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EXAMPLES OF SMOOTH MAPS

WITH FINITELY MANY CRITICAL POINTS

IN DIMENSIONS (4, 3), (8, 5) AND (16, 9)
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Abstract. We consider manifolds M2n which admit smooth maps into a
connected sum of S1 × Sn with only finitely many critical points, for n ∈
{2, 4, 8}, and compute the minimal number of critical points.

1. Introduction and statement of the main result

Let ϕ(Mm, Nn) denote the minimal number of critical points of smooth maps
between the manifolds Mm and Nn. When superscripts are specified they denote
the dimension of the respective manifolds. We are interested below in the case
when m ≥ n ≥ 2 and the manifolds are compact. The main problem concerning ϕ
is to characterize those pairs of manifolds for which it is finite non-zero and then
to compute its value (see [1]).

In [1] the authors found that, in small codimension 0 ≤ m − n − 1 ≤ 3, if
ϕ(Mm, Nn+1) is finite, then ϕ(Mm, Nn+1) ∈ {0, 1}, except for the exceptional
pairs of dimensions (m, n + 1) ∈ {(2, 2), (4, 3), (4, 2), (5, 2), (6, 3), (8, 5)}. Notice
that (5, 3) was inadvertently included in [1] among the exceptional pairs. Moreover,
under the finiteness hypothesis, ϕ(M, N) = 1 if and only if M is the connected sum
of a smooth fibration over N with an exotic sphere and not a fibration itself. There
are two essential ingredients in this result. First, there are local obstructions to
the existence of isolated singularities; namely, the germs of smooth maps Rm →
Rn having an isolated singularity at the origin are actually locally topologically
equivalent to a projection. Thus, these maps are topological fibrations. Second,
singular points located in a disk cluster together.

The simplest exceptional case is that of (pairs of) surfaces, which is completely
understood by elementary means (see [2] for explicit computations). Very little is
known for the other exceptional and generic (i.e. m − n − 1 ≥ 4) cases and even
the case of pairs of spheres is still unsettled. In particular, it is not known whether
ϕ is bounded in terms only of the dimensions, in general.

The aim of this paper is to find non-trivial examples in dimensions (4, 3), (8, 5)
and (16, 9) inspired by the early work of Antonelli ([3, 4]). The smooth maps
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considered in [4] are so-called Montgomery-Samelson fibrations with finitely many
singularities where several fibers are pinched to points. According to [14] these
maps should be locally topologically equivalent to a cone over the Hopf fibration,
in a neighborhood of a critical point.

The main ingredient of our approach is the existence of global obstructions of a
topological nature to the clustering of genuine critical points in these dimensions.
This situation seems rather exceptional and it permits us to obtain the precise value
of ϕ using only basic algebraic topology.

Our computations show that ϕ can take arbitrarily large even values. Thus the
behavior of ϕ is qualitatively different from what was seen before in [1].

Theorem 1.1. Let n ∈ {2, 4, 8}, e ≥ c ≥ 0, with c ̸= 1, and Σ2n be a homotopy
2n-sphere. If n = 2 assume further that Σ4 \ int(D4) embeds smoothly into S4,
where D4 is a smooth 4-disk. Then

ϕ(Σ2n#eS
n × Sn#cS

1 × S2n−1, #cS
1 × Sn) = 2e − 2c + 2.

Here #cS1 ×Sn = Sn+1 if c = 0 and #eSn ×Sn#cS1 ×S2n−1 = S2n if e = c = 0.

The structure of the proof of the theorem is as follows. We prove Proposition 2.1,
which yields a lower bound for the number of critical values derived from topological
obstructions of an algebraic nature. The existence of a non-trivial lower bound is not
obvious since one might think that several singularities could combine into a single
more complicated singularity. However, the proof uses only standard techniques of
algebraic topology. The next step taken in section 3 is to construct explicit smooth
maps with any even number of singularities. This follows by taking fiber sums of
elementary blocks of maps coming naturally from Hopf fibrations. This construction
is an immediate generalization of the one considered by Antonelli in the case of two
elementary blocks in ([3], pp. 185-186). Then Proposition 3.1 concludes the proof.
We warn the reader that our proof is narrative and key facts are singled out as
lemmas in the process of unfolding the proof of these two propositions.

