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1. INTRODUCTION AND STATEMENTS

Let M and N be connected manifolds, possibly with boundary. Consider smooth mappings
f: M — N with OM = f~1(ON) (i.e., proper mappings) such that f has no critical points on OM.
Let o(M™, N*) be the minimal number of critical points of smooth proper mappings of this kind
between the manifolds M™ and N* of dimensions m and k, respectively. In this paper, we consider
only the case in which m > k > 2, unless otherwise explicitly stated. The main problem in this
area is to characterize the above pairs of manifolds for which ¢ is finite and nonzero and then to
compute this value (see [7, p. 617]).

Let V = f~1(f(x)), where x is a critical point. Following King (see [20]), we say that the singular
point x is cone-like if it admits a cone neighborhood in V, i.e., there is a closed manifold L C V' \{z}
and a neighborhood N of z in V' homeomorphic to the cone C(L) over L. Recall that the cone is
defined as the quotient C(L) = L x (0,1]/Lx{1}. Notice that an isolated critical point is considered
as cone-like, as the cone over the empty set. In this case, the manifold L is called the local link
at x. If z is not cone-like, then z (and also V) are said to be wild.

A well-known theorem of Lojasiewicz (see, e.g., [22]) states that real-analytic mappings have
cone-like singularities. However, smooth functions can have wild singularities. The first examples of
smooth mappings with isolated wild singularities were obtained by Takens (see [29]) in codimension
three.

The main result obtained in [1] is the following characterization of ¢ in small codimension.

Theorem 1.1. Consider two closed connected manifolds with finite o(M™, N*) and k > 2.

(1) If0 < m —k < 2, then o(M™, N¥) € {0,1}, except for the exceptional pairs of dimensions
(m,k) €{(2,2),(4,3),(4,2)}.

(2) Suppose m—k = 3 and assume additionally that there is a smooth mapping f: M — N with
finitely many critical points, all of which are cone-like. Then o(M™, N*) € {0,1}, except
for an additional set of exceptional pairs of dimensions (m,k) € {(5,2),(6,3),(8,5)}.
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Moreover, under the finiteness assumption, p(M,N) =1 if and only if M is the connected sum of
a smooth fibration over N with an exotic sphere and not a fibration by itself.

Remark 1.1. The proof provided in [1], where the result is stated for all singularities of codi-
mension at most three, actually works only for smooth mappings with cone-like singularities. As
explained in the addendum [2] (using [7, 9]), isolated singularities of smooth functions in codi-
mension at most two with & > 2 are cone-like. Thus, the proof is complete for codimension not
exceeding two. In [16], we shall analyze wild codimension-three singularities.

There are two essential ingredients in this result. First, there are local obstructions to the exis-
tence of isolated singularities, namely, the germs of smooth mappings R™ — R¥ having an isolated
singularity at the origin are actually locally topologically equivalent to a projection. Thus, these
mappings are topological fibrations. Second, singular points located in a disk cluster together.

The behavior of ¢ in the exceptional dimensions is rather different. For instance, there are
topological obstructions preventing singular points to cluster together. Specifically, the authors
of [15] proved the following assertion.

Theorem 1.2. If n € {2,4,8}, then o(#.8™ x 8™, S™"1) = 2e + 2. In particular, ¢ can take
arbitrary large (even) values in the exceptional dimensions (4,3) and (8,5).

Very little is known for the other exceptional and generic (i.e., m — k > 4) cases, and even the
case of pairs of spheres is not completely settled yet. We have proved the following partial results
for mappings between spheres in [1].

Theorem 1.3.

(1) The values of m > k > 1 for which p(S™,S*) = 0 are evactly those arising in the Hopf
fibrations, i.e., k € {2,4,8} and m =2k — 1.

(2) One has p(S*,53) = (S8, 95) = ¢(S16,89) = 2.

(3) If 1 <k <m <2k — 3, then p(S™,S*) = .

(4) If p(S?*=2 S*) is finite and k > 2, then k € {2,3,5,9}.

Remark 1.2. It is not known at present what situation is more common in general: (1) ¢
is bounded in terms of the dimensions only (as in nonexceptional cases of small codimension) or
(2) ¢ is unbounded (as in the exceptional dimensions (4,3) and (8,5)).

A particularly interesting case is the pair of dimensions (4,2). The existence of Lefschetz fibra-
tions provides many examples of closed 4-manifolds M* with a finite value p(M*, S?).

