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Abstract. Let� be a compact surface. We prove that the set of marked surface cubications
modulo flips, up to isotopy, is in one-to-one correspondence with Z/2Z⊕H1(�, ∂�; Z/2Z).

1. Introduction and statements

Cubical complexes and marked cubications. A cubical complex is a finite
dimensional complex C consisting of Euclidean cubes, such that the intersection of
two of its cubes is a finite union of cubes from C , once a cube is in C then all its faces
belong to C and each point has a neighborhood intersecting only finitely many cubes
of C . A cubication of a topological manifold is a cubical complex that is homeo-
morphic to the manifold. If the manifold is a PL manifold then one requires that the
cubication be combinatorial and compatible with the PL structure. Our definition of
cubication is slightly more general than the usual one, because we do not require that
the intersection of two cubes consists of a single cube but only a finite union of cubes.

The study of simplicial complexes and manifold triangulations lay at the core
of combinatorial topology. Cubical complexes and cubications might offer an al-
ternative approach since, despite their similarities, they present some new features.

Any triangulated manifold admits a cubication, since we can decompose an
n-dimensional simplex �n into n + 1 cubes of dimension n. For k = 1 to n we
adjoin, inductively, the barycenter of each k-simplex in �n and join it with the
barycenters of its faces. This way we obtain the one-skeleton of a cubical complex,
as shown in the figure below for n = 3.
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Thus, roughly speaking, working with simplicial complexes is equivalent to
working with cubical complexes, from topological viewpoint. However, we will
show that cubications encode additional topological information.

It will be more convenient in the sequel to work with marked cubications instead
of cubications. A marked cubication of the manifold M consists of a couple (C, ϕ),
where C is a cubication and ϕ : |C | −→ M is a PL homeomorphism (called
the marking) of its subjacent space |C | onto M . The marked cubications (C, ϕ)
and (C ′, ϕ′) are said to be isotopic if there exists a combinatorial isomorphism
j : C → C ′ between the two cubical complexes and a PL homeomorphism � of
M such that � ◦ ϕ = ϕ′ ◦ J , where J : |C | → |C ′| is the PL homeomorphism
induced by j , and both J and � are isotopic to identity. The isotopy class of the
image by ϕ of the skeleton of C in M determines the isotopy class of the marked
cubulation (C, ϕ). Thus, marked cubications underlying a given cubication C are
acted upon transitively by the mapping class group of M .
Bi-stellar moves. We will consider below PL manifolds, i.e. topological mani-
folds endowed with triangulations (called combinatorial) for which the link of each
vertex is PL homeomorphic to the boundary of the simplex. Recall that two sim-
plicial complexes are PL homeomorphic if they admit combinatorially isomorphic
subdivisions. There exist topological manifolds which have several PL structures
and it is still unknown whether all topological manifolds have triangulations (i.e.
whether they are homeomorphic to simplicial complexes), without requiring them
to be combinatorial.

It is not easy to decide whether two given triangulations define or not the same
PL structure. One difficulty is that one has to work with arbitrary subdivisions and
there are infinitely many distinct combinatorial types of such. In the early 1960s
one looked upon a more convenient set of transformations permitting to connect
PL equivalent triangulations of a given manifold. The simplest proposal was the so-
called bi-stellar moves which are defined for n-dimensional complexes, as follows:
we excise B and replace it by B ′, where B and B ′ are complementary balls that are
unions of simplexes in the boundary ∂�n+1 of the standard (n + 1)-simplex. It is
obvious that such transformations do not change the PL homeomorphism type of
the complex. Moreover, U. Pachner ([26,27]) proved in 1990 that conversely, any
two PL triangulations of a PL manifold (i.e. the two triangulations define the same
PL structure) can be connected by a sequence of bi-stellar moves. One far reaching
application of Pachner’s theorem was the construction of the Turaev–Viro quantum
invariants (see [31]) for three-manifolds.
Habegger’s problem on cubical decompositions. It is natural to wonder whether a
similar result holds for cubical decompositions, as well. The cubical decompositions
that we consider will be PL decompositions that define the same PL structure of
the manifold.

Specifically, N. Habegger asked ([17], Problem 5.13) the following:

Problem 1. Suppose that we have two PL cubications of the same PL manifold.
Are they related by the following set of moves: excise B and replace it by B ′,
where B and B ′ are complementary balls (union of n-cubes) in the boundary of the
standard (n + 1)-cube?
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These moves have been called cubical or bubble moves in [10,11], and (cubical)
flips in [4]. Notice that the flips did already appear in the mathematical polytope
literature ([5,37]).

The problem above was addressed in ([10,11]), where we show that, in general,
there are topological obstructions for two cubications being flip equivalent.

Notice that acting by cubical flips one can create cubications where cubes have
several faces in common or pairs of faces of the same cube are identified. Thus
we are forced to allow this greater degree of generality in our definition of cubical
complexes.
Related work on cubications. In the meantime this and related problems have
been approached by several people working in computer science or combinatorics
of polytopes (see [4,7,9,20,29]). Notice also that the two-dimensional case of the
sphere S2 was actually solved earlier by Thurston (see [30]). Observe that there are
several terms in the literature describing the same object. For instance the cubical
decompositions of surfaces are also called quadrangulations ([23–25]) or quad
surface meshes, while three-dimensional cubical complexes are called hex meshes
in the computer science papers (e.g. [4]). We used the term cubulation in [10,11].