Remark 1.1. Observe that S1 × S2n−1 fibers over S1 × Sn when n ∈ {2, 4, 8} so
that the formula from Theorem 1.1 is still valid for Σ2n = S2n, e = 0 and c = 1.
However, we do not know how to evaluate ϕ when e ≤ c− 1. The present methods
do not work for e ≥ c = 1 either.

2. A lower bound for the number of critical values

Proposition 2.1. For any dimension n ≥ 2, homotopy 2n-sphere Σ2n and non-
negative integers e and c, with c ̸= 1, we have:

ϕ(Σ2n#eS
n × Sn#cS

1 × S2n−1, #cS
1 × Sn) ≥ 2e − 2c + 2.

Here #cS1 ×Sn = Sn+1 if c = 0 and #eSn ×Sn#cS1 ×S2n−1 = S2n if e = c = 0.

We will prove, more generally, the following:

Proposition 2.2. Let M2n and Nn+1 be closed connected orientable manifolds and
n ≥ 2. Assume that π1(M) ∼= π1(N) is a free group F(c) on c generators, c ̸= 1
(with F(0) = 0) , πj(M) = πj(N) = 0, for 2 ≤ j ≤ n − 1 and Hn−1(M) = 0. Then
ϕ(M, N) ≥ βn(M) − 2c + 2, where βk denotes the k-th Betti number.
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Proof. Let B = B(f) denote the set of critical values of a smooth map f : M → N .
We will prove that the cardinality |B| of B(f) satisfies |B| ≥ βn(M) − 2c + 2,
which will imply our claim. Set V = f−1(B(f)) ⊂ M . We can assume that f has
finitely many critical points, since otherwise the claim of Proposition 2.2 would be
obviously verified.

The following two lemmas do not depend on the homotopy assumptions of Propo-
sition 2.2.

Lemma 2.1. If A is a non-empty finite subset of a connected closed orientable
manifold Nn+1, then βn(N \ A) = βn(N) + |A| − 1.

Proof. This is clear from the homology exact sequence of the pair (N, N \ A). !
Lemma 2.2. If Mn+q+1 and Nn+1 are smooth manifolds and f : M → N is a
smooth map with finitely many critical points, then the inclusions M \V ↪→ M and
N \ B ↪→ N are n-connected.

Proof. This is obvious for N \ B ↪→ N . It remains to prove that πk(M, M \ V ) ∼= 0
for k ≤ n. Take α : (Dk, Sk−1) → (M, M \ V ) to be an arbitrary smooth map of
pairs. Since the critical set C(f) of f is finite and contained in V , there exists a
small homotopy of α relative to the boundary such that the image α(Dk) avoids
C(f). By compactness there exists a neighborhood U of C(f) consisting of disjoint
balls centered at the critical points such that α(Dk) ⊂ M \ U . We can arrange by
a small isotopy that V becomes transversal to ∂U .

Observe further that V \U consists of regular points of f and thus it is a properly
embedded sub-manifold of M \ U . General transversality arguments show that α
can be made transverse to V \ U by a small homotopy. By dimension counting
this means that α(Dk) ⊂ M \ U is disjoint from V and thus the class of α in
πk(M, M \ V ) vanishes. !

The restriction of f to M \ V is a proper submersion, and thus the restriction
f |M\V is an open map. In particular, f(M \ V ) ⊂ N \ B is an open subset. On
the other hand, the closed map lemma states that a proper map between locally
compact Hausdorff spaces is also closed. Thus f(M \ V ) is also closed in N \ B
and hence f(M \ V ) = N \ B. According to Ehresmann’s theorem, the restriction
f |M\V is then a locally trivial smooth fibration over N \ B with compact smooth
fiber Fn−1 (see [5]).

Lemma 2.3. Assume that c ̸= 1. Then the generic fiber F is homotopy equivalent
to the (n − 1)-sphere.

Proof. When c = 0 the claim is a simple consequence of the homotopy sequence of
the fibration M \ V → N \ B.

Let us assume henceforth that c ≥ 2. Consider the last terms of the homotopy
exact sequence of this fibration:

→ π1(M \ V )
f∗→ π1(N \ B)

p→ π0(F ) → π0(M \ V ) → π0(N \ B).

