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Abstract

The central extension of the mapping class groups of punctured surfaces of finite type that arises in
quantum Teichmüller theory is 12 times the Meyer class plus the Euler classes of the punctures. This is
analogous to the result obtained in [12] for the Thompson groups.
© 2013 Elsevier Inc. All rights reserved.
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0. Introduction

The quantum theory of Teichmüller spaces of punctured surfaces of finite type, originally
constructed in [6,16] and subsequently generalized to higher rank Lie groups and cluster alge-
bras in [10,11], leads to one-parameter families of projective unitary representations of Ptolemy
modular groupoids associated to ideal triangulations of punctured surfaces. We will call such
representations (quantum) dilogarithmic representations, since the main ingredient in the theory
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is Faddeev’s quantum dilogarithm function first introduced in the context of quantum integrable
systems by L.D. Faddeev in [7].

These representations are infinite dimensional so that a priori it is not clear if they come from
suitable (2 + 1)-dimensional topological quantum field theories (TQFT). Nonetheless, it is ex-
pected that in the singular limit, when the deformation parameter tends to a root of unity,1 the
“renormalized” theory corresponds to a finite dimensional TQFT first defined in [15,17] by using
the cyclic representations of the Borel Hopf sub-algebra BUq(sl(2)), and subsequently developed
and generalized in [3]. One can get the same finite dimensional representations of Ptolemy mod-
ular groupoids directly from compact representations of quantum Teichmüller theory at roots of
unity [5,1,16].

Projective representations of a group are well known to be equivalent to representations of
central extensions of the same group by means of the following procedure. To a group G,
a C-vector space V and a group homomorphism h : G → PGL(V ) � GL(V )/C∗, where C∗
is identified with a (normal) subgroup of GL(V ) through the embedding z �→ z idV , one can
associate a central extension G̃ of G by a subgroup A of C∗ together with a representation
h̃ : G̃ → GL(V ) such that the following diagram is commutative and has exact rows:

1 C∗ GL(V ) PGL(V ) 1

1 A G̃

h̃

G

h

1

One such extension is the pull-back G̃ of the central extension GL(V ) → PGL(V ) under the
homomorphism G → PGL(V ), which is canonically defined. However it is possible to find also
smaller extensions associated to proper subgroups A ⊂ C∗. The central extension G̃ associated
to the smallest possible subgroup A ⊂ C∗ for which there exists a linear representation as in the
diagram above resolving the projective representation of G will be called the minimal reduction
of G̃.

In this light, quantum Teichmüller theory gives rise to representations of certain central exten-
sions of the surface mapping class groups which are the vertex groups of the Ptolemy modular
groupoids. The main goal of this paper is to identify the isomorphism classes of those central
extensions. Namely, by using the quantization approach of [16], we extend the analysis of the
particular case of a once punctured genus three surface performed in [18] to arbitrary punctured
surfaces of finite type.

Let a group G with a given presentation be identified as the quotient group F/R, where F is
a free group and R, the normal subgroup generated by the relations. Then, a central extension of
G can be obtained from a homomorphism h : F → GL(V ) with the property h(R) ⊂ C∗ so that
it induces a homomorphism h : G → PGL(V ). In this case, the homomorphism h will be called
an almost linear representation of G, in order to distinguish it from a projective representation.

In quantum Teichmüller theory, central extensions of surface mapping class groups appear
through almost linear representations. Specifically, let Γ s

g,r be the mapping class group of a sur-
face Σs

g,r of genus g with r boundary components and s punctures. These are mapping classes of
homeomorphisms which fix the boundary point-wise and fix the set of punctures (not necessarily

1 One should distinguish between two different limits, depending on whether log(q)
2πi

tends to a positive or a negative
rational number. In the case when this limit is a positive rational number, the limit of the representation is non-singular
and so it stays infinite dimensional.
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point-wise). Denoting Γ s
g = Γ s

g,0, the projective representations of Γ s
g for (2g − 2 + 2s)s > 0,

constructed in [16,18], are almost linear representations corresponding to certain central exten-
sions Γ̃ s

g . By considering embeddings Σs
g,r ⊂ Σt

h,0, the central extensions Γ̃ s
g can be used to

define central extensions for the mapping class groups Γ s
g,r for s � 1. According to [23], any

embedding Σs
g,r ⊂ Σt

h,0, for which Σt
h \ Σs

g,r contains no disk, punctured disk or cylinder com-
ponents, induces an embedding of the corresponding mapping class groups. Using this fact, we
can define the central extension Γ̃ s

g,r as the pull-back of the central extension Γ̃ t
h by the injective

homomorphism Γ s
g,r ↪→ Γ t

h induced by an embedding of the corresponding surfaces. A priori,
it is not clear whether such definition depends on a particular choice of the embedding, but our
main result below shows that this is indeed the case.

Central extensions by an Abelian group A of a given group G are known to be classified, up to
isomorphism, by elements of the 2-cohomology group H 2(G;A). In the case of surface mapping
class groups Γ s

g,r , the latter was first computed by Harer in [14] for g � 5 and further completed
by Korkmaz and Stipsicz in [20] for g � 4 (see also [19] for a survey). Specifically, we have

H 2(Γ s
g,r

) = Zs+1, if g � 4,

where the generators are given by (one fourth of) the Meyer signature class χ (it is the only
generator for the groups H 2(Γg) ∼= H 2(Γg,1) � Z, see [22,14,20] for its definition) and s Euler
classes ei associated with s punctures. In the case when g = 3, the group H 2(Γ s

3,r ) still contains

the subgroup Zs+1 generated by the above mentioned classes, but it is not known whether there
are other (2-torsion) classes. When g = 2 we will show that H 2(Γ s

2,r ) contains the subgroup
Z/10Z ⊕ Zs , whose torsion part is generated by χ and whose free part is generated by the
Euler classes. The Universal Coefficients Theorem permits then to compute H 2(G;A) for every
Abelian group A.

Denote as above by Γ̃ s
g,r the canonical central extension of Γ s

g,r by C∗ which is obtained as the
pull-back of the canonical central extension GL(H) → PGL(H) under the quantum projective
representation associated to a semi-symmetric T in the Hilbert space H (see the next section).
Quantum representations depend on some parameter ζ ∈ C∗. Our main result is the following
theorem.

Theorem 0.1. The central extension Γ̃ s
g,r can be reduced to a minimal central extension Γ̃ s

g,r of

Γ s
g,r by a cyclic Abelian A ⊂C∗, where A is the subgroup of C∗ generated by ζ−6. Moreover its

cohomology class is

cΓ̃ s
g,r

= 12χ +
s∑

i=1

ei ∈ H 2(Γ s
g,r ;A

)
if g � 2 and s � 4. Here χ and ei are one fourth of the Meyer signature class and respectively
the i-th Euler class with A coefficients.

There is a geometric interpretation of this extension.

Corollary 0.2. Let us consider the extension Γ̂g,r+s of class 12χ . Then there is an exact sequence:

1 → As−1 → Γ̂g,r+s → Γ̃ s
g,r → 1.

In some sense the quantum representations of punctured mapping class groups can be lifted to
the mapping class groups of surfaces with boundary obtained by blowing up the punctures.
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Corollary 0.3. The cohomology class of the central extension Γ̃ s
g,r is

cΓ̃ s
g,r

= 12χ +
s∑

i=1

ei ∈ H 2(Γ s
g,r ;C∗)

if g � 3 and s � 4. The same formula holds also when g = 2 but the class χ vanishes in
H 2(Γ s

g,r ;C∗). Here χ and ei are one fourth of the Meyer signature class and respectively the
i-th Euler class with C∗ coefficients.

Remark 0.1. The central extension arising from SU(2)-TQFT with p1-structures was computed
in [13,21] for Γg and it equals 12χ . It can be shown that their computations extend to the case of
punctured surfaces and the associated class for Γ s

g,r is 12χ + ∑s
i=1 ei . Our result shows that this

extension coincides with the central extension arising from quantum Teichmüller theory. This is
the counterpart for finite type surfaces and their mapping class groups of the result obtained in
[12] for the Ptolemy–Thompson group.

The organization of the paper is as follows. In Section 1, we review the quantization of the
Teichmüller space of a punctured surface and define the associated quantum representations of
the decorated Ptolemy groupoid which correspond to linear representations of a central extension
of the decorated Ptolemy groupoid. Then, in Section 2, we prove Theorem 0.1 by finding the
pull-back of this central extension to the mapping class group of the surface. The key idea is to
use a Grothendieck type principle. Namely, one can identify a central extension of the mapping
class group of some surface, if one understands its restrictions to the mapping class groups of
sub-surfaces of bounded topological types. The core of the proof consists in computing explicitly
the lifts to the central extension of the decorated Ptolemy groupoid of the relations known to hold
in the mapping class groups. When properly interpreted, these lifts yield the class of the mapping
class group extension.

1. Quantum Teichmüller theory

1.1. The groupoid of decorated ideal triangulations

Let Σ = Σs
g,r be an oriented closed surface of genus g with r boundary components and

s � 1 punctures. When r > 0 we choose a set of points on each boundary, which will be called
boundary punctures. When we need to single out the s punctures lying in the interior we will call
them interior punctures. In this paper we will only consider the situation when each boundary
component has exactly one boundary puncture, so that there is a total of s + r punctures among
which r are boundary punctures. The triangulations of Σs

g,r whose vertices are the s+r punctures
will be called ideal triangulations. Then Σ is large if and only if Ns > 0, where N = 4g − 4 +
2s + 3r is the number of triangles in an ideal triangulation.

Definition 1.1. A decorated ideal triangulation of Σ is an ideal triangulation τ up to isotopy fix-
ing the boundary, where all triangles are provided with a marked corner, and a bijective ordering
map

τ̄ : {1, . . . ,N} 
 j �→ τ̄j ∈ T (τ)

is fixed. Here T (τ) is the set of all triangles of τ .
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Fig. 1. The transformation ρi .

Fig. 2. The transformation ωi,j .

