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Abstract

We give asymptotic estimates for the number of non-overlapping homothetic copies of
some centrally symmetric oval B which have a common point with a 2-dimensional domain
F having rectifiable boundary, extending previous work of L. Fejes Tóth, K. Böröckzy Jr.,
D. G. Larman, S. Sezgin, C. Zong and the authors. The asymptotics compute the length of
the boundary ∂F in the Minkowski metric determined by B. The core of the proof consists
of a method for sliding convex beads along curves with positive reach in the Minkowski
plane. We also prove that level sets are rectifiable subsets, extending a theorem of Erdős,
Oleksiv and Pesin for the Euclidean space to the Minkowski space.

1. Introduction

For closed topological balls F,B j Rn, we denote by Nλ(F,B) ∈ Z+ the
following generalized Hadwiger number. Let AF,B,λ denote the family of all
sets, homothetic to B in the ratio λ, which intersect F but only in boundary
points. Then Nλ(F,B) is the greatest integer k such that AF,B,λ contains k
sets with pairwise disjoint interiors. In particular, N1(F,F ) is the Hadwiger
number of F and Nλ(F,F ) the generalized Hadwiger number considered first
by Fejes Tóth for polytopes in ([8, 9]) and further in [2]. Extensive bibliogra-
phy and results concerning this topic can be found in [3]. The main concern
of this note is to find asymptotic estimates for Nλ(F,B) as λ approaches 0,
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in terms of geometric invariants of F and B, as it was done for F = B in [2],
and to seek for the higher order terms.

Roughly speaking, counting the number of homothetic copies of B packed
along the surface of a n-dimensional body F amounts to compute the (n−1)-
area of its boundary, up to a certain density factor depending only on B. The
density factor is especially simple when dimension n = 2.

A compact centrally symmetric convex set B with non-empty interior in
Rn determines a Banach structure on Rn and thus a metric, usually called
the Minkowski metric associated to B (see [17, 21]). In particular it makes
sense to consider the length of curves with respect to the Minkowski metric.

The main result of this paper states the convergence of the number of ho-
mothetic copies times the homothety factor to half of the Minkowski length
of ∂F , in the case of planar domains F having rectifiable boundary. In order
to achieve this we need first a regularity result concerning level sets that we
are able to prove in full generality in the first section. This is a generaliza-
tion of a theorem due to Erdős, Oleksiv and Pesin for the Euclidean space
to the Minkowski space. The core of the paper is the second section which
is devoted to the proof of the main result stated above. We first prove it for
curves of positive reach (following Federer [7]) and then deduce the general
case from this. The remaining sections contain partial results concerning the
higher order terms for special cases (convex and positive reach domains) and
an extension of the main result in higher dimensions for domains with convex
and smooth boundary.

2. Level sets

Throughout this section B will denote a centrally symmetric convex set
with non-empty interior in Rn. Any such B determines a norm ∥ ∥B by
∥x− y∥B = ∥x− y∥/∥o− z∥, where ∥ ∥ is the Euclidean norm, o is the center
of B and z is a point on the boundary ∂B of B such that the half-lines |oz
and |xy are parallel. When equipped with this norm, Rn becomes a Banach
space whose unit disk is isometric to B. We also denote by dB the distance in
the ∥ ∥B norm, called also the Minkowski metric structure on Rn associated
to B. We set xy, respectively |xy, |xy| for the line, respectively half-line and
segment determined by the points x and y. As it is well-known in Minkowski
geometry segments are geodesics but when B is not strictly convex one might
have also other geodesic segments than the usual segments.

The goal of this section is to generalize the Erdős theorem about the
Lipschitz regularity of level sets from the Euclidean space to an arbitrary
Minkowski space (see [6]). We will make use of it only for n = 2 in the next
section but we think that the general result is also of independent interest
(see also [11, 12]).
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The theorem for the Euclidean space was stated and the beautiful ideas
of the proof were sketched by Erdős in [6]; forty years later the full details
were worked out by Oleksiv and Pesin in [18].

Theorem 1. If the set M is bounded and r is large enough then the
level set Mr =

{
x ∈ Rn; dB(x,M) = r

}
is a Lipschitz hypersurface in the

Minkowski space. Furthermore, for arbitrary r > 0 the level set Mr is the
union of finitely many Lipschitz hypersurfaces and in particular it is a
(n− 1)-rectifiable subset of Rn.

Proof. Our proof extends the one given by Erdős [6] and Oleksiv and
Pesin in [18]. Let r0 such that M ⊂ B(c, r0), where B(c, r0) denotes the
metric ball of radius r0 centered at c. Consider first r large enough in terms
of r0.

Lemma 2.1. Let B(x, r) be such that B(x, r)∩B(c, r0) ̸= ∅ and B(x, r) \
B(c, r0) ̸= ∅. Set γ for the angle under which we can see B(c, r0) from x.
Then, for any ε > 0 there exists some r1(ε, r0) which depends only B, r0 and
ε such that, for any r = r1(ε, r0) we have γ < ε.

Proof. If rmax (respectively rmin) denotes the maximum (respectively
minimum) Euclidean radius of B, then

sin
γ

2
5 r0rmax

r1rmin
. �(1)

Lemma 2.2. There exists some α(B) < π such that ŷxz 5 α, for any z ∈
B(y, r) \ intB(x, r).

Proof. The problem is essentially two-dimensional as we can cut the two
metric balls by a 2-plane containing the line xy and the point z. Suppose
henceforth B is planar and consider support lines l+ and l− parallel to xy.

Since l+ ∩ ∂B(x, r) is convex it is a segment |v+1 v
+
2 |, possibly degenerate

to one point. We choose v+1 to be the farthest from l+ ∩B(y, r) among v+1
and v+2 . By symmetry l− ∩ ∂B(x, r) is a parallel segment |v−1 v

−
2 |, with v+1 v

−
1

parallel to v+2 v
−
2 . Let v+ (and v−) be the midpoint of |v+1 v

+
2 | (respectively

of |v−1 v
−
2 |). Observe that x ∈ |v+v−|. We assume that v+2 and v−2 lie in the

half-plane determined by v+v− and containing y.

We claim then that ŷxz 5 max
(
ŷxv+1 , ŷxv

−
1

)
. This amounts to prove

that any z ∈ B(y, r) \B(x, r) should lie in the half-plane determined by the
line v+1 v

−
1 and containing y, as in the picture below.
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Suppose the contrary, namely that there exists z ∈ B(y, r)\B(x, r) in the
opposite half-plane. Let T be the translation in the direction |yx of length
|yx|. We have T

(
B(y, r)

)
= B(x, r) and z ∈ B(y, r), hence T (z) ∈ B(x, r).

The half-line
∣∣T (z)z intersects the segment |v+v−| in a point w ∈ B(x, r).

Suppose first that B is strictly convex. Then both w and T (z) belong to
B(x, r) while the point z /∈ intB(x, r). This contradicts the strict convexity
of B(x, r), since T (z) ̸= w.

The direction v+v− is called the dual d∗ of d = xy with respect to B (also
called the B-orthogonal, as introduced by Birkhoff).

It suffices now to remark that for given B the quantity

sup
π

sup
d

max
(
∠(d, d∗),∠(d,−d∗)

)
,

the supremum being taken over all planes π and all directions d, is bounded
from above by some α < π. In fact the space of parameters is a compact
(a Grassmannian product the sphere) and that this angle cannot be π unless
the planar slice degenerates.

Let us assume now that B is not strictly convex. Then the argument
above shows that w, T (z) belong to B(x, r) while the point z /∈ int

(
B(x, r)

)
.

Therefore z ∈ ∂B(x, r) and hence w, z, T (z) ∈ ∂B(x, r). Thus w belongs to
one of the two support lines l+ or l−. By symmetry it suffices to consider
the case when w = v+. Since T (∂B(y, r)∩ l+) ⊂ ∂B(x, r)∩ l+ it follows that
∂B(y, r)∩ l+ is the segment

∣∣T−1(v+1 )T
−1(v+2 )

∣∣ . Thus z belongs to the half-
plane determined by T−1(v+1 ) and T−1(v−1 ), which is contained into the one
determined by v+1 v

−
1 and containing y.