From Lemma 2.2 M \V and N \B are connected and π1(M \V ) ∼= π1(N \B) ∼= F(c).
If F has d ≥ 2 connected components, then the kernel ker p of p is a finite index
proper subgroup of the free non-abelian group F(c). The Nielsen-Schreier theorem
states that a subgroup of a free group is free. Moreover, the rank of an index d
subgroup of F(c) is d(c − 1) + 1, by the Schreier index formula. In particular ker p
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is a free group of rank d(c− 1)+1, where d is the number of components of F , and
hence its rank is larger than c. On the other hand, by exactness of the sequence
above, ker p is also the image of f∗ and thus it is a group of rank at most c. This
contradiction shows that F is connected.

If n = 2, then F is a circle, as claimed.
Now let n > 2. We obtained above that f∗ is surjective. Since finitely generated

free groups are Hopfian any surjective homomorphism F(c) → F(c) is also injective.
Since π2(N \ B) ∼= π2(N) = 0 and f∗ is injective we derive that π1(F ) = 0. The
remaining terms of the homotopy exact sequence of the fibration and Lemma 2.2
show then that πj(F ) = 0 for 2 ≤ j ≤ n − 2. Thus F is a homotopy sphere. !

Lemma 2.4. Suppose that B ̸= ∅.
(1) We have H1(N \ B) ∼= Zc, Hn(N \ B) = Z|B|+c−1 and Hn+1(N \ B) = 0.
(2) If n > 2, then Hn−1(M \ V ) = 0.
(3) The homomorphism Hn(M \V ) → Hn(M) induced by the inclusion map is

surjective.

Proof. The first two assertions are consequences of Lemma 2.1, Lemma 2.2 and
standard algebraic topology. For instance, H1(N \ B) ∼= H1(N) = Zc. The last
claim follows from Lemma 2.2 and the long exact sequence in homology of the pair
(M, M \ V ). !

Lemma 2.5. If B ̸= ∅ and c ̸= 1, then the rank of Hn(M \ V ) is 2c + |B| − 2.

Proof. The Gysin sequence of the fibration M \ V → N \ B (whose fiber is a
homotopy sphere) reads:

→ Hm(M \ V ) → Hm(N \ B) → Hm−n(N \ B) → Hm−1(M \ V ) → .

Consider the exact subsequence

Hn+1(N \ B) → H1(N \ B) → Hn(M \ V ) → Hn(N \ B) → H0(N \ B)

→ Hn−1(M \ V ).

If n > 2, then the first and the last terms vanish.
The Euler characteristic of this subsequence is zero by exactness, and thus the

rank of Hn(M \ V ) is 2c + |B| − 2 by Lemma 2.4.
When n = 2, we can complete the exact sequence above by adding one more

term to its right, namely H1(M \ V )
f∗→ H1(N \ B). However, f∗ is actually the

map induced in homology by the isomorphism f∗ : π1(M) → π1(N) and is thus
an isomorphism itself. The argument with the Euler characteristic can be applied
again and yields the claimed result. !

From Lemma 2.5 and Lemma 2.4 (3) we derive that

2c + |B| − 2 ≥ βn(M)

and the proposition is proved. !

Corollary 2.1. If M2n is a smooth (n − 1)-connected closed manifold, then

ϕ(M,Σn+1) ≥ βn(M) + 2,

where Σn+1 is a homotopy sphere.
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Remark 2.1. The present approach does not work for c = 1. In fact, fibers might
have several connected components, each one being a homotopy sphere. In the
absence of an upper bound for the number of components, the Leray-Serre spectral
sequence leads only to a trivial lower bound for the number of critical values.

3. Fiber sums of suspensions of Hopf fibrations

Proposition 3.1. Let n ∈ {2, 4, 8}, e ≥ c ≥ 0, with c ̸= 1, and Σ2n be a homotopy
2n-sphere. If n = 2 assume further that Σ4 \ int(D4) embeds smoothly into S4,
where D4 is a smooth 4-disk. Then

ϕ(Σ2n#eS
n × Sn#cS

1 × S2n−1, #cS
1 × Sn) ≤ 2e − 2c + 2.