Let M* be a closed, connected, oriented, and smooth 4-manifold and let ¥ be a closed connected
oriented surface. A Lefschetz fibration is a smooth mapping f: M — X such that f is injective on
the set of critical points and, near any critical point, f is locally of the form f(z1,22) = 2?2 + 23 in
local complex coordinates compatible with the orientations of M and X.

The Lefschetz fibrations are complex analogs of Morse functions. Every symplectic manifold
admits a Lefschetz pencil (see [10]) which induces a Lefschetz fibration of the manifold obtained
by blowing up finitely many points (see also [11] for a survey). Conversely, Gompf showed that
any 4-manifold with a Lefschetz pencil admits a symplectic structure, provided that the fibers are
nontrivial in homology (see [17]). Thus, ¢ can be estimated from above by means of its analog for
Lefschetz fibrations between symplectic manifolds.

There is a more general notion, namely, that of an achiral Lefschetz fibration, where one drops the
assumption that the local complex coordinates define compatible orientations. Harer proved in [18]
that a 4-dimensional manifold having a handlebody decomposition with handles of index less than
or equal to two admits an achiral Lefschetz fibration over the disk with bounded fibers. Moreover,
Etnyre and Fuller [13] showed that, for any smooth, closed, simply-connected, oriented 4-manifold
M, the connected sum M#S? x S? admits an achiral Lefschetz fibration over S2. It is still not
known whether or not all smooth, closed, simply connected, oriented 4-manifolds M admit achiral
Lefschetz fibrations, and this problem is related to the existence of handlebody decompositions
without index-one handles on such manifolds. We believe that the simply connected closed oriented
4-manifolds M with finite (M, S?) are precisely those which admit achiral Lefschetz fibrations.
There are only a few examples of manifolds not admitting achiral Lefschetz fibrations, for instance,
#,581 x 83 for n > 2 (see [17]).
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The number of critical fibers of a Lefschetz fibration of a four-manifold M* and the genera of the
fiber and the base determine the Euler characteristic x(M?). A conjecture of Gompf claims that
a symplectic four-manifold with b, > 1 has a nonnegative Euler characteristic and, if this is true,
then it would follow in particular that the Lefschetz fibrations on such manifolds over S? have at
least 49 — 4 singular fibers, where g stands for the fiber genus.

In [27, 28], Stipsicz provided lower bounds for the numbers of singular fibers in Lefschetz fibra-
tions.

Theorem 1.4. A nontrivial genus g Lefschetz fibration over S* has at least %(89—4) irreducible
critical fibers. Moreover, if the 4-manifold has by =1 and if g > 6 is even, then we have at least
2g + 4 critical fibers, whereas, for odd g > 15, we have at least 2g + 10 critical fibers.

Korkmaz and Ozbagci considered the minimal number N (g, h) of singular fibers in a Lefschetz
fibration with at least one singular fiber whose generic fiber is assumed to be connected and the
fibration is relatively minimal, i.e., no fiber contains a (—1) sphere which is an embedded sphere
of self-intersection —1, where g stands for the genus of the fiber and h for that of the base. They
proved in [21] the following result which is parallel to Theorem 1.1 in [1].

Theorem 1.5. The relation N(g,h) = 1 holds if and only if g > 3 and h > 2. Moreover,
N(g,1) > 1 forallg > 1.

Other inequalities for the number of critical points (which can cluster in a fiber) are proved by
Braungardt and Kotschick in [6].

Remark 1.3. Using a construction of Matsumoto for singular fibrations by tori (see [23]),
one can prove that ¢(S*, 5%) = 1. It can readily be seen that ¢©(S%,58?) < 2 by considering the
composition of the mappings S* — S% and S — S2, where the second mapping is the Hopf
fibration and the former one is the suspension of the Hopf fibration. This construction yields two
smooth mappings, each one with two singularities, which lie either in two distinct fibers or in the
same fiber, depending on the position of the suspension points with respect to the fibers of the
Hopf fibration.

In the present paper, we add new information by computing ¢(M, N) for all closed connected
surfaces and thus completing the results of [1] with the nonorientable case.

Note that a smooth mapping f: Y — X between surfaces has finitely many critical points if and
only if it is a ramified covering. Further, ¢(Y, X) is the minimal number of ramification points of
a covering Y — X.