The compactness argument above extends to the non strict convex B. �

Remark 1. We have ŷxz 5 max
(
ŷxv+, ŷxv−

)
if z ∈ B(y, r) \B(x, r).

The proof is similar. The upper bound is valid for the closure of B(y, r) \
B(x, r) as well. Therefore it holds also for B(y, r) \ int

(
B(x, r)

)
provided

that B is strictly convex, but not in general, see for instance the case when
B is a rectangle and xy is parallel to one side.
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If β is an angle smaller than π
2 we set K(x,β, |cx) for the cone with vertex

x of total angle 2β, of axis |cx and going outward c.

Lemma 2.3. Let us choose ε such that α(B) + ε < π. Then for any point
x ∈ Mr, with r = r1(ε, r0) we have K

(
x, π − α(B)− ε, |cx

)
∩Mr = {x}.

Proof. If x ∈ Mr then int
(
B(x, r)

)
∩M = ∅. Moreover, M ⊂ B(c, r0)

and so M ⊂ B(c, r0) \ int
(
B(x, r)

)
. Let now y ∈ Mr, y ̸= x. Thus B(y, r)∩

(B(c, r0) \ int
(
B(x, r)

)
̸= ∅. Let then z be a point from this set.

Then z ∈ B(y, r)\ intB(x, r) so that by Lemma 2.2 ∠(yxz) 5 α(B). Fur-
ther Lemma 2.1 shows that

∣∣∠(czx)∣∣ 5 ε, provided that r = r1(ε, r0). Thus
the angle made between the half-lines |cx and |xy is at least π − α− ε, as
can be seen in the figure.

In particular y cannot belong to the cone K
(
x, π − α(B)− ε, |cx

)
. This

proves the lemma. �
Proof of the theorem. Set β = π − α(B)− ε and let r = r1(ε, r0).
First take any x ∈ Mr and let U = Mr ∩K(c, β/2, |cx). If u ∈ U then

K(u, β/2, |cx) ⊂ K(u, β, |cu) and hence

(2) K(u, β/2, |cx) ∩Mr ⊂ K(u, β, |cu) ∩Mr = ∅.

This means that for each u ∈ U the cone with angle β and axis parallel to the
fixed half-line |cx contains no other points of U . Therefore U is the graph of
a function of n− 1 variables satisfying a Lipschitz condition with constant
equal to 1

tanβ .
Let consider now the case when r is arbitrary positive. Choose then s

such that r1(ε, s) < r. Split M into a finite number of sets Mj such that
each Mj has diameter at most s. It follows that Mr ⊂ ∪jMjr. Since each
Mjr is locally Lipschitz it follows that M is locally the union of finitely many
Lipschitz hypersurfaces. �

Corollary 1. If M ⊂ R2 then for almost all r the level set Mr is a
1-dimensional Lipschitz manifold i.e. the union of disjoint simple closed Lip-
schitz curves.
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Proof. In fact Ferry proved (see [10]) that for almost all r the level set
Mr is a 1-manifold. �

Remark 2. Lipschitz curves are precisely those curves which are recti-
fiable. Notice also that the rectifiability does not depend on the particular
Minkowski metric, as already observed by Gólab ([13, 14]).

Remark 3. Stachó ([19]) proved that level sets Mr in the Minkowski
space are rectifiable in the sense of Minkowski for all but countably many r
generalizing earlier results of Szőkefalvi–Nagy for planar sets.

3. Planar domains: approaching the perimeter

Unless explicitly stated otherwise, throughout this section, B will denote
a centrally symmetric plane oval, where by oval we mean a compact convex
domain with non-empty interior.

We assume henceforth that ∂F is a rectifiable curve, namely it is the
image of a Lipschitz map from a bounded interval into the plane. Set pB(∂F )
for the length of ∂F in the norm ∥ ∥B.

Our main result generalizes theorem 1 from ([2]), where we considered
the case F = B and thus F was convex.

Theorem 2. For any symmetric oval B and topological disk F with rec-
tifiable boundary in the plane, we have

(3) pB(∂F ) = 2 lim
λ→0

λNλ(F,B).

Remark 4. The guiding principle of this paper is that we can construct
some outer packing measure for sets in the Minkowski space which is similar
to the packing measure defined by Tricot (see [22]) but uses only equal homo-
thetic copies of B which are packed outside and hang on the respective set.
These constraints make it much more rigid than the measures constructed by
means of the Caratheodory method (see [7]). On the other hand it is related
to the Minkowski content and the associated curvature measures.

For a fractal set F consider those s for which limλ→0 (2λ)
sNλ(F,B) is fi-

nite non-zero. If this set consists in a singleton, then call it the Hadwiger
dimension of F and the above limit the Hadwiger s-measure of F . This mea-
sure is actually supported on the “frontier” ∂F of F . Although it is not, in
general, a bona-fide measure but only a pre-measure, there is a standard pro-
cedure for converting it into a measure. Explicit computations for De Rham
curves show that these make sense for a large number of fractal curves. One
might expect such measures be Lipschitz functions on the space of measur-
able curves endowed with the Hausdorff metric.
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3.1. Curves of positive reach

Federer introduced in [7] subsets of positive reach in Riemannian mani-
folds. His definition extends immediately to Finsler manifolds and in partic-
ular to Minkowski spaces, as follows:

Definition 1. The closed subset A ⊂ Rn has positive reach if it admits a
neighborhood U such that for all p ∈ U there exists a unique point π(p) ∈ A

which is the closest point of A to p i.e. such that dB
(
p, π(p)

)
= dB(p,A).

It is clear that convex sets and sets with boundary of class C2 have positive
reach in the Euclidean space. A classical theorem of Motzkin characterized
convex sets as those sets of positive reach in any Minkowski space whose unit
disk B is strictly convex and smooth (see [23], Theorem 7.8, p.94). Moreover,
Bangert characterized completely in [1] the sets of positive reach in Rieman-
nian manifolds, as the sub-level sets of functions f , admitting local charts
(U,φU : U → Rn) and C∞ functions hU such that (f + hU ) ◦ φ−1

U are convex
functions. Another characterization was recently obtained by Lytchak ([16]),
as follows. Subsets A of positive reach in Riemann manifolds are those which
are locally convex with respect to some Lipschitz continuous Riemann met-
ric on the manifold, and equivalently those for which the inner metric dA

induced on A by the Riemann distance verifies the inequality

(4) dA(x, y) 5 d(x, y)
(
1 + Cd(x, y)2

)
for any x, y ∈ A with d(x, y) 5 ρ, for some constants C,ρ > 0. Federer proved
in [7] that Lipschitz manifolds of positive reach are C1,1 manifolds. This
was further showed to hold true more generally for topological manifolds of
positive reach (see [16]).

On the other hand the sets of positive reach might depend on the specific
Minkowski metric on Rn. For instance if B is a square in R2 then any other
rectangle F having an edge parallel to one of B has not positive reach. In
fact a point in a neighborhood of that edge has infinitely many closest points.

Remark 5. It seems that sets of positive reach are the same for a Rie-
mannian metric on Rn and the Minkowski metric dB associated to a strictly
convex smooth B (see also [23] for the extension of the Motzkin theorem to
Minkowski spaces).

We will prove now the main theorem for sets of positive reach:
Proposition 1. If ∂F is a Lipschitz curve of positive reach with respect

to the Minkowski metric dB then limλ→0 2λNλ(F,B) = pB(∂F ).
Proof. We start by reviewing a number of notations and concepts. Let

A<ε (respectively A5ε and Aε) denote the set of points at distance less than
(respectively less or equal than, or equal to) ε from A, in the metric dB.

Recall from [7] the following definition:
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Definition 2. The reach r(A) of the set A is defined to be the larger
ε (possibly ∞) such that each point x of the open neighborhood A<ε has a
unique π(x) ∈ A realizing the distance from x to A.

Assume from now that F is a planar domain such that ∂F is a Lipschitz
curve which has positive reach. We will consider henceforth only those values
of λ > 0 for which 2λ < r(∂F ).

Definition 3. Elements of AF,B,λ are called beads (or λ-beads if one
wants to specify the value of λ) and a configuration of λ-beads with disjoint
interiors is called a λ-necklace. The necklace is said to be complete (respec-
tively almost complete) if all (respectively all but one) pairs of consecutive
beads have a common point. A necklace is maximal if it contains Nλ(F,B)
beads.