Proof. Recall from [1] that ϕ(S2n, Sn+1) = 2 if n = 2, 4 or 8. This is realized by
taking suspensions of both spaces in the Hopf fibration h : S2n−1 → Sn, where
n = 2, 4 or 8, and then smoothing the new map at both ends. The extension
H : S2n → Sn+1 has precisely two critical points. This is also the basic example of
a Montgomery-Samelson fibration with finitely many singularities, as considered in
[4]. Antonelli has considered in [3] manifolds which admit maps with two critical
points into spheres, by gluing together two copies of H.

Our aim is to define fiber sums of Hopf fibrations leading to other examples
of pairs of manifolds with finite ϕ using Antonelli’s construction for more general
gluing patterns. Identify Sn+1 (and respectively S2n) with the suspension of Sn

(respectively S2n−1) and thus equip it with the coordinates (x, t), where |x|2 + t2 =
1, and t ∈ [−1, 1]. We call the coordinate t the height of the respective point. The
suspension H is then given by

H(x, t) =

(
ψ(|x|)h

(
x

|x|

)
, t

)
,

where ψ : [0, 1] → [0, 1] is a smooth increasing function infinitely flat at 0 such that
ψ(0) = 0 and ψ(1) = 1.

Pick up a number of points x1, x2, . . . , xk ∈ Sn+1 and their small enough disk
neighborhoods xi ∈ Di ⊂ Sn+1, such that

(1) the projections of Di on the height coordinate axis are disjoint;
(2) the Di’s do not contain the two poles; i.e. their projections on the height

axis are contained in the open interval (−1, 1).

Let Ak be the manifold with boundary obtained by deleting from Sn+1 of the
interiors of the disks Di, for 1 ≤ i ≤ k. Also let Bk ⊂ S2n denote the preimage of
Ak by the suspended Hopf map H. Since H restricts to a trivial fibration over the
disks Di it follows that Bk is a manifold, each one of its boundary components being
diffeomorphic to Sn−1×Sn. Moreover, the boundary components are endowed with
a natural trivialization induced from Di.

Now let Γ be a finite connected graph. To each vertex v of valence k we associate
a block (Bv, Av, H|Bv ), which will be denoted (Bk, Ak, H|Bk), when we want to
emphasize the dependence on the number of boundary components. Each boundary
component of Av or Bv corresponds to an edge incident to the vertex v. We define
the fiber sum along Γ as the following triple (BΓ, AΓ, HΓ):

(1) AΓ is the result of gluing the manifolds with boundary Av, associated to
the vertices v of Γ, by identifying for each edge e joining the vertices v
and w (which might coincide) the pair of boundary components in Av and
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Aw corresponding to the edge e. The identification is made by using an
orientation-reversing diffeomorphism of the boundary spheres.

(2) BΓ is the result of gluing the manifolds with boundary Bv, associated to
the vertices v of Γ, by identifying for each edge e joining the vertices v
and w (which might coincide) the boundary components in Bv and Bw

corresponding to the pair of boundary components in AΓ associated to e.
Gluings in BΓ are realized by some orientation-reversing diffeomorphisms
which respect the product structure over boundaries of Av and Aw. We
choose the identification diffeomorphism ν : ∂Bv → ∂Bw to be the one
from the construction of the double of Bv.

(3) As the boundary components are identified, the natural trivializations of
the boundary components of Bv agree in pairs. Thus the maps Hv induce
a well-defined map HΓ : BΓ → AΓ.

In the case where the graph Γ consists of two vertices joined by an edge, this
construction is essentially that given in ([3], pp. 185-186).

Proposition 3.2. The map HΓ : BΓ → AΓ has 2m critical points, where m is the
number of vertices of Γ.

Proof. This is clear by construction. !
We say that Γ has c independent cycles if the rank of H1(Γ) is c. This is

equivalent to asking Γ to become a tree only after removal of at least c edges.
Moreover, c = e − m + 1, where e denotes the number of edges.

Proposition 3.3. If Γ has e edges and c cycles, i.e. e − c + 1 vertices, then
BΓ is diffeomorphic to Σ2n#eSn × Sn#cS1 × S2n−1 (where Σ2n is a homotopy
sphere, which is trivial when n = 2), while AΓ is diffeomorphic to #cS1×Sn. Here
#cS1 × Sn stands for Sn+1 when c = 0.