Denote by [r] the least integer greater than or equal to r and by |z| the largest integer lower
than or equal to z. For x(N) < 0 and x(M) < 0, write |x(M)| = d|x(N)| +v, where d,v € Z, and

— | x(M)
0 < v <|x(N)|, and thus d = LX(N)J .

If N is a nonorientable surface, denote by N the orientable double cover of N.

Theorem 1.6. Let M and N be connected closed surfaces.
I. Assume that M and N are orientable.
(a) If x(M) > x(N), then o(M,N) = cc.
(b) If M # S?, then (M, S?) =3 and ¢(S?%,5%) =0.
(c) If N is the torus S* x St, then (M, S* x S1) is equal to 1 if x(M) < 0, to 0 if M = St x S,
and to oo if M = S2.
(d) If x(N) <0, then o(M,N) is equal to [ 2| if d > 2, to 0 if M = N, and to co otherwise.
II. Suppose that M and N are nonorientable.
(a) If N = RP?, then o(M,RP?) is equal to 0 if M = RP? and to 2 otherwise.
(b) If N is the Klein bottle, then o(M,RP*#RP?) is equal to 1 if x(M) = 0(mod ?2), to 0 if
M = RP?*#RP?, and to oo if x(M) # 0 (mod 2).
(c) Assume from now on that x(N) < 0, and thus N is neither RP? nor the Klein bottle.
(i) If x(M) = 2x(N), then p(M, N) is equal to 0 if either x(M) = 2x(N) or M = N and
to co otherwise.
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(ii) Let x(M) < 2x(N).
(A) Assume that x(N) = 0(mod2). Then o(M,N) is equal to |25 if x(M)
(mod 2) and to oo if x(M) =1 (mod?2).
(B) Let x(N) = 1(mod2). Then o(M,N) is equal to [~ if d = x(M) (mod 2), to
{7%6‘;&(5\7)‘1 if d Z x(M) (mod?2) and d > 3, and to oo if d # x(M) (mod2) and
d=2.
II1. Suppose that M is nonorientable and N is orientable. Then (M, N) = oco.
IV. Suppose that M is orientable and N is not orientable.

(a) If x(IV) < 0, then @(M,N) is equal to {2%} if d is odd and d > 5, to [ 2% if d is

even and d > 4, to 0 if M = ]/\7, and to oo if M # N and d < 3, where N stands for the
orientable double cover of N.

(b) If N = RP?, then o(M,RP?) is equal to 3 if x(M) <0 and to 0 if M = S2.

(c) If N = RP*#RP?, then (M, RP*#RP?) is equal to 1 if x(M) < 0, to 0 if M = S* x S*,
and to oo if M = S2.

0

Remark 1.4. Computations were previously done for orientable surfaces in [1], and in [24],
it was proved that (Y, X) is infinite for x(Y) > x(X).

Moreover, recent results of Bogatyi, Gongalves, Kudryavtseva, and Zieschang ([4, 5]) show that
the minimal number of critical points in cases I and II can be achieved by using mappings f: Y — X
which are primitive branched coverings, i.e., mappings inducing surjective mappings at the level of
fundamental groups.

2. PROOF OF THEOREM 1.6

2.1. Existence of branched coverings with prescribed ramification. The proof is based
upon results of Edmonds, Kulkarni, and Stong [12] who gave necessary and sufficient conditions for
the existence of a covering of a surface with prescribed degree and branching data (i.e., a family of
ramification orders at each branch point). By [12, Prop. 2.8], the following assertion holds.

Proposition 2.1. Let M and N be connected closed surfaces and § > 2. Suppose that M is
orientable if N is. Moreover, suppose that, if N is nonorientable and ¢ is odd or 6 = 2, then M
is nonorientable. In this case, there is a branched covering f: M — N of degree § if and only if
X(M) < ox(N) and v =0x(N) — x(M) is even.

Consider M and N as in the assumptions of the proposition. Assume that we have a branched
covering M — N of degree § with r ramification points of ramification degrees d;, i = 1,...,7r.
Then 2 < d; < 4, and the Hurwitz formula reads

T
X(M) = 6x(N) = (di —1). (1)
i=1
According to [19, 14, 3, 12], the following statement holds for any family 2 < d; < d,i=1,...,r,
satisfying (1). If N # S? and there is a branched covering f of degree § as claimed in Proposition 2.1,
where either N is orientable or M is nonorientable, then there is an f with r ramification points
of ramification degrees d;, i = 1,...,7r.