Remark that there is some related work that has been done by Nakamoto (see
[23–25]) concerning the equivalence of cubications of the same order by means
of two transformations (that preserve the number of vertices): the diagonal slide,
in which one exchanges one diameter of a hexagon for another, and the diagonal
rotation, in which the neighbors of a vertex of degree two inside a quadrilateral are
switched. In particular, it was proved that any two cubications of a closed orientable
surface can be transformed into each other, up to isotopy, by diagonal slides and
diagonal rotations if they have the same (and sufficiently large) number of vertices
and if their one-skeleta define the same mod two homology classes. Moreover,
one can do this while preserving the simplicity of the cubication (i.e. not allowing
double edges).
Immersions and cobordisms. Let M be a n-dimensional manifold. Consider the
set of immersions f : F → M with F a closed (n − 1)-manifold. Impose on it
the following equivalence relation: (F, f ) is cobordant to (F ′, f ′) if there exist a
cobordism X between F and F ′, that is, a compact n-manifold X with boundary
F � F ′, and an immersion � : X → M × I , transverse to the boundary, such that
�|F = f × {0} and �|F ′ = f ′ × {1}.

Once the manifold M is fixed, the set N (M) of cobordism classes of
codimension-one immersions in M is an abelian group with the composition law
given by disjoint union.
Cubications versus immersions’ conjecture. Our approach in [10] to the flip
equivalence problem aimed at finding a general solution in terms of some algebraic
topological invariants. Specifically, we stated (and proved half of) the following
conjecture:

Conjecture 1. The set of marked cubical decompositions of the closed manifold
Mn modulo cubical flips is in bijection with the elements of the cobordism group
of codimension one immersions into Mn .
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The solution of this conjecture would lead to a quite satisfactory answer to the
problem of Habegger.

Notice that, when a cubical move is performed on the cubication C endowed
with a marking, there is a natural marking induced for the flipped cubication. Thus
it makes sense to consider the set of marked cubications mod flips.

We proved in [10] the existence of a surjective map between the two sets.
Digression on smooth versus PL category. There might be several possible
interpretations for the conjecture above. We can work, for instance, in the PL cate-
gory and thus cubications, immersions and cobordisms are supposed PL. Generally
speaking there is little known about the cobordism group of PL immersions and
their associated Thom spaces, in comparison with the large literature on smooth
immersions. However, in the specific case of codimension-one immersions we are
able to compare the relevant bordism groups. If M is a compact n-dimensional
manifold then the bordism group Nk(M)PL of P L codimension-k immersions up
to PL cobordisms is given in homotopy theoretical terms by the formula:

Nk(M)
PL = [M,�∞S∞M P L(k)]

where P L(k) is the semi-simplicial group of PL germs of maps on R
k , M P L(k)

is a suitable Thom space associated to it (see e.g. [36]), � denotes the loop space
and S denotes the reduced suspension, while [X,Y ] denotes the set of homotopy
classes of maps X → Y . This follows along the same lines as the results of Wells
([33]), where is considered only the smooth case, by using instead of the classical
Smale–Hirsch theory on smooth immersions the Haefliger–Poenaru classification
of combinatorial immersions from ([14]).

On the other hand, when M is smooth, the bordism group Nk(M) of
codimension-k smooth immersions is given by the similar formula from ([33]):

Nk(M) = [M,�∞S∞M O(k)]
where M O(k) is the Thom space associated to the orthogonal group O(k).

From the general results of Kuiper and Lashof ([18]) concerning the unstable
homotopy type of P L(k) one obtains that the natural inclusion map O(1) ↪→
P L(1) induces a weak homotopy equivalence M O(1) → M P L(1). This result
was improved later by Akiba, Scott and Morlet ([1,21,28]) to weak homotopy
equivalences M O(k) → M P L(k) for all k ≤ 3.

This shows that codimension-one immersions of PL manifolds into a smooth
manifold are PL cobordant to a smooth immersion and also that the existence
of a PL cobordism between two smooth immersions implies the existence of a
smooth cobordism. Consequently, when the manifold M is smooth, we can use
either PL or smooth immersions and bordisms, as the associated groups are naturally
isomorphic.
Smooth cubications. However, in the DIFF category it is appropriate to consider
only those cubications which are smooth. Smooth cubications are defined following
Whitehead’s definition of smooth triangulations from ([34]), but we have to change
it slightly in order to apply to the more general cubical complexes considered here.

Let M be a smooth manifold and C a cubical complex. A map f : |C | → M
is called smooth if the restriction of f to each cube of C is smooth. Moreover, f is
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non-degenerate if all these restrictions are of maximal rank. Finally f : |C | → M
is a smooth cubication of M if f is a non-degenerate homeomorphism onto M .
According to ([22], Theorem 8.4) this definition is equivalent to Whitehead’s one,
when applied to simplicial complexes.

