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Abstract We consider subgroups of the braid groups which are generated by nth powers of
the standard generators and prove that any infinite intersection (with even n) is trivial. This is
motivated by some conjectures of Squier concerning the kernels of Burau’s representations
of the braid groups at roots of unity. Furthermore, we show that the image of the braid group
on 3 strands by these representations is either a finite group, for a few roots of unity, or a
finite extension of a triangle group, by using geometric methods.

Keywords Mapping class group · Dehn twist · Temperley–Lieb algebra · Triangle group ·
Braid group · Burau representation

Mathematics Subject Classification (2000) 57 M 07 · 20 F 36 · 20 F 38 · 57 N 05

1 Introduction and statements

The first part of the present paper is devoted to the study of groups related to the kernels of
Burau’s representations of the braid groups at roots of unity. We consider two conjectures
stated by Squier in [26] concerning these kernels. These conjectures were part of an approach
to the faithfulness of Burau’s representations and it seems that they were overlooked over
the years because of the counterexamples found by Moody, Long, Paton and Bigelow (see
[4,18,21]) for braids on k ≥ 5 strands.

Specifically, let Bk denote the braid group on k strands with the standard generators
g1, g2, . . . , gk−1. Squier was interested to compare the kernel of Burau’s representation βq
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at a nth root of unity q with the subgroup Bk[n] of Bk which is the normal closure of the
subgroup generated by gn

j , 1 ≤ j ≤ k − 1. Our first result answers a strengthened form of
the conjecture C2 in [26]:

Theorem 1.1 The intersection of Bk[2n] over any infinite set of integers n is trivial.

Our method does not give any information about the intersection of Bk[n] with odd n.
The proof uses the asymptotic faithfulness of quantum representations of mapping class

groups, due to Andersen [1] and independently to Freedman, Walker and Wang [12]. The
other conjecture stated in [26] is that Bk[n] is the kernel of Burau’s representation. This is
false because Burau’s representation at a generic parameter is not faithful for k ≥ 5 (see
Proposition 2.4).

The main body of the paper is devoted to the complete description of the image of Burau’s
representation of B3. We can state our main result in this direction as follows:

Theorem 1.2 Assume that q is a primitive nth root of unity, n ≥ 7 and g1, g2 are the standard
generators of B3. Then β−q(B3) has a presentation with generators g1, g2 and relations:

1. The case n = 2k and k is odd:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k
1 = g2k

2 = (g2
1 g2

2)k = 1.

2. The case n = 2k and k is even:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k
1 = g2k

2 = (g2
1 g2

2)2k = 1.

3. The case n = 2k + 1:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k+1
1 = g2k+1

2 = (g2
1 g2

2)2(2k+1) = 1.

The remaining cases when n ∈ {1, 2, 3, 4, 5, 6} are described in Propositions 3.1 and 3.2.
A similar result was announced independently by Masbaum in [19] in a slightly different

context. Consider the 2-dimensional SO(3)-quantum representations of the mapping class
group of the punctured torus at a primitive 2pth root of unity for odd p, with the puncture
labeled by the color c = p−1

2 − 2. Then the result announced by Masbaum is that the
kernel of this representation is normally generated by the pth powers of the Dehn twists.
However, these quantum representations are obtained from Burau’s representations of B3 by
quotienting by the (finite) image of the center, so the two results above are equivalent. The
same arguments apply to the quantum representations of the mapping class group M0,4 of
the 4-holed sphere. Notice that 2-dimensional representations of B3 are equivalent either to
abelian representations, to some not completely reducible representations, or else to Burau’s
representation.

Another consequence of this theorem is the fact that the image of a pseudo-Anosov map-
ping class in the mapping class group of the one holed torus by the quantum representations
considered above is of infinite order for p large enough. This solves a particular case of a
conjecture formulated by Andersen, Masbaum and Ueno in [2]; a proof of the conjecture in
this case was announced by Masbaum in [2], Remark 5.9 (see also [14], p.4). We won’t give
further details since this is also a consequence of a stronger result recently obtained in [25].

The proof of this algebraic statement has a strong geometric flavor. A key ingredient is
Squier’s theorem concerning the unitarizability of Burau’s representation (see [26]). The
non-degenerate Hermitian form defined by Squier is invariant under the braid group, but
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it is not always positive definite. First, we find whether it is positive definite, so that the
representation can be conjugate into U (2). On the other hand, when this Hermitian form is
not positive definite, the representation can be pseudo-unitarized, namely it can be (rescaled
and) conjugated into U (1, 1).

We will then focus on the pseudo-unitary case. We show that the image of some free
subgroup of the pure braid group PB3 on three strands by Burau’s representation is a subgroup
of PU (1, 1) generated by three rotations in the hyperbolic plane. Here, the hyperbolic plane
is identified to the unit disk of the complex projective line CP1. Geometric arguments due to
Knapp, Mostow and Deraux (see [11,16,22]) show that the image of PB3 is a discrete triangle
group and thus we can give an explicit presentation for it. Then an easy argument permits
to describe the image of the slightly larger group B3. In particular, we obtain a description
of the kernel of Burau’s representation of B3 at roots of unity, which will give a proof of
Theorem 1.2.

In a sequel to the present article we will give some applications of these results to the study
of the images of the mapping class groups by quantum representations (see [13]). The present
paper is not only purely technical preparation for the second one. In fact, finding the image
of the Burau representation seems to be a difficult problem, which is interesting by itself (see
e.g. [6,7,20]).

2 Braid group representations

2.1 Jones and Burau’s representations at roots of unity

In this section we recall the definition of the Jones and Burau’s representations of the braid
groups and show that they are equivalent except at primitive roots of unity of order 1 and 3.
Moreover, we discuss when they are unitarizable or pseudo-unitarizable. We start with the
following classical definition.

Definition 2.1 The Temperley–Lieb algebra Aτ,k , for τ ∈ C
∗ and k ≥ 2 is the C-algebra

generated by the projectors 1, e1, . . . , ek−1 satisfying the relations:

e2
j = e j , j ∈ {1, 2, . . . , k},

ei e j = e j ei , if |i − j | ≥ 2,

e j e j+1e j = e j e j−1e j = τe j , j ∈ {1, 2, . . . , k}.
There is a natural C

∗-algebra structure on Aτ,k , obtained by setting e∗
j = e j , j ∈

{1, 2, . . . , k}.
According to Wenzl [27] there exist such unitary projectors e j , 1 ≤ j ≤ k − 1, for

any natural number k ≥ 2 if and only if τ−1 ≥ 4 or τ−1 = 4 cos2
(

π
n

)
, for some natural

number n ≥ 3. However, for given k one could find projectors e1, . . . , ek−1 as above if
τ−1 = 4 cos2 (α), where the angle α belongs to some specific arc of the unit circle.

