9 in [4]). Here, for σ ∈ Č(S), we let Îσ be the closed abelian subgroup of PΓ̌(S)
topologically generated by the profinite Dehn twists parameterized by the vertices of σ.

The natural action of Γ̌±(S) on Č(S) then corresponds to the conjugacy action of Γ̌±(S)
on the set of abelian groups parameterized by Č(S) and, if we denote by AutI(Γ̌±(S)) (resp.
AutI(PΓ̌(S))) the group of those automorphisms of Γ̌±(S) (resp. PΓ̌(S)) which preserve
the set of conjugacy classes of the procyclic subgroups generated by profinite Dehn twists,
we get a series of natural monomorphism:

Inn(Γ̌±(S)) ⊆ AutI(Γ̌±(S)) ↪→ AutI(PΓ̌(S)) ↪→ Aut(Č(S)).

Unlike in the topological case, however, this is not going to be a series of isomorphisms. A
procongruence analogue of the pants graph CP (S) turns out to be more useful here.

The procongruence pants complex ČP (S) is the profinite graph which is, roughly speaking
(cf. Section 6.2 in [6] for the precise definition), the inverse limit of the quotients of CP (S)
by the action of congruence levels of Γ(S). It is also endowed, by definition, with a natural
continuous action of Γ̌±(S). The profinite set of vertices of ČP (S) identifies with the

profinite set of facets of Č(S) and so it parameterizes the profinite set {Îσ|σ ∈ Č(S)d(S)−1}
of maximal abelian subgroups of PΓ̌(S) topologically generated by profinite Dehn twists.
The natural continuous action of Γ̌±(S) on ČP (S) is then induced by the conjugacy action
of Γ̌±(S) on this profinite set.
The main result of the paper is an analogue of the series of isomorphisms (1):

Theorem 1.1. For a connected hyperbolic surface S such that d(S) > 1, there is a series
of natural isomorphisms:

Inn(Γ̌±(S)) = AutI(Γ̌±(S)) ∼= AutI(PΓ̌±(S)) ∼= Aut(ČP (S)).

Remark 1.2. The condition on automorphisms in Theorem 1.1 is slightly more restrictive
than the one considered in [6], where we denoted by Aut∗(Γ̌(S)) the subgroup of Aut(Γ̌(S))
consisting of those automorphisms which preserve the conjugacy classes of decomposition
subgroups of Γ̌(S) (cf. Definition 7.1 in [6]). It is not difficult to see that there is an
inclusion AutI(Γ̌(S)) ⊆ Aut∗(Γ̌(S)) which for d(S) > 1 and Z(Γ̌(S)) = {1} is indeed an
equality but otherwise is strict.

In [6], we defined the arithmetic procongruence mapping class group Γ̌Q(S) to be the
image of the étale fundamental group of the moduli stackM(S)Q :=M(S)× Spec(Q) by
the monodromy representation associated to the universal curve over M(S)Q. We then
proved that, for d(S) > 1, there holds (cf. Theorem 9.16 in [6]):

Inn(Γ̌Q(S)) = AutI(Γ̌Q(S)).
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The identity Inn(Γ̌±(S)) = AutI(Γ̌±(S)) in Theorem 1.1 is the real analogue of this result.
The extended procongruence mapping class group Γ̌±(S) can indeed be defined to be the
image of the étale fundamental group of the moduli stackM(S)R :=M(S)× Spec(R) by
the monodromy representation associated to the universal curve overM(S)R.
Theorem 1.1 is more striking than Theorem 9.16 in [6], since Γ̌±(S) contains Γ̌(S) as

a normal index 2 subgroup, rather than as a normal subgroup of infinite index, and we
know that AutI(Γ̌(S)) is quite far from consisting only of inner automorphisms. In fact,
the outer automorphism group OutI(Γ̌(S)) contains a copy of the absolute Galois group of
the rationals GQ (cf. Corollary 7.6 in [4]).
The analogy between Theorem 1.1 and Margalit’s series of isomorphisms (1) falls short

only in that, in contrast with the topological case, we do not know whether, for d(S) > 1
and Z(Γ̌(S)) = {1}, there holds AutI(Γ̌±(S)) = Aut(Γ̌±(S)). However, thanks to a recent
result by Hoshi, Minamide and Mochizuki (cf. [11]), we are able to fill this gap in genus 0.
Since, in this case, we also know that the congruence subgroup property holds, we get:

Theorem 1.3. For g(S) = 0 and n(S) ≥ 5, there holds:

Inn(Γ̂±(S)) = Aut(Γ̂±(S)) = Aut(PΓ̂±(S)).

This result provides, to our knowledge, the first example of a finitely generated, infinite,
residually finite, complete group whose profinite completion is also complete.

Theorem 1.3 can also be rephrased as a real anabelian property for the moduli spaces
M0,n of n-pointed, genus zero curves. Let (M0,n)R := M0,n × SpecR, let πet

1 ((M0,n)R)
be its étale fundamental group for some choice of geometric base point and let Σn be the
symmetric group on n letters. We then have:

Corollary 1.4. For n ≥ 5, there is a natural isomorphism:

Aut((M0,n)R) ∼= Out(πet
1 ((M0,n)R)) ∼= Σn.

Another interesting application of Theorem 1.1 is the following. Since Inn(Γ̌±(S)) iden-
tifies with a subgroup of AutI(Γ̌(S)) and GQ embeds in OutI(Γ̌(S)), we have (cf. (ii) of
Proposition 4 in [16], for the genus 0 case):

Corollary 1.5. For a connected hyperbolic surface S such that d(S) > 1, the subgroup
Inn(Γ̌±(S)) is its own normalizer in AutI(Γ̌(S)). In particular, the image of an element of
GQ corresponding to complex conjugation is self-centralizing in OutI(Γ̌(S)).

A few words about the proof of Theorem 1.1. The isomorphism Inn(Γ̌±(S)) ∼= Aut(ČP (S))
is a refinement of Theorem 8.1 in [6]. Here, we are able to show that there is indeed a coher-
ent and symmetric way to define an orientation on the procongruence pants complex ČP (S)
(cf. Section 2.2). The proof of the identity Inn(Γ̌±(S)) = AutI(PΓ̌±(S)) is then based on a
further improvement of this isomorphism. An element f of AutI(PΓ̌(S)) acts on the vertex

set of ČP (S), since this is naturally identified with the profinite set {Îσ|σ ∈ Č(S)d(S)−1}.
Theorem 2.15 then states that f is induced by an inner automorphism of Γ̌±(S) as soon
as this action sends the vertex set of an edge of ČP (S) to the vertex set of another edge.
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In order to prove the identity Inn(Γ̌±(S)) = AutI(PΓ̌±(S)), we then have to show that the
elements of AutI(PΓ̌±(S)) ⊂ AutI(PΓ̌(S)) have this property. By an induction argument,
it is actually enough to show that this is true for g(S) = 0.
This is accomplished by considering the action of antiholomorphic involutions of PΓ̌±(S)

on the procongruence curve complex Č(S). By Lemma 4.2, for g(S) = 0, there is only one
Γ̌±(S)-conjugacy class of antiholomorphic involutions in PΓ̌(S). We can then assume that
a given automorphism of PΓ̌±(S) fixes this involution and then preserves its fixed point
locus in Č(S). By Lemma 4.3 and Proposition 3.6, this locus is finite and consists of isotopy
classes of simple closed curves on S which have between them geometric intersection either
0 or 2. Since pairs of curves with geometric intersection 2 correspond to edges of the pants
complex, we can apply Theorem 2.15 and conclude that the given automorphism is induced
by an inner automorphism of Γ̌±(S).

Acknowledgements. We thank Javier Aramayona and Dan Margalit for some useful
comments on a preliminary version of this manuscript which helped us to spot an error in
the proof and improve the main result of the paper.

2. Two preliminary results

2.1. Augmented Teichmüller spaces and procongruence moduli stacks of curves.
Let T (S) be the Teichmüller space associated to the surface S and T (S) be the augmented
Teichmüller space (in [6], we called it the Bers bordification of T (S)). The latter can be
defined as the completion of the Teichmüller space T (S) with respect to the Weil-Petersson
metric (cf. Theorem 4 in [26]). The augmented Teichmüller space T (S) is a partial Γ±(S)-
equivariant compactification of T (S) such that the quotient T (S)/Γ(S) is isomorphic to
the coarse moduli space M(S) of the the DM compactificationM(S) ofM(S).

For S a disconnected hyperbolic surface, let T (S) (resp. T (S)) be the direct product of
the Teichmüller spaces (resp. augmented Teichmüller spaces) associated to the connected
components of the surface S. The closed strata of codimension k + 1 in T (S) of the
boundary ∂T (S) := T (S)∖T (S) are then parameterized by the k-simplices of C(S), and,
for σ ∈ C(S)k, there is a natural isomorphism ∂T (S)σ ∼= T (S ∖ σ), where we denote by
∂T (S)σ the closed stratum associated to σ.

Let us denote by F̃(S) the 1-dimensional stratum of the boundary ∂T (S). Then, each

irreducible component of F̃(S) is isomorphic to the cuspidal bordification H = H ∪ P1(Q)
of the hyperbolic plane H and CP (S) identifies with the 1-skeleton of a Γ(S)-equivariant

triangulation of F̃(S).
Let then M(S) := lim←−λ∈ΛM(S)λ be the inverse limit of all congruence level structures

overM(S) and let M(S) := lim←−λ∈ΛM(S)λ be the inverse limit of their compactifications

overM(S). There is a natural action of Γ̌±(S) on M(S) and a natural Γ±(S)-equivariant
embedding T (S) ↪→ M(S) with dense image, where Γ±(S) acts on M(S) via the natural
monomorphism Γ±(S) ↪→ Γ̌±(S).
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For Γλ a level of Γ(S) contained in an abelian level Γ(m) for some m ≥ 3, there is
a natural isomorphism M(S)λ ∼= T (S)/Γλ. Let us denote by Fλ(S) the 1-dimensional
stratum of the DM boundary ∂M(S)λ. Then, the quotient Cλ

P (S) := CP (S)/Γ
λ identifies

with the 1-skeleton of a Γ(S)/Γλ-equivariant triangulation of Fλ(S). Therefore, the inverse
limit ČP (S) := lim←−λ

Cλ
P (S) of all such finite quotients identifies with the 1-skeleton of a

Γ̌(S)-equivariant triangulation of the 1-dimensional stratum F(S) = lim←−λ
Fλ(S) of the DM

boundary ∂M(S) := M(S)∖M(S) (cf. Proposition 8.3 in [6] and preceding discussion).