In small dimensions (e.g. when the dimension is at most 3) the PL and DIFF
categories are equivalent. In particular, we can assume from now on that we are
working in the DIFF category and all objects are smooth, unless the opposite is
explicitly stated.
Computations of the cobordism group of immersions. Finding the cobordism
group N (Mn) of (smooth) codimension-one immersions into the n-manifold Mn

was reduced to a homotopy problem by the results of [32,33], as explained above.
However, these techniques seem awkward to apply when one is looking for effective
results. The group N (Sn) of codimension-one immersions in the n-sphere, up to
cobordism, is the nth stable homotopy group of RP

∞ (since the Thom space M O(1)
is homotopy equivalent to RP

∞) and it was computed by Liulevicius ([19]) for
n ≤ 9 as follows:

n 1 2 3 4 5 6 7 8 9
N (Sn ) Z/2Z Z/2Z Z/8Z Z/2Z 0 Z/2Z Z/16Z ⊕ Z/2Z (Z/2Z)⊕3 (Z/2Z)⊕4

It is known that, if M2 denotes a closed surface, then:

N (M2) ∼= H1(M
2,Z/2Z)⊕ H2(M

2,Z/2Z).

Using geometric methods Benedetti and Silhol ([3]) and further Gini ([13]) proved
that, if M3 is a three-manifold, then

N (M3) ∼= H1(M
3,Z/2Z)⊕ H2(M

3,Z/2Z)⊕ H3(M
3,Z/8Z)

the right side groups being endowed with a twisted product. The result has been
extended to higher dimensional manifolds in [12].
Manifolds with boundary. Habegger’s problem from above makes sense also for
PL cubications of manifolds with boundary. The question is whether two cubica-
tions that induce the same cubication on the boundary are flip equivalent.

Let M be a compact n-dimensional manifold with boundary ∂M . We will con-
sider then the proper immersions f : F → M with F a compact (n − 1)-manifold
with boundary ∂F . This means that ∂M is transversal to f and f −1(∂M ∩ f (F)) =
∂F .

In order to define the cobordism equivalence for proper immersions we need to
introduce more general immersions and manifolds. The compact n-manifold X is
a manifold with corners if X is a PL manifold whose boundary ∂X has a splitting
∂X = F ∪ ∂F × [0, 1] ∪ F ′, where ∂F = ∂F ′, and F, F ′ are manifolds with
boundary. One says that F ∪ F ′ is the horizontal boundary ∂H X , ∂F ×[0, 1] is the
vertical boundary ∂V X and their intersection ∂F × {0, 1}, is the corners set.

Observe now that M × [0, 1] is naturally a manifold with corners if M has
boundary, by using the splitting ∂(M ×[0, 1]) = M ×{0}∪∂M ×[0, 1]∪ M ×{1}.
Let X be as above. One defines then an immersion � : X → M × [0, 1] to be an
immersion of manifolds with corners if
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1. � is proper and preserves the boundary type, by sending the horizontal (resp.
vertical) part into the horizontal (resp. vertical) boundary. Moreover, � is
transversal to the boundary.

2. The restriction to the vertical part� : ∂F × [0, 1] → ∂M × [0, 1] is a product
i.e. it is of the form �(x, t) = (�(x, 0), t).

We say that the proper immersion (F, f ) is cobordant to (F ′, f ′) if there exist a
cobordism X between F and F ′ (and thus ∂F = ∂F ′) which is a manifold with
corners and a proper immersion of manifolds with corners � : X → M × I , such
that �|F = f × {0} and �|F ′ = f ′ × {1}.

The set of cobordism classes of immersions of codimension one manifolds with
boundary into a given manifold Mn with prescribed boundary immersion can be
computed using the methods of [12].
The main result. The aim of this paper is to solve the extension of the cubica-
tions versus immersions conjecture in the case of compact surfaces, possibly with
boundary.

Theorem 1.1. The set of marked cubications of the compact surface � with pre-
scribed boundary mod cubical flips is in one to one correspondence with the ele-
ments of Z/2Z ⊕ H1(�, ∂�; Z/2Z).

The proof of this theorem, although elementary, uses some methods from geo-
metric topology and Morse theory.

Remark 1.1. One can identify a marked cubication with an embedding of a con-
nected graph in the surface, whose complementary is made of squares. The theorem
says that any two graphs like that are related by a sequence of cubical flips and an
isotopy of the surface.

2. Outline of the Proof

Immersions associated to cubications. We associate to each marked cubication
C of the n-dimensional manifold M a codimension-one generic immersion ϕC :
NC −→ M (the cubical complex NC is also called the derivative complex in [2]) of
a manifold NC having one dimension less than M . Here is the construction. Each
cube is divided into 2n equal cubes by n hyperplanes which we call sections. When
gluing together cubes in a cubical complex the sections are glued accordingly. Then
the union of the hyperplane sections form the image ϕC (NC ) of a codimension-one
generic immersion. The cubulated manifold NC is constructed as follows: consider
the disjoint union of a set of (n − 1)-cubes which is in bijection with the set of
all sections, then glue together two (n − 1)-cubes if their corresponding sections
are adjacent in M . The immersion ϕC is tautological: it sends a cube of NC into
the corresponding section. If the cubication C is smooth then NC has a smooth
structure and the immersion ϕC can be made smooth by means of a small isotopy.
This connection between cubications and immersions appeared independently in
[2,10] but this was presumably known to specialists long time ago (see e.g. [30]).
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Surface cubications and admissible immersions. The case of the surfaces is
even simpler to understand. The immersion ϕC (NC ) is obtained by drawing arcs
connecting the opposite sides for each square of the cubication C and NC is a
disjoint union of several circles. The immersions which arise from cubications are
required to some mild restrictions. First the immersion is normal (or with normal
crossings), since it has only transversal double points. All immersions encountered
below will be normal crossings immersions. Since we can travel from one square
of C to any other square of C by paths crossing the edges of C it follows that the
image of the immersion ϕC (NC ) should be connected. On the other hand, by cutting
the surface � along the arcs of ϕC (NC ) we get a number of polygonal disks. An
immersion having these two properties was called admissible in [10]. Further we
have a converse for the construction given above. If j is an admissible immersion
of circles in the surface � then j is ϕC for some cubication C of �. The abstract
complex C is the dual of the partition of� into polygonal disks by means of the arcs
of j . Since j can have at most double points it follows that C is made of squares.
Cubical flips on surfaces. There are four different flips (and their inverses) on a
surface, that we denoted by b1, b2, b3 and b3,1. They are pictured below.