Another definition of the Temperley–Lieb algebra (which is equivalent to the former one,
at least when τ verifies the previous conditions) is as a quotient of the Hecke algebra:

Definition 2.2 The Temperley–Lieb algebra Ak(q) is the quotient of the group algebra CBk

of the braid group Bk by the relations:

(gi − q)(gi + 1) = 0,

1 + gi + gi+1 + gi gi+1 + gi+1gi + gi gi+1gi = 0,
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where gi are the standard generators of the braid group Bk . The quotient obtained by imposing
only the first relation above is called the Hecke algebra Hk(q).

It is known that Ak(q) is isomorphic to Aτ,k where τ−1 = 2 + q + q−1, and in particular,
when q is the root of unity q = exp

( 2π i
n

)
. We suppose from now on that τ−1 = 2+q +q−1.

We will analyze the case where k = 3 and q is a root of unity, and more generally for
|q| = 1. Then Aτ,3 and A3(q) are nontrivial and well-defined for all q with |q| = 1 belonging
to the arc of circle joining exp

(− 2π i
3

)
to exp

( 2π i
3

)
going in counterclockwise direction. We

will recover this result below in a slightly different context.
Furthermore, Aτ,3 is semi-simple and splits as M2(C) ⊕ C, where M2(C) denotes the

simple C-algebra of 2-by-2 matrices. There is a natural representation of B3 into Aτ,3 which
sends gi into qei − (1 − ei ). This representation is known to be unitarizable when τ−1 ≥ 4
(see [15]).

Proposition 2.1 Let q = exp(iα).

1. Assume that q is not a primitive root of unity of order 2 or 3. Then every completely
reducible representation ρ of B3 into GL(2, C) which factors through A3(q) is equivalent
to some representation ρq,C defined by:

ρq,C (g1) =
(

q 0
0 −1

)
, ρq,C (g2) =

( − 1
q+1 −(q + 1)C

−εq(q + 1)Cr2 q2

q+1

)

,

where C ∈ C − {0}, r2 = r(q, C)2 = |C |−2|q + 1|−4|q + q + 1| and εq is the sign of
the real number q + q + 1, namely:

εq =
{

1, if α ∈ (− 2π
3 , 2π

3 );
−1, if α ∈ ( 2π

3 , π) ∪ (π, 4π
3 ).

2. Let q be a primitive root of unity of order 2 or 3. Then completely reducible representations
ρ of B3 into GL(2, C) which factor through A3(q) are abelian with finite image and
equivalent to:

ρq,0(g1) = ρq,0(g2) =
(

q 0
0 −1

)
.

We may extend the definition of εq , r(q, C) to this exceptional case by setting εq = 1,
if α ∈ {− 2π

3 , 2π
3

}
, εq = −1, if α = π and r(q, 0)2 = 1. In this case ρq,0 is both

unitarizable and pseudo-unitarizable.
3. If α ∈ (− 2π

3 , 2π
3

)
, then the representation ρq,C is unitarizable if r(q, C)2 = 1.

4. If α ∈ ( 2π
3 , 4π

3

)
, then the representation ρq,C is pseudo-unitarizable if r(q, C)2 = 1.

Proof We can choose ρ(g1) =
(

q 0
0 −1

)
since completely reducible 2-dimensional repre-

sentations are diagonalizable and the eigenvalues are prescribed. Since g2 is conjugate to g1

in B3 we have ρ(g2) = Uρ(g1)U−1, where, without loss of generality, we can suppose that
U ∈ SL(2, C). We discard the case q = −1 from now on when the representation should be
abelian, as ρ(g1) is scalar.

SetU =
(

a b
c d

)
, where ad−bc = 1. Then we haveρ(g2)=

(
qad + bc −(q + 1)ab
(q + 1)cd −qbc − ad

)
.

Therefore ρ factors through A3(q), namely the second identity of Definition 2.2 is satisfied,
if and only if:

qad + bc = − 1

q + 1
.
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If 1 + q + q2 �= 0, we obtain the solutions: d = q
(q+1)2a

, and c = − q2+q+1
(q+1)2b

. This implies
that:

ρ(g2) =
(− 1

q+1 −(q + 1)C

− (q2+q+1)q
(q+1)3C

q2

q+1

)

,

which coincides with the matrix ρq,C (g2) in the statement of Proposition 2.1, where C = ab

and r2 = r(q, C)2 = |q+q+1|
|q+1|4|C |2 .

If q is a primitive root of unity of order 3, then we find d = q
(q+1)2a

and either b = 0 and
c arbitrary or c = 0 and b arbitrary. But the representation ρ is completely reducible only
when b = c = 0 and this gives the second claim of the Proposition 2.1.

We re-scale the representation ρq,C so that it takes values in SL(2, C). This amounts to
replace ρq,C (g j ) by ρ̃q,C (g j ) = λρ(g j ), where λ satisfies λ2q = −1. Then the condition

r2 = 1 is equivalent to ρ̃q,C (g2) =
(

u v

−εv u

)
, where |u|2 + ε|v|2 = 1. In this case

the representation ρ̃q,C takes values in U (2), when ε = 1 and in U (1, 1), when ε = −1
respectively. 	

Remark 2.1 Notice that representations associated to the same q, |C |2 are pairwise conjugate.

The representation ρq,C of B3 that arises as above and for which the parameter C satisfies
r(q, C)2 = 1 will be called the Jones representations of B3 at q . By the previous remark the
conjugacy class of ρq,C is uniquely determined by the value of q . We omit the subscript C
in the sequel when the choice of C is not relevant.

Proposition 2.2 Let ρ̃ : B3 → SU (2) be a unitary Jones representation at q = exp(iα),
for α ∈ (− 2π

3 , 2π
3 ). Let Q : SU (2) → SO(3) be the standard double covering map. Then

Q ◦ ρ̃(g1) and Q ◦ ρ̃(g2) are two rotations of angle π +α, whose axes form an angle θ which
is given by the formula:

cos θ = cos α

1 + cos α
·

Proof The set of anti-Hermitian 2-by-2 matrices, namely the matrices A=
(

w+i x y + i z
−y+i z w−i x

)

with real w, x, y, z, is identified with the space H of quaternions w+ i x + j y +kz. Under this
identification SU (2) corresponds to the sphere consisting of the unit quaternions. In particu-
lar, any element of SU (2) acts by conjugacy on H. Let R

3 ⊂ H be the vector subspace given
by the equation w = 0. Then R

3 is SU (2)-conjugacy invariant and the linear transformation
induced by A ∈ SU (2) on R

3 is the orthogonal matrix Q(A) ∈ SO(3).
A direct computation shows that Q(ρ̃(g1)) is the rotation of angle π + α around the axis

i ∈ R
3 in the space of imaginary quaternions. Further Q(ρ̃(g2)) is also a rotation of angle

π + α since it is conjugate to Q(ρ̃(g1)). As the trace of a rotation of angle ϕ is 1 + 2 cos ϕ

we find the value of θ as claimed. We omit the details. 	