2.2. Automorphisms of the procongruence pants complex and orientations. For
d(S) = 1, the pants complex CP (S) coincides with the Farey graph F. This is the 1-skeleton
of a 2-dimensional simplicial complex ∆, whose geometric realization |∆| identifies with a
tessellation of the cuspidal bordification H of the hyperbolic plane. The homeomorphism
|∆| ∼= H becomes a conformal isomorphism when |∆| is given the piecewise equilateral flat
structure. The orientation of the Farey graph F (and so of CP (S) for d(S) = 1) is then
simply the orientation of ∆ associated to the complex structure of H.
For Γλ is a finite index subgroup of Aut+(F) ∼= PSL2(Z) contained in an abelian level

Γ(m), for m ≥ 2, the quotient Fλ := F/Γλ is the 1-skeleton of the triangulation ∆λ :=
∆/Γλ of the closed Riemann surface H/Γλ induced by the Farey triangulation on H. The
orientation of the quotient graph Fλ is then the orientation of the triangulation ∆λ induced
by the complex structure of H/Γλ. For Γλ′ ≤ Γλ, the induced map Fλ′ → Fλ respects

orientations, so that we obtain an orientation on the inverse limit F̂ := lim←−λ
Fλ of these

finite quotients (the profinite Farey graph) and, in particular, for the procongruence pants

complex ČP (S) ∼= F̂, for d(S) = 1.
For a multicurve σ, let CP (S∖σ) be the disjoint union of the pants complexes associated

to the connected components of S∖σ and let d(S∖σ) be the sum of the modular dimensions
of the connected components of S ∖ σ. For σ ∈ C(S)d(S)−2, we have that d(S ∖ σ) = 1,
so that the pants complex CP (S ∖ σ) is isomorphic to the Farey graph F and identifies
with a subgraph of CP (S), which we denote by Fσ. The pants complex CP (S) is then
the infinite union of the Farey subgraphs {Fσ}σ∈C(S)d(S)−2

and we give each of them the

orientation defined above. A corollary of Margalit’s series of isomorphisms (1) is then that
automorphisms of CP (S) either preserve or reverse all orientations of the Farey subgraphs.

The procongruence pants complex ČP (S), for d(S) > 1 is the union of the profinite set

of profinite Farey graphs {F̂σ}σ∈Č(S)d(S)−2
, each naturally associated to a (d(S)−2)-simplex

of the procongruence curve complex Č(S) (cf. Definition 6.3 in [6]), and we give each of
them the orientation defined above. However, it is not clear that the automorphisms of
ČP (S) act in synchrony on the orientations of its profinite Farey subgraphs.
Let us denote by O(S) the finite set of the topological types of (d(S)−1)-multicurves on

S. To remedy the above issue, in [6], we associated a character Aut(ČP (S))→ {±1} to each
σ ∈ O(S) in the following way. The tautological action of Aut(ČP (S)) on ČP (S) preserves
profinite Farey subgraphs and Γ̌(S)-orbits of profinite Farey subgraphs. We assigned to
an automorphism ϕ ∈ Aut(ČP (S)) the plus or minus sign according to whether ϕ sends or
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not the fixed orientation of F̂σ to the orientation of ϕ(F̂σ). We then proved that there is
an exact sequence, for d(S) > 1 and S ̸= S1,2 (cf. Theorem 8.1 in [6]):

(2) 1→ Inn(Γ̌(S))→ Aut(ČP (S))→
∏
O(S)

{±1}.

For S = S1,2, the group Aut(ČP (S1,2)) must be replaced with the subgroup of those auto-
morphisms preserving the set of separating curves.

The first result of this section is an improved version of Theorem 8.1 in [6]. We will
show that all the above characters are in fact synchronized and that the case S ̸= S1,2 is
not exceptional, so that we have:

Proposition 2.1. For a connected hyperbolic surface S such that d(S) > 1, there is a
short exact sequence:

1→ Inn(Γ̌(S))→ Aut(ČP (S))→ {±1} → 1.

2.3. The case S = S0,5. There is only one topological type of 0-simplices in C(S0,5).
Hence, the exact sequence (2) takes the simple form:

1→ Inn(Γ̌(S0,5))→ Aut(ČP (S0,5))→ {±1}.
That this sequence is also right exact follows considering the action on ČP (S0,5) of an inner
automorphism inn f for f ∈ Γ±(S0,5) ∖ Γ(S0,5). This proves Proposition 2.1 for S = S0,5.
Let us make some additional remarks which will be useful for the case S = S1,2.

Let ∂M(S0,5) be the DM boundary of the inverse limit M(S0,5). As explained in Se-
cion 2.1, the profinite pants complex ČP (S0,5) identifies with the 1-skeleton of a triangu-

lation of ∂M(S0,5). Let Aut(∂M(S0,5)) be the group of automorphism which restrict to a

conformal or an anticonformal map on each irreducible component and Aut+(∂M(S0,5))
its subgroup consisting of conformal automorphisms.

Lemma 2.2. The natural action of Γ̌(S0,5) on ∂M(S0,5) induces an isomorphism Γ̌(S0,5) ∼=
Aut+(∂M(S0,5)).

Proof. This follows from Lemma 8.8 in [6]. □

Lemma 2.3. Aut+(∂M(S0,5)) is an index 2 subgroup of Aut(∂M(S0,5)), that is to say, ev-

ery automorphism of ∂M(S0,5) either preserves or reverses the orientation of all irreducible
components simultaneously. In particular, there is a natural isomorphism Γ̌±(S0,5) ∼=
Aut(∂M(S0,5)).

Proof. The irreducible components of ∂M(S0,5) are parameterized by the 0-simplices in

Č(S0,5). Let us denote by ∂M(S0,5)σ the irreducible component associated to the 0-simplex

σ ∈ Č(S0,5)0. Let us then define the character χσ : Aut(∂M(S0,5)) → {±1} which takes

the value +1 on f ∈ Aut(∂M(S0,5)) if f sends the standard orientation of ∂M(S0,5)σ to

the standard orientation of f(∂M(S0,5)σ) and −1 otherwise. There is an exact sequence:

1→ Aut+(∂M(S0,5))→ Aut(∂M(S0,5))→
∏

σ∈Č(S0,5)0

{±1}.
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In particular, Aut+(∂M(S0,5)) is a normal subgroup of Aut(∂M(S0,5)).
We can now argue exactly as in Section 8.7 of [6] and conclude that the representation

Aut(∂M(S0,5))→
∏

σ∈Č(S0,5)0
{±1} is constant on the Γ̌(S0,5)-orbit of 0-simplices of Č(S0,5).

Since there is only one such orbit, the first statement of the lemma follows. The second
statement then follows from Lemma 2.2. □

Lemma 2.4. There is a natural isomorphism Aut(ČP (S0,5)) ∼= Aut(∂M(S0,5)).

Proof. By Proposition 8.3 in [6], there is a natural monomorphism Aut(ČP (S0,5)) ↪→
Aut(∂M(S0,5)). The conclusion then follows from Lemma 2.3 and the fact that Γ̌±(S0,5)
identifies with a subgroup of Aut(ČP (S0,5)). □

2.4. Proof of Proposition 2.1 for S = S1,2. For [C,P1, P2] ∈ M1,[2], there is a unique
elliptic involution υ on C and, if we denote by Cυ the (genus 0) quotient of C by this
involution and by Bυ the branch locus of the orbit map C → Cυ, then, the assignment
[C,P1, P2] 7→ [Cυ, Q,Bυ], where Q is the image of the pair of points P1, P2 in Cυ, defines a
morphism of DM stacksM1,[2] →M0,1[4], where we denote byM0,1[4] the moduli stack of
genus 0 projective smooth curves with 5 labeled points, one of which is singled out and the
others are left unordered. The morphism M1,[2] → M0,1[4] is a Z/2-gerbe which is split,
since the compositionM1,2 →M1,[2] →M0,1[4] is an isomorphism of DM stacks.
The Z/2-gerbeM1,[2] →M0,1[4] then induces on topological fundamental groups a split

short exact sequence:

1→ ⟨υ⟩ → π1(M1,[2])→ π1(M0,1[4])→ 1.

In terms of mapping class groups, this can be described as follows. Let υ ∈ Γ(S1,2) be
the hyperelliptic involution, let S/υ be the quotient of the surface S1,2 by υ and let Bυ

be the branch locus of the orbit map S → S/υ. The surface S/υ is a 1-punctured sphere,
there is a diffeomorphism S/υ ∖ Bυ

∼= S0,5 and, if we denote by Q the puncture of S0,5

which corresponds to the puncture of S/υ via the above diffeomorphism, by Birman-Hilden
theory, there is a short exact sequence (cf. Theorem 2.3 in [8]):

1→ ⟨υ⟩ → Γ(S1,2)→ Γ(S0,5)Q → 1,

where Γ(S0,5)Q is the stabilizer of the puncture Q in Γ(S0,5). There is then a natural
isomorphism between this short exact sequence and the one obtained above in a geometric
way. In particular, there is a natural isomorphism PΓ(S1,2) ∼= Γ(S0,5)Q so that PΓ(S0,5)
identifies with a subgroup of PΓ(S1,2). We record the following for future use:

Lemma 2.5. The group PΓ(S0,5) identifies with the normal subgroup of PΓ(S1,2) generated
by squares of nonseparating Dehn twists.