Graphically, the marked corner of a triangle is indicated by an asterisk and the corresponding
number is put inside the triangle. The set of all decorated ideal triangulations of Σ is denoted
�Σ .

Recall that if a group G freely acts on a set X, then there is an associated groupoid defined
as follows. The objects are the G-orbits in X, while morphisms are G-orbits in X × X with
respect to the diagonal action. Denote by [x] the object represented by an element x ∈ X and by
[x, y] the morphism represented by a pair of elements (x, y) ∈ X × X. Two morphisms [x, y]
and [u,v], are composable if and only if [y] = [u] and their composition is [x, y][u,v] = [x,gv],
where g ∈ G is the unique element sending u to y. The inverse and the identity morphisms are
given respectively by [x, y]−1 = [y, x] and id[x] = [x, x]. In what follows, products of the form
[x1, x2][x2, x3] · · · [xn−1, xn] will be shortened as [x1, x2, x3, . . . , xn−1, xn].

The mapping class group Γ s
g,r of Σ acts freely on �Σ . In this case, we let GΣ denote the corre-

sponding groupoid, called the groupoid of decorated ideal triangulations, or decorated Ptolemy
groupoid. This groupoid first considered in [16] is an enhanced version of the usual Ptolemy
groupoid introduced and studied by Penner in [24] (see also [25]), which arises in the Fock–
Goncharov quantization [9–11] of the Teichmüller space. There is a presentation for GΣ with
three types of generators and four types of relations.

The generators are of the form [τ, τσ ], [τ,ρiτ ], and [τ,ωi,j τ ], where τσ is obtained from τ

by replacing the ordering map τ̄ by the map τ̄ ◦ σ , where σ ∈ SN is a permutation of the set
{1, . . . ,N}, ρiτ is obtained from τ by changing the marked corner of triangle τ̄i as in Fig. 1, and
ωi,j τ is obtained from τ by applying the flip transformation in the quadrilateral composed of
triangles τ̄i and τ̄j as in Fig. 2.

There are two sets of relations satisfied by these generators. The first set is as follows:[
τ, τα,

(
τα

)β] = [
τ, ταβ

]
, α,β ∈ SN, (1)

[τ,ρiτ, ρiρiτ, ρiρiρiτ ] = id[τ ], (2)

[τ,ωij τ,ωikωij τ,ωjkωikωij τ ] = [τ,ωjkτ,ωijωjkτ ], (3)

[τ,ωij τ, ρiωij τ,ωjiρiωij τ ] = [
τ, τ (ij), ρj τ

(ij), ρiρj τ
(ij)

]
, (4)

where the first two relations are evident, while the other two are shown graphically in Figs. 3, 4.
The following commutation relations fulfill the second set of relations:[

τ,ρiτ, (ρiτ )σ
] = [

τ, τσ , ρσ−1(i)τ
σ
]
, (5)[

τ,ωij τ, (ωij τ )σ
] = [

τ, τσ ,ωσ−1(i)σ−1(i)τ
σ
]
, (6)

[τ,ρj τ, ρiρj τ ] = [τ,ρiτ, ρjρiτ ], (7)
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Fig. 3. The Pentagon relation (3).

Fig. 4. The Inversion relation (4).

[τ,ρiτ,ωjkρiτ ] = [τ,ωjkτ, ρiωjkτ ], i /∈ {j, k}, (8)

[τ,ωij τ,ωklωij τ ] = [τ,ωklτ,ωijωklτ ], {i, j} ∩ {k, l} = ∅. (9)

Consider now an embedding of Σs
g,r into Σt

h,v sending all punctures (both interior and bound-
ary) to punctures. Of course boundary punctures are sent into interior punctures unless the
respective boundary circle is also a boundary of the larger surface.

Lemma 1.1. Assume that each component of Σt
h,v \ int(Σs

g,r ) is large. Then there is a natural
embedding of GΣs

g,r
into GΣt

h,v
.

Proof. Let τext be a fixed decorated triangulation of Σt
h,v \ int(Σs

g,r ). If τ is a decorated trian-
gulation of Σs

g,r we denote by τ ∪ τext the result of gluing the two triangulations along their
corresponding boundary circles with the induced decoration. The isotopy class of the resulting
triangulation is unique up to the action of Dehn twists along boundary components of Σs

g,r . This
induces an injective map between the set of objects of the two groupoids. Then, the map which
associates to the class [τ1, τ2] of decorated triangulations of Σs

g,r the class [τ1 ∪ τext, τ2 ∪ τext]
is well-defined. Since the restriction of a homeomorphism of Σt

h,v preserving the isotopy class
of the decorated triangulation τext to Σt

h,v \ int(Σs
g,r ) is isotopic to identity by Alexander’s trick,

the map defined above is injective. �
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Remark 1.1. When r > 0 the construction of the decorated Ptolemy groupoid GΣs
g,r

depends on
the choice of the set of boundary punctures, which might have more than r elements, in general.

1.2. Hilbert spaces of square integrable functions associated to triangulations

In what follows, we work with Hilbert spaces

H ≡ L2(R), H⊗n ≡ L2(Rn
)
.

Any two self-adjoint operators p and q, acting in H and satisfying the Heisenberg commutation
relation

pq − qp = (2π i)−1 idH, (10)

can be realized as differentiation and multiplication operators. Such “coordinate” realization in
Dirac’s bra–ket notation has the form

〈x|p = 1

2π i

∂

∂x
〈x|, 〈x|q = x〈x|. (11)

Formally, the set of “vectors” {|x〉}x∈R forms a generalized basis of H with the following orthog-
onality and completeness properties:

〈x|y〉 = δ(x − y),

∫
R

|x〉dx 〈x| = idH .

For any 1 � i � m we shall use the following notation

ιi : EndH 
 a �→ ai = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 times

⊗a ⊗ 1 ⊗ · · · ⊗ 1 ∈ EndH⊗m.

Besides that, if u ∈ EndH⊗k for some 1 � k � m and {i1, i2, . . . , ik} ⊂ {1,2, . . . ,m}, then we
shall write

ui1i2...i2 ≡ ιi1 ⊗ ιi2 ⊗ · · · ⊗ ιik (u).

The symmetric group Sm naturally acts in H⊗m:

Pσ (x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xm) = xσ−1(1) ⊗ · · · ⊗ xσ−1(i) ⊗ · · · ⊗ xσ−1(m), σ ∈ Sm. (12)

1.3. Semi-symmetric T -matrices

We define now the algebraic structure needed for constructing representations of the decorated
Ptolemy groupoid GΣ .

Definition 1.2. A semi-symmetric T -matrix consists of two operators A ∈ End(H) and T ∈
End(H⊗2) satisfying the equations:

A3 = 1, (13)

T12T13T23 = T23T12, (14)

T12A1T21 = ζA1A2P(12), (15)

where ζ ∈ C∗ and the permutation operator P(12) is defined by Eq. (12), for σ denoting the
transposition (12).
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Examples of semi-symmetric T -matrices could be obtained as follows. Fix some self-conju-
gate operators p,q satisfying the Heisenberg commutation relation (10). Choose a parameter b

satisfying the condition:(
1 − |b|) Imb = 0,

and define then two unitary operators by the following formulas:

A ≡ e−iπ/3ei3πq2
eiπ(p+q)2 ∈ End(H), (16)

T ≡ ei2πp1q2ϕb(q1 + p2 − q2) ∈ End
(
H⊗2). (17)

They satisfy the defining relations for a semi-symmetric T -matrix, where

ζ = eiπc2
b/3, cb = i

2

(
b + b−1), (18)

and ϕb is Faddeev’s quantum dilogarithm defined on {z ∈C; |Im(z)| < |Im(cb)|} by means of

ϕb(z) = exp

(
−1

4

∞∫
−∞

exp(−2izx) dx

sinh(xb) sinh(x/b)x

)
. (19)

Faddeev’s quantum dilogarithm is closely related to the double gamma and double sine functions
[2,26] and was used by Baxter [4] and Faddeev (see [7,8]). Its main feature is the following
functional equation (see [7,8]):

ϕb(q)ϕb(p) = ϕb(p)ϕb(p + q)ϕb(q)

whenever pq − qp = 1
2πi

1.
Remark that the operator A is characterized (up to a normalization factor) by the equations:

AqA−1 = p − q, ApA−1 = −q.

Note that Eqs. (13)–(15) correspond to relations (2)–(4).
Let us introduce now some notation which will be useful in the sequel. For any operator

a ∈ EndH we set:

a
k̂
≡ AkakA−1

k , a
ǩ
≡ A−1

k akAk. (20)

It is evident that

a ˇ̂
k
= a ˆ̌

k
= ak, a ˆ̂

k
= a

ǩ
, a ˇ̌

k
= a

k̂
,

where the last two equations follow from Eq. (13). In particular, we have

p
k̂
= −qk, q

k̂
= pk − qk, (21)

p
ǩ
= qk − pk, q

ǩ
= −pk. (22)

Besides that, it will be also useful to use the notation

P
(kl...mk̂)

≡ AkP(kl...m), P
(kl...mǩ)

≡ A−1
k P(kl...m), (23)

where (kl . . .m) is the cyclic permutation

(kl . . .m) : k �→ l �→ · · · �→ m �→ k.
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Eq. (15) in this notation takes a rather compact form

T12T21̂ = ζP
(121̂)

. (24)

Remark 1.2. Notice that the Pentagon relation (14) can be applied whenever any of the indices
k ∈ {1,2} arising among subscripts is replaced everywhere by either k̂ or else ǩ.

Remark 1.3. A T -matrix has the following symmetry property: T12 = T2̂1̌. This can be obtained
using twice relation (24):

T12 = T12T21̂T
−1
21̂

= ζP
(121̂)

T −1
21̂

= T −1
1̂2̂

ζP
(121̂)

= T −1
1̂2̂

ζP
(1̂2̂1̌)

= T2̂1̌. (25)

1.4. The quantum Teichmüller space

The quantization of the Teichmüller space of a punctured surface Σ with boundary induced
by a semi-symmetric T -matrix is defined by means of a quantum functor:

F : GΣ → End
(
H⊗N

)
.