Remark 2.2 In [24] the authors consider the structure of groups generated by two rotations
of finite order for which axes form an angle which is an integral part of π . Their result is that
there are only few new relations. However, the previous Proposition shows that we cannot
apply these results to our situation. It seems quite hard just to find those α for which the axes
verify the condition from [24].
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Definition 2.3 The (reduced) Burau representation β : Bk → GL(k − 1, Z[q, q−1]), for
k ≥ 3, is defined on the standard generators by:

βq(g1) =
(−q 1

0 1

)
⊕ 1k−3,

βq(g j ) = 1 j−2 ⊕
⎛

⎝
1 0 0
q −q 1
0 0 1

⎞

⎠ ⊕ 1k− j−2, for 2 ≤ j ≤ k − 2,

βq(gk−1) = 1k−3 ⊕
(

1 0
q −q

)
.

Jones already observed in [15] that the following holds true for the principal roots of unity,
i.e., for the roots of unity of the form exp

( 2π i
n

)
, n ∈ Z:

Proposition 2.3 Burau’s representation of B3 at q is conjugate to the tensor product of the
parity representation and the Jones representation at q, for all q which are not primitive
roots of unity of order 2 or 3.

Proof Recall that the parity representation σ : B3 → {−1, 1} ⊂ C
∗ is given by σ(g j ) = −1.

Burau’s representation for n = 3 is given by

βq(g1) =
(−q 1

0 1

)
, βq(g2) =

(
1 0
q −q

)
.

Take then V =
(

a 1
(q+1)a

0 1
a

)

, for q �= −1, where a is given by (q + 1)3Ca2 = 1 + q + q2

and C �= 0 is chosen such that ρq,C is unitarizable, namely |C |2 = |q + 1|−4|1 + q + q|.
One verifies easily that (σ ⊗ ρq,C )(g j ) = V −1βq(g j )V . 	

Remark 2.3 The definition of Aτ,3 in terms of orthogonal projections has a unitary flavor
and thus it works properly only when Burau’s representation is unitarizable, namely only for
those q = exp(iα), where α ∈ (− 2π

3 , 2π
3 ).

2.2 Two conjectures of Squier and proof of Theorem 1.1

This section is devoted to the study of the kernels of the Jones and Burau’s representations
at roots of unity. Our motivation comes from the following conjectures of Squier in [26]:

Conjecture 2.1 (Squier) The kernel of Burau’s representation β−q for a primitive nth root
of unity q is the normal closure Bk[n] of the subgroup of Bk generated by gn

j , 1 ≤ j ≤ k −1.

The second conjecture of Squier, which is related to the former one, is:

Conjecture 2.2 (Squier) The intersection of Bk[n] over all n is trivial.

In order to prove Theorem 1.1, which shows that a stronger version of Conjecture 2.2
holds we will first need a number of definitions and lemmas. Let Dk be a disk with k holes.
The (pure) mapping class group M(Dk) is the group of framed pure braids P̃ Bk and fits into
the exact sequence:

1 → Z
k → P̃ Bk → P Bk → 1

where Z
k is generated by the Dehn twists along the boundary curves.

123

Author's personal copy



Geom Dedicata (2014) 169:145–163 151

The extended mapping class group M∗(Dk) is the group of mapping classes of home-
omorphisms of the disk with k holes that fix point-wise the boundary of the disk but are
allowed to permute the remaining boundary components, which are suitably parameterized.
Thus M∗(Dk) is the group of framed braids on k strands and we have then the exact sequence:

1 → Z
k → M∗(Dk) → Bk → 1.

Since the unit tangent bundle has a section the exact sequence above has a non-canonical
splitting, i.e., there exists a section s : Bk ↪→ M∗(Dk), which we fix once for all. The
restriction of s to the subgroup PBk yields a section PBk ↪→ P̃Bk . Let g1, . . . , gk−1 denote
the standard generators of Bk .

Definition 2.4 Let n be a positive integer. The subgroup Bk{n} of Bk is the normal closure
of the subgroup generated by the elements:

g2n
1 , (g1g2)

3n, (g1g2g3)
4n, . . . , (g1g2 . . . gk−2gk−1)

kn .

Observe that Bk[2n] ⊂ Bk{n}. In fact Bk[2n] is the normal closure of the subgroup of Bk

generated by the element g2n
1 , since the standard generators g j are conjugate.

Definition 2.5 For any compact orientable surface 
 (possibly with boundary) we set
M(
)[n] for the normal subgroup of M(
) generated by the nth powers of Dehn twists.

Lemma 2.1 We have s(Bk{n}) ⊂ M(Dk)[n].
Proof Every element of the given set of normal generators of Bk{n} is a pure braid and
hence Bk{n} ⊂ P Bk . Furthermore, let us observe that δ j = (g1g2 · · · g j−1g j )

j+1, for j =
1, 2, . . . , k − 1, is a Dehn twist along a curve encircling the first j + 1 punctures of the
k-punctured disk. Thus Bk{n} is normally generated by some nth powers of Dehn twists and
thus it is contained in the normal closure in Bk of the subgroup generated by the nth powers
of all Dehn twists.

Conversely, let γ be an embedded curve in the k-punctured disk which encircles j +1 ≥ 2
punctures. Then the (right) Dehn twist Tγ along the curve γ is conjugate in Bk to δ j by means
of the class of a homeomorphism of the k-punctured disk sending γ into the curve encircling
the first j + 1 punctures. Thus Bk{n} contains the subgroup generated by the nth powers
of Dehn twists on the k-punctured disk. The later is a normal subgroup of Bk and hence it
coincides with its normal closure. Thus Bk{n} is the subgroup generated by the nth powers
of all Dehn twists on the k-punctured disk.

The lift of a Dehn twist Tγ ∈ PBk into the mapping class group M(Dk) of the k-holed
disk is of the form s(Tγ ) = Tγ

∏
i T εi

ci , where εi ∈ Z and Tci are Dehn twists along boundary
components of Dk . Therefore s(T k

γ ) ∈ M(Dk)[k]. This proves the claim. 	

Remark 2.4 In a similar way we can identify Bk[2n] with the subgroup of Bk generated by
Dehn twists along curves encircling precisely 2 punctures.

The main result of this section is the following one which implies immediately Theorem
1.1 in the Introduction:

Theorem 2.1 The intersection of Bk{n} over an infinite set of integers n is trivial.

Before to proceed we need some preliminaries concerning quantum representations. Recall
that in [5] the authors defined the TQFT functor Vp , for every p ≥ 3 and a primitive root of
unity Ap . These TQFT should correspond to the so-called SU(2)-TQFT, for even p and to
the SO(3)-TQFT, for odd p (see also [17] for another SO(3)-TQFT).
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Definition 2.6 Let p ∈ Z+, p ≥ 3, such that p �≡ 2(mod 4). The quantum representation
ρp is the projective representation of the mapping class group associated to the TQFT V p

2
for even p and Vp for odd p, respectively. This amounts to saying that Ap is a primitive root
of unity of order p, when p is even, and of order 2p, otherwise.