Proof. The image of a nonseparating Dehn twist via the epimorphism Γ(S1,2)→ Γ(S0,5)Q is
a braid twist. Hence, the image of the square of a nonseparating Dehn twist is a Dehn twist
about a simple closed curve on S0,5 which bounds a 2-punctured disc. The subgroup of
Γ(S1,2) generated by squares of nonseparating Dehn twists is contained in PΓ(S1,2) and has
trivial intersection with ⟨υ⟩. Hence, it identifies with the subgroup of Γ(S0,5)Q generated
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by Dehn twists about simple closed curves on S0,5 bounding 2-punctured discs, which is
PΓ(S0,5). □

From the above discussion, we see, in particular, that there is a natural finite étale mor-
phismM0,5 →M1,2, so thatM0,5 identifies with a level structure overM1,[2]. Moreover,

the DM compactification M0,5 of M0,5 coincides with the DM compactification of the
latter as a level structure. Therefore, there are natural isomorphisms M(S0,5) ∼= M(S1,2),

M(S0,5) ∼= M(S1,2) and then ∂M(S0,5) ∼= ∂M(S1,2).
The Teichmüller spaces T (S0,5) and T (S1,2) are the universal covers ofM0,5 andM1,2,

respectively. Hence, there is a natural Γ(S1,2)-equivariant isomorphism T (S0,5) ∼= T (S1,2).
There is also a compatible Γ(S1,2)-equivariant isomorphism of curve complexes C(S0,5) ∼=
C(S1,2). Since the Weil-Petersson metric on the Teichmüller space is determined, modulo
strong equivalence, by the Fenchel-Nielsen coordinates, it follows that the isomorphism
T (S0,5) ∼= T (S1,2) induces a natural Γ(S1,2)-equivariant isomorphism of augmented Te-
ichmüller spaces T (S0,5) ∼= T (S1,2) and then ∂T (S0,5) ∼= ∂T (S1,2).

Even though the pants graph CP (S1,2) is the 1-skeleton of a Γ(S1,2)-equivariant trian-
gulation of ∂T (S1,2), the same holds for CP (S0,5) and ∂T (S0,5) and the vertex sets of the
pants graphs CP (S1,2) and CP (S0,5) naturally identify, there is no natural map between
these two graphs to account for it. This follows from a general result by Aramayona (cf.
Theorem A in [1]) but also from a careful analysis of the pairs of curves with minimal
intersection occurring in S1,2 and S0,5.
In any case, from the natural Γ(S1,2)-equivariant bijective map of 0-simplices CP (S1,2)0 ∼=

CP (S0,5)0, passing to Γ̌(S1,2)-completions, we get a natural Γ̌(S1,2)-equivariant bijective
map ČP (S1,2)0 ∼= ČP (S0,5)0. By Proposition 8.3 in [6], there is a natural monomor-

phism Aut(ČP (S1,2)) ↪→ Aut(∂M(S1,2)) and then Aut(ČP (S1,2)) ↪→ Aut(∂M(S0,5)). From
Lemma 2.4, it then follows that every continuous automorphism of ČP (S1,2) induces one
of ČP (S0,5) (compatible on vertex sets with the Γ̌(S1,2)-equivariant bijection given above).

For a given f ∈ Aut(ČP (S1,2)), let us denote by f̃ the induced automorphism of ČP (S0,5).
By Lemma 2.3, Aut(CP (S0,5)) identifies with a dense subgroup of the profinite group
Aut(ČP (S0,5)) and Inn(Γ̌(S1,2)) with an open subgroup of the same group. Therefore,

after possibly composing f̃ with an element of Inn(Γ̌(S1,2)), we can assume that f̃ ∈
Aut(CP (S0,5)). In particular, the given f preserves the vertex set CP (S1,2)0 ⊂ ČP (S1,2)0.

Lemma 2.6. If the vertices of an edge e of the procongruence pants graph ČP (S) belong
to CP (S)0 ⊂ ČP (S)0, then e ∈ CP (S)1 ⊂ ČP (S)1.

Proof. Let {σ0, σ1} ⊂ C(S)d(S)−1 ⊂ Č(S)d(S)−1 be the vertex set of e. By the first item of

Lemma 6.6 in [6], the edge e is then contained in the profinite Farey subgraph F̂σ0∩σ1 , which

is obtained as the ̂PSL2(Z)-completion of the Farey subgraph Fσ0∩σ1 ⊂ CP(S). Hence it is

enough to prove the statement of the lemma for the profinite Farey graph F̂.
Given two vertices v0, v1 ∈ F0, there is a unique geodesic γ in H connecting these two

points and a finite index subgroup Γλ of PSL2(Z) such that, for all Γλ′ ≤ Γλ, the image of
γ in the quotient surface H/Γλ′

is a simple geodesic arc. This implies that, if {v0, v1} is
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the vertex set of an edge of F̂, the distance between v0 and v1 in H is 1, which is possible
only if {v0, v1} is the vertex set of an edge of F. □

From Lemma 2.6, it follows that f induces an automorphism of the pants complex
CP (S1,2). By Theorem 1 and Theorem 2 of [19], we then have that f ∈ Inn(Γ±(S1,2))
which completes the proof of the case S = S1,2 of Proposition 2.1.

2.5. Four lemmas. The following definition will play a fundamental role in the proof, by
induction, of the general case of Proposition 2.1:

Definition 2.7. For d(S) > 1, every (d(S)− 2)-multicurve on S contains at least a simple
closed curve which is either nonseparating or bounds a 2-punctured disc. For a fixed such
simple closed curve γ, we then let Lγ be the closed subgraph of ČP (S) which is the union

of all profinite Farey subgraphs F̂σ such that γ ∈ σ.
Let us denote by Sγ either S ∖ γ, for γ nonseparating, or the connected component of

S ∖ γ of positive modular dimension, for γ bounding a 2-punctured disc. We then have:

Lemma 2.8. The profinite subgraph Lγ of ČP (S) is naturally isomorphic to the procon-
gruence pants complex ČP (Sγ).

Proof. By Remark 4.7 in [4], the link Lk(γ) ⊂ Č(S) is naturally isomorphic to Č(Sγ). Let

ξ : Č(Sγ)
∼→ Lk(γ) be such isomorphism. We can then identify the vertex set of ČP (Sγ)

with a subset of the vertex set of ČP (S) by sending a (d(Sγ) − 1)-simplex σ of Č(Sγ) to
the (d(S) − 1)-simplex ξ(σ) ∪ {γ} of Star(γ) ⊂ Č(S). The image of this map is precisely
the vertex set of the subgraph Lγ of ČP (S) and it is easy to check that it induces a map
between the edges of ČP (Sγ) and those of Lγ, from which the conclusion follows. □

The procongruence curve complex Č(S) can be identified with the simplicial profinite

complex whose simplices are the inertia groups {Îσ}σ∈Č(S) ⊂ Γ̌(S) (cf. Remark 4.13 in [6]),

so that there is a natural continuous action of AutI(PΓ̌(S)) on Č(S):

Lemma 2.9. For d(S) ≥ 1, there is a natural continuous monomorphism:

Θ̌I : AutI(PΓ̌(S)) ↪→ Aut(Č(S)).

Proof. By Theorem 7.3 in [6], the kernel of the homomorphism Θ̌I is contained in the
subgroup Hom(PΓ̌(S)/Z(PΓ̌(S)), Z(PΓ̌(S))) of Aut(PΓ̌(S)) described in Lemma 7.4 and
Lemma 3.5 in [6], where we denote by Z(PΓ̌(S)) the center of PΓ̌(S). From its explicit
description, it follows that the intersection of Hom(PΓ̌(S)/Z(PΓ̌(S)), Z(PΓ̌(S))) with the
subgroup AutI(PΓ̌(S)) inside Aut(PΓ̌(S)) is trivial, which implies the lemma. □

There is a natural action on the link Lk(γ) ∼= Č(Sγ) of the stabilizer AutI(PΓ̌(S))Îγ of

the inertia group Îγ associated to γ in AutI(PΓ̌(S)). We have:

Lemma 2.10. After identifying Lk(γ) with Č(Sγ), the action of AutI(PΓ̌(S))Îγ on Lk(γ)

factors through the natural action of AutI(PΓ̌(Sγ)) on Č(Sγ). The same statement holds
after replacing PΓ̌(S) with PΓ̌±(S) and PΓ̌(Sγ) with PΓ̌±(Sγ).
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Proof. An automorphism of PΓ̌(S) which preserves the procyclic subgroup Îγ also preserves

its centralizer ZPΓ̌(S)(̂Iγ) in PΓ̌(S) and, since, for σ ∈ Lk(γ), the inertia group Îσ is contained

in ZPΓ̌(S)(̂Iγ), the action of AutI(PΓ̌(S))Îγ on Lk(γ) factors through the homomorphism
induced by restriction:

AutI(PΓ̌(S))Îγ → AutI(ZPΓ̌(S)(̂Iγ)).

By Corollary 4.12 in [6], there is a natural isomorphism ZPΓ̌(S)(̂Iγ)
∼= PΓ̌(S)γ, so that we

can identify AutI(ZPΓ̌(S)(̂Iγ)) with the closed subgroup AutI(PΓ̌(S)γ) of Aut(PΓ̌(S)γ) con-
sisting of those automorphisms which preserve the set of conjugacy classes of the procyclic
subgroups of PΓ̌(S)γ generated by profinite Dehn twists.
By Theorem 4.10 in [6], there are the exact sequences:

1→ PΓ̌(S)γ⃗ → PΓ̌(S)γ → {±1} and 1→ Îγ → PΓ̌(S)γ⃗ → PΓ̌(Sγ)→ 1,

where the homomorphism PΓ̌(S)γ → {±1} is induced by the action of the stabilizer PΓ(S)γ
on the orientation of the simple closed curve γ.
Since PΓ̌(S)γ⃗ is the normal subgroup of PΓ̌(S)γ topologically generated by Dehn twists,

an element of AutI(PΓ̌(S)γ) preserves the subgroup PΓ̌(S)γ⃗, so that there is a natural
homomorphism:

AutI(PΓ̌(S)γ)→ AutI(PΓ̌(S)γ⃗).

By Theorem 4.14 in [6], the procyclic subgroup Îγ is the center of PΓ̌(S)γ⃗, hence, it is
preserved by every element of AutI(PΓ̌(S)γ⃗) and there is a natural homomorphism:

AutI(PΓ̌(S)γ⃗)→ AutI(PΓ̌(Sγ)).

By composing all the above homomorphisms, we get a natural homomorphism:

AutI(PΓ̌(S))Îγ → AutI(PΓ̌(Sγ)).