Proof. The sub-blocks Ak are diffeomorphic to the connected sum of k copies of
disks Dn+1 out of their boundaries. When gluing together two such distinct sub-
blocks (since there is an edge in Γ joining the corresponding vertices) the respective
pair of disks leads to a factor Dn+1∪µDn+1, where µ : Sn → Sn is the identification
map. If µ is a reflection, then the factor Dn+1 ∪µ Dn+1 is the double of Dn+1 and
hence diffeomorphic to Sn+1.

When gluing all sub-blocks in the pattern of the graph Γ, the only non-trivial
contribution comes from the cycles. Each cycle of Γ introduces a 1-handle. Thus
the manifold AΓ is diffeomorphic to #cS1 × Sn.

Further we have a similar result for the sub-blocks Bk:

Lemma 3.1. The sub-blocks Bk are diffeomorphic to the connected sum of k copies
of the product Sn × Dn out of their boundaries.

Proof. One obtains Bk by deleting out k copies of H−1(Di); each H−1(Di) is a
tubular neighborhood of the (generic) fiber of H and thus diffeomorphic to Sn−1 ×
Dn+1.

When k = 1 the generic fiber of H is an Sn−1 embedded in S2n, namely, the
image of the fiber of the Hopf fibration in the suspension sphere S2n. The generic
fiber is unknotted in S2n, as an immediate consequence of Haefliger’s classification
of smooth embeddings. In fact, according to [7], any smooth embedding of Sk in
Sm is unknotted, i.e. isotopic to the boundary of a standard ball, if the dimensions
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satisfy the meta-stable range condition k < 2
3m− 1. This implies that the comple-

ment of a regular neighborhood of the fiber is diffeomorphic to the complement of
a standard sphere and thus to Sn × Dn.

When k ≥ 2 we remark that the fibers over the points xi ∈ Di lie at different
heights and thus they are contained in disjoint slice spheres of the suspension S2n.
This implies that these fibers are unlinked, i.e. isotopic to the boundary of a set
of disjoint standard balls. Thus the complement of a regular neighborhood of their
union is diffeomorphic to the connected sum of their individual complements and
therefore to the connected sum of k copies of the product Sn × Dn out of their
boundaries. !

Let us stick for the moment to the case when k = 1 and we have two diffeomorphic
sub-blocks Bv and Bw, each one having one boundary component, to be glued
together. Recall that the identification diffeomorphism ν : ∂Bv → ∂Bw is the one
from the construction of the double of Bv. Observe that the maps Bv → Av and
Bw → Aw glue together to form a well-defined smooth map Bv ∪ν Bw → Av ∪µ Aw,
as already noticed in ([3], p. 185).

Lemma 3.2. The factor Bv ∪ν Bw is diffeomorphic to Σ2n#Sn × Sn, where Σ4 =
S4.

Proof. Consider first the case n = 2, which is the most interesting one since the
result cannot follow from general classification results. The sub-block D2 × S2

can be easily described by a Kirby diagram (see [6], chapter 4), which encodes
its handlebody structure. As D2 × S2 is obtained from D4 by throwing away the
regular neighborhood of an unknotted circle (i.e. a 1-handle) it can be described
as the result of attaching the dual 2-handle on an unknotted circle with framing 0.
There is also a dual handlebody decomposition of D2 × S2 in which each j-handle
generates a (4 − j)-handle. The double of D2 × S2 is then described by putting
together the two handlebody descriptions (the usual one and the dual one) and thus
is made of D4 with two 2-handles and finally a 4-handle capping off the boundary
component.

Attaching maps of 4-handles are orientation-preserving diffeomorphisms of S3,
and by a classical result of Cerf these are isotopic to the identity. Thus there exists
a unique way to attach a 4-handle to a 4-manifold with boundary S3. By the way,
recall that a theorem of Laudenbach and Poenaru ([11]) shows that there is only one
way up to global diffeomorphism to attach 3-handles and 4-handles to a 4-manifold
with boundary #kS1 × S2 in order to obtain a closed manifold.