Therefore, (M, N) is the minimal possible r for which there is a natural solution 0, d; of the
linear equation (1) such that x(M) — dx (V) is even and 2 < d; < ¢ (possibly with additional
assumptions related to orientability, or N # S?). For N = S?, we have only showed the necessity
of conditions (1) for the existence of the branched covering. As shown below (see 2.5 and 2.7), such
a covering exists if N = S% r =3, and § = 3 — x(M).

Note that the condition § > 2 is necessary, since a degree-one branched covering is a homeomor-
phism.

We have the bounds r < >~'_,(d; —1) < (6 — 1) which imply

r < —x(M)+dx(N) <r(d—1). (2)

Conversely, if r and § satisfy inequalities (2), then we can find solutions d; of equations (1). Thus,
if N # S? and either N is orientable or M is nonorientable, then we are to find the smallest 7 for
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which there is a natural solution ¢ > 2 (of the system of inequalities (2)) for which x (M) — dx (V)
is even.

2.2. Generic case in which (M) < x(IV) < 0 and d > 2. Inequalities (2) are equivalent to
(X(M) =7)/(x(N) =) <0 < (x(M) +1)/x(N). (3)
Lemma 2.1. Any solution ¢ of (3) satisfies 6 < d.

M)+r
Proof. We have ¢ < X(X(A),J)r =d+ iy < d+ 1 since v < [x(N)].

If we drop the parity condition, then we seek for the smallest natural number r such that

[(x(M) =)/ (x(N) = 1)] < (x(M) +7)/x(N). (4)

Lemma 2.2. The smallest value of v for which (4) is verified is given by a = {ﬁ—‘ .

Proof. In fact, r = a meets the inequalities because P‘(M)_ﬂ =d+ {M—‘ <d <

x(N)—a a—x(N)
v—a_ _ X(M)+a . M)—r | v—(d—1)r
d+ e = X(X(le) . On the other hand, if r < a, then R‘(((N))_r—‘ =d+ { r_(X(N)) —‘ > d, and thus
{i((%[)):: 1 > d—+ 1. Since the left-hand side is an integer, whereas we have noted in the proof of the

previous lemma that Xg(]\(/jj\)gr < d+ 1, we see that inequality (4) cannot be satisfied for any r < a.

Now consider the parity condition x (M) — dx(N) = 0 (mod 2).
A.If x(N) = 0(mod 2), then the parity condition
e is either satisfied for any ¢, namely, if (M) = 0 (mod 2), or
e it cannot be satisfied for any choice of ¢ if x(M) =1 (mod 2).
This proves that if IV is orientable or M is nonorientable, then (M, N) is either a or oo as claimed.
B. If x(N) = 1(mod?2), then the parity condition is equivalent to § = x(M) (mod 2). More-
over, recall that 6 was supposed only to satisfy inequalities (3). Alternatively, by Lemma 2.1,

d+{%1 d<difr=a.

o If d = x(M) (mod2), then § = d satisfies the parity condition and the above inequalities.
)

o If d # x (M) (mod2), then —1 < % < 0 since otherwise (d—2)a > v— x(N), and thus

d >3 and {%—‘ =a> P_d’i(év)w, which is impossible, since v > 0, x(INV) < 0, and d > 3. In this

case, there is no appropriate § for r = a because 0 < /77y < 1, B‘(((%)):ﬂ =d= LX(;\(/IJ%TGJ ,

and so the only possible value for § would be § = d. This implies that we must consider r > a
and to find the smallest r for which there is a 6 = d — 1 (mod?2) satisfying the inequalities

d+ ’711 (d— 1)7"} d < d+ el ( N)I This implies that the smallest » with the above property must

r—x(N)
satisfy the condition Pr—(i( 1\1,))7”} < —1 or, equivalently, the conditions d > 3 and r > {w—‘
vt |x (V)|

d—2

1 and § = d— 1, which must verify § > 2, both the required inequalities
hold. Thus, if d = 2, then p(M,N) = 0o

Summing up, it follows that, if d #Z yx(M) (mod 2) and N is orientable or M is nonorientable,
then p(M, N) is equal to [%W if d > 3 and to oo if d = 2.