The natural isomorphism Lk(γ) ∼= Č(Sγ) identifies all the inertia subgroups of PΓ̌(S)

contained in ZPΓ̌(S)(̂Iγ)
∼= PΓ̌(S)γ, but which do not contain the Dehn twist τγ, with the

inertia subgroups of PΓ̌(Sγ) in a way which is clearly compatible with the above series of
homomorphisms. The first statement of the lemma follows. The second can be proved in
a similar way. □

The following simple lemma in group theory will also be useful:

Lemma 2.11. Let 1→ H → G→ L→ 1 be a short exact sequence of groups and let f be
an automorphism of H such that:

(i) the center of H is trivial;
(ii) the image f̄ of f in Out(H) normalizes the image of the outer representation

ρ : L→ Out(H) associated to the given short exact sequence;
(iii) the automorphism of ρ(L) induced by the restriction of inn f̄ lifts to an automor-

phism of L.

Then, f extends to an automorphism of G.
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Proof. For an element f ∈ Aut(H), we denote by f̄ its image in Out(H). Let then
Comp(L,H) be the closed subgroup of Aut(L)× Aut(H) formed by the pairs (ψ, f) such
that, for all α ∈ L, there holds (in Out(H)):

f̄ρ(α)f̄−1 = ρ(ψ(α)).

Since, by hypothesis (i), the center of H is trivial, according to Wells’ exact sequence
(cf. Theorem in [25]), there is a canonical isomorphism:

Aut(G)H ∼= Comp(L,H),

where Aut(G)H is the subgroup of Aut(G) consisting of those automorphisms which pre-

serve H. This isomorphism sends an element f̃ ∈ Aut(G)H to the pair (ψ, f), where

ψ ∈ Aut(L) is the automorphism induced by f̃ passing to the quotient by the normal

subgroup H and f is the restriction of f̃ to H.
The conclusion follows if we show that an f ∈ Aut(H), which satisfies the hypotheses

(ii) and (iii) of the lemma, is part of a compatible pair. Since inn f̄ preserves the subgroup
ρ(L) and the induced automorphism lifts to ϕ ∈ Aut(L), it is clear that (ϕ, f) is such a
compatible pair. □

2.6. Connectedness of various curve complexes. Before to proceed with the proof of
Proposition 2.1, we need to prove that some curve complexes are connected.

Let Cb(S0,n) be the curve complex defined as the full subcomplex of the complex of
curves C(S0,n), for n ≥ 4, whose vertices consist of isotopy classes of simple closed curves
on S0,n which bound a 2-punctured disc:

Lemma 2.12. For n ≥ 5, the simplicial complex Cb(S0,n) is connected.

Proof. This can be proved by the same argument which proves the connectivity of the
standard curve complex (cf., for instance, the proof of Theorem 4.3 in [9]). We use induction
on the geometric intersection number of two simple closed curves a and b which bound a
2-punctured disc on S0,n. When they are disjoint there is nothing to prove. Let us then
assume that a and b have geometric intersection i(a, b) > 0. We claim that there is a simple
closed curve c (bounding a 2-punctured disc) such that i(a, c) = 0 and i(c, b) < i(a, b).

First, we construct a simple closed curve c′ (not necessarily bounding a 2-punctured
disc), such that i(a, c′) = 0 and i(c′, b) < i(a, b), by following the oriented path a until it
intersects b, further following b until it intersects again a for the first time and eventually
continuing along the path a in order to close the loop. There are several possibilities
depending on the orientations of a and b, but, in the end, we find an essential simple closed
curve with the required properties.

Now, c′ bounds a k-punctured disk D, where k ≥ 2, which does not contain a. If
k = 2, then we take c = c′ and we are done. Otherwise, we take for c the boundary of
a 2-punctured disc D′ contained in D such that c is the union of an arc contained in c′

and an arc which is either part of b ∩D or is disjoint from b. In both cases, we have that
i(c, b) ≤ i(c′, b) < i(a, b) and, obviously, i(a, c) = 0. □
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Let then C0b(S1,n) be the full subcomplex of the curve complex C(S1,n) whose vertices
are isotopy classes of either nonseparating simple closed curves or simple closed curves
which bound a 2-punctured disc on S0,n:

Lemma 2.13. For n ≥ 2, the simplicial complex C0b(S1,n) is connected.

Proof. We proceed as in the genus zero case. Here, the curve c is either nonseparating or
it bounds a 2-punctured disk but the proof above works without any essential change. □

2.7. Proof of Proposition 2.1 for g(S) = 0. We proceed by induction on n ≥ 5. The
case n = 5 was proved above and serves as base for the induction. Let us then assume that
Proposition 2.1 holds for S0,n−1 and let us prove it for S0,n.

For n ≥ 5, every simplex σ ∈ O(S0,n) contains at least a simple closed curve γ on S0,n

which bounds a 2-punctured disc. We then have:

Lemma 2.14. If an automorphism ϕ ∈ Aut(ČP (S0,n)) preserves the orientation of the

profinite Farey subgraph F̂σ of ČP (S0,n) (cf. Section 2.2), then it preserves the orientations

of all profinite subgraphs F̂σ′ such that γ ∈ σ′, where γ ∈ σ is a simple closed curve which
bounds a 2-punctured disc.

Proof. By Theorem 6.7 in [6], for all hyperbolic surfaces S, there is a natural monomor-
phism:

Θ̌P : Aut(ČP (S)) ↪→ Aut(Č(S)),

which is induced by the identification of the vertices of ČP (S) with the facets of Č(S). For
d(S) > 1, one further observes that the continuous action of Aut(ČP (S)) on the profinite
set of Farey subgraphs of ČP (S), which are parameterized by the (d(S) − 2)-simplices of
Č(S), does indeed induce a continuous action on this profinite set of (d(S)− 2)-simplices,
which is compatible with the action on the facets of Č(S) considered above. One then
shows that an automorphism of Č(S) can be reconstructed from these data.

Thus, after possibly composing the given automorphism ϕ ∈ Aut(ČP (S0,n)) with an
element in the image of Inn(Γ̌(S0,n)), we can assume that its image Θ̌P (ϕ) in Aut(Č(S0,n))
preserves the 0-simplex {γ} ∈ Č(S0,n) and so ϕ preserves the subgraph Lγ of ČP (S0,n).
Since, by Lemma 2.8, we have that Lγ

∼= ČP (Sγ), from the induction hypothesis, it follows
that, if the automorphism ϕ preserves the orientation of some profinite Farey subgraph of

Lγ, then ϕ preserves the orientation of all profinite Farey subgraphs F̂σ such that γ ∈ σ. □

By Lemma 2.12, the curve complex Cb(S0,n) is connected. Thus, there is a set γ1, . . . , γk
of simple closed curves on S0,n bounding a 2-punctured disc such that any two representa-
tives σ and σ′ of the set of orbits O(S0,n) are contained in a chain Lk(γ1), . . . ,Lk(γk) with
the property that the intersection Lγi∩Lγi+1

, for 1 ≤ i ≤ k−1, contains at least a profinite
Farey subgraph. Lemma 2.14 and a simple induction then imply that an automorphism

ϕ ∈ Aut(ČP (S0,n)), which preserves the orientation of F̂σ, also preserves the orientation of

F̂σ′ . This completes the proof of Proposition 2.1 for g(S) = 0.
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2.8. Proof of Proposition 2.1 for g(S) ≥ 1. Let us first consider the case g(S) = 1.
Here, we need to use the curve complex C0b(S1,n) instead of the curve complex Cb(S0,n) and
Lemma 2.13 instead of Lemma 2.12. We then proceed by induction on n ≥ 2. The base
of the induction is provided by the case S = S1,2 proved above. The rest of the argument
proceeds similarly to the case g(S) = 0 where, besides the induction hypothesis, we also
use the case g(S) = 0 of Proposition 2.1 proved in Section 2.7.

For g(S) ≥ 2, we proceed by induction on the genus where the base of the induction
is the genus 1 case proved above. The relevant curve complex here is the complex of
nonseparating curves C0(S), which, for g(S) ≥ 2, (cf. Theorem 4.4 in [9]) is connected.
The rest of the argument proceeds as in the previous cases.

2.9. A rigidity criterion. From Proposition 8.2 in [6] and Proposition 2.1, it follows
that, for d(S) > 1 and S ̸= S1,2, there is a natural isomorphism:

Inn(Γ̌±(S)) ∼= Aut(ČP (S)).

For S = S1,2, the group Aut(ČP (S1,2)) must be replaced with the subgroup of those auto-
morphisms preserving the set of nonseparating curves. We will show that this isomorphism
implies a characterization of those elements of AutI(PΓ̌(S)) which are induced by an inner
automorphism of Γ̌±(S). Before we state the result, we need to make a remark.
In the group-theoretic realization of the procongruence curve complex Č(S) which we de-

scribed in Section 2.5, the vertices of the procongruence pants complex ČP (S) are identified

with the set {Îσ}σ∈Č(S)d(S)−1
of inertia subgroups of PΓ̌(S) of maximal rank. The natural

faithful continuous action of AutI(PΓ̌(S)) on the curve complex Č(S) (cf. Lemma 2.9)
then induces a continuous faithful action of AutI(PΓ̌(S)) on the vertex set ČP (S)0 of the
procongruence pants complex. We then have:

Theorem 2.15. Let S be a connected hyperbolic surface such that d(S) > 1. An element
f ∈ AutI(PΓ̌(S)) is in the image of Inn(Γ̌±(S)) → AutI(PΓ̌(S)) if and only if, for some
edge {v0, v1} ∈ ČP (S)1, the set of vertices {f(v0), f(v1)} is also an edge of ČP (S).

2.10. Proof of Theorem 2.15 for S = S0,5. Let f ∈ AutI(PΓ̌(S)) be an element satisfy-
ing the hypotheses of the theorem. Since, for S = S0,5, the action of Γ̌(S) on the oriented
edges of ČP (S) is transitive, after composing with an element in the image of Inn(Γ̌(S)),
we can assume that f fixes the vertices of the edge {v0, v1} of ČP (S). For the same reason,
for any edge {α0, α1} of ČP (S), there is an element x ∈ Γ̌(S) such that αi = x · vi · x−1,
for i = 0, 1.