Now it is easy to see that the new 2-handle (in the handlebody structure of the
double of D2 × S2) is attached along a meridian circle of the former 2-handle with
0 framing. Thus a Kirby diagram of the double of D2 × S2 consists of a Hopf link
with both components having framing 0, and it is well-known that this diagram is
also that of S2 × S2. See also ([6], Example 4.6.3) for more details.

This argument applies as well for n ≥ 3. We have a handle decomposition of
Dn ×Sn as D2n with one n-handle attached. The set of framings on a sphere Sn−1

in ∂D2n is acted upon freely transitively by πn−1(O(n)). Moreover π3(O(4)) ∼=
π7(O(8)) ∼= Z ⊕ Z (see [12]). Then the n-handle is attached on an unknotted
(n− 1)-sphere with trivial framing, i.e. the (0, 0)-framing. Observe that this is the
canonical framing associated to the identity attaching map idSn−1×Dn (see e.g. [6],
Example 4.1.4.(d)). Further the double of Dn ×Sn is obtained by putting together



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

362 L. FUNAR, C. PINTEA, AND P. ZHANG

the usual handlebody and its dual. As above we can describe the double as the
result of attaching two n-handles and one 2n-handle. The dual n-handle is attached
on a meridian (n − 1)-sphere which links once the former attaching (n − 1)-sphere
and has trivial framing. The union of the two spheres is the analogue of the Hopf
link in S2n−1 = ∂D2n. As is well known Sn×Sn can also be obtained by adding two
n-handles along this high-dimensional trivially-framed Hopf link and a 2n-handle.

The only difference between the cases n > 2 and n = 2 is that the result of
attaching a 2n-handle for n > 2 is not unique, as there might exist diffeomorphisms
of S2n−1 which are not isotopic to the identity. However, detaching and then
reattaching a 2n-handle with a reflection diffeomorphism as gluing map will create
an exotic sphere (for n ≥ 4), and thus the double is diffeomorphic to Σ2n#Sn ×Sn

for some homotopy sphere Σ2n. !

When gluing all sub-blocks in the pattern of the graph Γ such that each identi-
fication map is ν, then each pair of sub-blocks determines a factor Σ2n#Sn × Sn.
If there are no cycles in Γ, then we obtain a connected sum of such factors, namely
Σ2n#eSn × Sn. Finally, the only additional non-trivial contribution comes from
the cycles. Each cycle of Γ introduces an extra 1-handle. Thus the manifold BΓ is
diffeomorphic to Σ2n#eSn × Sn#cS1 × S2n−1. !

In order to prove Proposition 3.1 it suffices now to show that one can attach a
homotopy sphere Σ to the manifolds BΓ and still have the same number of critical
points.

Every homotopy m-sphere Σm, for m ̸= 4, can be obtained as the union of
two disks glued together along their boundaries using some diffeomorphism f of
the (m − 1)-sphere. Therefore, by removing a small disk centered at a critical
point and then gluing it back using the diffeomorphism f , the manifold changes
by means of a connected sum with the homotopy sphere Σm. When m = 4 it is
unknown whether all homotopy 4-spheres can be obtained as the union of two disks.
Actually, if this were true, then any homotopy 4-sphere would be diffeomorphic to
the standard 4-sphere. But we can obtain any homotopy 4-sphere as the gluing
of one disk and a homotopy 4-disk. Consider a homotopy 4-sphere Σ4 for which
the associated homotopy 4-disk ∆4 embeds smoothly into S4. Then, as above, by
removing a small disk centered at a critical point and then gluing the homotopy 4-
disk ∆4 along the boundary 3-sphere, we see that the 4-manifold changes by means
of a connected sum with the homotopy sphere Σ4.

Since the homotopy spheres form a finite abelian group under the connected sum,
one can obtain in this way all manifolds of the form Σ2n#eSn × Sn#cS1 × S2n−1,
when n ̸= 2, and respectively those for which Σ4 \ D4 embeds smoothly into S4,
when n = 2.