Consider now the projective quantum representations ρp of Mk+1 from Definition 2.6.
According to [1,12], for any infinite set of even integers A we have ∩p∈A ker ρp = 1. This
statement is usually called the asymptotic faithfulness of quantum SU(2)-representations.
However, the proof given in [12] for the the SU(2)-TQFT extends without any essential
modification to the SO(3)-TQFTs Vp defined in [5]. Therefore the asymptotic faithfulness
condition ∩p∈A ker ρp = 1, holds now for any infinite set of integers A, not necessarily
consisting of even numbers. Recall also that ρp was defined in Definition 2.6 only when
p �≡ 2(mod 4).

The eigenvalues of a Dehn twist in the TQFT Vp i.e., the entries of the diagonal T -matrix
are of the form μl = (−Ap)

l(l+2), where l belongs to the set of admissible colors (see [5],
4.11). The set of admissible colors in the theory V p

2
is {0, 1, 2, . . . ,

p
2 − 2}, in the theory

V p
2

for p ≡ 0(mod 4) and {0, 2, 4, . . . , p − 3} in the theory Vp , for odd p, respectively.
Therefore the order of the image of a Dehn twist by ρp divides p. This divisibility property
is the reason for defining ρp for even p as being associated to the TQFT V p

2
instead of Vp .

Proof of Theorem 1.1 When k = 2, the claim holds trivially. Assume henceforth that k ≥ 3.
We embed Dk into the closed orientable surface 
k+1 of genus k + 1 by gluing a one-holed
torus along each boundary component. Let Mk+1 denote the mapping class group of 
k+1.
According to [23] the homomorphism i : M(Dk) → Mk+1 induced by the inclusion of
surfaces is injective.

We have obviously i(M(Dk)[n]) ⊂ Mk+1[n] and so Lemma 2.1 implies that i(s(Bk

{n})) ⊂ Mk+1[n].
Therefore, Mk+1[p] ⊂ ker ρp , for any p. Then the asymptotic faithfulness of quantum

SU(2) and SO(3)-representations and the injectivity of i ◦ s imply that ∩p∈A Bk{p} = 1, for
any infinite set A. 	

Remark 2.5 The weaker statement that∩n∈Z−{0} Bk[n] = 1 can also be shown by means of the
residual finiteness of the braid group. This was independently observed by Ivan Marin. Con-
sider a residually finite group G having a finite system of generators S. Let G[n] be the normal
closure of the subgroup of G generated by sn , with s ∈ S. We claim that ∩n∈Z−{0}G[n] = 1.
In fact, suppose that there exists 1 �= a ∈ ∩n∈Z−{0}G[n]. By the residual finiteness of G there
exists some finite group F and a morphism f : G → F with f (a) �= 1. Now f (s)n = 1,
for every s ∈ S, where n is the order of the finite group F . This shows that f factors through
G/G[n], which implies that f (a) = 1, contradicting our assumption. This proves the claim.
In particular, this implies that

∩n∈Z−{0} Bk[n] = ∩n∈Z−{0} Bk{n} = 1, ∩n∈Z−{0}Mk[n] = 1.

However, it seems that the proof of the stronger claim of Theorem 2.1 uses in an essential
way the asymptotic faithfulness of the quantum representations.

Proposition 2.4 Then Conjecture 2.1 for roots of unity q of even order and given k ≥ 5 is
false for all but finitely many q.

Proof One knows by results of Bigelow [4], Moody [21], Long and Paton [18] that for
k ≥ 5 the (generic i.e., for a formal indeterminate q) Burau representation β into GL(k −
1, Z[q, q−1]) is not faithful. Let a ∈ Bk be such a non-trivial element in the kernel of β.

123

Author's personal copy



Geom Dedicata (2014) 169:145–163 153

Suppose that Conjecture 2.1 is true for infinitely many primitive roots of unity q of even
order. Then a should belong to the intersection of kernels of all βq , over all roots of unity q .

By Theorem 1.1 we have ∩∞
n=2 Bk[2n] = 1. If ker βq = Bk[2n] for infinitely many roots

of unity q of even order 2n, it follows that a ∈ ∩∞
n=2 Bk[2n] = 1, which is a contradiction. 	


Remark 2.6 The TQFT are unitary, namely the representationsρp are unitary representations,
if the choice of the primitive roots of unity Ap is the following one:

Ap =
⎧
⎨

⎩

− exp
(

2π i
p

)
, if p ≡ 0(mod 4);

exp
(

(p2+1)π i
2p

)
, if p ≡ 1(mod 2).

However, the choice of Ap does not have any impact on the proof of the Theorem. Although
in the proof of the asymptotic faithfulness given in [12] one considers the unitary TQFT, the
proof works as well for any other primitive roots of unity, by using a Galois conjugacy.

3 The image of Burau’s representation of B3 at roots of unity

3.1 Finite and exceptional quotients of B3

The aim of this section is to understand the image of Burau’s representation β−q(B3) at roots
of unity of small order and, in particular, to find an explicit presentation of it. Notice that we
will consider the representation at the root −q , instead of q , for reasons that will appear later.

If one is interested to know whether β−q(B3) is discrete one should first analyze the
case when the image can be conjugated into U (2), and then re-scale it into SU (2). There
the discreteness is equivalent to the finiteness of the image. The finiteness of the Jones
representation of B3 was completely characterized in [15]. Jones studied the case where
the roots of unity −q have the form −q = exp

( 2π i
k

)
, but the Galois conjugation yields

isomorphic groups so that the discussion in [15] is complete. The only cases where the image
of the Jones representation of B3 at −q is finite is when −q is a primitive root of unity of order
1,2,3,4,6 or 10. Moreover, Burau’s representation is equivalent to the Jones representation
only when the root of unity is neither −1 nor a primitive third root of unity. These excluded
cases should be treated separately. For the sake of completeness we sketch the proofs below.

Proposition 3.1 Let q be a primitive root of unity of order n ∈ {2, 3, 4, 5}. Then β−q(B3) is
a finite group with the group presentation:

〈g1, g2 | g1g2g1 = g2g1g2, gn
1 = gn

2 = 1〉.
Proof Set Bk(n) = Bk/Bk[n]. Then Burau’s representation β−q factors through B3(n) when
q is a primitive root of unity of order n.

Coxeter gave in [8] the exhaustive list of the groups Bk(n) which are finite, together with
their respective description (see also [9,10]). The finite ones are those for which (k − 2)

(n − 2) < 4. Namely, when k = 3, there is the following list:

1. B3(2) is the symmetric group S3;
2. B3(3) is isomorphic to SL(2, Z/3Z) (or the binary tetrahedral group �(2, 3, 3), see Sect.