The main step in proving the proposition is to establish first:

Proposition 2. If ∂F is Lipschitz and has positive reach then there
exist maximal almost complete λ-necklaces for any λ < 1

2r(∂F ).

Consider now a maximal almost complete necklace and P (λ) be the as-
sociated polygon whose vertices are the centers of the beads. Let a and c
denote the pair of consecutive vertices of P (λ) realizing the maximal distance
among consecutive vertices. These are the centers of those beads A and C
of the necklace which might not touch each other. The distance between the
beads A and C is called the gap of the almost complete necklace.

Proposition 3. A maximal almost complete λ-necklace of the simple
closed curve ∂F whose reach is greater than 2λ has gap smaller than 3λ.
Consequently the perimeter pB

(
P (λ)

)
of P (λ) satisfies the following inequal-

ities:

(5) 0 5 pB
(
P (λ)

)
− 2λNλ(F,B) < 3λ.

Observe that the set (∂F )λ has two components, namely the one con-
tained in the interior of F and that exterior to F . We set ∂+Fλ = (∂F )λ ∩
(R2 \ F ). Moreover, it is easy to see that ∂+Fλ = ∂(F5λ).

Proposition 4. Suppose that F is a planar domain whose boundary ∂F
is rectifiable (without assuming that the reach is positive). Then for any λ > 0
we have:

(6) pB(∂
+Fλ) 5 pB(∂F ) + λpB(∂B).

Proof of Proposition 1 assuming Propositions 2, 3 and 4. Re-
call now that P (λ) is a polygon with Nλ vertices inscribed in ∂+Fλ. Each
pair of consecutive vertices of the polygon determines an oriented arc of
∂+Fλ. Furthermore, each edge corresponds to a pair of consecutive beads
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and thus the arcs associated to different edges of P (λ) do not overlap. We
will show later also that ∂+Fλ is connected. These imply that the perimeter
of P (λ) is bounded from above by the length of ∂+Fλ. Therefore we have
the inequalities:

(7) pB
(
P (λ)

)
5 pB(∂

+Fλ) 5 pB(∂F ) + λpB(∂B).

Let λ goes to 0. We derive that:

(8) lim
λ→0

pB
(
P (λ)

)
5 pB(∂F ).

On the other hand recall that P (λ) converges to ∂F since the distance
between consecutive vertices is bounded by 2λ. Using the fact that the
Lebesgue-Minkowski length is lower semi-continuous (see [5]) we find that:

(9) lim
λ→0

inf pB
(
P (λ)

)
= pB(∂F ).

The two inequalities above imply that limλ→0 pB
(
P (λ)

)
exists and is equal

to pB(∂F ). In particular

(10) lim
λ→0

2λNλ(F,B) = lim
λ→0

pB
(
P (λ)

)
= pB(∂F )

and Proposition 1 is proved. �

Remark 6. One can also consider packings with disjoint homothetic
copies of B lying in F and having a common point with the complement
R2 \ int (F ). Then a similar asymptotic result holds true.

3.2. Proof of Proposition 2

Consider a maximal necklace and join consecutive centers of beads by
segments to obtain a polygon P (λ). We want to slide the beads along ∂F
so that all but at one pairs of consecutive beads have a common boundary
point. Observe that P (λ) is a polygon with Nλ = Nλ(F,B) vertices inscribed
in ∂+Fλ.

Let π : ∂+Fλ → ∂F be the map that associates to the point x the closest
point π(x) ∈ ∂F . Since λ < r(∂F ) the map π is well-defined and continuous.

Lemma 3.1. The projection map π : ∂+Fλ → ∂F is surjective.

Proof. Assume the contrary, namely that π would not be surjective.
Continuous maps between compact Hausdorff spaces are closed so that π is
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closed. Moreover each connected component of ∂+Fλ is sent by π into a
closed connected subset of ∂F .

If some image component consists of one point then ∂+Fλ is a metric
circle centered at that point and thus ∂F has a point component, which is a
contradiction.

Give these boundary curves the clockwise orientation. The orientation
induces a cyclic ordering on each component. Moreover, this cyclic order
restricts to a linear order on any proper subset, in particular on small neigh-
borhoods of a point. When talking about left (or right) position with respect
to some point we actually consider points which are smaller (or greater) than
the respective point with respect to the linear order defined in a neighbor-
hood of that point.

Let assume that some image component is a proper arc within ∂F . This
arc has the right boundary point π(s) and there is no other point in the
image sitting to the right of π(s), in a small neighborhood of π(s). Lt s′ be
maximal such that π(t) = π(s) for all t in the right of s in the interval from s
to s′. As we saw above this is a proper subset of ∂+Fλ.

Choose then some t ∈ ∂+Fλ which is nearby s′ and slightly to the right
of s′. Therefore, we have π(s) ̸= π(t). By hypothesis π(t) ∈ ∂F should sit
slightly to the left and closed-by to π(s), by the continuity of the map π.

There are several possibilities:
1. the segments

∣∣sπ(s)∣∣ and
∣∣ tπ(t)∣∣ intersect in a point u (see case 1. in

the figure below).
If dB(s, u) < dB(t, u) then

dB
(
s, π(t)

)
5 dB(s, u) + dB

(
u, π(t)

)
< dB(t, u) + dB

(
u, π(t)

)
= λ

and thus dB(s, ∂F ) < λ contradicting the fact that s ∈ ∂+Fλ.
If dB(s, u) > dB(t, u) then dB

(
u, π(s)

)
< dB

(
u, π(t)

)
and hence

dB
(
t, π(s)

)
5 dB(t, u) + dB

(
u, π(s)

)
< dB(t, u) + dB

(
u, π(t)

)
= λ,

leading to a contradiction again.
Suppose now that dB(s, u) = dB(t, u). The previous argument shows
that dB

(
s, π(t)

)
5 λ. In order to avoid the contradiction above the

inequality cannot be strict, so that dB
(
s, π(t)

)
= λ = dB(s, ∂F ). This

means that there are two points on ∂F realizing the distance to s. This
contradicts the fact that the reach of ∂F was supposed to be larger
than λ.

2. The segments
∣∣sπ(s)∣∣ and

∣∣ tπ(t)∣∣ have empty intersection.

(a) Moreover, the segments
∣∣s′π(s)∣∣ and

∣∣ tπ(t)∣∣ are disjoint (see the
case 2.a. on the figure below).
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In this situation we observe that the arc of metric circle ss′, the
arc of ∂F going clock-wisely from π(t) to π(s) and the segments∣∣sπ(s)∣∣ and

∣∣ tπ(t)∣∣ bound a domain ∆ in the plane. The arc of ∂F
which is complementary to the clockwise arc π(t)π(s) joins π(s)
and π(t) and thus it has to cut at least once more the boundary
of the domain ∆. However this curve cannot intersect:

i. neither the arc π(t)π(s), since ∂F is a simple curve;
ii. nor the segments

∣∣sπ(s)∣∣ and
∣∣ tπ(t)∣∣ , since it would imply

that there exist points in ∂F at distance smaller than λ on
∂+Fλ.

iii. nor the arc of metric circle ss′ ⊂ ∂+Fλ, since the distance
between ∂+Fλ and ∂F is λ > 0.

Thus each alternative above leads to a contradiction.
(b) The segments

∣∣s′π(s)∣∣ and
∣∣ tπ(t)∣∣ are not disjoint (case 2.b. in

the figure above).
Here we conclude as in the first case by using s′ in the place of s
and get a contradiction again.

Therefore our assumption was false so that the image component is all
of ∂F . Notice that we actually proved that π is open. �

Lemma 3.2. The fibers of the projection map π : ∂+Fλ → ∂F are either
points or connected arcs. In particular ∂+Fλ is connected.