Its meaning is that we have an operator-valued function:

F : �Σ × �Σ → End
(
H⊗N

)
,

satisfying the following equations:

F(τ, τ ) = idH⊗N , F
(
τ, τ ′)F

(
τ ′, τ ′′)F

(
τ ′′, τ

) ∈ C \ {0}, ∀τ, τ ′, τ ′′ ∈ �Σ, (26)

F
(
f (τ), f

(
τ ′)) = F

(
τ, τ ′), ∀f ∈ MΣ, (27)

F(τ, ρiτ ) ≡ Ai , (28)

F(τ,ωi,j τ ) ≡ Tij , (29)

F
(
τ, τσ

) ≡ Pσ , ∀σ ∈ SN, (30)

where operator Pσ is defined by Eq. (12). Consistency of these equations is ensured by the
consistency of Eqs. (13)–(15) with relations (2)–(4).

A particular case of Eq. (26) corresponds to τ ′′ = τ :

F
(
τ, τ ′)F

(
τ ′, τ

) ∈ C \ {0}. (31)

As an example, we can calculate the operator F(τ,ω−1
i,j (τ )). Denoting τ ′ ≡ ω−1

i,j (τ ) and using
Eq. (31), as well as definition (29), we obtain

F
(
τ,ω−1

i,j (τ )
) = F

(
ωi,j

(
τ ′), τ ′) � (

F
(
τ ′,ωi,j

(
τ ′)))−1 = T −1

ij , (32)

where � means equality up to a numerical multiplicative factor.
The operations ˆ and ˇ at the indices level have the following geometric interpretation. If the

distinguished corners of the decorated ideal triangulation are precisely those from Fig. 2 then
the quantum functor assigns to the flip on that edge the endomorphism T −1

ij . Now, changing the

distinguished corner in the triangle labeled i amounts of changing i into î or ǐ (and similarly
for j ) in the expression of the quantum functor endomorphism. These rules will be intensively
used when we compute the expressions of Dehn twists in terms of the generators of the decorated
Ptolemy groupoid in the next section.
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The quantum functor induces a unitary projective representation of the mapping class group
Γ s

g of Σ as follows:

Γ s
g 
 f �→ F

(
τ, f (τ )

) ∈ End
(
H⊗N

)
.

Indeed, we have the following relation (up to a non-zero scalar):

F
(
τ, f (τ )

)
F
(
τ,h(τ)

) = F
(
τ, f (τ )

)
F
(
f (τ), f

(
h(τ)

)) � F
(
τ, f h(τ)

)
.

The main question addressed in this present paper is to identify the central extension of the
mapping class group corresponding to this projective representation. Observe that the projective
factor lies in the subgroup of C∗ generated by ζ .

In [16,18] one considered only punctured surfaces without boundary. However, the construc-
tion extends without essential modifications to the case when Σ is a surface with boundary Σs

g,r

when s � 1 and each boundary component contains one boundary puncture. In this case we
could define directly the central extension Γ̃ s

g,r by using the decorated Ptolemy groupoid of the
punctured surface with boundary, without reference to a larger surface without boundary.

2. Presentation of ˜Γ s
g,r

2.1. Generating set for the relations

We start with a number of notations and definitions. Our setup consists of an embedding
Σs

g,r ⊂ Σt
h,0 sending punctures into punctures. We assume that each component of Σt

h,0 \
int(Σs

g,r ) is large, namely it admits ideal triangulations whose vertices are those punctures of
Σt

h,0 which are not interior punctures of Σs
g,r (hence boundary punctures of Σs

g,r being allowed).
In particular, if we discard the boundary punctures of Σs

g,r the complement Σt
h,0 \ int(Σs

g,r ) con-
tains no disk, punctured disk or cylinder components. According to [23] the surface embedding
induces an embedding between the corresponding mapping class groups Γ s

g,r ↪→ Γ t
h,0. The pull-

back of the central extension Γ̃ t
h to Γ s

g,r is a central extension Γ̃ s
g,r . Our main concern is to study

this central extension. The central extension obtained by the present construction is isomorphic
to the central extension obtained by the direct quantization of the Teichmüller space associated
to Σs

g,r following the procedure of Section 1.4. This follows from the fact that the map between
the mapping class groups Γ s

g,r ↪→ Γ t
h,0 is covered by an injective map between the decorated

Ptolemy groupoids according to Lemma 1.1.
Since the restriction of the Euler class corresponding to the (s + 1)-th puncture to Γ s

g,r van-

ishes, it is enough to consider t = s below. Our strategy is to compute explicit lifts to Γ̃ s
g,r of a

set of relations arising in a group presentation of Γ s
g,r by expressing (lifts of) the generators as

elements of the decorated Ptolemy groupoid of the larger punctured surface Σs
h,0. The indepen-

dence on the particular embedding of the subsurface Σs
g,r , under the assumptions of the main

theorem is a consequence of the so-called Grothendieck principle. In the form proved by Gervais
in [13] it states that all relations in Γ s

g,r are determined by an explicit set of relations among map-

ping classes supported on small subsurfaces, namely Σ0,4, Σ1,2 and Σ0,3, where Σg,r = Σ0
g,r .

We express then these relations in terms of elements of the decorated Ptolemy groupoids of the
surfaces Σ4

0,4, Σ2
1,2 and Σ4

0,3, respectively. According to Lemma 1.1 these relations also hold in
GΣs

h,0
, provided that s � 4.

If a is a simple closed curve on Σs
g,r we denote by Da ∈ Γ s

g,r the right Dehn twist along a.
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Definition 2.1. A chain relation C on the surface Σs
g,r is given by an embedding Σ1,2 ⊂ Σs

g,r

and the standard chain relation on this 2-holed torus, namely

(DaDbDc)
4 = DeDf

where a, b, c, d , e, f are the following curves of the embedded 2-holed torus:

Definition 2.2. A lantern relation L on the surface Σs
g,r is given by an embedding Σ0,4 ⊂ Σs

g,r

and the standard lantern relation on this 4-holed sphere, namely

Da12Da13Da23D
−1
a0

D−1
a1

D−1
a2

D−1
a3

= 1 (33)

where a0, a1, a2, a3, a12, a13, a23 are the following curves of the embedded 4-holed sphere:

Definition 2.3. Consider an embedding Σ1
0,3 ⊂ Σs

g,r such that the boundary components a1, a2,

a3 of Σ1
0,3 are non-separating curves. Let then a12, a13, a23 be embedded curves on Σ1

0,3 so that

ajk bounds a pair of pants Σ0,3 ⊂ Σ1
0,3 along with aj and ak , for all 1 � j �= k � 3. Then the

puncture relation P (supported at the puncture of Σ1
0,3) on the surface Σs

g,r is:

Da12Da13Da23D
−1
a1

D−1
a2

D−1
a3

= 1. (34)

Remark 2.1. The puncture relation is, in fact, a consequence of the lantern relation and the fact
that the Dehn twist along a small loop encircling a puncture is trivial.

The first step in proving Theorem 0.1 is to find an explicit presentation for the central exten-
sion Γ̃ s

g,r . Specifically, by using Gervais’ presentation [13], we have the following description.

Proposition 2.1. Suppose that g � 2 and s � 4. Then the group Γ̃ s
g,r has the following presenta-

tion.

1. Generators:
(a) With each non-separating simple closed curve a in Σs

g,r is associated a generator D̃a ;
(b) One (central) element z.
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2. Relations:
(a) Centrality:

zD̃a = D̃az (35)

for any non-separating simple closed curve a on Σs
g,r ;

(b) Braid type 0-relations:

D̃aD̃b = D̃bD̃a (36)

for each pair of disjoint non-separating simple closed curves a and b;
(c) Braid type 1-relations:

D̃aD̃bD̃a = D̃bD̃aD̃b (37)

for each pair of non-separating simple closed curves a and b which intersect trans-
versely at one point;

(d) One lantern relation on a 4-holed sphere subsurface with non-separating boundary
curves:

D̃a0D̃a1D̃a2D̃a3 = D̃a12D̃a13D̃a23 . (38)

(e) One chain relation on a 2-holed torus subsurface with non-separating boundary curves:

(D̃aD̃bD̃c)
4 = z12D̃eD̃f . (39)

(f) Puncture relations:

D̃a12(i)
D̃a13(i)D̃a23(i) = zD̃a1(i)D̃a2(i)D̃a3(i) (40)

for each puncture pi of Σs
g,r , i ∈ {1,2, . . . , s}.

(g) Scalar equation:

zN = 1 (41)

where N is the order of ζ−6, in the case where ζ ∈C∗ is a root of unity.

2.2. Proof of Proposition 2.1

Lemma 2.1. For any lifts D̃a of the Dehn twists Da we have D̃aD̃b = D̃bD̃a , for any two disjoint
simple closed curves a and b, and thus the braid-type 0-relations (b) are satisfied.

Proof. The commutativity relations are satisfied for particular lifts coming from a semi-
symmetric T -matrix. If we change the lifts by multiplying each lift by some central element
the commutativity is still valid. Thus, the commutativity holds for any lifts. �
Lemma 2.2. There are lifts D̃a of the Dehn twists Da , for each non-separating simple closed
curve a such that we have D̃aD̃bD̃a = D̃bD̃aD̃b for any simple closed curves a, b with one
intersection point, and thus the braid type 1-relations (c) are satisfied. Moreover, the choice of
lifts of all D̃x , with x non-separating, satisfying these requirements is uniquely defined by fixing
the lift D̃a of one particular Dehn twist.
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Proof. Consider an arbitrary lift of one braid type 1-relation (to be called the fundamental one),
which has the form D̃aD̃bD̃a = zkD̃bD̃aD̃b. Change then the lift D̃b into zkD̃b . With the new
lift the relation above becomes D̃aD̃bD̃a = D̃bD̃aD̃b .