b1 b3

b3,1b2

In particular, we have the flips denoted by the same letters that act on immersions
of curves on surfaces. These transformations are local moves in the sense that they
change just a small part of the immersion that lives in a disk, leaving the immersion
unchanged outside this disk. Specifically, here are the flip actions.

b2

b3

b3,1

b1

The invariant of cubications. We associate to each proper immersion α : L1 → �

of a disjoint union of circles and intervals L1, two independent invariants, as follows.
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The image α(L1) ⊂ � is a union of curves on� and it can be viewed as a singular
one-cycle of �. Notice that circles lay in the interior of � while intervals are
properly immersed and thus their endpoints lay on the boundary. We set then

j1(α) = [α(L1)] ∈ H1(�, ∂�; Z/2Z).

Further we denote by j2(α) ∈ Z/2Z the number of double points of α(L1) mod
two, and eventually

j∗(α) = ( j1(α), j2(α)) ∈ H1(�, ∂�; Z/2Z)⊕ Z/2Z.

Further we are able to define the invariant associated to cubications by means of
the formula:

j (C) = j∗(ϕC ) ∈ H1(�, ∂�; Z/2Z)⊕ Z/2Z.

Remark that we don’t need to know that j factors through the cobordism group
N (�) in order to define the invariant. Observe also that the boundary cubication
is the disjoint union of polygons corresponding to the boundary circles and thus
the numbers of edges determines completely their combinatorial type. The main
theorem above is a consequence of the following more precise statement:

Theorem 2.1. Two marked cubications C0 and C1 of the compact surface � are
flip equivalent if and only if j (C0) = j (C1) and their boundaries agree.

Remark 2.1. In the case of closed orientable surfaces our result is a consequence
of the Nakamoto–Ota theorem ([25]). In fact, we will prove in Sect. 5 that the
diagonal transformations introduced by Nakamoto can be written as products of
cubical flips. However, their method could not be used to cover the case where the
surface is non-orientable or has boundary. Remark, however, that a weaker result
holds true for diagonal transformations on arbitrary closed surfaces (see [23,24]),
in which one replaced marked cubications up to isotopy by marked cubications up
to homeomorphism.

Remark 2.2. Our methods are not combinatorial, as was the case of the sphere (see
[30,10,4]), since one uses in an essential manner the identification of H1(�, ∂�;
Z/2Z) ⊕ Z/2Z with N (�), which is of topological nature. The main interest in
developing the topological proof below is that one can give an unifying treatment
of all surfaces and the hope that these arguments might be generalized to higher
dimensions. However, it would be interesting to find a direct combinatorial proof
that provides an algorithm which gives explicitly a sequence of flips connecting
two cubications. Such an algorithm can be obtained in the closed orientable case
by using the diagonal slides.

Consider two cubications C0 and C1 having the same invariants. The first step
in the proof of Theorem 2.1 is to return to the language of immersions and show
that:

Proposition 2.1. If C0 and C1 have the same boundary and j (C0) = j (C1) then
ϕC0 and ϕC1 are cobordant immersions.
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The second step is to use the existence of a cobordism in order to produce flips and
prove that:

Proposition 2.2. If ϕ0 and ϕ1 are admissible immersions which are cobordant then
there exists a sequence of flips which connects them.

These two propositions will end the proof of the Theorem 2.1.

3. Cobordant immersions are flip equivalent

3.1. Flips, saddle and X-transformations relating cobordant immersions

Connecting the immersions by means of maps with higher singularities. This
section is devoted to the proof of Proposition 2.2. Consider thus a proper immersion
ϕ : F → � × [0, 1] of a surface F which is a cobordism between the immersions
ϕ0 and ϕ1.

The image ϕ(F) is an immersed surface having therefore a set of finitely many
triples points that we denote by S3(ϕ(F)). The set S2(ϕ(F)) of double points of ϕ
(at the target) form a one-dimensional manifold, whose closure contains the triple
points. We have then a stratification of ϕ(F) by manifolds

ϕ(F) = R(ϕ(F)) ∪ S2(ϕ(F)) ∪ S3(ϕ(F))

where R(ϕ(F)) is the set of non-singular (or regular) points.
Our aim is to analyze the critical points of the restriction of the height function

to ϕ(F), by taking into account the singularities of ϕ(F). In order to define critical
points properly we need more terminology. Note that R(ϕ(F)) and S2(ϕ(F)) are
subsets of ϕ(F) which might cause some troubles because critical points on the
closure of a stratum might belong to another stratum.