Proof. Let π(s1) = π(s2) for two distinct points s1 and s2 and assume
that π is not constant on the clockwise arc s1s2. Pick up some v in the arc
s1s2. According to the proof of the previous lemma we cannot have π(v)
sitting to the left of π(s1), for v near s1. Thus π(v) sits in the right of π(s1).
Moreover, if w lies between v and s2 the same argument shows that π(w)
sits in the right of π(v). Consequently the image by π of the arc s1s2 covers
completely ∂F and the situation is that from the figure below.
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Take now any t in the complementary arc s2s1. If π(t) ̸= π(s1) then∣∣ tπ(t)∣∣ intersects either
∣∣s1π(s1)∣∣ or else

∣∣s2π(s2)∣∣ , leading to a contradic-
tion as in the proof of the previous lemma. The lemma follows. �

We will need to have informations about the rectifiability of the set ∂+Fλ,
as follows:

Lemma 3.3. If 0 < λ < r(∂F ) then ∂+Fλ is a Lipschitz curve and in
particular a C1,1 simple closed curve.

Proof. Since λ is smaller than the reach r(∂F ) it follows that ∂+Fλ has
also positive reach. The proof from [10] shows that ∂+Fλ is a 1-manifold.
Thus, by Theorem 1 the set ∂+Fλ is a Lipschitz 1-manifold. Lemma 3.2
shows that ∂+Fλ is connected and thus it is a simple closed curve. �

Therefore the curve ∂+Fλ is rectifiable. Recall that ∂+Fλ has an orien-
tation, say the clockwise one. Consider a maximal λ-necklace B and suppose
that there exists a pair of consecutive beads which do not touch each other.
There is induced a cyclic order on the beads of any λ-necklace: the beads B1,
B2 and B3 are cyclically ordered if the three corresponding points on which
the Bi touch ∂F are cyclically ordered. As λ < r(∂F ) each λ-bead intersects
∂F in a unique point and thus the definition makes sense.

Consider two consecutive beads which do not touch each other. If x ∈ ∂F
let lx be some support line for ∂F at x and Bx (depending also on lx) the
translate of λB which admits lx as support line at x. We assume that going
from x to the center of Bx we go locally outward F . We call Bx the virtual
λ-bead attached at x. Actually the virtual bead might intersect ∂F and thus
be not a bead.

The consecutive beads are Bp and Bq for p, q ∈ ∂F . We want to slide
Bq in counterclockwise direction among the virtual beads Bx, where x is
going from q to p along ∂F until Bx touches Bp. Let Bx be the virtual neck-
lace obtained from the necklace B by replacing the bead Bq by the virtual
bead Bx.

If all virtual necklaces Bx are genuine necklaces then we obtained another
maximal necklace in which the pair of consecutive beads are now touching
each other. We continue this procedure while possible. Eventually we stop
either when the necklace was transformed into an almost complete one, or
else the sliding procedure cannot be performed anymore.
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Let then assume we have two consecutive beads which cannot get closer
by sliding. Let then a be the first point on the curve segment from q to p
(running counter-clockwisely) where the sliding procedure gets stalked. We
have then two possibilities:

1. Ba touches ∂F in one more point.

2. Ba touches another bead Bb from the necklace B.
In the first situation the center of Ba is at distance λ from ∂F and the

distance is realized twice. Thus r(∂F ) 5 λ, contradicting our choice of λ.
The analysis of the second alternative is slightly more delicate. Let z be

the midpoint of the segment |xy| joining the centers of the two beads Ba and
Bb respectively.

Let lz be a support line at z, common to both Ba and Bb.

Lemma 3.4. Either la and lz are parallel or else they intersect in the
half-plane determined by xy and containing the germ of the arc of ∂F issued
from a which goes toward p.

Proof. Assume the contrary and let then lw be a support line to Ba

which is parallel to lz and touches ∂Ba into the point w ∈ ∂Ba. The cyclic
order on ∂Ba is then z, a and w. Consider the arc of ∂F issued from a. Since
the reach of ∂F is larger than λ we have w and all points of Ba \ {a} are
contained in R2 − F . Thus there is some ε-neighborhood of w which is still
contained in the open set R2 −F . This implies that we can translate slightly
Ba along lz within the strip determined by lz and lw such that it does not
intersect ∂F anymore.

The translated Ba will remain disjoint from int (Bb) because the later
lies in the other half-plane determined by lz. Pushing it further towards F
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along la we find that the sliding can be pursued beyond a, contradicting our
choice for a. This proves the claim. �

Lemma 3.5. For any t ∈ |xy| we have dB(t, ∂F ) 5 2λ.

Proof. The segment |xy| is covered by Ba ∪Bb and the triangle inequal-
ity shows that min

(
dB(t, a), dB(t, b)

)
5 2λ, which implies the claim. �

Consider now ∂+F2λ. By lemmas 3.1 and 3.3 the projection π : ∂+F2λ →
∂F is a surjection. Let us choose some w ∈ ∂+F2λ such that π(w) = a. Set
x′ for the midpoint of the segment |aw|.

Lemma 3.6. The metric ball B(x′, λ) is a λ-bead.

Proof. As a ∈ B(x′, λ) ∩ ∂F it suffices to show that B(x′, λ) ⊂ R2 \
int (F ). Suppose the contrary and let p ∈ int

(
B(x′, λ)

)
∩ int (F ). There

exists then some p′ ∈ |px| \ {p} with p′ ∈ B(x′, λ) ∩ ∂F . The diameter of
B(x′, λ) is 2λ and so dB(w, p) 5 2λ, but p′ lies on the segment |pw| so that
dB(p

′, w) < 2λ. This implies that dB(w, ∂F ) < 2λ which is a contradiction.
This establishes the lemma. �

The diameter of a λ-bead is obviously 2λ. We say that points u and v
are opposite points in the bead if they realize the diameter of the bead. If B
is strictly convex the each boundary point has a unique opposite point. This
is not anymore true in general. Given a point on the boundary of a rectangle
any point on the opposite side is an opposite of the former one.

Lemma 3.7. There exists some point w which is opposite to a in Ba such
that w ∈ ∂+F2λ.

Proof. Let us assume first that ∂F is smooth at a, or equivalently that
it has unique support line at a. As both B(x′, λ) and Ba are λ-beads which
have the same support line la (since it is unique) it follows that they coincide.
In other terms w is one of the points opposite to a in Ba.

Consider now the general case when ∂F is not necessarily smooth at a.
Let l+a and l−a denote the extreme positions of the support lines to ∂F at a.
Thus la belongs to the cone determined by l+a and l−a . Recall that ∂F was
supposed to be Lipschitz and thus by the Rademacher theorem it is almost
everywhere differentiable. There exists then a sequence of points p±j ∈ ∂F

converging to a such that ∂F is smooth at p+j and p−j and the tangent lines
at p+j (respectively p−j ) converge to l+a (respectively to l−a ).

Let w±
j be points on ∂+F2λ such that π(w±

j ) = p±j . It follows that w+
j

(respectively w−
j ) converge towards a point w+ (respectively w−) which lies

on the boundary of a λ-bead B(x+, λ) (respectively B(x−, λ)) having the
support line l+a (respectively l−a ). Further π(w+) = π(w−) = a. The proof of
Lemma 3.2 shows that the arc of the metric circle centered at a and of radius
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2λ which joins w+ to w− is also contained in ∂+F2λ. The point w which is
opposite to a in the λ-bead Ba is contained in this arc and thus it belongs
to ∂+F2λ. �

End of the proof of Proposition 2. The clockwise arc ab of
∂F and the union of segments |ax| ∪ |xy| ∪ |yb| which is disjoint from ∂F
bound together a simply connected domain Ω0 in the plane. Then Ω =
Ω0 \ int (Ba) ∪ int (Bb) is also a topological disk, possibly with an arc at-
tached to it (if Ba ∩Bb is an arc) since it is obtained from Ω0 by deleting out
two small disks touching the boundary and having connected intersection.

According to Lemma 3.4 w belongs either to Ω (for instance when B is
strictly convex) or else to Ba ∩Bb (when the support line la meets Ba along
a segment).

On the other hand the curve ∂+F2λ contains both the point w ∈ Ω and
points outside Ω. In fact the arc ab is contained in ∂F which bounds the do-
main F . Pick up a point q of Ω and r in the arc ab such that the half-line |vr
does not meet |ax| ∪ |xy| ∪ |yb|. Then |vr intersects the domain F and thus
at least once the clockwise arc ba. Let r be such a point. Then there exists
u ∈ ∂+F2λ for which π(u) = r. It is clear that u /∈ Ω. Otherwise, by Jordan
curve theorem the segment |ru| should intersect once more the clockwise arc
ab and this would contradict the fact that dB(u, r) = dB(u, ∂F ).