Choose now an arbitrary braid type 1-relation of Γ s
g,r , say DxDyDx = DyDxDy . There ex-

ists a 1-holed torus Σ1,1 ⊂ Σs
g,r containing x, y, namely a neighborhood of x ∪ y. Let T be the

similar torus containing a, b. Since a, b and x, y are non-separating there exists a homeomor-
phism ϕ : Σs

g,r → Σs
g,r such that ϕ(a) = x and ϕ(b) = y. We have then

Dx = ϕDaϕ
−1, Dy = ϕDbϕ

−1.

Let us consider now an arbitrary lift ϕ̃ of ϕ, which is well-defined only up to a central element,
and set

D̃x = ϕ̃D̃aϕ̃
−1, D̃y = ϕ̃D̃bϕ̃

−1.

These lifts are well-defined since they do not depend on the choice of ϕ̃ (the central elements
coming from ϕ̃ and ϕ̃−1 mutually cancel). Moreover, we have then

D̃xD̃yD̃x = D̃yD̃xD̃y

and so the braid type 1-relations (c) are all satisfied.
For the second part of the lemma observe that the choice of D̃a fixes the choice of D̃b . If x

is a non-separating simple closed curve on Σs
g,r , then there exists another non-separating curve

y which intersects it in one point. Thus, by the argument which was used above to prove the
existence of the lifts the choice of D̃x is unique. �
Lemma 2.3. One can choose the lifts of Dehn twists in Γ̃ s

g,r so that all braid type relations are
satisfied and the lift of the lantern relation (d) is trivial, namely

D̃a0D̃a1D̃a2D̃a3 = D̃a12D̃a13D̃a23

for the non-separating curves on an embedded Σ0,4 ⊂ Σs
g,r .

Proof. An arbitrary lift of that lantern relation is of the form D̃a0D̃a1D̃a2D̃a3 = zkD̃a12D̃a13D̃a23 .
In this case, we change the lift D̃a0 into z−kD̃a0 and adjust the lifts of all other Dehn twists along
non-separating curves the way that all braid type 1-relations are satisfied. Then, the required form
of the lantern relation is satisfied. �

We say that the lifts of the Dehn twists are normalized if all braid type relations and one
lantern relation are lifted in a trivial way.

Lemma 2.4. Assume that s � 4. Then a normalized Dehn twist in quantum Teichmüller theory is
conjugated to the inverse T -matrix times ζ−6 i.e.

D̃α = F(τ,Dατ) = ζ−6UαT −1
kl U−1

α .

As the computations involved in the proof are rather laborious we postpone it after the proof
of Lemma 2.6.
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Fig. 5. Torus with two holes and two punctures.

We will suppose henceforth that the lifts of Dehn twists are normalized.

Lemma 2.5. Let a, b, c, e, f be the five curves appearing in the chain relation (DaDbDc)
4 =

DeDf on an embedded 2-holed torus sitting inside Σs
g,r . If s � 2, then the lifts of Dehn twists in

Γ̃ s
g,r satisfy the relation

(D̃aD̃bD̃c)
4 = ζ−72D̃eD̃f .

Proof. If s � 2 and g � 2, then there is an embedding Σ2
2,1 ⊂ Σs

g,r .

We consider a surface S homeomorphic to Σ2
1,2, i.e. a torus with two holes and two punctures

drawn in the left picture of Fig. 5 where the opposite sides of the rectangle are identified. Notice
that the two punctures are located on the two boundary components. The central picture of Fig. 5
specifies five simple closed curves a, b, c, e, f in S, the Dehn twists along which enter the chain
relation.

We also choose a particular decorated ideal triangulation τ of S given by the right picture of
Fig. 5, where the ideal arcs are drawn in black and the positions of the numbers in ideal triangles
correspond to the marked corners. Notice that our choice is manifestly symmetric with respect
to the exchange of the left and the right halves of the rectangle accompanied with relabeling
(1,2,3) ↔ (4,5,6). This symmetry will be useful for reducing the amount of calculations in
deriving the quantum realizations of the Dehn twists.

The basic procedure in deriving the quantum realization of the Dehn twist Dα along a given
simple closed curve α is to use a specific decorated ideal triangulation where the contour α

intersects only two ideal arcs, so that the annular neighborhood of α is given by only two ideal
triangles. With respect to such (decorated) ideal triangulation the quantum operator realizing Dα

is given by a single T -operator. Let us work out this procedure in the case of the curves a, b, c,
e, f .

For any simple closed curve α, we denote F̄α = D̃−1
α � F(Dατ, τ ). To derive the operator

representing the Dehn twist Da , we apply the following change of triangulation:

where the operator above the arrow realizes the corresponding element of the groupoid of deco-
rated ideal triangulations within the quantum Teichmüller theory. Thus,
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ζ−6F̄a = Ad(T2̌3)(T13̂)

= T2̌3T13̂T̄2̌3

= T13̂T12̂,

where in the last equality, we have applied once the Pentagon relation, and we use the notation
T̄ = T −1. Here, we use the normalization where the braid-type and the lantern relations are
satisfied without projective factors. By the above mentioned left–right symmetry (1,2,3) ↔
(4,5,6), we immediately get the quantum realization of the Dehn twist Dc:

ζ−6F̄c = T46̂T45̂.

To calculate the quantum realization of Db we use a two-step chain of transformations of τ :

Thus, we have the following sequence of equalities:

ζ−6F̄b = Ad(T̄64T41T̄63)(T34)

= T̄64T41T̄63T34T63T̄41T64

= T̄64T41T64T34T̄41T64

= T61T41T34T̄41T64

= T61T34T31T64,

where in each step the underlined fragment is transformed by using the Pentagon relation.
To calculate the realization of De, we consider the following sequence of ideal triangula-

tions:

Thus, we have

ζ−6F̄e = Ad(T34T14T̄63Tˇ Tˇ )(Tˇ ˆ )
45 56 26
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= T34T14T̄63T4̌5T6̂5̂T2̌6̂T̄6̂5̂T̄4̌5T63T̄14T̄34

= T34T14T̄63T5̂4̂T2̌6̂T2̌5̂T̄5̂4̂T63T̄14T̄34

= T34T4̂1̌T̄63T2̌6̂T2̌5̂T2̌4̂T63T̄4̂1̌T̄34

= T34T̄3̂6̌T6̌2̂T2̌5̂T2̌4̂T2̌1̌T3̂6̌T̄34

= T34T2̌3T6̌2̂T2̌5̂T2̌4̂T2̌1̌T̄34

= T2̌3T2̌4T4̂3̌T6̌2̂T2̌5̂T2̌4̂T2̌1̌T̄4̂3̌

= T2̌3T2̌4T2̌6̂T2̌5̂T2̌4̂T2̌3̌T2̌1̌,

where, as before, in each step the underlined fragment is transformed by applying the Pentagon
relation. We use throughout these computations the fact that Tij and Tkl commute if {i, j} ∩
{k, l} = ∅. Again, using the symmetry (1,2,3) ↔ (4,5,6), we also have

ζ−6F̄f = T5̌6T5̌1T5̌3̂T5̌2̂T5̌1̂T5̌6̌T5̌4̌.

In order to check the Chain relation, we first calculate the following product:

ζ−18F̄cF̄bF̄a = T46̂T45̂T61T34T31T64T13̂T12̂

= T46̂T45̂T61T34T64ζP
(313̂)

T12̂

= ζT46̂T45̂T61T34T64T3̂2̂P(313̂)
,

where we have applied the Inversion relation to the underlined fragment. Next, we calculate

ζ−36(F̄cF̄bF̄a)
2 = ζ 2T46̂T45̂T61T34T64T3̂2̂P(313̂)

T46̂T45̂T61T34T64T3̂2̂P(313̂)

= ζ 2T46̂T45̂T61T34T64T3̂2̂T46̂T45̂T63̂T14T64T1̂2̂P(33̂)(11̂)

= ζ 3T46̂T45̂T61T34T3̂2̂T6̂5̂T43̂T16̂T46̂T1̂2̂P(646̂)
P

(33̂)(11̂)

= ζ 3T46̂T45̂T6̂5̂T5̌1T61T3̂2̂T2̌4T34T43̂T16̂T46̂T1̂2̂P(646̂)
P

(33̂)(11̂)

= ζ 5T6̂5̂T46̂T5̌1T3̂2̂T2̌4P(616̂)
P

(343̂)
T46̂T1̂2̂P(646̂)

P
(33̂)(11̂)

= ζ 5T6̂5̂T46̂T5̌1T2̌3T2̌4T3̂1̂T6̌2̂P(16̌34̂1̌)
,

where each equality is obtained by transforming the underlined fragment by applying the Pen-
tagon relation (twice in the forth and once in the fifth equalities), the Inversion relation (once
in the third and twice in the fifth equalities), and the extended symmetric group action (in the
second, the third, and the sixth equalities). Finally, taking the square of the obtained identity, we
have

ζ−72(F̄cF̄bF̄a)
4 = ζ 10T6̂5̂T46̂T5̌1T2̌3T2̌4T3̂1̂T6̌2̂P(16̌34̂1̌)

T6̂5̂T46̂T5̌1T2̌3T2̌4T3̂1̂T6̌2̂P(16̌34̂1̌)

= ζ 10T5̌6T46̂T5̌1T2̌3T2̌4T3̂1̂T6̌2̂T5̌3̂T1̂3̌T5̌6̌T2̌4̂T2̌1̂T4̌6T32̂P(131̌)
P

(464̌)

= ζ 10T5̌6T46̂T5̌1T2̌3T2̌4T6̌2̂T5̌3̂T5̌1̂T3̂1̂T1̂3̌T5̌6̌T2̌4̂T2̌1̂T4̌6T32̂P(131̌)
P

(464̌)

= ζ 11T5̌6T46̂T5̌1T2̌3T2̌4T6̌2̂T5̌3̂T5̌1̂T5̌6̌T2̌4̂T2̌3̌T4̌6T12̂P(464̌)