2.3. M and N are nonorientable. If y(N) < 0, then Case 2.2 and Remark 1.4 prove the claim.

If N = RP? and M # RP?, then conditions (2) read r < 6 — x(M) < 7(6 — 1). Then r = 1 does

not work since x(M) < 1, whereas, for r = 2, the above inequalities and the parity condition have
natural solutions. Thus, (M, N) =2 if x(M) < 1.

If N = RP*#RP?, then conditions (2) read r < —x(M) < (6 — 1). Thus, x(M) < —1, and
r = 1 is convenient. However, v = —x (M) should be even. This implies that ¢(M, RP*#RP?) is
equal to 1 if x(M) = 0 (mod 2), to 0 if M = RP*#RP?, and to oo if x(M) % 0 (mod 2).
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2.4. M nonorientable and N orientable. It is standard that the ramified covering of an
orientable manifold is orientable. Thus, (M, N) = oo in this case.

2.5. M and N are orientable. This was solved in [1], and it corresponds to the above argu-
ments if x(M) and x(N) < 0 are even.
If N =52 and x(M) <0, then conditions (2) are
r<20—x(M)<r(0-1).

If » < 2, then x(M) > 2, which is impossible. For r = 3, the above inequalities are necessary for
the existence of a branched covering M — S? of degree § with » = 3 ramification points. As shown
below, these inequalities are also sufficient for the existence of such a covering with 6 = 3 — x (M)
(see 2.7), and thus o(M, S?) = 3 for M # S2.
If N = S! x S, then conditions (2) read
r < =x(M) <r(d-1),

and therefore, r = 1 yields natural solutions for any M with x(M) < 0. Thus, ¢(M,S! x S) =1
if M # 82,81 x St and p(S?,S! x §1) = .

2.6. M orientable and N nonorientable. Assume that xy(M) < x(IV) < 0. Then, in addition
to constraints (3), the solution 6 must be even, since an odd-degree branched covering of a nonori-
entable surface is also nonorientable (see, e.g., [12, Prop. 2.3]). Further, if 6 = 2, then M should
be the orientable (nonramified) double cover N of N. This follows from the fact that the mapping
M — N lifts to a ramified covering M — N (see [12, Prop. 2.7]). Thus, (M, N) = (M, N),
which was computed in 2.5.

If (M) < 2x(N) < 0, then we write |x(M)| = d’|x(N)| + v/, where 0 < v/ < |x(N)|. It follows

from 2.5 that (M, ]\Af) is equal to [d,”iﬂ if d >2,to0if M = N, and to co otherwise. Therefore,

if x(N) < 0, then p(M, N) is equal to [2%1 if d is odd and d > 5, to [24] if d is even and
d24,toOifM:]\Af,andtoooifM;é]\Afanddé?).

Alternatively, for any collection 2 < d; < 0/2,i =1,...,r, satisfying (1), the following statement
holds by [19, 14, 3, 12]. If there is a branched covering f of degree §, as in Proposition 2.1, where

N is nonorientable and M is orientable, then there is an f of this kind with r ramification points
of ramification degrees d;, i = 1,...,r. We can then proceed as in 2.2.

2.7. Triangulations and N = S2. In [1], we treated the case N = S? separately, by making
use of Belyi mappings (see [26]); however, the proof was rather sketchy. Morris Hirsch asked us for
more details and later gave us the following simple proof using triangulations. Note that a similar
construction was used by Prasolov and Sossinsky in [25, Th. 20.6].

Algebraic topology considerations in [1] or in 2.5 show that ¢(M,S?) > 3, and it suffices to
see that there is a Belyi mapping having precisely 3 critical points, namely, with one critical point
above each critical value.

There exist triangulations of the surface M with any number of vertices s, s > 1; in particular,
with s = 3. In fact, we choose vertices and then add (inductively) a number of disjoint arcs joining
the vertices in such a way that no two arcs are homotopic by a homotopy keeping the endpoints
fixed. Consider the maximal family of pairwise nonhomotopic arcs of this kind. The complementary
regions are triangles, since otherwise, we can add more arcs, contradicting the maximality. We have
therefore obtained a triangulation of M with s vertices, 2s — 2x(M) triangles, and 3s — 3x(M)
edges. Although each cell has its vertices among the three vertices of the triangulation, they are
not necessarily distinct.