Therefore the curve ∂+F2λ has to exit the domain Ω and there are two
possibilities:

1. either ∂+F2λ meets int (Ba)∪ int (Bb). This will furnish points of ∂+F2λ

at distance less than 2λ from either a or b and thus from ∂F and hence
it leads to a contradiction.

2. or else ∂+F2λ meets ∂Ba ∪ ∂Bb. In this case any point from (∂Ba ∪
∂Bb) ∩ ∂+F2λ is at distance 2λ both from a and from b. In particular
the distance 2λ is not uniquely realized and this contradicts the choice
of 2λ < r(∂F ).
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3.3. Proof of Proposition 3

Assume that dB(a, c) = 5λ. Let d ∈ |ac| be the midpoint of |ac| and D
denote the translate of A centered at d. The triangle inequality shows that
A ∩D = C ∩D = ∅. The segment |ac| intersects once each one of A and
C. Consider the support lines lA and lC at these points. Since A and C
are obtained by a translation one from the other, we can choose the support
lines to be parallel. The convexity of D implies that D is contained in the
strip S determined by the parallel lines lA and lC .

If D∩∂F is empty, then we translate it within S until it touches first ∂F .
If D intersects non-trivially the interior of F on one side of the segment |ac|,
then we translate it in the opposite direction until the contact between D and
F is along boundary points. We keep the notation D for the translated oval.
However, by the maximality of our almost complete λ-necklace, we cannot
add D to our beads to make a necklace. Thus D has to intersect either once
more ∂F , or else another bead E from the necklace.

Let consider the first situation. We deflate gradually the bead D by a
homothety of ratio going from 1 to 0 by keeping its boundary contact with
∂F until we reach a position where all contact points between D and F are
boundary points in ∂F . This implies that the reach of ∂F is less than λ
which contradicts our choice of λ.

When the second alternative holds true we make use of the following:

Lemma 3.8. If two λ-beads intersect each other and there exist λ-beads
between them (both in the clockwise and the counterclockwise directions) then
the reach of ∂F is at most 2λ.

Proof. If D and E are the two beads which intersect non-trivially at
z let d and e be the points where they touch ∂F . One can choose one of
the arcs de or ed of ∂F such that together with |dz| ∪ |ze| bound a simply
connected bounded domain Ω0 which is disjoint from F . There exists at least
one other λ-bead say G ⊂ Ω0. Then we can find as above a point w ∈ ∂G
which lies in ∂+F2λ. Therefore ∂+F2λ contains points from Ω0. It is not hard
to see that the argument given at the end of the proof of Proposition 2 shows
that ∂+F2λ has also points from outside Ω0. However ∂+F2λ is connected
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and disjoint from ∂F and hence it has to cross D ∪ E. But then we will
find that either there are points on ∂+F2λ of distance 2λ from both d and
e (contradicting the fact that the reach was larger than 2λ) or else we find
point at distance strictly less than 2λ from either d or e, which contradicts
the definition of ∂+F2λ. �

In our case both A and C are λ-bead disjoint from D both in clockwise
and counterclockwise directions. Thus if D intersects another bead E, dif-
ferent from A and C, of the necklace then the reach of ∂F will be smaller
than 2λ. This contradiction shows that we can add D to our necklace and
the Proposition 3 is proved.

3.4. Proof of Proposition 4

We will prove first the Proposition 4 in the case when ∂F is a polygon Q.
Denote by Qλ the set of points lying outside Q and having distance λ to Q
(or, this is the same, to ∂Q). Let us define a (not necessarily simple) curve
Wλ as follows. To each edge e of Q there is associated a parallel segment eλ
which is the translation of e in outward (with respect to Q) direction dual
to e.

Recall the definition of the dual to a given direction. Assume for the
moment that ∂B is strictly convex. If d is a line then let d+ and d− be sup-
port lines to ∂B which are parallel to d; by the strict convexity assumption
each lines d+, d− intersects ∂B into one point p+, p− respectively. Then the
dual of d is the line p+p− (which passes through the origin). If ∂B is not
strict convex then it might still happen that each support line parallel to d
has one intersection point with ∂B, in which case the definition of the dual
is the same as above. Otherwise d+ ∩ ∂B has at least two points and thus,
by convexity, it should be a segment z+t+. In a similar way d− ∩ ∂B is the
a segment z−t− which is the symmetric of z+t+ with respect to the center
of B. Thus z+z−t−t+ is a parallelogram having two sides parallel to d. The
direction of the other two sides is the dual of d.

It is immediate then that dB(e, eλ) = λ.
For each vertex v of Q where the edges e and f meet together we will

associate an arc vλ of the circle λ∂B of radius λ. Let ne and nf be the length
λ vectors whose directions are dual to e and f respectively and are pointing
outward Q. Let vλ be the arc of λB corresponding to the trajectory drawn
by ne when rotated to arrive in position nf while pointing outward of Q.

Let us order cyclically the edges e1, e2, . . . , en of Q clockwisely and the
vertices vj (which is common to ej and ej+1). Let also Aj (respectively Bj)
denote the left (respectively right) endpoint of ejλ. Set αj for the interior an-
gle (with respect to Q) between ej and ej+1. Observe that the configuration
around two consecutive edges is one of the following type:
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1. if αj 5 π then ejλ and ej+1λ are disjoint and joined by the arc vjλ is
which is locally outside Q;

2. if π < αj < 2π then ejλ and ej+1λ intersect at some point Cj .
Let us define ej

∗
λ to be the segment whose left endpoint is Cj−1, if

αj−1 > π and Aj elsewhere while the right endpoint is Cj , if αj > π, and
Bj otherwise. Let also v∗j λ be empty when αj > π and the arc vjλ otherwise.

Set Wλ for the union of edges e∗j λ and of arcs v∗j λ. Notice that Wλ might
have (global) self-intersections.

Observe that Qλ ⊂ Wλ. Notice that the inclusion might be proper.
We claim now that:
Lemma 3.9. The length of Wλ verifies

(11) pB(Wλ) 5 pB(Q) + λpB(∂B).

Proof. The arcs vjλ are naturally oriented, using the orientation of ∂Q.
Moreover, its orientation is positive if αj 5 π and negative otherwise. Since∑n

j=1 αj = (n− 2)π we have
∑n

j=1(π − αj) = 2π, which means that the al-
gebraic sum of the arcs vjλ is once the circumference of λ∂B. Thus

(12)
n∑

j=1

σ(vj)pB
(
vjλ

)
= λpB(∂B)

where σj ∈ {−1, 1} is the sign giving the orientation of vjλ. It follows that

(13) λpB(∂B) + pB(Q) =
n∑

j=1

σ(vj)pB
(
vjλ

)
+

n∑
j=1

pB(ej).

Now, σ(j) = −1 if and only if Cj is defined (i.e. the angle αj > π). Thus

n∑
j=1

σ(vj)pB
(
vjλ

)
+

n∑
j=1

pB(ej) =
n∑

j=1;αj5π

(pB
(
vjλ

)
+ pB(ej))(14)

+

n∑
j=1;αj>π

(|Aj+1Cj |B + |CjBj |B − pB
(
vjλ

)
+ pB

(
e∗j λ

)
)

= pB(Wλ) +

n∑
j=1;αj>π

(|Aj+1Cj |B + |CjBj |B − pB
(
vjλ

)
)

= pB(Wλ)
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The last inequality follows from

(15) |Aj+1Cj |B + |CjBj |B = pB
(
vjλ

)
.

In fact, it is proved in ([21], p. 121), see also or the elementary proof from
([17], 3.4., p. 111–113), that a convex curve is shorter than any other curve
surrounding it. Moreover the direction BjCj is dual to ej and thus it is
tangent to a copy of λB translated at vj ; in a similar way Aj+1Cj is dual to
ej+1 and thus tangent to the same copy of λB. In other words the arc vjλ
determined by Aj+1 and Bj is surrounded by the union |Aj+1Cj | ∪ |CjBj |
of two support segments. The convexity of ∂B implies the inequality above,
and in particular our claim. �

Remark 7. One can use the signed measures defined by Stachó in [20]
for computing the length of ∂+Fλ and to obtain, as a corollary, the result of
Proposition 4. Our proof for planar rectifiable curves has the advantage to
be completely elementary.