= ζ 11Tˇ Tˇ Tˇ Tˇ Tˇ ˆT ˆTˇ ˆTˇ ˆTˇ ˆTˇ ˇTˇ ˆTˇ Tˇ ˇT ˆP ˇ
56 51 23 24 26 46 62 53 51 56 24 46 23 12 (464)
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= ζ 11T5̌6T5̌1T2̌3T2̌4T2̌6̂T5̌3̂T5̌1̂T2̌4̂T46̂T5̌6̌T4̌6T2̌3̌T12̂P(464̌)

= ζ 11T5̌6T5̌1T2̌3T2̌4T2̌6̂T5̌3̂T5̌1̂T2̌4̂T5̌6̌T5̌4̌T46̂T4̌6T2̌3̌T12̂P(464̌)

= ζ 12T5̌6T5̌1T2̌3T2̌4T2̌6̂T5̌3̂T5̌1̂T2̌4̂T5̌6̌T5̌4̌T2̌3̌T12̂

= ζ 12T5̌6T5̌1T5̌3̂T5̌2̂T2̌3T2̌4T5̌1̂T5̌6̌T5̌2̂T2̌6̂T5̌4̌T5̌2̂T2̌4̂T2̌3̌T12̂

= ζ 12T5̌6T5̌1T5̌3̂T5̌2̂T2̌3T5̌1̂T5̌6̌T5̌4̌T2̌4T2̌6̂T5̌2̂T2̌4̂T2̌3̌T12̂

= F̄f F̄e,

where each equality, except for the last one, is obtained by transforming the underlined fragment
by applying the Pentagon relation (one time in the third, the fifth, the sixth, the seventh, the
tenth, and three times in the ninth equalities), the Inversion relation (in the forth and the eighth
equalities), and the extended symmetric group action (in the second, the forth, and the eighth
equalities), while in the last equality the underlined (respectively the non-underlined) fragment
corresponds to the operator F̄f (respectively F̄e). �
Lemma 2.6. Suppose that s � 4. Then the lift of each puncture relation is ζ 6.

Proof. Observe first that the central element Pi which is the lift of the puncture relation at the
puncture pi is independent of the particular subsurface S1

0,3. If we consider another subsurface,
there exists a homeomorphism ϕ : Ss

g,r → Ss
g,r fixing the puncture pi and sending it to the initial

subsurface, because the boundary components are non-separating. The new puncture relation is
then conjugate of Pi by ϕ̃ and hence they coincide, as they are elements of the center.

If s � 4 then there is an embedding S4
0,3 ⊂ Ss

g,r , such that each boundary component of S4
0,3

has a puncture on it. Consider first the following decomposition τ of the punctured pair of pants
into triangles. The position of the label of each triangle indicates also the marked corner.

Then we can express easily the action of each Dehn twist Daj
on the triangulation τ as a

composition of flips. If we set Faj
= F(τ,Daj

(τ )) then we have:

Fa1 = T −1
3̌4̌

, Fa2 = T −1
1̌2

, Fa3 = T −1
5̌6

.

Further we use the sequence of transformations below, in order to change the triangulation τ

into a triangulation which intersects the curve a12 in only two points.
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Here and in the pictures below we marked by a dot the edges where a flip occurs, in order
to help the reader visualize the sequence of transformations. Then the method outlined above
permits to compute the Dehn twist Fa12 = F(τ,Da12(τ )) as follows:

Fa12 = Ad(T4̂7̂T2̌4T4̂1̂T3̂4̂T3̂2̌)
(
T −1

3̌7̂

)
.

Let us first simplify the formula for Fa12 . We have

F̄a12 = T7̌4T2̌4T4̂1̂T3̂4̂T3̂2̌T7̌3̂T̄3̂2̌T̄3̂4̂T̄4̂1̂T̄2̌4T̄7̌4 = T7̌4T2̌4T4̂1̂T3̂4̂T7̌3̂T7̌2̌T̄3̂4̂T̄4̂1̂T̄2̌4T̄7̌4

= T7̌4T2̌4T4̂1̂T7̌3̂T7̌4̂T7̌2̌T̄4̂1̂T̄2̌4T̄7̌4 = T7̌4T2̌4T7̌3̂T7̌4̂T7̌1̂T7̌2̌T̄2̌4T̄7̌4

= T7̌4T2̌4T7̌3̂T7̌4̂T7̌1̂T̄2̌4T7̌2̌ = T7̌4T7̌3̂T7̌4̂T7̌2̂T7̌1̂T7̌2̌

where in each step the underlined fragment is transformed by using the Pentagon equation, and
in the last equality it is also combined with the symmetry relation Tˇ = Tˆ ˆ .
24 42
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Our triangulation is invariant under the following simultaneous cyclic permutations

π : P1 �→ P2 �→ P3 �→ P1, 1 �→ 6̌ �→ 3 �→ 1, 2 �→ 5̂ �→ 4̌ �→ 2, 7 �→ 7̌,

so that the contours aj and akl are transformed as follows:

π : a1 �→ a2 �→ a3 �→ a1, a12 �→ a23 �→ a31 �→ a12.

Thus, it suffices to know the explicit formula for Fa12 in order to write out the other two without
any further calculation:

F̄a23 = π(F̄a12)

= π(T7̌4T7̌3̂T7̌4̂T7̌2̂T7̌1̂T7̌2̌)

= T7̂2̂T7̂1̂T7̂2̌T7̂5̌T7̂6T7̂5,

and

F̄a31 = π(F̄a23)

= π(T7̂2̂T7̂1̂T7̂2̌T7̂5̌T7̂6T7̂5)

= T75̌T76T75T74T73̂T74̂.

Now, we have

F̄a12 F̄a23 F̄a31 = T7̌4T7̌3̂T7̌4̂T7̌2̂T7̌1̂T7̌2̌T7̂2̂T7̂1̂T7̂2̌T7̂5̌T7̂6T7̂5T75̌T76T75T74T73̂T74̂

= T7̌4T7̌3̂T7̌4̂T7̌2̂T7̌1̂ζP
(27̂2̂)

T7̂1̂T7̂2̌T7̂5̌T7̂6ζP
(5̂75̌)

T76T75T74T73̂T74̂

= ζ 2T7̌4T7̌3̂T7̌4̂T7̌2̂T7̌1̂T2̂1̂T2̂7T2̂5̌T2̂6T5̌6T5̌2̌T5̌4T5̌3̂T5̌4̂P(27̂52̌)

= ζ 2T7̌4T7̌3̂T7̌4̂T2̂1̂T7̌2̂T2̂7T5̌6T2̂5̌T5̌2̌T5̌4T5̌3̂T5̌4̂P(27̂52̌)

= ζ 2T7̌4T7̌3̂T7̌4̂T2̂1̂ζP
(7̌2̂7)

T5̌6ζP
(2̂5̌2̌)

T5̌4T5̌3̂T5̌4̂P(27̂52̌)

= ζ 4T7̌4T7̌3̂T7̌4̂T2̂1̂T5̌6T7̂4T7̂3̂T7̂4̂P(77̂)

= ζ 4T7̌4T7̌3̂T2̂1̂T5̌6ζP
(4̌7̂4)

T7̂3̂T7̂4̂P(77̂)

= ζ 5T7̌4T7̌3̂T2̂1̂T5̌6T43̂T47P(747̌)

= ζ 5T2̂1̂T5̌6T43̂T7̌4T47P(747̌)

= ζ 5T2̂1̂T5̌6T43̂ζP
(7̌47)

P
(747̌)

= ζ 6T2̂1̂T5̌6T43̂

= ζ 6F̄a2 F̄a3 F̄a1

where in the underlined fragments the Pentagon equation is used twice in the forth and once in
the ninth equalities, the Inversion relation is used twice in the second and the fifth, and once in
the seventh and the tenth equalities, while in the third, sixth, eighth, and eleventh equalities the
permutation operators are moved to the right and the powers of ζ , to the left. �
Proof of Lemma 2.4. The idea of the proof is to calculate the lift of the lantern relation. Consider
the following decorated triangulation τ of the 4-holed disk with 4 punctures:
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The trick used in [16,18] for computing Da is to use a sequence of flips to change the triangula-
tion into one which intersects some curve isotopic to a into two points. Then the Dehn twist along
a can be expressed as the flip of one of the two edges of the latter triangulation intersecting a.
This recipe generalizes to the case where the curve a intersects several edges of the triangulation,
if a is a boundary component with one puncture on it. Specifically, let e1, . . . , es be the edges
issued from the puncture, in counterclockwise order. Then the Dehn twist Da can be expressed
as the result of composing the flips of e1, e2, . . . , es−1. We illustrate this procedure with the case
of the left Dehn twist D−1

a3
on the triangulation τ above:
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In particular, we find the following expression for the right Dehn twist along a3:

F̄a3 = F̄(τ,Da3τ)

= T35̌T38̂T37̂T36̂. (42)

We used above the symmetry property of the T -matrix T35̌ = T53̌ (see Remark 1.3, Eq. (25)).
The same recipe for the remaining Dehn twists along boundary components gives us:

F̄a2 = F̄(τ,Da2τ) = T24T25T23̌T26, (43)

F̄a1 = F̄(τ,Da1τ) = T14̂T12̌T16̌T17, (44)

F̄a0 = F̄(τ,Da0τ) = T8̌5̂T8̌4̌T8̌1̌T8̌7̌. (45)

In order to compute Fa12 we need to transform the triangulation τ into one which intersects a
curve isotopic to a12 into precisely two points. This can be done as follows:
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Therefore we have:

F̄a12 = F̄(τ,Da12τ)

= Ad(T35̌T14̌T45T46T75)(T6̌7). (46)

The following sequence of transformations

can be used to compute:

F̄a13 = F̄(τ,Da13τ)

= Ad(T8̂7̂T2̌6̌T45T24T5̌8̂)(T4̌5̌). (47)

Eventually use the transformations
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in order to obtain:

F̄a23 = F̄(τ,Da23τ) = Ad(T24T3̌6T5̌8̂T1̌7̌T4̌1̌T3̌1̌T4̌5̂)(T35̌). (48)

The next step is to simplify the expression of the last three Dehn twist, as follows:

F̄a12 = T ˇT ˇT45T46T75Tˇ T̄75T̄46T̄45T̄ ˇ T̄ ˇ = T ˇT ˇT45T75T46Tˇ T̄46T̄75T̄45T̄ ˇ T̄ ˇ
35 14 67 14 35 35 14 67 14 35
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= T35̌T14̌T45T75T6̌7T̄47T̄75T̄45T̄14̌T̄35̌ = T35̌T14̌T45T75T6̌7T̄75T47T̄14̌T̄35̌

= T35̌T14̌T45T6̌7T6̌5T47T̄14̌T̄35̌ = T14̌T6̌7T35̌T45T6̌5T̄35̌T47T̄14̌

= T14̌T6̌7T35̌T45T̄35̌ T35̌T6̌5T̄35̌T47T̄14̌ = T14̌T6̌7T45T34̌T6̌5T36̂T47T̄14̌.