Let us consider the short exact sequence 1→ PΓ̌(S)→ Γ̌(S)→ Σn → 1, where we put
n := n(S). From Corollary C in [11], it follows that the outer representation associated
to this short exact sequence identifies Σn with a normal subgroup of OutI(PΓ̌(S)). Since
PΓ̌(S) is center free, from Lemma 2.11, it follows that the given element f ∈ AutI(PΓ̌(S))
extends to an automorphism of Γ̌(S), which we also denote by f , so that we have:

f(αi) = f(x · vi · x−1) = f(x) · vi · f(x)−1, for i = 0, 1,
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and then {f(α0), f(α1)} = inn f(x)({v0, v1}) ∈ ČP (S). Therefore, the continuous action
of the automorphism f on the profinite set of vertices of ČP (S) extends to a continuous
action on the procongruence pants complex ČP (S). The conclusion then follows from
Proposition 2.1.

2.11. Proof of Theorem 2.15 for S = S1,2. To deal with this case, we need first to
prove the following lemmas:

Lemma 2.16. For S = S1,2, the action of AutI(PΓ̌(S1,2)) on Č(S1,2) preserves topologi-
cal types. Moreover, there is a natural monomorphism AutI(PΓ̌(S1,2)) ↪→ AutI(PΓ̌(S0,5))
induced by restriction of automorphisms.

Proof. With the notation of Section 2.5, for γ a simple closed curve on S1,2, by Corol-

lary 4.12 in [6], there is a natural isomorphism ZPΓ̌(S1,2)
(̂Iγ) ∼= PΓ̌(S1,2)γ and, by Theo-

rem 4.10 in [6], there are exact sequences:

1→ PΓ̌(S1,2)γ⃗ → PΓ̌(S1,2)γ → {±1} and 1→ Îγ → PΓ̌(S1,2)γ⃗ → PΓ̌((S1,2)γ)→ 1.

After possibly composing with an inner automorphism, we can assume that a given
element f ∈ AutI(PΓ̌(S1,2)) is such that γ′ := f(γ) also belongs to C(S1,2)0 ⊂ Č(S)0. Since

PΓ̌(S1,2)γ⃗ identifies with the subgroup of the centralizer ZPΓ̌(S1,2)
(̂Iγ) topologically generated

by profinite Dehn twists, we have that f(PΓ̌(S1,2)γ⃗) = PΓ̌(S1,2)γ⃗′ . By Theorem 4.14 in [6],

the procyclic subgroup Îγ is the center of PΓ̌(S1,2)γ⃗, so that f induces an isomorphism

f̄ : PΓ̌((S1,2)γ)
∼→ PΓ̌((S1,2)γ′).

For γ separating, we have that PΓ̌((S1,2)γ) ∼= ̂SL(2,Z) while, for γ nonseparating, we
have that PΓ̌((S1,2)γ) is a free group in two generators. The latter profinite group is torsion
free while the former is not. Thus, γ′ has the same topological type of γ.
This proves the first part of the lemma. Let us then observe that, by Lemma 2.5,

PΓ̌(S0,5) identifies with the normal subgroup of PΓ̌(S1,2) topologically generated by squares
of nonseparating Dehn twists. By the previous part of the proof, elements of AutI(PΓ̌(S1,2))
preserve this subgroup and so there is a homomorphism as claimed in the lemma. The
fact that this is injective follows from the fact that the monomorphism AutI(PΓ̌(S1,2)) ↪→
Aut(Č(S1,2)) (cf. Lemma 2.9) factors through it and the monomorphism AutI(PΓ̌(S0,5)) ↪→
Aut(Č(S0,5)), via the isomorphism Č(S1,2) ∼= Č(S0,5). □

Since all the groups involved are center free, for n ≥ 4, there are a series of natural
isomorphisms:

Inn(Γ̌(S0,n))
/
Inn(PΓ̌(S0,n)) ∼= Γ̌(S0,n)

/
PΓ̌(S0,n) ∼= Σn.

Let us then denote by Out♯(PΓ̌(S0,n)) the centralizer of the image of Σn in OutI(PΓ̌(S0,n)).
Since Σn acts transitively on the set of conjugacy classes of procyclic subgroups of PΓ̌(S0,n)
generated by Dehn twists about simple closed curves bounding 2-punctured discs in S0,n,
it follows that Out♯(PΓ̌(S0,n)) preserves such conjugacy classes. Hence, for n ≤ 5, our
definition of this group agrees with the one given in Section 0.1 of [10].
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From the isomorphism PΓ(S1,2) ∼= Γ(S0,5)Q (cf. Section 2.4), it follows that there is a nat-
ural isomorphism Inn(PΓ(S1,2))

/
Inn(PΓ̌(S0,5)) ∼= Σ4. Let us then define Out♯(PΓ̌(S1,2))

to be the centralizer of the image of Σ4 in AutI(PΓ̌(S1,2))
/
Inn(PΓ̌(S0,5)) .

For S one of the surfaces considered above, let also Aut♯(PΓ̌(S)) be the inverse image
of Out♯(PΓ̌(S)) in Aut(PΓ̌(S)) (note that Aut♯(PΓ̌(S)) is contained in AutI(PΓ̌(S))). We
then have:

Lemma 2.17. There are natural isomorphisms:

AutI(PΓ̌(S1,2))
/
Inn(PΓ̌(S0,5)) ∼= Σ4 ×Out♯(PΓ̌(S1,2)),

Out♯(PΓ̌(S1,2)) ∼= OutI(PΓ̌(S1,2)),

OutI(PΓ̌(S0,5)) ∼= Σ5 ×Out♯(PΓ̌(S0,5)).

Moreover, the natural monomorphism of Lemma 2.16 restricts to a monomorphism:

Aut♯(PΓ̌(S1,2)) ↪→ Aut♯(PΓ̌(S0,5)).

Proof. There are short exact sequences:

1→ Σ4 → AutI(PΓ̌(S1,2))
/
Inn(PΓ̌(S0,5)) → OutI(PΓ̌(S1,2))→ 1

and (cf. Corollary C in [11])

1→ Σ5 → OutI(PΓ̌(S0,5))→ OutI(PΓ̌(S0,5)) /Σ5 → 1

Since Σ4 and Σ5 are complete groups, the above short exact sequences split and there are
natural isomorphisms as stated in the lemma (cf. Theorem 7.15 in [23]). The last statement
of the lemma follows from the fact that the centralizer of Σ4 in Σ5 is trivial. □

Remark 2.18. By Corollary C in [20] and Main Theorem in [10], there is actually a series

of natural isomorphisms Out♯(PΓ̌(S1,2)) ∼= Out♯(PΓ̌(S0,5)) ∼= ĜT, where ĜT is the profinite
Grothendieck-Teichmüller group, so that the monomorphism of Lemma 2.17 is actually an
isomorphism. But we will not need this fact.

Let f ∈ AutI(PΓ̌(S1,2)) be an element such that for some edge {v0, v1} ∈ ČP (S1,2)1,

the set of vertices {f(v0), f(v1)} is also an edge of ČP (S1,2). Let f̃ be the image of f ∈
AutI(PΓ̌(S1,2)) via the monomorphism AutI(PΓ̌(S1,2)) ↪→ AutI(PΓ̌(S0,5)) of Lemma 2.16.

The element f̃ then acts on the vertex set ČP (S0,5)0 through the element f and the
natural continuous Γ̌(S1,2)-equivariant bijection on vertex sets:

q : ČP (S1,2)0
∼→ ČP (S0,5)0,

so that, for v ∈ ČP (S1,2)0, there holds f̃(q(v)) = q(f(v)). The key lemma is the following:

Lemma 2.19. The element f̃ ∈ AutI(PΓ̌(S0,5)) is such that for some edge {w0, w1} ∈
ČP (S0,5)1, the set of vertices {f̃(w0), f̃(w1)} is also an edge of ČP (S0,5).
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Proof. If the given {v0, v1} ∈ ČP (S1,2)1 is an edge contained in a Γ̌(S1,2)-orbit such that
the pair of vertices {q(v0), q(v1)} is an edge of ČP (S0,5), then, since f ∈ AutI(PΓ̌(S1,2)),

by Lemma 2.16, preserves Γ̌(S1,2)-orbits, we have that {f̃(q(v0)), f̃(q(v1))} is also an edge
of ČP (S0,5). In this case, we just let w0 := q(v0) and w1 := q(v1) and we are done. In
particular, as it is easy to check, this happens if the common profinite simple closed curve
in the intersection v0 ∩ v1 has the topological type of a separating curve on S1,2.

Let us then consider the case when the common profinite simple closed curve γ in
v0 ∩ v1 has the topological type of a nonseparating curve on S1,2. As usual, it is not
restrictive to assume that γ ∈ C(S1,2)0 ⊂ Č(S1,2)0 and after, possibly, composing the given
f ∈ AutI(PΓ̌(S1,2)) with an inner automorphism of PΓ(S1,2), we can also assume that
f ∈ Aut♯(PΓ̌(S1,2)). From Lemma 2.17, it then follows that that the conjugacy class of

Îγ ∩ PΓ̌(S0,5) in PΓ̌(S0,5) is preserved by f̃ . Therefore, after, possibly, composing by an
inner automorphism of PΓ̌(S0,5), we can at last assume that f ∈ Aut♯(PΓ̌(S1,2))Îγ .

With the above assumptions, in particular, f preserves the link Lk(γ) of γ in Č(S1,2) and
then the vertex set of the profinite subgraph Lγ of ČP (S1,2). Let us recall (cf. Lemma 2.8)
that there are natural PΓ̌(S1,2)γ-equivariant continuous isomorphisms Lk(γ) ∼= Č(S1,2∖γ)
and Lγ

∼= ČP (S1,2 ∖ γ).
By hypothesis, we have that both {v0, v1} and {f(v0), f(v1)} ∈ (Lγ)1. We claim that f

preserves all the edge set of Lγ (and so induces an automorphism of this profinite graph).
By Lemma 2.10, f acts on the vertex set (Lγ)0 ∼= ČP (S1,2 ∖ γ)0 through its image via the
natural homomorphism AutI(PΓ̌(S1,2))Îγ → AutI(PΓ̌(S1,2 ∖ γ)). This is induced by the

restriction to the stabilizer PΓ̌(S1,2)γ⃗ followed by the projection to its quotient PΓ̌(S1,2∖γ).
By Lemma 2.17, there is a natural homomorphism Aut♯(PΓ̌(S1,2))Îγ ↪→ Aut♯(PΓ̌(S0,5)),

induced by restriction. Since PΓ̌(S1,2)γ⃗ ∩ PΓ̌(S0,5) = PΓ̌(S0,5)q(γ) and the natural pro-

jection PΓ̌(S0,5)q(γ) → PΓ̌(S0,5 ∖ q(γ)), after identifying PΓ̌(S0,5 ∖ q(γ)) with PΓ̌(S0,4),

is just the restriction of a forgetful homomorphism PΓ̌(S0,5) → PΓ̌(S0,4) to PΓ̌(S0,5)q(γ),

we see that the restriction of the homomorphism AutI(PΓ̌(S1,2))Îγ → AutI(PΓ̌(S1,2 ∖ γ))

to the subgroup Aut♯(PΓ̌(S1,2))Îγ is equivalent to the restriction of the homomorphism

Aut♯(PΓ̌(S0,5))→ Aut♯(PΓ̌(S0,4)), defined in Section 2.2 in [10], associated to the forgetful
homomorphism considered above, to the image of Aut♯(PΓ̌(S1,2))Îγ in Aut♯(PΓ̌(S0,5)).