However, we need a special triangulation in which all triangles have the same (distinct) three
vertices. For a given n > 1, we consider the regular polygon in the hyperbolic plane (in the Euclidean
plane for n = 1) with 2(2n + 1) vertices and the angles 27 /(2n + 1). Identify the opposite edges
by means of isometries reversing the orientation. There are then two orbits of the vertices, and the
total angle around each vertex is 2. We thus obtain a closed hyperbolic surface. Let us subdivide
it into equal triangles with a common vertex at the center of the polygon. This triangulation has
three vertices, 2(2n+ 1) triangles, and 3(2n+ 1) edges, and thus the surface is of genus n. Label the
central vertex by 1 and the two other vertices by 2 and 3. Then each triangle of the triangulation
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has the vertices 1, 2, and 3. The hyperbolic surface is oriented, and thus each triangle inherits an
orientation. We say that a triangle is positive if the cyclic order of the labels of its vertices is 1, 2, 3,
and negative otherwise. Note that adjacent triangles have opposite signs since the order of 2 and 3
is reversed.

Figure.

Consider the triangulation of S? consisting of two triangles whose boundaries are identified. Map
the triangulation of M onto that of the sphere S? by taking each triangle of M onto one of the
triangles on the sphere, according to the sign. This yields a mapping M — S?2, which is ramified
at the three vertices only.

There is also a beautiful example, due to John Hubbard, of a Belyi function with three critical
points only which is obtained by regarding > C CP? as the projective algebraic curve defined by the
(inhomogeneous) equation y29*! = x2 —1. The projection onto the first coordinate is a holomorphic

mapping M — CP!, which is ramified over 1, —1, and oo and has only three critical points. By the
Riemann—Hurwitz formula, x(M) = 2 — 2g.

One can seek topological classification of smooth functions f: M — S? with three critical points
with ramification orders coinciding with | deg(f)], i.e., up to the action (by left multiplication) of
the diffeomorphisms of M. The pull-back by f of the triangulation of S? consisting of two triangles
(with vertices at critical values) is a special triangulation of M in which triangles can be equipped
with signs according to the triangle covered on the sphere. If we label the vertices by 1,2, 3, then
the sign of a triangle corresponds to the cyclic order of the boundary labels. Further, choosing a
vertex, say, the one labelled by 1, and looking at the edges incident to this vertex, the endpoints
of the edges become labelled by 2 and 3 only; moreover, consecutive edges correspond to different
labels, and thus the cyclic order of these labels is an alternating sequence 2,3,2,...,3. The union
of these triangles is a fundamental polygon P for the surface M. Thus, P has 2(2n + 1) edges,
where n is the genus of M. In particular, P is the polygon drawn above.

Furthermore, one obtains M by gluing the edges of P by means of an involution j on the set of
edges. The gluing should satisfy the following conditions:

e the gluing reverses the orientation of the edges inherited from the circle in such a way that
the quotient is orientable;

e j preserves the labels;

e the orbit of a vertex under the permutation group generated by the involutions on the set
of vertices induced by j and the gluing is the set of all vertices with the same label; this
means that there are precisely two vertices in the quotient M;

e adjacent edges are not identified by j.

Thus, up to a homeomorphism of M, the special triangulations of M correspond to polygons P
with an involution j as above. By a direct inspection, it follows that there are no other involutions
j except for the standard one given above if the genus is at most 3.

ACKNOWLEDGMENTS

The authors are thankful to Morris Hirsch for sharing with us his proof and the example of John
Hubbard and to Daciberg Gongalves for suggestions and references.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 3 2009



370

1.

10.
11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

D. ANDRICA et al.

REFERENCES

D. Andrica and L. Funar, “On Smooth Maps with Finitely Many Critical Points,” J. London Math.
Soc. 69, 783-800 (2004).

. D. Andrica and L. Funar, “On Smooth Maps with Finitely Many Critical Points. Addendum,” J. London

Math. Soc. 73, 231-236 (2006).

. I. Berstein and A.L. Edmonds, “On the Construction of Branched Coverings of Low-Dimensional

Manifolds,” Trans. Amer. Math. Soc. 247, 87-124 (1979).

. S. A. Bogatyi, D. L. Gongalves, E. A. Kudryavtseva, and H. Zieschang, “Realization of Primitive Bran-

ched Coverings over Closed Surfaces,” in Advances in Topological Quantum Field Theory, NATO Sci.
Ser. IT Math. Phys. Chem. 179 (Kluwer Acad. Publ., Dordrecht, 2004), pp. 297-316.