The first equality above corresponds to the commutativity of Tij and Tkl in the case when the
two sets of indices are disjoint, for each one of the underlined fragments. We further also made
use of the symmetry property from (Remark 1.3, relation (25)) in order to be able to use the
Pentagon relation, as in the last equality above. Specifically, the rightmost reduction consists of
the following steps:

T35̌T6̌5T̄35̌ = T53̌T6̌5T̄35̌ = T6̌5T36̂T53̌T̄35̌ = T6̌5T36̂T35̌T̄35̌ = T6̌5T36̂. (49)

Similar simplifications lead to:

F̄a13 = T8̂7̂T2̌6̌T45T24T5̌8̂T4̌5̌T̄5̌8̂T̄24T̄45T̄2̌6̌T̄8̂7̂ = T8̂7̂T2̌6̌T45T5̌8̂T24T4̌5̌T̄24T̄5̌8̂T̄45T̄2̌6̌T̄8̂7̂

= T8̂7̂T2̌6̌T45T5̌8̂T4̌5̌T52̌T̄5̌8̂T̄45T̄2̌6̌T̄8̂7̂ = ζT8̂7̂T2̌6̌T5̌8̂T48̂P(454̂)
T̄52̌T̄5̌8̂T̄45T̄2̌6̌T̄8̂7̂

= ζT8̂7̂T2̌6̌T5̌8̂T48̂T̄4̂2̌T̄48̂T̄54̂T̄2̌6̌T̄8̂7̂P(454̂)
= ζT8̂7̂T2̌6̌T5̌8̂T24T28̂T̄54̂T̄2̌6̌T̄8̂7̂P(454̂)

= ζT8̂7̂T5̌8̂T2̌6̌T24T28̂T̄2̌6̌T̄54̂T̄8̂7̂P(454̂)
= ζT8̂7̂T5̌8̂T2̌6̌T24T̄2̌6̌ T2̌6̌T28̂T̄2̌6̌T̄54̂T̄8̂7̂P(454̂)

= ζT8̂7̂T5̌8̂T24T4̂6̌T28̂T8̌6̌T̄54̂T̄8̂7̂P(454̂)
,

F̄a23 = T24T3̌6T5̌8̂T1̌7̌T4̌1̌T3̌1̌T4̌5̂T35̌T̄4̌5̂T̄3̌1̌T̄4̌1̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24

= T24T3̌6T5̌8̂T1̌7̌T4̌1̌T4̌5̂T3̌1̌T35̌T̄3̌1̌T̄4̌5̂T̄4̌1̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24

= T24T3̌6T5̌8̂T1̌7̌T4̌1̌T4̌5̂T35̌T51̌T̄4̌5̂T̄4̌1̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24

= T24T3̌6T5̌8̂T1̌7̌T4̌1̌T4̌5̂T35̌T̄4̌5̂T51̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24

= T24T3̌6T5̌8̂T1̌7̌T4̌1̌T4̌5̂T35̌T51̌T̄4̌5̂T̄4̌1̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24

= T24T3̌6T5̌8̂T1̌7̌T4̌1̌T35̌T34̂T51̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24.

Putting all these together we obtain:

F̄a12 F̄a23 F̄a13

= ζT14̌T6̌7T45T34̌T6̌5T36̂T47T̄14̌T24T3̌6T5̌8̂T1̌7̌T4̌1̌T35̌T34̂T51̌T̄1̌7̌T̄5̌8̂T̄3̌6T̄24T8̂7̂T5̌8̂T24

× T4̂6̌T28̂T8̌6̌T̄54̂T̄8̂7̂P(454̂)

= ζT14̌T6̌7T45T34̌T6̌5T36̂T47T̄14̌T24T3̌6T5̌8̂T1̌7̌T4̌1̌T35̌T34̂T51̌T̄1̌7̌T̄3̌6T5̌7̂T8̂7̂T4̂6̌T28̂T8̌6̌T̄54̂

× T̄8̂7̂P(454̂)

= ζ 2T14̌T6̌7T45T34̌T6̌5T36̂T47T̄14̌T24T3̌6T5̌8̂T1̌7̌T4̌1̌T35̌T34̂T̄1̌7̌T51̌P(57̌5̂)
T̄3̌6T8̂7̂T4̂6̌T28̂T8̌6̌

× T̄54̂T̄8̂7̂P(454̂)

= ζ 2T14̌T6̌7T45T34̌T6̌5T36̂T47T̄14̌T24T3̌6T5̌8̂T4̌1̌T4̌7̌T35̌T34̂T51̌T̄3̌6T4̂6̌T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂

× P
(57̌5̂)

P
(454̂)

= ζ 2T ˇTˇ T45T ˇTˇ T ˆT47T ˇT24Tˇ Tˇ ˆTˇ ˇT ˇT ˆT ˇ T̄ˇ Tˆ ˇTˆ T ˆTˇ ˇ T̄ˆ T̄ˇ ˆ
14 67 34 65 36 12 36 58 47 35 34 51 36 46 85 28 86 85 74
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× P
(57̌5̂)

P
(454̂)

= ζ 3T14̌T6̌7T45T34̌T6̌5T36̂ T12̌T24T27P(474̂)
T3̌6T5̌8̂T35̌T34̂T51̌T̄3̌6T4̂6̌T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂

× P
(57̌5̂)

P
(454̂)

= ζ 3T14̌T12̌T16̌T17T̄17T̄16̌T6̌7T24T̄24T45T34̌T6̌5T36̂ T24T27P(474̂)
T3̌6T5̌8̂T35̌T34̂T51̌T̄3̌6T4̂6̌

× T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂P(57̌5̂)
P

(454̂)

= ζ 3F̄a2 T̄17T̄6̌7T̄16̌T24T̄24T45T24 T̄24T34̌T24T6̌5T36̂T27 P
(474̂)

T3̌6T5̌8̂T35̌T34̂T51̌T̄3̌6T4̂6̌

× T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂P(57̌5̂)
P

(454̂)

= ζ 3F̄a2T6̌7T̄16̌T24T25T45T23̌T43̌T6̌5T27T36̂T3̌6P(474̂)
T5̌8̂T35̌T34̂T51̌T̄3̌6T4̂6̌

× T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂P(57̌5̂)
P

(454̂)

= ζ 4F̄a2T24T25T23̌T26 T̄26T6̌7T̄16̌T45T43̌T27T6̌5P(6̌3̌6)
P

(474̂)
T5̌8̂T35̌T34̂T51̌T̄3̌6T4̂6̌

× T8̂5T28̂T8̌6̌T̄8̂5T̄7̌4̂P(57̌5̂)
P

(454̂)

= ζ 4F̄a2 F̄a1T6̌7T̄26T̄16̌T45T43̌T6̌5T5̌8̂T6̂5̌ T67̂T51̌T̄63T7̂3̌T8̂5T28̂T8̌3̌T̄8̂5T̄47̂

× P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 6F̄a2 F̄a1T6̌7T̄26T̄16̌T45T43̌T5̌8̂T6̌8̂T61̌T̄5̂3T5̌7̂T8̂6T28̂T8̌7̌T̄8̂6T̄43̄

× P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 6F̄a2 F̄a1T6̌7T̄26T45T43̌T5̌8̂T18̂T6̌8̂T̄5̂3T5̌7̂T8̂6T28̂T8̌7̌T̄8̂6T̄43̄

× P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 7F̄a2 F̄a1T6̌7T̄26T45T43̌T5̌8̂T18̂T̄5̂3T5̌7̂P(6̌8̂6)
T8̂T8̌7̌T̄8̂6T̄43̄

× P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 7F̄a2 F̄a1T6̌7 T̄26T45T43̌T5̌8̂T18̂T̄5̂3T5̌7̂ T26 T6̂7̌T̄68̌T̄43̄

× P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 8F̄a2 F̄a1T45T43̌T5̌8̂T18̂T̄5̂3T5̌7̂T6̌5̂P(6̌76)
T̄68̌T̄43̄

× P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 8F̄a2 F̄a1 F̄a0 T̄8̌7̌T̄8̌1̌T̄8̌4̌T̄8̌5̂T45T43̌T5̌8̂T18̂T̄5̂3T5̌7̂T6̌5̂T̄7̂8̌T̄43̄

× P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 8F̄a2 F̄a1 F̄a0 T̄8̌7̌T̄8̌1̌ T̄8̌4̌ T48̂T45T43̌T18̂T̄5̂3T5̌7̂T6̌5̂T̄7̂8̌T̄43̄

× P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 8F̄a2 F̄a1 F̄a0 T̄8̌7̌T45T43̌T̄5̂3T5̌7̂T6̌5̂T̄7̂8̌T̄43̄

× P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

.

In the previous lines we used both the Pentagon relation coupled with the symmetry property
several times and the commutativity relations corresponding to the underlined fragments. Some-
times several simplifications are recorded in the same line, as in the first equality above where
the underlined factors T̄24 and T24 commute with Tˆ ˆTˇ ˆ and therefore cancel each other, so that
87 58
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along with the first underlined factor we obtain a subproduct T̄5̌8̂T8̂7̂T5̌8̂ and the Pentagon relation
can be applied.