In particular, the image of f in OutI(PΓ̌(S1,2 ∖ γ)) commutes with the image of Σ4 via
the outer representation associated to the short exact sequence:

1→ PΓ̌(S1,2 ∖ γ)→ Γ̌(S1,2 ∖ γ)→ Σ4 → 1.

It is then clear that all hypotheses of Lemma 2.11 are satisfied and f extends to an
automorphism of Γ̌(S1,2 ∖ γ). As in Section 2.10, we then conclude that f induces an
automorphism of the pants complex ČP (S1,2 ∖ γ), as claimed above.

It is now easy to check that, for some edge {v′0, v′1} ∈ (Lγ)1 ∼= ČP (S1,2∖γ)1, we have that
{q(v′0), q(v′1)} ∈ ČP (S0,5)1 and conclude, as we did at the beginning of the proof, letting
w0 := q(v′0) and w1 := q(v′1). □
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From Lemma 2.19 and the case S = S0,5 of Theorem 2.15 proved above, we conclude

that the image f̃ of f in AutI(PΓ̌(S0,5)) is in the image of Inn(Γ̌±(S0,5)). In conclusion, f̃
is an inner automorphism of Γ̌±(S0,5) which normalizes its subgroup PΓ̌(S1,2).

From Lemma 9.13 in [6], it now follows that the normalizer of PΓ̌(S1,2) in Γ̌±(S0,5)
coincides with the closure in this group of the normalizer of PΓ(S1,2) in Γ±(S0,5), which,
as it easily follows from (ii) of Theorem in [17], is just PΓ±(S1,2). Since Inn(Γ̌±(S1,2)) =
Inn(PΓ̌±(S1,2)), this implies Theorem 2.15 for S = S1,2.

2.12. Proof of Theorem 2.15 for d(S) > 2. We proceed by induction on d(S). Let us
then assume that the statement of the lemma holds for all surfaces of modular dimension
< d(S). It is clearly not restrictive to assume that the edge {v0, v1} in the hypothesis of
the theorem belongs to CP (S) ⊂ ČP (S).

By Proposition 2.1, it is enough to prove that the action of the given f ∈ AutI(PΓ̌(S))
on the set of vertices of the procongruence pants complex ČP (S) preserves its set of edges,
that is to say, for every edge {α0, α1} ∈ ČP (S)1, there holds {f(α0), f(α1)} ∈ ČP (S)1.
By the same argument of the proof of the case S = S0,5 of the theorem, it is enough to
show that this is the case for a set of representatives of the PΓ̌(S)-orbits in ČP (S)1. In
particular, we can assume that {α0, α1} ∈ CP (S)1 ⊂ ČP (S)1 as well.

For d(S) > 2, the complexes Cb(S) (for g(S) = 0), C0b(S) (for g(S) = 1) and C0(S) (for
g(S) > 1) are connected. This implies that there is a set γ1, . . . , γk of simple closed curves
on S, where γi, for i = 1, . . . , k, is either nonseparating or bounds a 2-punctured disc, such
that the edge {v0, v1} is contained in Lγ1 , the edge {α0, α1} is contained in Lγk and the
intersection Lγi ∩ Lγi+1

, for 1 ≤ i ≤ k − 1, contains at least an edge of ČP (S).
The conclusion then follows from a simple induction and the following lemma:

Lemma 2.20. If an automorphism f ∈ AutI(PΓ̌(S)) sends an edge of Lγi to an edge of
ČP (S), then it sends every edge of Lγi to an edge of ČP (S), for i = 1, . . . , k.

Proof. After composing f ∈ AutI(PΓ̌(S)) with an element in the image of Inn(Γ̌(S)) →
AutI(PΓ̌(S)), we can assume that f preserves the procyclic subgroup Îγi and then acts on
the vertex set of the subgraph Lγi , which identifies with the set of (d(S)− 1)-simplices of
the star of γi in Č(S).

By Lemma 2.8, the profinite subgraph Lγi is naturally isomorphic to ČP (Sγi) and, by
Lemma 2.10, this natural isomorphism induces an action of AutI(PΓ̌(S))Îγi

on the vertex set

of ČP (Sγi) which factors through an element of AutI(PΓ̌(Sγi)). The induction hypothesis
then implies that f preserves the edge set of Lγi , for i = 1, . . . , k. □

3. Antiholomorphic involutions

3.1. Centralizers of antiholomorphic involutions. An antiholomorphic involution ι ∈
Γ±(S) is an element of order 2 (an involution) which reverses the orientation of S. Any such
element can be realized as the antiholomorphic involution associated to a real Riemann
surface homeomorphic to S.
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The centralizer of ι in Γ±(S) has a simple description. Let Sι := S/⟨ι⟩ be the quotient
surface. Let Fix(ι) be the fixed point set of ι. Then, Fix(ι) is the union of a (possibly
empty) set of disjoint simple closed curves on S and the quotient surface Sι is orientable
if and only if S ∖ Fix(ι) is not connected. Moreover, if Fix(ι) ̸= ∅, then Sι is a surface
with boundary ∂Sι, which coincides with the image of Fix(ι) in Sι (cf. Proposition 1.2 in
[24]). Let us denote by Map(Sι) the group of isotopy classes of self-diffeomorphisms of the
(possibly non-orientable) surface Sι. We then have:

Proposition 3.1. The centralizer ZΓ±(S)(ι) of ι in Γ±(S) is described by the short exact
sequence:

1→ ⟨ι⟩ → ZΓ±(S)(ι)→ Map(Sι)→ 1.

Proof. If Fix(ι) = ∅, it is enough to observe that the orientation cover S → Sι is canonical.
This implies that any self-homeomorphism of Sι lifts to S and so the proposition follows
in this case.

Let us then assume that Fix(ι) ̸= ∅ and S ∖Fix(ι) is connected. The surface S ∖Fix(ι)
identifies with the orientation cover of Sι ∖ ∂Sι, so that every self-homeomorphism of
Sι ∖ ∂Sι lifts to S ∖ Fix(ι). Since every self-homeomorphism of S which commutes with ι
preserves the fixed point set Fix(ι), the conclusion follows.

Let us then consider the case when S ∖ Fix(ι) is not connected. In this case, S ∖ Fix(ι)

has two connected components S ′ and S ′′ such that their closures S
′
and S

′′
in S both

identify with the quotient surface Sι. This implies that a self-homeomorphism of Sι lifts

to a pair of self-homeomorphisms of S
′
and S

′′
which are compatible on the boundary and

can then be glued to a self-homeomorphism of S. □

3.2. The fixed point set of an antiholomorphic involution in the augmented Te-
ichmüller space. Let T (S) be the Teichmüller space associated to the surface S endowed
with the Weil-Petersson metric. From Lemma 3.5 in [22], it follows that the fixed point
set T (S)ι of an antiholomorphic involution ι ∈ Γ±(S) is a nonempty and connected real
submanifold of T (S) of (real) dimension d(S) (cf. Corollary 3.8 in [22]).

Since the augmented Teichmüller space T (S) is the completion of the Teichmüller space
T (S) with respect to the Weil-Petersson metric (cf. Section 2.1), from Theorem 5 in [26],
it follows that the fixed point set T (S)ι coincides with the closure of the fixed point set
T (S)ι in T (S).

Theorem 5 in [26] and Lemma 3.5 in [22] then imply that, for σ ∈ C(S)k, the fixed
point set ∂T (S)ισ of the corresponding closed stratum of ∂T (S) is nonempty if and only if
σ ∈ C(S)ιk and that, for all σ ∈ C(S)ιk, there holds ∂T (S)ισ ∼= T (S ∖ σ)ι. We sum up the
above discussion in the following proposition:

Proposition 3.2. The closed strata of codimension k+1 in the boundary of the fixed point
locus T (S)ι are parameterized by the fixed point set C(S)ιk, for k ≥ 0.

Remark 3.3. Note that, for all k ≥ 0, the action of the centralizer ZΓ±(S)(ι) on C(S)k
preserves the fixed point set C(S)ιk and acts on the latter with a finite number of orbits.
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3.3. Antiholomorphic involutions of the profinite mapping class group. Let us
now assume that g(S) ≤ 2. By the congruence subgroup property in genus ≤ 2, we then

have Γ̌(S) ∼= Γ̂(S) and so Γ̌±(S) ∼= Γ̂±(S). The augmentation map Γ±(S) → Z/2 induces

an augmentation map Γ̂±(S)→ Z/2 and we define an antiholomorphic involution of Γ̂±(S)
to be an element of order 2 whose image by the augmentation map is nontrivial.

It is well known that Γ(S) is a good group for g(S) ≤ 2. The same then holds for

Γ±(S) and, from Corollary 3.5 in [21], it follows that the natural inclusion Γ±(S) < Γ̂±(S)
induces a bijection between the conjugacy classes of elements of prime order in Γ±(S) and

in Γ̂±(S). In particular, we have:

Proposition 3.4. For g(S) ≤ 2, every antiholomorphic involution of Γ̂±(S) is conjugated
to an antiholomorphic involution inside Γ±(S).