One shows (see [1], where this argument is carried out in detail) that we can glue
together the two restrictions of the smooth map to the disk and respectively to its
complementary disk in order to obtain a smooth map on the connected sum BΓ#Σ
with the same (non-zero) number of critical points, namely, 2e − 2c + 2. When
n = 2 we need a theorem of Huebsch and Morse for n = 2 (see [8]) concerning the
existence of smooth maps ∆4 → D4 with one critical point, for a homotopy 4-disk
∆4 which embeds smoothly into S4. !
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Remark 3.1. Recall that the group Θk of homotopy k-spheres is Θk = Z/2Z when
k ∈ {8, 16}.

Remark 3.2. By twisting µ by a diffeomorphism of Sn which is not isotopic to
the identity (e.g. when n = 8), one could obtain exotic sphere factors in AΓ.
More interesting examples correspond to twisting ν by some orientation-preserving
diffeomorphism η : Sn−1×Sn → Sn−1×Sn which still respect the product structure.
For instance we can consider some η induced from a map Sn−1 → SO(n+1) whose
homotopy class is an element of πn−1(SO(n + 1)). It seems that all examples
obtained by twisting are still diffeomorphic to Σ2n#eSn × Sn#cS1 × S2n−1.

4. Examples with ϕ = 1

The result of [1] shows that if ϕ(Mm, Nn+1) is finite non-zero (small codimen-
sion, non-exceptional dimensions), then ϕ(Mm, Nn+1) = 1 and Mm should be
diffeomorphic to Σm#N̂ , where Σm is an exotic sphere and N̂ is the total space of
a smooth fibration, such that Mm is not fibered over N . Actually this construction
might produce non-trivial examples in any codimension.

Proposition 4.1. If Σm is an exotic sphere (for m = 4 we assume that Σ4\int(D4)
embeds smoothly in S4) and if N̂ → N is a smooth fibration, then ϕ(Σm#N̂ , N) ∈
{0, 1}.

Proof. We obtain Σm#N̂ from N̂ by excising a ball Dn+1 and gluing it (or a
homotopy 4-disk when m = 4) back by means of a suitable diffeomorphism h of its
boundary. By a classical result of Huebsch and Morse ([8]), there exists a smooth
homeomorphism Σm#N̂ → N̂ which has only one critical point located in the ball
Dn+1. This provides a smooth map Σm#N̂ → N with one critical point. !

Remark 4.1. Notice however that Σm#N̂ might still be fibered over N , although
not diffeomorphic to N̂ . This is so when N̂ → N is the Hopf fibration S7 → S4

and Σ7#N̂ is a Milnor exotic sphere, namely, an S3-fibration over S4 with Euler
class ±1.

Remark 4.2. The manifold Mm = Σm#Sm−n−1 × Sn+1 is not diffeomorphic to
Sm−n−1 × Sn+1 if Σm is an exotic sphere (see [13]). Thus, the proposition above
yields effective examples where ϕ = 1.

If Σ8 is the exotic 8-sphere which generates the group Θ8 = Z/2Z, then ϕ(Σ8#S3

×S5, S5) = 1. In fact M8 = Σ8#S3×S5 is homeomorphic but not diffeomorphic to
S3 ×S5. Assume the contrary, namely, that M8 smoothly fibers over S5. Then the
fiber should be a homotopy 3-sphere and hence S3 by the Poincaré Conjecture. The
S3-fibrations over S5 are classified by the elements of π4(SO(4)) ∼= Z/2Z ⊕ Z/2Z.
There exist precisely two homotopy types among the S3-fibrations over S5 which
admit cross-sections (see [9], p. 217). If M8 is a S3-fibration, then it should have a
cross-section, because it is homotopy equivalent to S3 × S5 and the existence of a
cross-section is a homotopy invariant (see [9], p. 196, [10], p. 164). However the two
homotopy types correspond to two distinct isomorphism types as spheres bundles.
In fact they are classified by the image of π4(SO(3)) ∼= Z/2Z into π4(SO(4)).
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This means that an S3-fibration having a cross-section is either homotopy equivalent
to the trivial fibration and then it is isomorphic to the trivial fibration or else it
does not have the same homotopy type as S3 × S5. Observe also that there is
only one O(4)-equivalence class and thus precisely two isomorphism classes of such
S3-fibrations without cross-sections ([10], p. 164). In particular, non-trivial S3-
fibrations over S5 cannot be homeomorphic to M8, and this contradiction shows
that M8 cannot smoothly fiber over S5.
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