3.3 for definitions) and has order 24;
3. B3(4) is isomorphic to the triangle group �(2, 3, 4) and has order 96;
4. B3(5) is isomorphic to GL(2, Z/5Z) and has order 600.
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Set N (n) ⊂ B3(n) for the group generated by the image of (g1g2)
3, which is a generator

of the center of B3. By a direct computation we show that β−q((g1g2)
3) = −q31 is a

scalar matrix and thus β−q induces a well-defined homomorphism β̃−q : B3(n)/N (n) →
PGL(2, C). Furthermore, we have the following commutative diagram:

1 → N (n) → B3(n) → B3(n)/N (n) → 1
↓ β−q ↓ β̃−q ↓

1 → C
∗ → GL(2, C) → PGL(2, C) → 1

Further, one verifies that β−q((g1g2)
3) = −q31 has order o(n), where o(2) = 1, o(3) =

2, o(4) = 4, o(5) = 10. Since the order of N (n) is also o(n) it follows that the restriction of
β−q at N (n) is injective.

From the previously cited results of Coxeter we derive that:

B3(n)/N (n) =

⎧
⎪⎪⎨

⎪⎪⎩

S3, if n = 2;
A4, if n = 3;
S4, if n = 4;
A5, if n = 5.

where Sm and Am denote the symmetric and the alternating group on m elements, respectively.
A direct inspection shows that the image of β̃−q is non-abelian because β̃−q(g1g2) �=

β̃−q(g2g1) as elements of PGL(2, C). The groups S3, A4 and A5 have only abelian proper
quotients and hence β̃−q should be injective for n ∈ {2, 3, 5}. When n = 4 the element
β̃−q(g1) has order 4 in PGL(2, C) and hence the image of β̃−q cannot be S3. Since S4 has
only S3 and its abelian quotients as proper quotients it follows that β̃−q is also injective when
n = 4.

Alternatively, we can use directly the computations made by Jones in [15]. This implies
that β−q is injective as well and, in particular, β−q(B3) has the given presentation, establishing
the claim. 	


The two excluded cases which have to be treated separately are as follows:

Proposition 3.2 1. If q = 1, then β−q(B3) is the subgroup SL(2, Z) of GL(2, C) with the
presentation:

〈g1, g2 | g1g2g1 = g2g1g2, (g1g2)
6 = 1〉.

2. If q is a primitive 6-th root of unity, then the representation β−q of B3 is not completely
reducible and its image β−q(B3) has the presentation:

〈g1, g2 | g1g2g1 = g2g1g2, g6
1 = 1, g−2

1 g2 = g2g2
1〉.

Proof The group β−1(B3) is generated by the images of the generators, namely

(
1 1
0 1

)
and

(
1 0

−1 1

)
, and thus it coincides with SL(2, Z) and the presentation follows.

Let q be a primitive 6th root of unity, so that t = −q is a primitive third root of unity. Let

V =
(−t 0

1 1

)
. We denote by � the subgroup V −1ρt (B3)V of GL(2, C). Then the matrices

hi = V −1βt (gi )V are both upper triangular, namely:

h1 =
(

1 −t2

0 −t

)
, h2 =

(
1 0
0 −t

)
.
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We have therefore:

h1h−1
2 =

(
1 t
0 1

)
, h−1

2 h1 =
(

1 t + 1
0 1

)
, h2h−1

1 h−1
2 h1 =

(
1 1
0 1

)
.

Since the diagonal of the generators hi is (1,−t) the group � is contained in the group of
matrices:

�̃ =
{(

1 r + st
0 (−t)m

)
, m ∈ Z/6Z, r, s ∈ Z

}
⊂ GL(2, C).

Any matrix in �̃ can be written as a product

hm
2 (h1h−1

2 )s(h2h−1
1 h−1

2 h1)
r ,

such that � coincides with �̃.
Observe now that the map p : � → Z/6Z defined by:

p

(
1 r + st
0 (−t)m

)
= m ∈ Z/6Z

is a well-defined homomorphism. Then we obtain the exact sequence:

1 → Z
2 → � → Z/6Z → 1

where the inclusion i : Z
2 → � is given by i(1, 0) = h1h−1

2 and i(0, 1) = h2h−1
1 h−1

2 h1.
Thus � is a polycyclic group. Denote by u = h1h−1

2 and v = h2h−1
1 h−1

2 h1 the two generators
of the kernel of p. We obtain an explicit presentation of � out of one of Z

2 by adding the
generator h2 of order 6 whose image generates p(�) and the relations which describe its
action by conjugacy on Z

2. Specifically, we have:

� = 〈u, v, h2|uv = vu, h6
2 = 1, h2uh−1

2 = v−1, h2vh−1
2 = uv〉.

Now, in order to describe � as a quotient of B3 we add the redundant generator h1 and the braid
relation and express u, v in terms of the hi . The conjugacy relations are now consequences
of the braid relation while the commutativity relation is equivalent to h2h2

1 = h−2
1 h2. This

gives the desired presentation for the image β−q(B3). 	

3.2 Discrete subgroups of PU (1, 1)

The aim of this section is to find whether the image of Burau’s representation β−q is a discrete
subgroup in PU (1, 1). The main result of this section is the identification of the image of
a free subgroup of P B3 by Burau’s representation with a group generated by two rotations.
Then some results of Knapp, Mostow and Deraux [11,16,22] give necessary and sufficient
conditions for such a subgroup to be discrete.

Instead of an explicit argument we could use below the fact that two irreducible subgroups
G and G ′ of SL(2, C) generated by two matrices A, B and A′, B ′ respectively are conjugate
(by a matrix which conjugates the respective generators) if and only if tr(A) = tr(A′),
tr(B) = tr(B ′) and tr(AB) = tr(A′ B ′), where tr denotes the trace.

Let us denote by A = β−q(g2
1) and B = β−q(g2

2) and C = β−q((g1g2)
3). As is well-

known P B3 is isomorphic to the direct product F2 × Z, where F2 is freely generated by g2
1

and g2
2 and the factor Z is the center of B3 generated by (g1g2)

3.
It is simple to check that:

A =
(

q2 1 + q
0 1

)
, B =

(
1 0

−q − q2 q2

)
, C =

(−q3 0
0 −q3

)
.
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Recall that PSL(2, Z) is the quotient of B3 by its center. Since C is a scalar matrix
the homomorphism β−q : B3 → GL(2, C) factors to a homomorphism PSL(2, Z) →
PGL(2, C).