Any point p ∈ ϕ(F) has an open neighborhood that is diffeomorphic to one
coordinate plane, the union of two coordinate planes or the union of the three
coordinate planes in R

3, depending on whether p ∈ R(ϕ(F)), p ∈ S2(ϕ(F))
or p ∈ S3(ϕ(F)). The images of coordinate planes by this diffeomorphism are
called the leaves of ϕ(F) around p. Actually the leaves are well-defined only in a
small neighborhood. A point p ∈ ϕ(F) will be called critical for h if p is critical
either for the restriction of h to some leaf containing p, or for h|S2(ϕ(F)), or else
p ∈ S3(ϕ(F)). Moreover, by using a small perturbation of ϕ that is identity on
the boundary, we can assume that the restriction of h to the leaves is also a Morse
function.

A consequence of the Morse theory is the following. If the interval [t1, t2] does
not contain any critical value for h then there exists a diffeomorphism of � × {t1}
into � × {t2} that sends ϕ(F) ∩ h−1(t1) on ϕ(F) ∩ h−1(t2). Thus changes in the
topology of the slice ϕ(F) ∩ h−1(t) arise only at critical t .

A critical point p will be said to be unstable if there are at least two leaves
around p and the restriction of h to some leaf has a critical point at p. The other
critical points are called stable.
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Lemma 3.1. One can perturb slightly ϕ by using an arbitrary small isotopy that is
identity on the boundary such that h has only stable critical points.

Proof. Let p be an unstable critical point and α be a leaf that is critical for the
restriction of h at p. This is equivalent to the fact that the gradient of h (which is
nowhere zero since h is regular) is orthogonal to the tangent plane at α. Since the
immersion is normal crossings any other leaf β around p should be transverse to α
and thus the restriction of h to that leaf is non-critical at p.

Use now a small perturbation of the extra leaf around p by an isotopy that
moves the intersection arc α ∩ β off p. The new intersection point is not anymore
critical for the restriction of h at α. ��

There are the following situations when the values are not regular:

1. The slice � × {t} passes thru a triple point p and the restriction of h to all
leaves is regular.

2. The slice � × {t} contains a critical point p of the restriction h|S2(ϕ(F)), to the
double points locus. Letα and β denote the two leaves around p. The restriction
of h to the two leaves is regular.

3. If the slice � × {t} contains a critical point of the height restriction h|R(ϕ(F)),
to the regular locus.

Passing a triple point. We can assume by general position arguments that the
(finitely many) triple points have distinct heights and thus the slice�×{tc} contains
precisely one triple point p and no other critical point.

Proposition 3.1. When crossing a critical value tc corresponding to a stable triple
point the image of the sliced immersion ϕ(F) ∩ � × {t} changes according to a
flip b3.

Proof. Consider a coordinates chart (V, ν) on � × [0, 1] containing the point p.
We assume that V is diffeomorphic to R

3 and the diffeomorphism ν sends ϕ(F)
into �, where � denotes the union of the three coordinates planes in R

3. Denote
by H : R

3 → R the function h expressed in these coordinates. Notice that H is
regular and one can assume that H(0) = 0. The level hypersurface H = H−1(0)
corresponds to a neighborhood of p into the critical slice. Moreover, one knows that
H has no critical points when restricted to the leaves around p (i.e. the coordinate
planes) which amounts to say that the gradient grad0 H is not orthogonal to any
coordinate plane. Let T0H be the tangent space at H at the origin. There is only
one generic position of a plane through O with respect to�. Translating the plane
along the direction of grad0 H yields the desired bifurcation. ��
Critical points on the double points locus. The double locus S2(ϕ(F)) is a 1-
manifold and each of its points has a coordinate chart in which ϕ(F) is sent into
the union of the first two coordinates planes in R

3. The critical points correspond
to local extrema of h when restricted to the double line.

Proposition 3.2. When crossing a critical value tc corresponding to a stable critical
point of the restriction of h to S2(ϕ(F)) the image of the sliced immersion ϕ(F) ∩
� × {t} is transformed according to the following picture:
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L R

This means that we replace the left diagram L by the right diagram R, leaving
the part of the immersion unchanged outside the small ball figured above.

Proof. The proof from above applies with minor modifications. However, here the
singularity consists of a line of double points and thus the intersection of the two
planes with the boundary sphere of a small disk centered at the critical point is
the union of two great circles instead of three. Since there is an extremum on the
double line there is one half of the sphere that contains no double points. Thus the
only transformation possible is that from the picture. ��

The local transformation of an immersion (and its inverse) occurring in the
proposition above is called an X-transformation.
Critical points on the regular strata. The height function h|R(ϕ(F) is a Morse
function on a surface and thus it has critical points of three types: maximum,
minimum and saddle (index one).

Passing thru a minimum point amounts to adjoin a small embedded sphere to
the immersion, while a maximum point contributes with deleting a small sphere.
We will speak about creation/annihilation of a circle.

When passing thru a saddle point the sliced immersion ϕ(F)∩�×{t} is subject
to the following familiar change:

NU

This transformation will be called saddle transformation.