Use now the identity:

T̄8̌7̌T5̌7̂T̄7̂8̌ = T5̌8̂T5̌7̂T̄8̌7̌T̄7̂8̌ = ζ−1T5̌8̂T5̌7̂P(7̌8̌7̂)

and introduce above to find that:

F̄a12 F̄a23 F̄a13 = ζ 7F̄a2 F̄a1 F̄a0T45T43̌T̄5̂3T5̌8̂T5̌7̂T6̌5̂T̄43̄

× P
(7̌8̌7̂)

P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 7F̄a2 F̄a1 F̄a0 F̄a3 T̄36̂T̄37̂T̄38̂T̄35̌T45T43̌T̄5̂3T5̌8̂T5̌7̂T6̌5̂T̄43̄

× P
(7̌8̌7̂)

P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 7F̄a2 F̄a1 F̄a0 F̄a3 T̄36̂T̄37̂T̄38̂T45T̄35̌T̄5̂3T5̌8̂T5̌7̂T6̌5̂T̄43̄

× P
(7̌8̌7̂)

P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 6F̄a2 F̄a1 F̄a0 F̄a3 T̄36̂T̄37̂T̄38̂T45P(5̌35̂)
T5̌8̂T5̌7̂T6̌5̂T̄43̄

× P
(7̌8̌7̂)

P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 6F̄a2 F̄a1 F̄a0 F̄a3 T̄36̂ T̄37̂ T̄38̂ T45 T38̂ T37̂T6̌3̌ T̄45

× P
(5̌35̂)

P
(7̌8̌7̂)

P
(6̌76)

P
(6̌8̂6)

P
(6̌56)

P
(3̂7̂3̌)

P
(6̌3̌6)

P
(474̂)

P
(57̌5̂)

P
(454̂)

= ζ 6F̄a2 F̄a1 F̄a0 F̄a3 .

Thus the lift of the lantern relation is ζ 6. Therefore we have to renormalize each right Dehn twist
by taking D̃α = ζ−6Fα , as claimed. �

The following lemma is a simple consequence of a deep result of Gervais from [13]:

Lemma 2.7. Let g � 2 and s � 0. Then the group Γ s
g,r is presented as follows:

1. Generators are all Dehn twists Da along the non-separating simple closed curves a on Σs
g,r .

2. Relations:
(a) Braid type 0-relations:

DaDb = DbDa

for each pair of disjoint non-separating simple closed curves a and b;
(b) Braid type 1-relations:

DaDbDa = DbDaDb

for each pair of non-separating simple closed curves a and b which intersect trans-
versely in one point;

(c) One lantern relation for a 4-hold sphere embedded in Σs
g,r so that all boundary curves

are non-separating;
(d) One chain relation for a 2-holed torus embedded in Σs

g,r so that all boundary curves
are non-separating;

(e) A puncture relation for each puncture.
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Proof. According to [13, Theorem B] we have a presentation of Γg,s+r with the generators above
and all but the puncture relations. Now, the kernel of Γg,s+r → Γ s

g,r is the free Abelian group
generated by the Dehn twists along the boundary curves to be pinched to punctures. Such a Dehn
twist is expressed (using the lantern relation) by the left hand side of the puncture relation. This
proves the claim. �
Proof of Proposition 2.1. According to the normalization coming from the braid relations and
the lantern relations the images of the standard Dehn twist generators of the mapping class group
are products of ζ 6 and elements Tij , where i, j are the labels of the triangles (possibly with ˆ
or ˇ). Thus the projective factors that appear belong to the subgroup A generated by ζ 6. The only
non-trivial lift of a relation from Lemma 2.7 is the chain relation which lifts to ζ−72. Set z for the
element ζ−6 of Γ̃ s

g,r . Then the presentation of the central extension Γ̃ s
g,r is given by the claimed

relations. �
2.3. Cohomological consequences

Recall from [20, Corollary 4.4] that the 2-cohomology classes χ and ei are defined for any
g � 3, s, r � 0 and they span a free Abelian subgroup Zs+1 ⊂ H 2(Γ s

g,r ). This inclusion is actu-
ally an isomorphism when g � 4.

We will denote by Γ̂ s
g,r the group defined by the presentation given in Proposition 2.1, for all

values of s, g, r . Thus, according to Proposition 2.1 the extension Γ̂ s
g,r is isomorphic to Γ̃ s

g,r if
s � 4 and g � 2.

Lemma 2.8. If g � 2, then we have cΓ̂g,r
= 12χ ∈ H 2(Γg,r ;A).

Proof. Consider first the case where ζ is not a root of unity, so that the group A is isomorphic
to Z. Gervais proved in [13, Theorem 3.6] that Γ̂g,r (namely, where s = 0) is isomorphic to the
so-called p1-central extension of Γg,r . Further in [13,21] the authors identified the class of the
p1-central extension of Γg,r to the class 12χ and thus cΓ̂g,r

= 12χ .

Here is a more direct argument. Set Γg,r (1) for the subgroup of Γ̂g,r generated by the lifts D̃a

of the Dehn twists and the central element u = z12. Then Γg,r (1) is the universal central extension
considered by Harer (see [13,14]) and thus cΓg,r (1) is the generator χ of H 2(Γg,r ) ∼= Z.

The cohomology class cΓg,r (1) is represented by some explicit 2-cocycle CΓg,r (1) : Γg,r ×
Γg,r → Z which arises as follows. Let S : Γg,r → Γg,r (1) be a set-wise section. Let also
i : ker(Γg,r (1) → Γg,r ) → Z be the group isomorphism defined by i(u) = 1. It is well known
that the 2-cocycle

CΓg,r (1)(x, y) = i
(
S(xy)S(x)−1S(y)−1) ∈ Z

represents the cohomology class cΓg,r (1).
Let us construct now a 2-cocycle representing the extension Γ̂g,r . Consider the set-wise sec-

tion ι◦S : Γg,r → Γ̂g,r , where ι : Γg,r (1) → Γ̂g,r is the obvious inclusion. Let also j : ker(Γ̂g,r →
Γg,r ) → Z be the isomorphism given by j (z) = 1. Then

CΓ̂g,r
(x, y) = j

(
(ι ◦ S)(xy)(ι ◦ S)(x)−1(ι ◦ S)(y)−1) = j

(
ι
(
S(xy)S(x)−1S(y)−1)) ∈ Z

is a 2-cocycle representing cΓ̂g,r
. Since j (ι(u)) = j (z12) = 12i(u) and S(xy)S(x)−1S(y)−1 be-

longs to the cyclic subgroup of Γg,r (1) generated by u, it follows that
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CΓ̂g,r
(x, y) = 12CΓg,r (1)

and thus cΓ̂g,r
= 12χ , where χ is one fourth of the Meyer signature class, which is a generator of

H 2(Γg,1) ⊂ H 2(Γ 1
g ).

When ζ is a root of unity of order N then the class of the extension Γ̂g,r is the image of 12χ

in H 2(Γg,r ;Z/NZ) by the reduction mod N . �
The next step is to prove a similar statement when the number s of punctures is non-zero.

Definition 2.4. For (m1,m2, . . . ,ms) ∈ Zs let Γ s
g,r (m1,m2, . . . ,ms) be the central extension of

Γ s
g,r by A having the following presentation:

1. Generators are the D̃α , where Dα are Dehn twist generators of Γ s
g,r and the central element

z of the same order as ζ−6;
2. Relations are as follows. For each puncture pi the lift of the corresponding puncture relation

reads:

D̃a1(i)

−1
D̃a2(i)

−1
D̃a3(i)

−1
D̃a12(i)D̃a13(i)D̃a23(i) = zmi

where D̃a are lifts of Dehn twists. Furthermore the chain and lantern relations have trivial
lifts.

Proposition 2.2. Suppose that g � 0. Then cΓ s
g,r (m1,...,ms) ∈ An+1 ⊂ H 2(Γ s

g,r ;A) is the vector
m1e1 + m2e2 + · · · + mses , where ei is the Euler class of the i-th puncture.

Proof. This is folklore. Consider first that ζ is not a root of unity. Let Σs−1
g,r+1;i denote the sub-

surface of Σs
g,r obtained by removing a one-punctured disk centered at the puncture pi and thus

creating a new boundary component bi . We have then a central extension

Z → Γ s−1
g,r+1;i → Γ s

g,r → 1

induced by the inclusion map Σs−1
g,r+1;i ↪→ Σs

g,r . It is well known that its cohomology class is
c
Γ s−1

g,r+1;i
= ei .

Lemma 2.9. The extension Γ s−1
g,r+1;i is isomorphic to Γ s

g,r (0, . . . ,1,0 . . . ,0), where 1 is on the
i-th position.

Proof. There is a natural set-wise section Si : Γ s
g,r → Γ s−1

g,r+1;i , given by Si(Dα) = Dα , for any
Dehn twist Dα . In order to make sense, we might suppose that a simple closed curve α disjoint
from the puncture pi is actually disjoint from bi so that it lies within Σs−1

g,r+1;i .
Braid, chain and lantern relations are then lifted trivially. A puncture relation at pj is lifted

trivially if j �= i. Consider next a puncture relation at pi in Σs
g,r , which is supported on some

subsurface Σ1
0,3. The three boundary curves of Σ1

0,3 lie within Σs−1
g,r+1;i and together with bi

bound a 4-holed sphere in Σs−1
g,r+1;i . The lantern relation associated to this 4-holed sphere on

Σs−1
g,r+1;i is then the lift of the puncture relation at pi . The Dehn twist along bi is the generator

z of the central factor ker(Γ s−1
g,r+1;i → Γ s

g,r ). Thus the lift of a puncture relation at pi is the
factor z. �
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Lemma 2.10. Let Lm : Zs → Z denote the linear map Lm(n1, . . . , ns) = ∑s
i=1 mini , where

m = (m1, . . . ,ms). Consider the central extension

1 → Zs → Γg,r+s → Γ s
g,r → 1.