3.4. The fixed point set of an antiholomorphic involution in the procongruence
moduli stack. A description of the fixed point locus M(S)ι for the action of ι on M(S)
for g(S) ≤ 2 is implicit in the proof of Corollary 3.15 in [22] where it is also proved that

the centralizer ZΓ̂±(S)(ι) coincides with the closure of ZΓ±(S)(ι) in Γ̂±(S). Here, we prefer
to give an alternative proof of these statements since the argument can be substantially
simplified using Corollary 3.5 in [21]:

Proposition 3.5. For g(S) ≤ 2, the fixed point set locus M(S)ι of an antiholomorphic

involution ι ∈ Γ±(S) < Γ̂±(S) is smooth, irreducible and contains M(S)ι as an open dense

subspace. The centralizer ZΓ̂±(S)(ι) coincides with the closure of ZΓ±(S)(ι) in Γ̂±(S).

Proof. For every torsion free characteristic level Γλ of Γ(S), let (M(S)λ, ι) be the real
complex manifold with equivariant fundamental group (cf. Section 3 in [12]) isomorphic to
Γλ · ⟨ι⟩. By Theorem 3.6 in [22], there is a natural bijection between the set of connected
components of the real locus of (M(S)λ, ι) and conjugacy classes of involutions in Γλ · ⟨ι⟩.
For g(S) ≤ 2, the latter is a good group and then, by Corollary 3.5 in [21], we conclude
that there is a bijective correspondence between the set of connected components of the

real locus of (M(S)λ, ι) and conjugacy classes of involutions in Γ̂λ · ⟨ι⟩. Passing to the

inverse limit over all such level structures, since ∩λ∈ΛΓ̂
λ · ⟨ι⟩ = ⟨ι⟩, it follows that the fixed

point set locus M(S)ι is connected, smooth (and so irreducible) and that the centralizer
ZΓ̂±(S)(ι) identifies with the covering transformation group of the cover from M(S)ι to the

connected component ofM(S)R associated to the conjugacy class of ι in Γ̂±(S).
The statements in the lemma about the fixed point set locus M(S)ι then follow from the

fact that this locus is the closure of M(S)ι in M(S). □

The closed boundary strata of M(S) are parameterized by the simplices of the procon-
gruence curve complex Č(S) and, for σ ∈ C(S) ⊂ Č(S), there holds ∂M(S)σ ∼= M(S ∖ σ),
where we denote by ∂M(S)σ the closed stratum of ∂M(S) = M(S)∖M(S) parameterized
by a simplex σ ∈ Č(S). From Proposition 3.2 and Proposition 3.5, it then follows:
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Proposition 3.6. For g(S) ≤ 2, the closed strata of the boundary of the fixed point locus
M(S)ι of codimension k + 1 are parameterized by the fixed point set Č(S)ιk, for all k ≥ 0.
Moreover, Č(S)ιk is the closure of the fixed point set C(S)ιk in the profinite set Č(S)k.

Proof. From the proof of Proposition 3.5, it follows that the fixed point locus M(S)ι is the
closure of the image of the fixed point locus T (S)ι in M(S) and that the fixed point locus
M(S)ι is the closure of the image of the fixed point locus T (S)ι in M(S). In particular,
the boundary ∂M(S)ι = M(S)ι ∖ M(S)ι is the closure of the boundary ∂T (S)ι in the
boundary ∂M(S) = M(S) ∖ M(S). By Proposition 3.2, both claims of the proposition
then follow. □

4. Proof of Theorem 1.1

4.1. Preliminary lemmas. Before we proceed to the proof of Theorem 1.1, we need to
prove first a series of lemmas. A subgroup of Γ̌±(S) is I-characteristic if it is preserved by
all elements of AutI(Γ̌±(S)).

Lemma 4.1. For all g(S) ≥ 0, PΓ̌(S) is an I-characteristic subgroup of PΓ̌±(S) and
PΓ̌±(S) is an I-characteristic subgroup of Γ̌±(S).

Proof. The pure mapping class group PΓ(S) is the subgroup of the mapping class group
Γ(S) generated by Dehn twists. Hence, PΓ̌(S) is an I-characteristic subgroup of both Γ̌(S)
and PΓ̌±(S). In order to prove that PΓ̌±(S) is an I-characteristic subgroup of Γ̌±(S), it is
enough to show that Γ̌(S) is an I-characteristic subgroup of Γ̌±(S).
It is then enough to show that Inn(Γ̌(S)) is a normal subgroup of AutI(Γ̌±(S)). This will

follow if we show that, for any essential simple closed curve γ on S, there is a character:

χγ : AutI(Γ̌±(S))→ Ẑ∗,

whose kernel contains Inn(Γ̌(S)) but not Inn(Γ̌±(S)).
There is a natural representation AutI(Γ̌±(S))→ Aut(Č(S)), which, by Theorem 5.5 in

[6], preserves topological types. Therefore, for any f ∈ AutI(Γ̌±(S)), there is a x ∈ Γ̌(S)

such that inn x ◦ f preserves the procyclic subgroup Îγ generated by the Dehn twist τγ. If
y ∈ Γ̌(S) is another such element, then xy−1 fixes γ and there holds inn(xy−1)(τγ) = τγ,

so that inn(xy−1) acts trivially on Îγ.
Therefore, assigning to f ∈ AutI(Γ̌±(S)) the automorphism induced by innx ◦ f on

the subgroup Îγ, defines a representation χγ : AutI(Γ̌±(S)) → Aut(̂Iγ) which contains
Inn(Γ̌(S)) in its kernel. On the other hand, for an element x of Γ±(S) which is not
orientation preserving, there holds χγ(innx)(τγ) = τ−1

γ , which implies kerχγ = Inn(Γ̌(S)).
□

From Lemma 4.1, it follows that the elements of AutI(PΓ̌±(S)) are compatible with the
augmentation map PΓ̌±(S)→ Z/2 and, in particular, preserve the set of antiholomorphic
involutions. Moreover, by Proposition 3.4, for g(S) ≤ 2, the sets of conjugacy classes of

antiholomorphic involutions in PΓ±(S) and PΓ̂±(S) can be identified. In particular, we
have:
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Lemma 4.2. For g(S) = 0, there is only one Γ̂(S)±-conjugacy class of antiholomorphic

involutions in PΓ̂(S)± on which AutI(PΓ̂(S)±) acts naturally.

Proof. Antiholomorphic involutions in PΓ(S)± do not swap the punctures of S. Therefore,
all the punctures lie in Fix(ι), which, in particular, is not empty. Since g(S) = 0, Fix(ι) is
also connected and separating. Hence, an antiholomorphic involution in PΓ(S)± is deter-
mined by the cyclic order of the punctures on Fix(ι), so that two of them are conjugated
by an element of Γ(S)±. The conclusion then follows from Proposition 3.4. □

Lemma 4.3. For g(S) = 0, the fixed point set C(S)ι0 of an antiholomorphic involution
ι ∈ PΓ(S)± is finite and consists of isotopy classes of simple closed curves on S which have
between them geometric intersection either 0 or 2.

Proof. The complement S∖Fix(ι) is the disjoint union of two unpunctured discs Let then
D′ and D′′ be closed subdiscs of S such that D′ ∩D′′ = Fix(ι). For a representative α of
{[α]} ∈ C(S)ι0 such that α = ι(α), the intersection α ∩D′ is a disjoint union of arcs with
boundary in Fix(ι). If α′ is one of such arcs, then α′∪ ι(α′) ⊂ α is a simple closed curve (so
that α′ ∪ ι(α′) = α), which crosses transversally Fix(ι) in the two boundary points of α′.
The isotopy class of α is then determined by the partition which α′ induces on the set of
punctures of S (which all lie on Fix(ι)). This implies the first statement of the proposition.
For {[α]} ̸= {[β]} ∈ C(S)ι0 such that β = ι(β), the simple closed curve β is the union

of the two arcs β′ = β ∩D′ and β′′ = β ∩D′′ and it is clear that the arcs α′ and β′ have
geometric intersection either 0 or 1. The second statement of the proposition then follows
as well. □

By Lemma 4.1, there are natural homomorphisms AutI(Γ̌±(S)) → AutI(PΓ̌±(S)) and
AutI(PΓ̌±(S))→ AutI(PΓ̌(S)). We have:

Lemma 4.4. The homomorphisms:

(i) AutI(Γ̌±(S))→ AutI(PΓ̌±(S)) and
(ii) AutI(PΓ̌±(S))→ AutI(PΓ̌(S)),

induced by restriction of automorphisms, are injective.

Proof. (i): The statement is trivial for n(S) ≤ 1 so that we can assume n(S) > 1. For
S = S1,2, we have that Γ̌±(S) = PΓ̌±(S) × ⟨υ⟩, where υ is the hyperelliptic involution of
Γ(S). This identity implies the stronger statement that AutI(Γ̌±(S)) = AutI(PΓ̌±(S)).
Thus, we can assume that the center Z(Γ̌±(S)) of Γ̌±(S) is trivial. Since the restric-

tion of the homomorphism AutI(Γ̌±(S)) → AutI(PΓ̌±(S)) to Inn(Γ̌±(S)) is injective, the
conclusion then follows from Lemma 3.3 in [6].

(ii): Wells’ exact sequence (cf. Theorem in [25]), applied to the short exact sequence
1 → PΓ̌(S) → PΓ̌±(S) → Z/2 → 1, implies that the kernel of the given homomorphism
is contained in the subgroup of Aut(PΓ̌±(S))PΓ̌(S) determined by the group of homomor-

phisms Hom(Z/2, Z(PΓ̌(S))). From the explicit description of this subgroup, it follows
that, even in the cases when Z(PΓ̌(S)) is not trivial, the intersection of the image of
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Hom(Z/2, Z(PΓ̌(S))) in Aut(PΓ̌±(S))PΓ̌(S) with AutI(PΓ̌±(S)) is trivial, which implies
item (ii) of the lemma. □

By Lemma 4.4, we then have:

Lemma 4.5. There is a chain of natural inclusions:

Inn(Γ̌±(S)) ⊆ AutI(Γ̌±(S)) ⊆ AutI(PΓ̌±(S)) ⊆ AutI(PΓ̌(S)).

4.2. Proof of Theorem 1.1. By Lemma 4.5, in order to prove Theorem 1.1, it is enough
to show that the images of Inn(Γ̌±(S)) and AutI(PΓ̌±(S)) in AutI(PΓ̌(S)) coincide. The
idea is to use Theorem 2.15. We need to consider separately three different cases.