3.2. Stabilizations

In order to establish the claim of Proposition 2.2 it would suffice to show that any
saddle move, X -move or creation/annihilation can be actually realized by means of
flips. As stated, this cannot be true, but a slight modification of this statement will
hold true. One reason is that creating a new circle destroys the connectivity of the
graph, while flips preserve it. Recall, however, that our immersions were supposed
to be admissible. In particular, in dimension 2 one has a connected graph whose
complementary is a union of open disks on the surface.
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We will introduce now another operation on immersions (or, equivalently on
graphs on surfaces) that will be called stabilization. Let ϕ : �S1 → � be an
immersion of circles and λ a simple arc in � that joins two points of the image
of ϕ and is transversal to it. Let u(λ) be the embedding of a circle into � as the
boundary of a small regular neighborhood of λ. Then the union of ϕ and u(λ) define
an immersion that we denote by ϕ ∗λ u. One allows also the particular case when λ
is trivial and the two points coincide, denoted ϕ ∗ u. We will also denote by ϕ � u
the disjoint union of ϕ with a small trivially embedded circle.

The main result of this subsection is:

Proposition 3.3. If ϕ is admissible then ϕ ∗λ u is flip equivalent to ϕ.

Proof. Assume that λ intersects the image of ϕ at the points p1, p2, . . . , pk , where
k ≥ 2. We use induction on k. Let λ′ be the sub-arc of λ joining the last two points
pk−1 and pk and λ" its complementary arc. Then u(λ) is the connect sum of u(λ′)
and u(λ"). Let z be the arc which is common to u(λ′) and u(λ). We will use flips
whose action is trivial outside the arc z.

The circle u(λ′) intersects two arcs a and b of the image of ϕ in two points
that determine an arc q of u(λ) which is free of other intersection points. The
arcs a and b are connected by some chain of arcs of ϕ, namely a1, a2, . . . , am ,
since ϕ is admissible. Moreover, the arcs ai , a, b and q are bounding a face of the
complementary of the immersion. Since ϕ was supposed admissible the simple arc
q subdivides a topological disk into two pieces which should be again disks. Thus
the polygon determined by ai , a, b and q is a topological disk Q.

Now, we can slide the intersection part between z ∩a along the path a1, a2, . . . ,

am, b until z will intersect both am and b as below:

a

bb

aa

b

q

b

a

z

a
3

a
2

a
1

This can be realized by flips that acts non-trivially only on the arc z and are
identity outside.

If k = 2 then u(λ) is obtained from z by joining its extremities. Then the inverse
flip move b1 destroys the circle u(λ).

If k > 2 then use the inverse move b2. The result of this sequence of flips is
that u(λ) is transformed into u(λ") and λ" has k − 1 intersection points with the
image of ϕ. The claim follows then by induction. ��

3.3. Saddle transformations

Consider an immersion ψ containing a small ball where it coincides with the dia-
gram U , the left hand side in the picture of the saddle move. We denote by S(ψ) the
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immersion obtained by a saddle move from ψ , namely by excising U and gluing
back N .

Lemma 3.2. Assume that the immersion ψ is admissible. Then ψ is flip equivalent
to some stabilization S(ψ) ∗λ u of S(ψ).

Remark 3.1. The fact that in general ψ is equivalent only with the stabilization of
S(ψ) is not unexpected. In fact saddle move might destroy the connectivity of the
image, and for that reason one should add a new circle u(λ) in order to restore it.

Proof. It is essential that ψ is admissible and thus the image is connected. In
particular, there are several arcs of ψ which join the left arc of U to the right arc
of U . These intermediary arcs are outside the small ball. However, we can choose
a specific family of arcs, namely those bounding a face (i.e. a topological disk) in
the complement of the image of ψ .

We use inductively the move b2 in order to push and slide the left arc of U
across each intermediary arc, as it is shown below for the case of the first arc.

b2

We do that until the new position of the left arc intersects the last intermediary
arc. Use b1 to create a small circle centered at the intersection point between the
last intermediary arc and the right arc of U . The next step is to use the move b3,1
once. Its support is centered at the intersection between the last intermediary arc
and the small circle created at the previous step. We obtain the configuration below:

b1 b3,1

We realized half of the saddle move, namely the upper arc from N . However,
the bottom arc intersects all intermediary arcs used above. We will further use the
inverse moves b2 in order to slide the bottom arc over the intermediary arcs, this
time from the right side back to the left. We first use the intersections with the
additional small circle and then go along the intermediary arcs as follows:
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At the end we transformed the bottom arc into another arc which goes along
the path of intermediary arcs but lays on its upper side. Further the small additional
circle can be slid outside the last intermediary arc. The face determined by the
intermediary arcs is topologically a disk, since the immersion is admissible. Thus
both arcs (upper and lower) can be isotoped to the position that they have in the N
diagram. We obtained thus the following configuration:

This is the stabilization S(ψ) ∗λ u where we used the arc λ that connects the
two arcs in the diagram N . ��

3.4. X transformations

We denote again by ψ an immersion containing in a small ball the diagram L and
by X (ψ) the result of the X transformation.

Lemma 3.3. If ψ is admissible then ψ is flip equivalent to X (ψ) ∗λ u.

Proof. We use b1 to create a small circle centered at one intersection point of the
arcs in L . Using next the move b2 we can slide the two arcs from L far apart and
obtain X (ψ) ∗λ u.

��
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Consider now the immersion ψ that contains the diagram R so that we can apply
the inverse move X−1 to the immersion ψ . In this case we have

Lemma 3.4. If ψ is admissible then X−1(ψ) is flip equivalent to ψ .