End of the proof of Proposition 4. Let now ∂F be an arbitrary
rectifiable simple curve. It is known that there exists a sequence of poly-
gons Qn inscribed in ∂F such that limn pB(Qn) = pB(∂F ). Here pB denotes
the Jordan (equivalently Lebesgue) length of the respective curve, in the
Minkowski metric.

Therefore Qnλ is a sequence of rectifiable curves which converge to ∂+Fλ.
By theorem 1 ∂+Fλ is the union of finitely many Lipschitz 1-manifolds and
thus the Lebesgue length of ∂+Fλ makes sense. By the lower semi-continuity
of the Lebesgue length (see e.g. [5]) it follows that

(16) lim
n

inf pB
(
Qnλ

)
= pB(∂

+Fλ).

However we proved above that for simple polygonal lines Qn we have:

(17) pB
(
Qnλ

)
5 pB(Qn) + λpB(∂B).

Passing to the limit n → ∞ we obtain

(18) pB(∂
+Fλ) 5 lim

n
inf pB(Qn) + λpB(∂B) = pB(∂F ) + λpB(∂B).

Therefore Proposition 4 follows. �
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3.5. Curves of zero reach

Consider now an arbitrary simple closed Lipschitz curve ∂F in the plane.
When sliding λ-beads for achieving almost completeness of necklaces we
might get stalked because we encounter points of ∂F with reach smaller
than λ. Let us introduce the following definitions.

Definition 4. The clockwise arc ab of ∂F is a λ-corner if there exists a
λ-bead Ba which touches ∂F at a and b and such that there is no λ-bead Bx

for x in the interior of the arc ab (except possibly for Ba).

Definition 5. The clockwise arcs aa′ and b′b of ∂F form a long λ-gallery
if there exist two disjoint λ-beads Ba and Ba′ with {a, b} ⊂ Ba ∩ ∂F and
{a′, b′} ⊂ Ba′ ∩ ∂F such that:

1. there is no λ-bead touching the arcs aa′ or bb′;

2. at least one complementary arc among a′b′ and ba admits a λ-bead
which is disjoint from Ba and Ba′ .

Definition 6. The clockwise arcs aa′ and b′b of ∂F form a short λ-
gallery if there exist two λ-beads Ba and Ba′ with non-empty intersection,
{a, b} ⊂ Ba ∩ ∂F and {a′, b′} ⊂ Ba′ ∩ ∂F such that:

1. any λ-bead touching aa′∪ b′b should intersect the boundary beads Ba∪
Ba′ ;

2. there is no 2λ-bead touching the arcs aa′ ∪ b′b;
Observe that λ-corners do not really make problems in sliding λ-beads,

because we can jump from a to b keeping the same bead and we can continue
the sliding from there on.

Set Zλ for the set of points that belong to some λ-gallery (long or short).
Lemma 3.10. For each λ > 0 the number of maximal λ-galleries is finite.

Proof. Assume that we have infinitely many λ-galleries. They have to
be disjoint, except possibly for their boundary points. Thus the length of
their arcs converges to zero. Moreover, the associated pairs of arcs of ∂F
converge towards a pair of two points at distance 2λ. Thus all but finitely
many galleries are short galleries. The lengths of intermediary arcs (those
joining consecutive gallery arcs in the sequence) should have their length
going to zero since their total length is finite.

Consider now the union of two consecutive galleries in the sequence to-
gether with the intermediary arcs between them. We claim that if we are
deep enough in the sequence then this union will also be a gallery, thus con-
tradicting the maximality. Assume the contrary, namely that the union is
not a short gallery. Then one should find either a λ-bead touching one inter-
mediary arc which is disjoint from the boundary beads, or else a 2λ-bead.

In the first case the intermediary arc joins two points x, y of intersecting
λ-beads and surrounds a disjoint λ-bead. Let z be a common point for the
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two boundary beads. Then the union of |xz| ∪ |zy| with the intermediary arc
forms a closed curve surrounding the boundary of a λ-bead. In particular its
length is larger than or equal to λpB(∂B). Since dB(x, z), dB(z, y) 5 2λ it
follows that the length of the intermediary arc is at least λ(pB(∂B)− 4) =
2λ. However intermediary arcs should have length going to zero, so this is a
contradiction.

The second alternative tells us that there exists a 2λ-bead touching the
intermediary arc. Let the arcs be xy and x′y′. Then we claim that the
union of the arcs xx′ (in the boundary of the bead), x′y′, y′y (in the bound-
ary of the bead) and yx is a closed curve surrounding the convex 2λ-bead.
Therefore their total length is at least 2λpB(∂B).

In fact suppose that the 2λ-bead of center w intersects the arc xx′. Ob-
serve that w is not contained in the interior of the λ-bead because oth-
erwise the 2λ-bead would contain it and thus there will be no place for
the arc of ∂F . Further we find that the distance function dB(z, w) for z
in the arc xx′ will have points where it takes values smaller than 2λ. As
dB(x,w), dB(x

′, w) = 2λ it follows that the distance function will have at
least two local maxima. However since B is convex the distance function
to a point cannot have several local maxima unless when B is not strictly
convex and there is a segment of maxima. This proves the claim.

However the sum of the lengths of the arcs xx′ and y′y is smaller than
4λ
3 pB(∂B) if we are far enough in the sequence. Indeed the two boundary λ-

beads intersect each other and their centers become closer and closer as we
approach the limit bead. Then the perimeter of the union of the two convex
λ-beads converge to the perimeter of one bead. In particular, at some point
it becomes smaller than 4λ

3 pB(∂B).
This implies that the length of the arcs xy and x′y′ is at least 2λ

3 pB(∂B) =
4λ. This is in contradiction with the fact that intermediary arcs should con-
verge to points. �

Lemma 3.11. For any λ > 0 we have

(19) pB(∂F \ Z2λ ∪ Zλ) 5 lim
δ→0

2δNδ(∂F ).
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Proof. Since there are finitely many maximal 2λ-galleries consider δ be
small enough such that two δ-beads which touch a maximal 2λ-gallery at
each end point should be disjoint.

Let then choose a δ-necklace Nj for each connected component Aj of
∂F \ Z2λ. We claim that the union of necklaces ∪jN is a necklace on ∂F .

No bead exterior to a 2λ-gallery can intersect the arcs of that gallery.
Extreme positions of δ-beads are contained in boundary beads and thus only
boundary points of the gallery can be touched by the necklace.

Two component necklaces are separated by a gallery. We chose δ such
that the last δ-bead of one necklace is disjoint from the first δ-bead of the
next component.

Remark now that δ-necklaces with δ < λ are otherwise disjoint. In fact
suppose that two beads from different necklaces (or one bead from a neck-
lace and an arc Aj) intersect each other. Going far enough to one side of the
arcs we should find large enough beads and hence 2λ-beads, since beads lie
in R2 \ F . Going to the other side, if we can find a 2λ-beads then the two
arcs contain a 2λ-gallery, contradicting our assumptions. Otherwise the re-
maining part forms a 2λ-corner and in particular the arcs belong to the same
component. Then the beads should be disjoint, since they are beads of the
same necklace. The same proof works for the bead intersecting an arc.

Let then Nδ(Aj) be the maximal cardinal of a δ-necklace in R2 − F such
that all beads touch the arc Aj . We set (by abuse of notation) Nδ(∂F \Z2λ ∪
Zλ) =

∑
j Nδ(Aj).

Summing up we proved above that

(20) Nδ(∂F \ Z2λ ∪ Zλ) 5 Nδ(∂F ).

Recall now that each arc Aj is a Lipschitz curve of reach at least 2λ.
The proof of Proposition 1 can be carried over not only for simple closed
curves but also for simple Lipschitz arcs of positive reach without essential
modifications, with a slightly different upper bound in Proposition 4.

Thus the result holds true for each one of the arcs Aj . As we have finitely
many such arcs Aj we obtain

(21) lim
δ→0

2δNδ(∂F \ Z2λ ∪ Zλ) =
∑
j

pB(Aj) = pB(∂F \ Zλ).

The inequality above implies the one from the statement. �
Lemma 3.12. We have limλ→0 pB(Zλ) = 0.