. S. A. Bogatyi, D. L. Gongalves, E. A. Kudryavtseva, and H. Zieschang, “Realization of Primitive Bran-

ched Coverings over Closed Surfaces Following the Hurwitz Approach,” Cent. Eur. J. Math. 1,
184-197 (2003).

. V. Braungardt and D. Kotschick, “Clustering of Critical Points in Lefschetz Fibrations and the Sym-

plectic Szpiro Inequality,” Trans. Amer. Math. Soc. 355, 3217-3226 (2003).

P.T. Church and J. G. Timourian, “Differentiable Maps with 0-Dimensional Critical Set 1,” Pacific J.
Math. 41, 615-630 (1972).

. P.T. Church and J. G. Timourian, “Continuous Maps with 0-Dimensional Branch Set,” Indiana Univ.

Math. J. 23, 949-958 (1974).

. P.T. Church and J. G. Timourian, “Differentiable Maps with 0-Dimensional Critical Set II,” Indiana

Univ. Math. J. 24, 17-28 (1974).
S. K. Donaldson, “Lefschetz Pencils on Symplectic Manifolds,” J. Differential Geom. 53, 205-236 (1999).

S. K. Donaldson, “Lefschetz Pencils and Mapping Class Groups,” in Problems on Mapping Class Groups
and Related Topics, ed. by B. Farb, Proc. Sympos. Pure Math. 74 (Amer. Math. Soc., Providence, 2006),
pp. 151-163.

A. Edmonds, R. Kulkarni, and R. Stong, “Realizability of Branched Coverings of Surfaces,” Trans.
Amer. Math. Soc. 282, 773-790 (1984).

J.B. Etnyre and T. Fuller, “Realizing 4-Manifolds as Achiral Lefschetz Fibrations,” Int. Math. Res.
Not., Art. ID 70272 (2006).

C.L. Ezell, “Branch Point Structure of Covering Maps onto Nonorientable Surfaces,” Trans. Amer.
Math. Soc. 243, 123-133 (1978).

L. Funar, C. Pintea, and P. Zhang, “Examples of Smooth Maps with Finitely Many Critical Points in
Dimensions (4, 3), (8,5), and (16,9),” math.GT/0803.0665.

L. Funar, “Smooth Maps with Finitely Many Critical Points in Dimensions (4, 3) and (8,5),” in prepar.
R.E. Gompf and A.I. Stipsicz, 4-Manifolds and Kirby Calculus (Amer. Math. Soc., Providence, 1999).
J.L. Harer, “Pencils of Curves of 4-Manifolds,” PhD Thesis (Univ. California, Berkeley, 1979).

D. H. Husemoller, “Ramified Coverings of Riemann Surfaces,” Duke Math. J. 29, 167-174 (1962).

H. C. King, “Topological Type of Isolated Singularities,” Ann. of Math. 107, 385-397 (1978).

M. Korkmaz and B. Ozbagci, “Minimal Number of Singular Fibers in a Lefschetz Fibration,” Proc.
Amer. Math. Soc. 129 (5), 1545-1549 (2001).

S. Lojasiewicz, “Triangulation of Semi-Analytic Sets,” Ann. Sc. Norm. Super. Pisa (3) 18, 449-474
(1964).

Y. Matsumoto, “Handlebody Decompositions of 4-Manifolds and Torus Fibrations,” Osaka J. Math.
33, 805-822 (1996).

C. Pintea, “Continuous Mappings with an Infinite Number of Topologically Critical Points,” Ann.
Polon. Math. 67, 87-93 (1997).

V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-Manifolds. An Introduction to the New
Invariants in Low-Dimensional Topology, Transl. Math. Monogr. 154 (Amer. Math. Soc., 1997).

G. B. Shabat and V. A. Voevodsky, “Drawing Curves over Number Fields,” in Grothendieck Festschrift,
ed. by P. Cartier, Progress in Math. 88, Vol. 3 (Birkh&user, 1990), pp. 199-227.

A. 1. Stipsicz, “On the Number of Vanishing Cycles in Lefschetz Fibrations,” Math. Res. Lett. 6 (3—4),
449-456 (1999).

A.1. Stipsicz, “Singular Fibers in Lefschetz Fibrations on Manifolds with b2+ = 1,” Topology Appl.
117 (1), 9-21 (2002).

F. Takens, “Isolated Critical Points of C*° and C* Functions,” Indag. Math. 29, 238-243 (1967).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 3 2009