4.3. Proof of Theorem 1.1 for g(S) = 0. By Lemma 4.2, after composing with an inner

automorphism of Γ̂(S)±, we can assume that a given element f ∈ AutI(PΓ̂(S)±) preserves
a fixed antiholomorphic involution ι ∈ PΓ(S)±. The latter has for fixed point set in the
surface S a separating simple closed curve containing all punctures of S.
By Lemma 4.3, the fixed point set C(S)ι0, for the action of ι on C(S)0, is finite and then,

by Proposition 3.6, identifies with the fixed point set Č(S)ι0, for the action of ι on Č(S)0.
Let {α, β} be a pair of ι-invariant simple closed curves on S which intersect precisely in

two points. An element f ∈ AutI(PΓ̂±(S)), such that f(ι) = ι, then preserves C(S)ι0 =
Č(S)ι0 and sends the pair {[α], [β]} of 0-simplices in C(S)ι0 to the pair {f([α]), f([β])} also
contained in C(S)ι0. Since f([α]) and f([β]) cannot have trivial geometric intersection,
otherwise f would not preserve the simplicial structure of Č(S), from Lemma 4.3, it follows
that f([α]) and f([β]) have geometric intersection 2.

We can then complete the two 0-simplices {[α]}, {[β]} ∈ C(S)ι0 to two (n(S)−4)-simplices
vα, vβ of C(S) whose sets of vertices coincide except for the elements [α] ∈ vα and [β] ∈ vβ.
In this way, we have defined an edge {vα, vβ} of the pants complex CP (S) ⊂ ČP (S) with
the property that {f(vα), f(vβ)} is also an edge of ČP (S). By Theorem 2.15, we conclude

that f ∈ Inn(Γ̂±(S)).

4.4. Proof of Theorem 1.1 for S = S1,2. By Lemma 2.16 and (ii) of Lemma 4.4,
there is a natural monomorphism AutI(PΓ̌±(S1,2)) ↪→ AutI(PΓ̌±(S0,5)) induced by re-
striction of automorphisms. Hence, by the case S = S0,5 treated above, we have that

AutI(PΓ̌±(S1,2)) ⊆ Inn(Γ̂±(S0,5)). This implies this case of the theorem, since, as in the
proof of the case S = S1,2 of Theorem 2.15, by Lemma 9.13 of [6], the inner automorphisms

of Γ̂±(S0,5) which normalize its subgroup PΓ̌±(S1,2) belong to Inn(PΓ̌±(S1,2)).

4.5. Proof of Theorem 1.1, for g(S) ≥ 1 and d(S) > 2. The hypotheses implies that,
for a nonseparating simple closed curve γ on S, we have d(S∖γ) > 1. We then proceed by
induction on the genus of S, where the base for the induction is provided by Section 4.3.

Given an element f ∈ AutI(PΓ̂±(S)), let us consider its action on Č(S). By Theorem 5.5

in [6], after possibly composing with an inner automorphism of PΓ̂(S), we may assume that

f ∈ AutI(PΓ̌(S))Îγ , where Îγ is the procyclic subgroup associated to some nonseparating

simple closed curve γ on S. In particular, the automorphism f preserves the star Star(γ)
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and, by Lemma 2.10, acts on the link Lk(γ) ∼= Č(Sγ) through its image in the group
AutI(PΓ̌±(Sγ). Thus, f preserves the vertex set of the subgraph Lγ of ČP (S), which
identifies with profinite set of (d(S) − 1)-simplices of Star(γ), and acts continuously on
this set through an element of AutI(PΓ̌±(Sγ). Since, by Lemma 2.8, Lγ

∼= ČP (Sγ), the
induction hypothesis implies that f also preserves the edge set of Lγ. By Theorem 2.15,

we then conclude that f ∈ Inn(Γ̂±(S)).

5. Proof of Theorem 1.3

By Theorem 1.1, in order to prove Theorem 1.3, we have to show that, for g(S) = 0,

there holds Aut(Γ̂±(S)) = AutI(Γ̂±(S)) and Aut(PΓ̂±(S)) = AutI(PΓ̂±(S)). For this, we

need to establish first that PΓ̂(S) is a characteristic subgroup of both PΓ̂±(S) and Γ̂±(S).
We have:

Lemma 5.1. For n ≥ 5, there are unique surjective homomorphisms Γ(S0,n) → Σn and
Γ±(S0,n)→ Σn, up to automorphisms of Σn.

Proof. Let G be a group which acts transitively on a set of n letters and is generated by
n − 1 elements satisfying the standard braid relations. By a classical result of Artin (cf.
Theorem 3 in [2] and its proof), for n ≥ 4, there is a unique epimorphism G → Σn, up
to automorphisms of Σn. This result applies, in particular, to the mapping class group
Γ(S0,n), from which, the first statement of the lemma follows.
By Lemma 6 in [2], a group G as above does not admit an epimorphism to the alternating

group An, for n ≥ 5. This implies that there is no epimorphism Γ(S0,n)→ An, for n ≥ 5.
Hence, an epimorphism Γ±(S0,n) → Σn restricts to an epimorphism Γ(S0,n) → Σn. From
the first part of the proof, it then follows that the kernel of the epimorphism Γ±(S0,n)→ Σn

contains the pure mapping class group PΓ(S0,n).
We now observe that the quotient Γ±(S0,n)/PΓ(S0,n) is isomorphic to the direct product

Σn × Z/2 which, for n ≥ 3, admits a unique epimorphism onto Σn, up to automorphisms
of the latter group. This proves the second claim of the lemma as well. □

We also have the following group-theoretic lemma (cf. Lemma 2.3 in [20]):

Lemma 5.2. Let G be a finitely generated group and V a finite index normal subgroup with
the property that all epimorphisms from G to the quotient group G/V have the same kernel

V . Then, the closure V̂ of V in the profinite completion Ĝ of G is an open characteristic
subgroup.

Proof. Since G is finitely generated, by a classical result of Nikolov and Segal, any epi-

morphism Ĝ → G/V is continuous and so restricts to an epimorphism G → G/V , which,

by our hypothesis, has kernel V . Hence, all epimorphisms from Ĝ to G/V have the same

kernel V̂ , which shows that V̂ is indeed a characteristic subgroup of Ĝ. □

We then have the following refinement of Proposition 4.1 (ii) in [20]:
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Proposition 5.3. For g(S) = 0, the profinite pure mapping class group PΓ̂(S) is a char-

acteristic subgroup of Γ̂(S), PΓ̂±(S) and Γ̂±(S).

Proof. The fact that PΓ̂(S) is characteristic in PΓ̂±(S) follows from the fact that PΓ̂(S) is

the only torsion free index 2 subgroup of PΓ̂±(S). For n(S) ≥ 5, the other assertions are
immediate consequences of Lemma 5.1 and Lemma 5.2. For n(S) = 4, we just observe that

PΓ̂(S) is the maximal normal free subgroup contained in all the groups in the statement
of the proposition. □

We can now prove the following lemma, which, as observed above, implies Theorem 1.3:

Lemma 5.4. For g(S) = 0 and n(S) ≥ 5, there holds Aut(Γ̂±(S)) = AutI(Γ̂±(S)) and

Aut(PΓ̂±(S)) = AutI(PΓ̂±(S)).

Proof. By Proposition 5.3, there are natural homomorphisms Aut(Γ̂±(S)) → Aut(PΓ̂(S))

and Aut(PΓ̂±(S))→ Aut(PΓ̂(S)) induced by restriction of automorphisms. The conclusion

then follows from the identity Aut(PΓ̂(S)) = AutI(PΓ̂(S)) (cf. Lemma 3.13 in [7] and
Corollary 2.8 in [11]). □
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no4 (2001), 659–682. 20

[13] N.V. Ivanov. Automorphisms of Teichmüller modular groups. In Topology and Geometry, Rohlin
Seminar 1984–1986. Lecture Notes in Math. 1346, Springer, Berlin (1988), 199–270. 1

[14] N.V. Ivanov. Automorphisms of complexes of curves and of Teichmüller spaces. Int. Math. Res. Not.
IMRN 14 (1997), 651–666. 1

[15] M. Korkmaz. Automorphisms of complexes of curves on punctured spheres and on punctured tori.
Topology and its Applications 95 (1999) 85–111. 1

https://arxiv.org/abs/2011.15075


26 M. BOGGI AND L. FUNAR

[16] P. Lochak, L. Schneps. A cohomological interpretation of the Grothendieck-Teichmüller group. Invent.
math. 127 (1997), 571–600. 4

[17] F. Luo. Automorphisms of the complex of curves. Topology 39 (2000), 283–298. 1, 18
[18] J.D. McCarthy. Automorphisms of surface mapping class groups: A recent theorem of N.Ivanov.

Invent. Math. 84 (1986), 49–71. 1
[19] D. Margalit. Automorphisms of the pants complex. Duke Math. J. 121 (2004), 457–479. 2, 10
[20] A. Minamide, H. Nakamura. The automorphism groups of the profinite braid groups. Amer. J. Math.

144 (5) (2022), 1159–1176. 16, 24
[21] A. Minasyan, P. Zalesskii. Virtually compact special hyperbolic groups are conjugacy separable. Com-

ment. Math. Helv. 91 (2016), 609–627. 20
[22] S. Mochizuki. Topics Surrounding the Anabelian Geometry of Hyperbolic Curves. In: Galois groups

and fundamental groups. Vol. 41. Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, Cambridge
(2003), 119–165. 19, 20

[23] J.J. Rotman. An Introduction to the Theory of Groups. Graduate texts in mathematics, vol. 148,
4th ed., Springer-Verlag (1995). 16

[24] F. Schaffhauser. Lectures on Klein Surfaces and Their Fundamental Group. In: L. Alvarez Consul, J.
Andersen, I. Mundet i Riera (eds) Geometry and Quantization of Moduli Spaces. Advanced Courses
in Mathematics - CRM Barcelona. Birkhäuser (2016), 67–108. 19
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CS 40700, 38058 Grenoble, France

Email address: louis.funar@univ-grenoble-alpes.fr

https://arxiv.org/pdf/0801.0175.pdf