We will be concerned below with the subgroup �−q of PGL(2, C) generated by the
images of A and B in PGL(2, C). When β−q is unitarizable, the group �−q can be viewed
as a subgroup of the pseudo-unitary group PU(1, 1). Specifically, consider the action of �−q

on the projective line CP1. Let V be the matrix in the proof of Proposition 2.3, namely:

V =
(

a 1
(1−q)a

0 1
a

)

, for −q �= −1, where a is given by (1 − q)3Ca2 = 1 − q + q2 and

C �= 0 is chosen such that ρ−q,C is unitarizable. Denote the conjugate V −1ZV by Z . We
have then:

A =
(

q2 0
0 1

)
, B =

⎛

⎝
1+q2

1−q
1+q3

(1−q)2a2

−q(1 + q)a2 − q+q3

1−q

⎞

⎠ , AB =
⎛

⎝
q2−q4

1−q
q2+q5

(1−q)2a2

−q(1 + q)a2 − q+q3

1−q

⎞

⎠ .

since AB =
(−q3 − q2 − q q2 + q3

−q − q2 q2

)
.

We know that V −1β−q V = σ ⊗ρ−q,C and σ ⊗ρ−q,C is unitarizable simply by rescaling.
In fact λ(σ ⊗ ρ−q,C ) is pseudo-unitary (for those values of −q considered in Proposition
2.1) when λ verifies the condition λ2q = 1. Since scalar rescaling does not affect the class
of the matrix in PU (1, 1) we can work directly with the classes of the matrices A and B in
PU(1, 1).

Definition 3.1 Let q = exp(iα), with α ∈ (−π
3 , π

3

)
. The group �−q ⊂ PU(1, 1) is the

subgroup generated by the classes β−q(g2
1) and β−q(g2

2), namely the classes of matrices
A, B in PU(1, 1).

It appears that the search for discrete subgroups in the pseudo-unitary case is more inter-
esting than in the unitary case since we can find infinite discrete subgroups of PU (1, 1). The
main result in this section is the following:

Proposition 3.3 Let q = exp(iα), with α ∈ (−π
3 , π

3

)
. Then the group �−q is a discrete

subgroup of PU (1, 1) if and only if q = exp
(±2π i

n

)
, for n ∈ Z+ and n ≥ 7.

Proof Recall that PU (1, 1) is a subgroup of PGL(2, C) which keeps invariant (and hence
acts on) the unit disk D ⊂ CP1. The action of PU(1, 1) on D is conjugate to the action of
the isomorphic group PSL(2, R) on the upper half plane. The former is simply the action by
isometries on the disk model of the hyperbolic plane.

The key point of our argument is the existence of a fundamental domain for the action of
�−q on D. We will look to the fixed points of the isometries A, B, AB on the hyperbolic disk
D. We have the following list:

1. A has the fixed point set {0,∞} in CP1, and thus a unique fixed point in D, namely its
center O .

2. B has the fixed point set
{
− 1

(1−q)a2 ,− q2−q+1
q(1−q)a2

}
⊂ CP1 and thus a unique fixed point

in D, namely P = − q2−q+1
q(1−q)a2 . In fact, if cos(α + π) ∈ [−1,− 1

2 ], then

∣∣∣∣
q2 − q + 1

q(1 − q)a2

∣∣∣∣ = |1 − q||a|2 =
√

|1 − q + q2| = √
1 + 2 cos(α + π) ∈ [0, 1].
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3. AB has the fixed point set
{
− q

(1−q)a2 ,− q2−q+1
(1−q)a2

}
⊂ CP1 and thus a unique fixed point

in D, namely Q = − q2−q+1
(1−q)a2 .

	

We have now the following lemma, whose proof is postponed a few lines later:

Lemma 3.1 The elements A, B and AB of PU(1, 1) are rotations of the same angle 2α

centered at the three vertices of the equilateral geodesic triangle � = OPQ in the hyperbolic
plane D, whose angles are equal to α.

Eventually we state the following result of Knapp from [16], later rediscovered by Mostow
(see [22]) and Deraux ([11], Theorem 7.1):

Lemma 3.2 The three rotations of angle 2α in the hyperbolic plane D around the vertices
of an equilateral hyperbolic triangle � of angles α > 0 generate a discrete subgroup of
PU(1, 1) if and only if α = 2π

n , with n ∈ Z+ and n ≥ 7.

Notice that the existence of a hyperbolic triangle of angles equal to α requires that n ≥ 7.
The two lemmas from above yield the result claimed in Proposition 3.3.

Proof of Lemma 3.1 We know from above that A, B and AB are elliptic elements of PU(1, 1).
Actually all of them are rotations of angle ±2α:

1. A(z) = q2z and hence A is the counterclockwise rotation of angle 2α around O;
2. B is conjugate to A and thus is a rotation of angle ±2α around P;
3. AB has the eigenvalues −q3 and −q , which are distinct since q2 �= 1, and so is diago-

nalizable. Therefore AB is a rotation of angle ±2α around Q.

Consider now the geodesic triangle � = OPQ in D. The angle P̂OQ at O equals α since
Q = qP . Since the argument of q is acute it follows that the orientation of the arc PQ
is counterclockwise. Moreover, this shows that d(O, P) = d(O, Q), where d denotes the
hyperbolic distance in D and hence we obtain the equality of angles ÔPQ = ÔQP.

Let us introduce the element D = β−q(g2), which verifies D2 = B. Then D
2 = B. We

can compute

D =
⎛

⎝
1

1−q
q2−q+1
(1−q)2a2

−qa2 q2

1−q

⎞

⎠ .

We know that D is a rotation of angle ±α around P since is conjugated to β−q(g1). We can
check that D(Q) = 0 and hence D is the counterclockwise rotation of angle α around P and
d(P, Q) = d(P, O). Thus all angles of the triangle � are equal to α. This also shows that
B is the counterclockwise rotation of angle 2α.

Since both A and B are counterclockwise rotations of angle 2α it follows that AB is also
the counterclockwise rotation of angle 2α. 	

3.3 Triangle groups as images of a free pure braid subgroup

The aim of this section is to obtain finite presentations for the groups �−q . Discrete subgroups
of PU (1, 1) could be given explicit presentations if we are able to find a fundamental domain
for their action on the hyperbolic disk D. This method goes back to Poincaré and we refer to
[3] for more details. We find that, when discrete, �−q is a suitable triangle group and thus
we have an obvious presentation of it.
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Before we proceed we make a short digression on triangle groups. Let � be a geodesic
triangle in the hyperbolic plane of angles π

m , π
n , π

p , so that 1
m + 1

n + 1
p < 1. The extended

triangle group �∗(m, n, p) is the group of isometries of the hyperbolic plane generated
by the three reflections R1, R2, R3 with respect to the edges of �. It is well-known that a
presentation of �∗(m, n, p) is given by

�∗(m, n, p) = 〈R1, R2, R3 ; R2
1 = R2

2 = R2
3 = 1, (R1 R2)

m = (R2 R3)
n = (R3 R1)

p = 1〉.
The second type of relations have a simple geometric meaning. In fact, the product of the
reflections with respect to two adjacent edges is a rotation by the angle which is twice the
angle between those edges. The subgroup �(m, n, p) generated by the rotations a = R1 R2,
b = R2 R3, c = R3 R1 is a normal subgroup of index 2, which coincides with the subgroup of
isometries preserving the orientation. One calls �(m, n, p) the triangle (also called triangular,
or von Dyck) group associated to �. Moreover, the triangle group has the presentation:

�(m, n, p) = 〈a, b, c ; am = bn = cp = 1, abc = 1〉.
Observe that �(m, n, p) also makes sense when m, n or p are negative integers, by interpret-
ing the associated generators as clockwise rotations. The triangle � is a fundamental domain
(see [3]) for the action of �∗(m, n, p) on the hyperbolic plane. Thus a fundamental domain
for �(m, n, p) consists of the union �∗ of � with the reflection of � in one of its edges.