Then the map Lm induces a quotient of Γg,r+s , which is a central extension Γ s
g,r (m) of Γ s

g,r

by Z which is isomorphic to Γ s
g,r (m1,m2, . . . ,ms) and gives rise to the following commutative

diagram:

1 Zs

La

Γg,r+s

π

Γ s
g,r

1

1

1 Z Γ s
g,r (m) Γ s

g,r 1

Proof. The class of the central extension cΓg,r+s belongs to H 2(Γ s
g,r ;Zs) = ⊕

s H 2(Γ s
g,r ,Z).

By functoriality we derive that cΓg,r+s = (e1, e2, . . . , es) ∈ H 2(Γ s
g,r ;Zs). Then the class cΓ s

g,r (a)

is the image of cΓg,r+s into H 2(Γ s
g,r ) by the homomorphism of coefficients rings Lm : Zs → Z.

There is an obvious set-wise section S defined in the same way as the Si from above. Then cΓg,r+s

is the class of the 2-cocycle LmC, where C is the 2-cocycle associated to S and so

LmC(x, y) = π
(
S(x)−1S(y)−1S(xy)

) = Lm
((

Si(x)−1Si(y)−1Si(xy)
)
i=1,s

)
=

s∑
i=1

miCi(x, y)

where Ci is the 2-cocycle associated to Si . Since the class of Ci is ei it follows that the class of
LmC is

∑s
i=1 miei .

On the other hand the lifts of relations in Γ s
g,r (m) are the same as in Γ s

g,r (m1, . . . ,ms) and
thus they are isomorphic. In fact the lifts of braid, chain and lantern relations to Γg,r+s are trivial.
The lift of a puncture relation at pi is the i-th generator of the central factor Zs , according to
Lemma 2.9. Therefore its image into Γ s

g,r (m) is zmi , namely the lift of the puncture relation in
Γ s

g,r (m1, . . . ,ms). �
When ζ is a root of unity the extensions by Z above are replaced by extensions by Z/NZ and

all arguments go through without essential modifications.
This proves the proposition. �

Proof of the theorem. Assume first that A is cyclic infinite. Consider the operation ⊗ (which
is a push-out, or a fibered product) on central extensions defined as follows. If fi : Gi → G are
the projections homomorphisms of the central extensions Gi of G by Z then G1 ⊗ G2 is the
extension f ∗

1 G2 (or equivalently f ∗
2 G1) of G by Z2. The class cG1⊗G2 ∈ H 2(G,Z2) is the direct

sum of the classes cGi
∈ H 2(G,Z) under the identification of H 2(G,Z2) with the sum of two

copies of H 2(G,Z).
Let f denote the surjective homomorphism f : Γ s

g,r → Γg,r . Consider then the central exten-
sion

1 → Z2 → f ∗(Γ̂g,r ) ⊗ Γ s (1,1, . . . ,1) → Γ s → 1.
g,r g,r
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Using the map L : Z2 → Z given by L(x, y) = x + y we find a quotient of f ∗(Γ̂g,r ) ⊗
Γ s

g,r (1,1, . . . ,1), which is a central extension by Z isomorphic to Γ̂ s
g,r . In fact, there is a com-

mutative diagram:

1 Z2

L

f ∗(Γ̂g,r ) ⊗ Γ s
g,r (1,1, . . . ,1)

π

Γ s
g,r

1

1

1 Z Γ̂ s
g,r Γ s

g,r 1

The central extension from the lower row is isomorphic to Γ̂ s
g,r because the lifts of relations

are the same. Braid and lantern relations lift trivially. Chain relations lift to z12 in f ∗(Γ̂g,r ) and
trivially to Γ s

g,r (1,1, . . . ,1) and thus the image of the lift by L (or π ) is z12. Puncture relations
at pi lift trivially to f ∗(Γ̂g,r ) and to z in the factor Γ s

g,r (1,1, . . . ,1), so that its image by L

(or π ) is z. As a consequence of this description the class cΓ̂ s
g,r

is the image by L of the class of

f ∗(Γ̂g,r ) ⊗ Γ s
g,r (1,1, . . . ,1), namely cf ∗(Γ̂g,r )

+ cΓ s
g,r (1,1,...,1).

On the other hand, by functoriality, the class cf ∗(Γ̂g,r )
is f ∗(12χ) = 12χ ∈ H 2(Γ s

g,r ), because

the map f ∗ is the standard embedding of H 2(Γg,r ) = Zχ into H 2(Γ s
g,r ). Proposition 2.2 proves

the theorem for g � 3.
When g = 2 one does not know the group H 2(Γ s

2,r ), but for s = 0 and r � 1. Nevertheless,
the classes χ and ej are still defined. It suffices to prove that:

Lemma 2.11. The subgroup of H 2(Γ s
2,r ) generated by χ and e1, . . . , es is isomorphic to

Z/10Z⊕Zs .

Proof. By the universal coefficients theorem we have

1 → H1
(
Γ s

2,r

) → H 2(Γ s
2,r

) → Hom
(
H2

(
Γ s

2,r

)
,Z

) → 1.

From [20, Proposition 1.6] we have H1(Γ
s

2,r ) = Z/10Z. The Meyer class χ in genus 2 is one half

of the class of Meyer’s cocycle from [22] and it generates the image of H1(Γ
s

2,r ) into H 2(Γ s
2,r ).

Consider next the extensions Γ s
2,r (m) for integral vectors m. According to the previous de-

scription lifts of puncture relations are of the form zmi . Suppose that there exists an isomorphism
between the extensions Γ s

2,r (m) and Γ s
2,r (u). Such an isomorphism of extensions should send

D̃α into zn(α)D̃α , because it has to induce the identity on Γ s
2,r . Since lifts of braid relations are

trivial in both extension groups it follows that n(α) = n does not depend on the non-separating
curve α. But puncture relations are homogeneous, and so they do not depend on n. This shows
that m = u. In particular the classes ei span a free Z-submodule of H 2(Γ s

2,r ).
Since the class χ is of order 10 and both subgroups Z/10Z (generated by χ ) and Zs (generated

by e1, . . . , es ) inject into H 2(Γ s
2,r ), the claim follows. �

Then the arguments used above for g � 3 work as well for g = 2 and the theorem follows.
When ζ is a root of unity the associated cohomology class is the reduction mod N of the corre-
sponding integral cohomology class. �
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Proof of Corollary 0.2. Consider the extension Γ̂g,r+s of class 12χ . The corollary claims that
there is an exact sequence:

1 → As−1 → Γ̂g,r+s → Γ̂ s
g,r → 1.

This can be verified by using the explicit presentations of the two groups involved. The kernel
is generated by the products of two opposite Dehn twists on the s blown up boundary compo-
nents. �
Proof of Corollary 0.3. It suffices to understand the map H 2(Γ s

g,r ;A) → H 2(Γ s
g,r ,C

∗) induced

by z → ζ−6. This map is injective, when g � 3.
The Universal Coefficients Theorem states that, for any Abelian group W , the following exact

sequence is exact:

1 → Ext
(
H0

(
Γ s

g,r

)
,W

) → H 1(Γ s
g,r ;W

) → Hom
(
H1

(
Γ s

g,r

)
,W

) → 1.

Now Ext(Z,W) = 0, for any Abelian group W . This implies that H 1(Γ s
g,r ;C∗) = H 1(Γ s

g,r ;
C∗/A) = 0, if g � 3. From the Bockstein exact sequence

H 1(Γ s
g,r ;C∗) → H 1(Γ s

g,r ;C∗/A
) β→ H 2(Γ s

g,r ;A
) ν→ H 2(Γ s

g,r ;C∗)
we derive the claim.

When g = 2 the Universal Coefficients Theorem shows, as above, that H 1(Γ s
2,r ;C∗) =

Hom(H1(Γ
s

2,r ),C
∗) and H 1(Γ s

2,r ;C∗/A) = Hom(H1(Γ
s

2,r ),C
∗/A). Thus H 1(Γ s

2,r ;C∗) =
Hom(Z/10Z,C∗) = U10, where U10 is the subgroup of roots of unity of order 10. The last iso-
morphism sends a homomorphism into its value on the generator 1. Next H 1(Γ s

2,r ;C∗/A) =
Hom(Z/10Z,C∗/A) = U10 × A/10A. To explain the last isomorphism, each element f ∈
H 1(Γ s

2,r ;C∗/A) is determined by its value f (1) = As, for some s ∈ C∗. Here s10 = an ∈ A,

where a is the generator of A. Fix some 10-th root a1/10 ∈ C∗ of the generator of A. Then the
isomorphism above associates to f the element (sa−n/10, s10) ∈ U10 × A/10A, which is well-
defined and independent of the choice of the representative s in its A-coset. In particular the map
H 1(Γ s

2,r ,C
∗) → H 1(Γ s

2,r ,C
∗/A) sends U10 onto the factor U10 of the second group.

Let f̂ be a lift of f to f̂ : Z/10Z = H1(Γ
s
g,r ) → C∗, for instance f̂ (k) = sk , where k ∈

Z/10Z. Then F(k1, k2) = f̂ (k1)f̂ (k2)f̂ (k1k2)
−1 ∈ A is a 2-cocycle on H1(Γ

s
2,r ) with values

in A. The pull-back in H 2(Γ s
2,r ,A) of the class of F by the map Γ s

2,r → H1(Γ
s

2,r ) is the element

β(f ). It is well known that H 2(Z/10Z,A) = A/10A is generated by the Euler class. Specifically,
the cohomology class of the 2-cocycle F in H 2(Z/10Z,A) is the element s10 ∈ A/10A, under
the previous isomorphism.

The Universal Coefficients Theorem shows that

1 → Ext
(
H1

(
Γ s

2,r

)
,A

) → H 2(Γ s
2,r ;A

) → Hom
(
H2

(
Γ s

2,r

)
,A

) → 1.

Further Ext(H1(Γ
s
g,r ),A) = A/10A is generated by the class χ (as an A-valued cohomology

class). Using the definition of Ext one identifies the class χ with the generator of H 2(Z/10Z;A).
This implies that the image of β is the subgroup generated by χ within H 2(Γ s

2,r ;A). Then
Corollary 0.3 follows. �
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