Proof. The figure above shows that X−1(ψ) is flip equivalent to ψ ∗λ u. If ψ is
admissible then ψ is equivalent to ψ ∗λ u by Lemma 3.3. ��

3.5. Proof of Proposition 2.2

Consider now two admissible immersions ϕ and ψ which are cobordant. Accord-
ing to the previous description of cobordisms there exists a sequence of moves
A1, A2, . . . , An−1 transforming ϕ into ψ which are either flips, saddle transforma-
tions, X moves or their inverses, or creation/annihilation moves. Let the sequence
of immersions so obtained be ϕ = ϕ1, ϕ2, . . . , ϕn = ψ .

The problem we face is that some of the ϕ j might have disconnected image and
are therefore not admissible. First, we can dispose of the creation/annihilation of
circles, by using instead saddle moves, as below:

The key ingredient is the existence of an admissible modification of the sequence
above. Let us introduce first more terminology. Assume that we have a sequence of
moves A j that might be saddle, X -transformations of flips. The move A j replaces
the part of the image of some immersion ϕ j contained in a disk D j by a different
graph, while keeping the complementary unchanged. We define now an extended
move A j that acts on some stabilization ϕ j of ϕ j that uses the arcs λi , as follows.
The extended move A j is assumed to act exactly in the same way as A j , namely it
replaces the part of the image of ϕ j contained in the disk D j by the corresponding
graph (as prescribed by A j ), while keeping untouched both the complementary of
the ball and also the new circles u(λi ). The extended moves A j are not anymore
usual saddles, X -moves etc unless the disk D j avoids the arcs λi . Notice also that
A jϕ j might be non-admissible.

Lemma 3.5. There exists a sequence of immersions ϕ j and extended moves A j

with the following properties:

1. ϕ j is a stabilization of ϕ j , of the form ϕ j = ϕ j ∗λ1 u ∗λ2 u · · · ∗λ j−1 u. Thus
ϕ j is obtained by ϕ j by adding several circles of type u(λi ), where the arcs λi

might intersect each other.
2. The immersions ϕ j are admissible and ϕ j and ϕ j+1 are flip equivalent.
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Proof. We use a recurrence on the length of the sequence. By the definition of the
extended moves we have:

A jϕ j = ϕ j+1 ∗λ1 u ∗λ2 u · · · ∗λ j−1 u, and ϕ j+1 = (A jϕ j ) ∗λ j u.

We set ϕ1 = ϕ1. Then A1 ∈ {X, X−1, S, b3}. We further define

ϕ2 =
{
ϕ2, if A1 ∈ {X−1, b3}
ϕ2 ∗λ1 u, otherwise

where the arc λ1 is that furnished by the Lemmas 3.2 and 3.3. According to these
lemmas ϕ2 is flip equivalent to ϕ1 and both are admissible. Moreover, A1 = A1.

Assume now that ϕ j and A j are defined for j ≤ k. If Ak ∈ {b3, X−1} then we
set

ϕk+1 = Akϕk

In the other two cases we have to analyze the picture inside the disk Dk . We set
first � = Dk ∩ (λ1 ∪ λ2 ∪ · · · ∪ λk−1) and call its components the special arcs.

1. Assume that Ak = X . We can take for Dk a very tiny regular neighborhood of
the two arcs a and b of ϕ joining the double points in the diagram U and thus
all arcs λ j entering Dk should intersect these arcs. Another useful observation
is that any sub-arc of a special arc that has two consecutive intersection points
with a can be moved off Dk by means of b2 moves. Thus either there are no
special arcs within Dk or else there exists arcs that cross both arcs a and b.
(a) If � = ∅ then we set ϕk+1 = X (ϕk) ∗λk u where λk is the arc given by

Lemma 3.3. That lemma shows that ϕk+1 is flip equivalent to ϕk .
(b) Otherwise we define ϕk+1 = Ak(ϕk), and it suffices to show the flip

equivalence with ϕk . From above one knows that a ∪ b ∪� is connected.
We can use the moves b3 in order to move the arc a across the vertices
of the diagram � and the moves b2 in order to move the arc a along spe-
cial arcs without vertices on it i.e. arcs which are connected components
of �.

a b

2. Consider now that Ak = S. Let a and b denote the arcs from the diagram U
and a′, b′ the arcs from the diagram N .
(a) If � = ∅ then we set ϕk+1 = S(ϕk) ∗λk u where λk is the arc given by

Lemma 3.2. That lemma shows that ϕk+1 is flip equivalent to ϕk .
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(b) The move S takes place in a very tiny neighborhood of an arc that joins
two points, one from a and the other from b. We call it the core and it
corresponds to the 1-handle to be added to the immersion by the saddle
move. Thus we can discard (by using an isotopy) all special arcs except
those that intersect the core. Moreover, one can suppose that there is at
least one such special arc. We define then ϕk+1 = Ak(ϕk), and it suffices
to show the flip equivalence with ϕk . Lemma 3.2 shows that ϕk is flip
equivalent to Ak(ϕk) ∗λk u, where λk is the arc that joins a′ to b′. One
has to notice that � ∪ a′ ∪ b′ is connected since the special arcs intersect
the core. Thus a suitable application of the moves b3, slidings across the
special arcs and an inverse b1 move will get rid of the extra circle u(λk).

��
Now the lemma ends the proof of the Proposition 2.2 immediately. In fact one

knows that the last immersion ϕn is admissible, by hypothesis. Then Lemma 3.3
stated that ϕn = ϕn ∗λ1 u ∗λ2 u ∗ · · · ∗λn−1 u is flip equivalent to ϕn . On the other
hand ϕ1 is equivalent to ϕ j for all j , and we are done.