Proposition 3.4 Let m < k be such that gcd(m, k) = 1 where k ≥ 4. Then the group
�− exp

( ±2mπ i
2k

) is a triangle group with the presentation:

�− exp
( ±2mπ i

2k

) = 〈A, B; Ak = Bk = (AB)k = 1〉.

Proof Denote by�(π
α
, π

α
, π

α
) the group generated by the rotations of angle 2α around vertices

of the triangle � of angles α. We will use this notation even when α is not an integral part
of π i.e., α cannot be written as π

k , with k ∈ Z. We saw above that �−q is isomorphic to
�(π

α
, π

α
, π

α
).

When α = 2π
2k , the group �(π

α
, π

α
, π

α
) is a triangle group, namely it has the rhombus �∗

as a fundamental domain for its action on D. In particular, �−q is the triangle group with the
given presentation.

For the general case of α = 2πm
2k where q is a primitive 2k-th root of unity the situation is

however quite similar. There is a Galois conjugation sending −q into − exp
(±2π i

2k

)
, which

induces an automorphism of PGL(2, C). Although this automorphism does not preserve the
discreteness it is an isomorphism of �−q onto �− exp

( ±2π i
2k

). This settles the claim. 	


If n is odd n = 2k +1, then the group �−q is a quotient of the triangle group associated to
�, which embeds into the group associated to some sub-triangle �′ of �. Before to proceed
with the odd case we need the following:

Lemma 3.3 The natural embedding of �( 2k+1
2 , 2k+1

2 , 2k+1
2 ) into �(2, 3, 2k + 1) is an iso-

morphism.

Proof A simple geometric computation shows that:

a = α2, b = vα2v = u2α2u, c = uα2u2.

Therefore α = ak+1 ∈ �( 2k+1
2 , 2k+1

2 , 2k+1
2 ).
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From the relation αuv = 1 we derive ak+1uv = 1, and thus u = akv. The relation
u3 = 1 reads now ak(vakv)akv = 1 and replacing bk by vakv we find that v = akbkak ∈
�( 2k+1

2 , 2k+1
2 , 2k+1

2 ).
Further u =akv=a−1bkak ∈�( 2k+1

2 , 2k+1
2 , 2k+1

2 ). This means that �( 2k+1
2 , 2k+1

2 , 2k+1
2 )

is actually �(2, 3, 2k + 1), as claimed. 	

Proposition 3.5 Let 0 < m < 2k + 1 be such that gcd(m, 2k + 1) = 1 and k ≥ 3. Then the
group �− exp

( ±2mπ i
2k+1

) is isomorphic to the triangle group �(2, 3, 2k+1) and has the following

presentation (in terms of our generators A, B):

�− exp
( ±2mπ i

2k+1

) = 〈A, B; A2k+1 = B2k+1 = (AB)2k+1 = 1, (A−1Bk)2 = 1, (BkAk−1)3 = 1〉.

Proof It suffices to consider the case m = 1, as in the previous Proposition. The proof of
the discreteness in ([11], Theorem 7.1) shows that the group �( 2k+1

2 , 2k+1
2 , 2k+1

2 ), which is
generated by the rotations a, b, c around the vertices of the triangle � embeds into the triangle
group associated to a smaller triangle �′. One constructs �′ by considering all geodesics of
� joining a vertex and the midpoint of its opposite side. The three median geodesics pass
through the barycenter of � and subdivide � into 6 equal triangles. We can take for �′ any
one of the 6 triangles of the subdivision. It is immediate that �′ has angles π

2k+1 , π
2 and π

3
so that the associated triangle group is �(2, 3, 2k + 1). This group has the presentation:

�(2, 3, 2k + 1) = 〈α, u, v ; α2k+1 = u3 = v2 = αuv = 1〉,
where the generators are the rotations of double angle around the vertices of the triangle �′.

Now, Lemma 3.3 shows that it suffices to find a presentation of �(2, 3, 2k + 1) that uses
the generators A = a, B = b. It is not difficult to show that the group with the presentation
of the statement is isomorphic to �(2, 3, 2k + 1), the inverse homomorphism sending α into
Ak+1, u into A−1BkAk and v into AkBkAk . 	


A direct consequence of Propositions 3.4 and 3.5 is the following abstract description of
the image of Burau’s representation:

Corollary 3.1 If q is a primitive root of unity whose order is not in the set {1, 2, 3, 4, 6, 10},
then �q is an infinite triangle group.

Alternatively, we obtain a set of normal generators for the kernel of Burau’s representation,
as follows:

Corollary 3.2 Let n �∈ {1, 2, 3, 4, 5, 6} and q a primitive root of unity of order n. We denote
by N (G) the normal closure of a subgroup G of 〈g2

1, g2
2〉 ⊂ B3. Then the kernel ker β−q :

〈g2
1, g2

2〉 → PGL(2, C) of the restriction of Burau’s representation is given by:

{
N (〈g2k

1 , g2k
2 , (g2

1 g2
2)k〉), if n = 2k;

N (〈g2(2k+1)
1 , g2(2k+1)

2 , (g2
1 g2

2)2k+1, (g−2
1 g2k

2 )2, (g2k
2 g2(k−1)

1 )3〉), if n = 2k + 1.

3.4 Proof of Theorem 1.2

In order to prove Theorem 1.2 we need some preliminary lemmas explaining how to retrieve
the kernel of Burau’s representation of B3 from known information on its restriction to the
free subgroup 〈g2

1, g2
2〉 of PB3.

The case when q is of odd order is particularly simple:
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Lemma 3.4 If n = 2k + 1, k ≥ 3, the inclusion P B3 ⊂ B3 induces an isomorphism:

PB3

PB3 ∩ ker β−q
→ B3

ker β−q
·

Equivalently, we have an exact sequence:

1 → PB3 ∩ ker β−q → ker β−q → S3 → 1.