Proof. For each λ-gallery there is some µ(λ) such that its points are
not contained in any µ-gallery. Assume the contrary. Then there exists a
sequence of λj → 0 of nested λj-galleries. Their intersection point is an in-
terior point of these arcs and thus it yields a point where the curve ∂F has
a self-intersection, which is a contradiction. Thus the claim follows.
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Since the number of λ-galleries is finite there is a sequence λj → 0 such
that λj-galleries are pairwise disjoint. Thus

(22)
∑
j

pB(Zλj
) 5 pB(∂F )

and hence limj pB(Zλj
) = 0.

Further any Zλ is contained into some the union of Zλj
for some j > j(λ).

The result follows. �
Lemma 3.13. We have limλ→0 2λNλ(F,B) 5 pB(∂F ).

Proof. Let P (λ) be the polygon associated to a maximal λ-necklace on
∂F . Then

(23) 2λNλ(F,B) 5 pB
(
P (λ)

)
.

For all λ the set ∂+Fλ is the union of finitely many Lipschitz curves and
P (λ) is a polygon inscribed in ∂+Fλ. However, it might happen that ∂+Fλ

has several components, possibly infinitely many.
Recall that we defined in the proof of Proposition 4 the intermediary

curve Wλ = Wλ(Q) which is associated to a polygon Q. We can define Wλ(F )
as the Hausdorff limit of Wλ(Qn) where Qn is approximating ∂F . Or else we
can choose Q which approximates closed enough to ∂F so that the vertices
of P (λ) belong to Wλ(Q).

Moreover, Wλ(Q) is now a closed curve, which might have self-intersec-
tions. The polygon P (λ) is inscribed in Wλ(Q) and we can associate dis-
joint arcs to different edges, since edges are associated to consecutive beads.
Therefore we have:

(24) pB
(
P (λ)

)
5 pB

(
Wλ(Q)

)
.

Then the proof of Proposition 4 actually shows that

(25) pB
(
Wλ(Q)

)
5 pB(Q) + λpB(∂B) 5 pB(∂F ) + λpB(∂B).

The inequalities above imply that

(26) 2λNλ(∂F ) 5 pB(∂F ) + λpB(∂B)

and taking the limit when λ goes to zero yields the claim. �
End of the proof of Theorem 1. By Lemma 3.11 the limit is at

least pB(∂F \Zλ), for any λ. Using Lemma 3.12 this lower bounds converges
to pB(∂F ) when λ goes to zero. Then Lemma 3.13 concludes the proof.
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4. Second order estimates

The aim of this section is to understand better the rate of convergence
in Theorem 2. First, we have the very general upper bound below:

Proposition 5. For any planar simply connected domain F with Lips-
chitz boundary we have

(27) 2λNλ(F,B) 5 pB(∂F ) + λpB(∂B).

Proof. This is an immediate consequence of the proof of Lemma 3.13. �
When F is convex, we can obtain more effective estimates of the rate of

convergence for the lower bound:
Proposition 6. For any symmetric oval B and convex disk F in the

plane, the following inequalities hold true:

(28) pB(F )− 2λ 5 2λNλ(F,B) 5 pB(F ) + λpB(∂B).

Proof. By approximating the convex curve ∂F by convex polygons we
deduce the following extension of the classical tube formula to Minkowski
spaces:

(29) pB(∂
+Fλ) = pB(F ) + λpB(∂B).

Notice that for non-convex F we have only an inequality above.
Let B1, . . . , BN be a maximal necklace with beads which are translates

of λB and o1, o2, . . . , oN be their respective centers, considered in a cyclic
order around F . Since Bi ∩F contains at least one boundary point it follows
that oi ∈ Fλ and Bi ⊂ F2λ.

Since B and F are convex it follows that Fλ is convex. Therefore the
polygon P = o1o2 · · · oN is convex since its vertices belong to ∂+Fλ and,
moreover, P ⊂ Fλ.

It is not true in general that P contains F , and we have to modify P .
If the necklace is incomplete, we can fill in the space left by adjoining

an additional translate B∗
N+1 homothetic to B in the ratio λµ, with µ < 1,

which has a common point with each one of F,B1 and BN . Set oN+1 for its
center.

Now, we claim that the polygon P ∗ = o1o2 · · · oN+1 contains F . In
fact, dB(oi, oi+1) 5 2 since Bi and Bi+1 have a common point, which is
at unit distance from the centers. But their interiors have empty inter-
section thus dB(oi, oi+1) = 2λ and the segment |oioi+1| contains one inter-
section point from ∂Bi ∩ ∂Bi+1. Furthermore, the same argument shows
that dB(oN , oN+1) = dB(o1, oN+1) = (1 + µ)λ and each segment |oNoN+1|
and |oN+1o1| contains one boundary point from the corresponding bound-
aries intersections. Thus the boundary of P ∗ is contained in ∪N+1

i=1 Bi∪B∗
N+1,
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the later being disjoint from the interior of F . This proves our claim. Remark
that P ∗ is not necessarily convex.

We know that P ⊂ Fλ and dB(oi, oi+1) = 2 (for i = 1, 2, . . . , N) because
Bi and Bi+1 have no common interior points. Since a convex curve sur-
rounded by another curve is shorter than the containing one we obtain:

(30) 2λN 5 pB(P ) 5 pB(∂
+Fλ) = pB(∂F ) + λpB(∂B).

Next, recall that F ⊂ P ∗ and dB(oi, oi+1) 5 2, where i = 1, 2, . . . ,N + 1,
since consecutive beads have at least one common point. This implies that:

(31) pB(∂F ) 5 pB(P
∗) < 2λ(N + 1).

The two inequalities above prove the Proposition 6. �
Consider a more general case when F is not necessary convex. We assume

that F is regular, namely that its boundary is the union of finitely many arcs
with the property that each arc is either convex or concave. The endpoints
of these maximal arcs are called vertices of ∂F . This is the case, for instance,
when ∂F is a piecewise analytic curve. Moreover we will suppose that F has
positive reach. This is the case for instance when F admits a support line
through each vertex of ∂F , which leaves a neighborhood of the vertex in F
on one side of the half-plane.

The estimates for the rate of convergence will not be anymore sharp.
By hypothesis, ∂F can be decomposed into finitely many arcs Ai, i = 1,m,
which we call pieces, so that each piece is either convex or concave.

Proposition 7. Consider a symmetric oval B and a regular topological
disk F of positive reach having c(F ) convex pieces and d(F ) concave pieces.
Then the following inequalities hold:

pB(F )− 2λ
(
2c(F ) + pB(∂B)d(F ) + 3d(F )

)
5 2λNλ(F,B)(32)

5 pB(F ) + 2λpB(∂B)

for 2λ < r(∂F ).

Proof. If N is a maximal necklace on F denote by N|Aj
its trace on

the arc Aj , i.e. one considers only those beads that touch Aj . Consider also
maximal necklaces MAj on each arc Aj , consisting of only those beads sitting
outside F which have common points to Aj . Consider now the union of the
maximal necklaces MAj . Beads of MAj cannot intersect ∂F since the reach
is larger than λ. Moreover beads from different necklaces cannot intersect
(according to Lemma 3.8) unless the beads are consecutive beads i.e. one is
the last bead on Aj and the other is the first bead on the next (in clockwise
direction) arc Aj+1.
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Therefore if we drop the last bead from each MAj and take their union
we obtain a necklace on ∂F . This implies that:

(33)
m∑
i=1

Nλ(Ai, B)−Nλ(F,B) 5 c(F ) + d(F ).

We analyze convex arcs in the same manner as we did for ovals in the
previous Proposition. Since the arc Aj has positive reach we can slide all
beads to the left side. Add one more smaller bead in the right side which
touches the arc at its endpoint, if possible. The centers of the beads form a
polygonal line P ∗ with at most Nλ(Aj , B) + 1 beads. Join its endpoints to
the endpoints of the arc Aj by two segments of length no larger than λ. This
polygonal line surrounds the convex arc Aj and thus its length is greater
than pB(Aj). Therefore, for each convex arc Aj we have:

(34) 2λ(Nλ(Aj , B) + 1) = pB(Aj).

The next step is to derive similar estimates from below for a concave
arc As. Since the arc has positive reach we can slide all beads to its left side.
If there is more space left to the right let us continue the arc As by adding a
short arc on its right side along a limit support line at the right endpoint so
that we can add one more bead to our necklace which touches the completed
arc A∗

s at its endpoint. We can choose this line so that the reach of A∗
s is the

same as that of As.
Let the beads have centers oi, i = 1, N + 1, where N = Nλ(As, B), the

last one being the center of the additional bead. Then dB(oi, oi+1) = 2λ and
dB(oi, A) = λ, as in the convex case. The point is that the function dB(x,A)
is not anymore convex, as it was for convex arcs. However, for any point
x ∈ |oioi+1| we have

dB(x,A) 5 min
(
dB(x, oi) + dB(oi, A), dB(x, oi+1) + d(oi+1, A)

)
5 2λ.

If P ∗ denotes the polygonal line o1o2 · · · oN+1 then P ∗ ⊂ A∗
s2λ. Moreover

the points which are opposite to the contacts between the beads and A∗
s

belong to A∗
s2λ. Join in pairs the endpoints of P ∗ and those of A∗

s2λ by two
segments of length λ and denote their union with P ∗ by P ∗. The arc As was
considered concave of positive reach and this means that for small enough
λ < r(∂F )/2 the boundary ∂A∗

s2λ is still concave of positive reach. Looking
from the opposite side A∗

s2λ is a convex arc. Moreover P ∗ encloses (from the
opposite side) this convex arc and thus pB(P ∗) = pB(A

∗
s2λ) = pB(As2λ).

The formula giving the perimeter for the parallel has a version for the
inward deformation of convex arcs, or equivalently, for outward deformations
of concave arcs, which reads as follows:

(35) pB(As2λ) = pB(As)− 2λpB(XAs)
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where XAs ⊂ ∂B is the image of As by the Gauss map associated to B. As
XAs ⊂ ∂B we obtain

(36) pB(As)− 2λpB(∂B) 5 pB(P
∗) + 2λ 5 2λNλ(As, B) + 4λ.

Summing up these inequalities we derive the inequality from the state-
ment. �

Remark 8. The proofs above work for arbitrary convex B, not neces-
sarily centrally symmetric. In this case, we could obtain:

(37) pB(F ) = 2 lim
λ→0

λNλ(F,B)

where B = 1
2(B −B) = {z ∈ R2; there exist x, y ∈ B, such that 2z = x− y}.

Consider the set N(F,B) of all positive integers that appear as Nλ(F,B)
for some λ ∈ (0, 1].

Corollary 2. If F is regular and its boundary has positive reach then
large enough consecutive terms in N(F,B) are at most distance 11d(F ) +
2c(F ) + 4 apart. When F is convex consecutive terms in N(F,B) are at
most distance 4 apart, if B is not a parallelogram and 5 otherwise.

Proof. Let us consider F convex. Theorem 2 shows that

(38)
pB(F )

2λ
− 1 < Nλ(F,B) 5 pB(F )

2λ
+

pB(∂B)

2
.

Moreover one knows that pB(∂B) 5 8 (see [2] and references there) with
equality only when B is a parallelogram. In particular any interval (α, α+
pB(∂B)

2 ] contains at least one element of N(F,B). If c < d are two consecutive

elements of N(F,B) this implies that c ∈ (d− pB(∂B)
2 − 1, d), and thus

(39) d− c <
pB(∂B)

2
+ 1 5 5.

Since c, d are integers it follows that d− c 5 4, if B is not a parallelogram.
When F is arbitrary the inequality in theorem 3 shows that any inter-

val of length 11d(F ) + 2c(F ) + 4 contains some Nλ(F,B). We conclude as
above. �

Corollary 3. Consecutive terms in N(B,B) ⊂ Z+ are at most distance
4 apart.

Proof. If F = B is a parallelogram then Nλ(F,B) = 4[ 1λ ]+ 4 and thus
N(F,B) = 4

(
Z+ − {0, 1}

)
. �
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Remark 9. If F is not convex then we can have gaps of larger size in
N(F,B). Take for instance F having the shape of a staircase with k stairs and
B a square. As in the remark above we can compute Nλ(F,B) = 4k[ 1λ ]+ 4

and thus there are gaps of size 4k.

5. Higher dimensions

The previous results have generalizations to higher dimensions in terms
of some Busemann-type areas defined by B. Theorem 2, when F = B, was
extended in [4] and ([3], 9.10). The result involves the presence of an addi-
tional density factor which seems more complicated for d > 2.

For a convex body K in Rd one defines the translative packing density
δ(K) to be the supremum of the densities of periodic packings by translates
of K and set ∆(K) = 1

δ(K) vol (K). Alternatively, ∆(K) = infT,n vol (T )/n

over all tori T and integers n such that there exists a packing with n trans-
lates of K in T , where T is identified with a quotient of Rd by a lattice.

We consider from now on that B and F are convex and smooth.

Proposition 8. We have for a convex smooth F ⊂ Rd and a centrally
symmetric smooth domain B ⊂ Rd that

(40) lim
λ→∞

λd−1Nλ(F,B) =

∫
∂F

1

∆(B ∩ Tx)
dx

where x ∈ ∂F and Tx is a hyperplane through the center of B which is parallel
to the tangent space at ∂F in x. Here B ∩ Tx ⊂ Tx is identified to a (d− 1)-
dimensional domain in Rd−1.

Proof. The proof from ([3] 9.10) can be adapted to work in this more
general situation as well. �

Although the present methods do not extend to general arbitrary do-
mains with rectifiable boundary the previous proposition seem to generalize
at least when the boundary has positive reach.

Remark 10. We have an obvious upper bound

(41) Nλ(F,B) 5 λ−dvol (F2λ)− vol (F )

vol (B)
= λ1−d areaB(∂F ) + o

(
λ1−d

)
which follows from the inclusion ∪N

i=1Bi ⊂ F2λ with Bi having disjoint inte-
riors and the Steiner formula (see [15]).



72 V. BOJU and L. FUNAR

6. Remarks and conjectures

The structure of the sets N(F,B) is largely unknown. One can prove
that when F is convex and both F and B are smooth then N(F,B) contains
all integers from N1(F,B) on, at least in dimension 2. For general F we saw
that we could have gaps. It would be interesting to know whether N(B,B)
contains all sufficiently large integers when F = B is a convex domain and
not a parallelohedron. It seems that Corollary 3 can be generalized to higher
dimensions as follows:

Conjecture 1. The largest distance between consecutive elements of
N(F,B), where F is convex is at most 2d with equality when F = B is a
parallelohedron.

Another natural problem is to understand the higher order terms in the
asymptotic estimates. Or, it appears that second order terms from Section 4
are actually oscillating according to the inequalities in Proposition 6 as be-
low:

Corollary 4. For convex F we have

−2 5 l−(F,B) = lim inf
λ→0

2λNλ(F,B)− pB(F )

λ
(42)

5 lim sup
λ→0

2λNλ(F,B)− pB(F )

λ
= l+(F,B) 5 pB(∂B)

2
.

The exact meaning of l−(F,B) and l+(F,B) is not clear. Assume that
F = B. We computed:

1. If B is a disk then l−(F,B) = −2 and l+(F,B) = 0;

2. If B is a square then l−(F,B) = 0 and l+(F,B) = 4;

3. If B is a regular hexagon then l−(F,B) = 0 and l+(F,B) = 3;

4. If B is a triangle then l−(F,B) = 0 and l+(F,B) = 3.
There are various other invariants related to the second order terms. Set

Jk =
{
λ ∈ (0, 1]; there exists a complete λ-necklace B1, . . . , Bk

}
,(43)

Ik =
{
λ ∈ (0, 1]; NΛ(F,B) = k

}
so that Jk ⊂ Ik. Then Ik are disjoint connected intervals but we don’t know
whether this is equally true for Jk. It seems that Jk are singletons when B
is a round disk.

Let {r} = r − [r] denote the fractionary part of r.
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Conjecture 2. There exists some constant c = c(B) such that the fol-
lowing limit exists

(44) lim
r→∞, {r}=α

2Nc(B)/r(F,B)− r = φ(α)

where φ : [0, 1) →
[
− 2, pB(∂B)

]
is a right continuous function with finitely

many singularities. If F and B are polygons then φ is linear on each one of
its intervals of continuity.
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