Proof The induced map is clearly an injection. Observe next that g2k+1
1 , g2k+1

2 ∈ ker β−q

and thus for every x ∈ B3 there exists some η ∈ ker β−q such that ηx ∈ PB3. Thus the
image of the class ηx is the class of x and this shows that the induced homomorphism is also
surjective. The claims follow. 	


When q has an even order we will need an additional combinatorial argument:

Lemma 3.5 If n = 2k, k ≥ 4, then ker β−q ⊂ PB3. Thus the inclusion PB3 ⊂ B3 induces
the exact sequence:

1 → PB3

PB3 ∩ ker β−q
→ B3

ker β−q
→ S3 → 1

Proof It suffices to show that β−q(g) �∈ β−q(PB3) for g ∈ {g1, g2, g1g2, g2g1, g1g2g1}.
Since none of β−q(g), for g as above is a scalar matrix, this claim is equivalent to show that
β−q(g) �∈ β−q(〈g2

1, g2
2〉) = 〈A, B〉. We will conjugate everything and work instead with A

and B. The triangle group generated by A and B has a fundamental domain consisting of the
rhombus �∗, which is the union of � with its reflection image R j�. The common edge of
the two triangles of the rhombus will be called a diagonal.

The image of gi is the rotation of angle α around a vertex of the triangle �. If this rotation
were an element of �(k, k, k), then it would act as an automorphism of the tessellation with
copies of �∗. When the vertex fixed by gi lies on the diagonal of �∗, then a rotation of angle
α sends the rhombus onto an overlapping rhombus (having one triangle in common) and thus
it cannot be an automorphism of the tessellation, which is a contradiction.

This argument does not work when the vertex is opposite to the diagonal. However, let us
color the triangle � in white and R j� in black. Continue this way by coloring all triangles
in black and white so that adjacent triangles have different colors. It is easy to see that the
rotations of angle 2α (and hence all elements of the group �(k, k, k)) send white triangles
into white triangles. But the rotation of angle α around a vertex opposite to the diagonal sends
a white triangle into a black one. This contradiction shows that the image of the gi does not
belong to �(k, k, k).

The last cases are quite similar. The images of g1g2 and g2g1 send �∗ into an overlapping
rhombus having one triangle in common. Eventually the image of g1g2g1 does not preserve
the black and white coloring. This proves the lemma. 	


We are now able to prove Theorem 1.2, which we restate here for the reader’s convenience:

Theorem 3.1 Assume that q is a primitive nth root of unity, n ≥ 7 and g1, g2 are the standard
generators of B3. Then β−q(B3) has a presentation with generators g1, g2 and relations:

1. The case n = 2k and k is odd:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k
1 = g2k

2 = (g2
1 g2

2)k = 1.
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2. The case n = 2k and k is even:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k
1 = g2k

2 = (g2
1 g2

2)2k = 1.

3. The case n = 2k + 1:

Braid relation : g1g2g1 = g2g1g2,

Power relations : g2k+1
1 = g2k+1

2 = (g2
1 g2

2)2(2k+1) = 1.

Proof The strategy of the proof is to lift the triangle group presentation of �−q to
β−q(〈g2

1, g2
2〉) and then to β−q(PB3), by adding a central generator. We add further the

standard generators g1, g2 of B3 and use the previous two lemmas in order to obtain a pre-
sentation of β−q(B3) and then get rid of redundant generators and relations.

Lemma 3.5 shows that ker β−q has the same normal generators as ker β−q ∩ PB3, when
n is even. Lemma 3.4 states that for odd n = 2k + 1 a set of normal generators of ker β−q

is obtained by adding the two elements g2k+1
1 and g2k+1

2 to a set of normal generators of
ker β−q ∩ PB3. In this way one produces a presentation of β−q(B3) from a presentation of
β−q(PB3).

Furthermore, PB3 is the direct product of the free group 〈g2
1, g2

2〉 with the center of B3,
which is generated by (g1g2)

3. Now β−q(g1g2)
3 is the scalar matrix −q31. The order of

−q3 is 2k/(gcd(3, k)gcd(2, k + 1)) if q is a primitive 2k-th root of unity and is equal to
2(2k + 1)/gcd(3, 2k + 1) when q is a primitive root of unity of order 2k + 1. Therefore a
presentation of β−q(PB3) can be obtained from a presentation of β−q(〈g2

1, g2
2〉) by adjoining

a new central generator (g1g2)
3 and the following center relations:

(g1g2)
6k/(gcd(2,k+1)gcd(3,k)) = 1, for even n = 2k,

(g1g2)
6(2k+1)/gcd(3,2k+1) = 1, for odd n = 2k + 1.

This new central generator will be redundant as soon as we pass to B3 with its standard
generators g1, g2.

The group β−q(〈g2
1, g2

2〉) ⊂ GL(2, C) is a central extension of its image mod scalars
�−q ⊂ PGL(2, C). Thus we can obtain a presentation of it by looking at the lifts of the
relations holding in �−q .

Let n = 2k. The lifts of the relations Ak = Bk = 1 in �−q are the relations g2k
1 = g2k

2 = 1
in β−q(〈g2

1, g2
2〉). The eigenvalues of the matrix AB are −q3 and −q so that

β−q((g2
1 g2

2)k) =
{−1, if k ≡ 0(mod 2);

1, if k ≡ 1(mod 2).

Thus for odd k it is enough to add the relation (g2
1 g2

2)k = 1.
For even k the element (g2

1 g2
2)k is central of order 2. On the other hand, one proves by

recurrence on m that the following combined relation holds true in B3:

(g1g2)
3m = g2m

1 g2(g
2
1 g2

2)m g−1
2 .

Taking m = k and recalling that (g1g2)
3 is central we find that g2k

1 = 1 implies that:

(g2
1 g2

2)k = (g1g2)
3k .

Thus the fact that (g2
1 g2

2)k is central is a consequence of the braid and power relations. Thus
it suffices to add the power relation (g2

1 g2
2)2k = 1, in order to get a presentation of β−q(B3).
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For odd n = 2k + 1 the lifts of the relations An = Bn = 1 are g2n
1 = g2n

2 = 1, which are
consequences of the power relations gn

1 = gn
2 = 1. Furthermore, we verify that:

β−q((g2
1 g2

2)2k+1) = −1,

hence (g2
1 g2

2)2k+1 is central of order 2. The argument used above for even k shows that
g2k+1

1 = 1 and the braid relations imply that (g2
1 g2

2)2k+1 is central, so it suffices to add the
last power relation (g2

1 g2
2)2(2k+1) = 1. The remaining lifts of relations in �−q are redundant.

In fact, braid and powers relations give us:

(g−2
1 g2k

2 )2 = (g−2
1 g−1

2 )2 = (g1g2)
−3,

(g2k
1 g2k−2

2 )3 = (g−1
1 g−3

2 )3 = (g1g2)
−6.

Eventually, a direct inspection shows that center relations are obtained from the combined
relation above along with the braid and power relations. 	
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