4. The cobordism group of immersions in a surface

Although the computation of N (�) for closed surfaces is folklore we didn’t find
a reference addressing precisely this issue. Related results of similar nature are
recorded in [6,8]. This also follows from our computations of the cobordism groups
of codimension one immersions for manifolds of small dimensions, from [12]. The
proof that we give below is elementary in that it uses only basic methods and
results from three-dimensional topology. The Proposition 2.1 can be reformulated
as follows:

Proposition 4.1. Two, one-dimensional immersions in a compact surface are cobor-
dant if and only if they have the same boundary and their j∗ invariants agree. In par-
ticular the map j∗ factors to an isomorphism j∗ : N (�) → H1(�, ∂�; Z/2Z)⊕
Z/2Z.

Proof. Assume that ϕi : L1
i → �, i = 0, 1 are proper immersions of two disjoint

unions of circles and intervals, L1
0 and L1

1, having the same boundary and invariants.
Thus the number of intervals within L1

i is the same for both values of i , and their
images by the respective immersions intersect ∂� in the same set of points.

Since j1(ϕ0) = j1(ϕ1) there exists a singular 2-cycle of the pair (�, ∂�) with
boundary ϕ1(L1

0) − ϕ2(L1
1). This means that there exists a surface with corners
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F having boundary ∂F = L1
0 − L1

1 and a (singular) map f : F → � such that
f |∂F = ϕ0 � ϕ1. The corners set is the union of boundary points of intervals in
ϕi (L1

i ).
Let h : F → [0, 1] be a proper smooth function having h−1(0) = L1

0 and
h−1(1) = L1

1. We can lift f to a map φ : F → �× [0, 1] by means of the formula

φ(x) = ( f (x), h(x))

Then φ is a proper map i.e. it sends the boundary into the boundary.
Let us consider first the case when the surface� has no boundary and thus there

are no intervals among the components of L1
i . Thus F is a surface with boundary.

Lemma 4.1. Let φ : F → M3 be a proper map of a surface into the connected
3-manifold M3, whose restriction to the boundary ∂φ : ∂F → ∂M3 is an immer-
sion. Then there exists an immersion φ′ : F ′ → M3 of a possibly different surface
F ′ such that ∂F = ∂F ′ and ∂φ′ = ∂φ if and only if j2(∂φ) = 0.

Proof. The proof is a variation of that given by Hass and Hughes ([15]) in the case
when F is closed and thus the invariant j2 trivially vanishes. The main arguments
below appeared also in Whitehead’s paper ([35], proof of Theorem 4.1).

We use a classical result of Whitney which states that any smooth map φ :
F → M which is transverse to the boundary is homotopic rel boundary to a proper
general position map having only simple branch points. A simple branch point in
the image is a point having a neighborhood homeomorphic to Whitney’s umbrella,
namely the cone over the bouquet of two circles (usually known as the figure eight),
as pictured below:

b
D

According to Thom this is the only generic local singularity of smooth germs
of maps (R2, 0) → (R3, 0).

In particular, from any branch point b of φ(F) emerges a line of double points,
denoted by D in the figure above. Thus the map is now an immersion everywhere
except at the (finitely many) branch points.

The singularities of the new map (that we denote by the same letter φ) consist
of (see also [16], p.41-42):

• Finitely many triple points, each one having three points in the preimage.
• Finitely many branch points, each one having one point in the preimage.
• Curves of double points, which are points where the surface φ(F) has normal

crossing self-intersections. These curves are of two types:
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− Type I curves that are either closed simple loops or joining two boundary
double points of ∂φ. These curves intersect transversally at triple points.

− Type II curves that are either segments which join two distinct branch points
or else a branch point to some boundary double point of ∂φ.

If the map φ is an immersion then there are no branch points and thus the double
points of the restriction ∂φ are paired by means of the type I curves, and thus
there is an even number of such double points. This establishes the necessity of our
condition.

Conversely, if there is an even number of such double points, then we have a
number of branch points paired together by means of type II curves and also an
even number of pairs (b j , p j ) where b j is a branch points and p j is a boundary
double point.

Let b1, b2 being two branch points connected by a curve of type II. There exists
a standard way to modify φ by means of a homotopy so that the branch points are
pushed one end towards the other (see also [15]):

DD

b1 b2

D
b1

b2
D

This is equivalent to cutting the surface ϕ(F) along the connecting double
curve. The domain of the map will change accordingly but we can further add a
small tube between the components separated by the cut, in order to recover the
same surface F .

The other case is when we have a couple (b1, p1) and (b2, p2) of branch points
paired with boundary double points. Choose now a segment embedded in M that
joins b1 to b2 and avoids the triple points and other branch points. We will push
again the branch points towards one another along this segment until they collide
and then disappear, as in the figure below:

b1
b2

p1 p2 p1 p2 p1 p2

In particular φ was changed into an immersion φ′ of a surface F ′, which is
obtained from F by adding a one-handle.

Eventually we can slightly perturb the immersion in order to become normal
crossings immersions, since the later are generic. ��
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The lemma settles our claim, because we know that j2(φ) = j2(ϕ0)− j2(ϕ1) =
0 and thus there exists an immersion� : F → �×[0, 1] extending the immersions
ϕ0 � ϕ1 on the boundary. ��

Remark 4.1. It is considerably more difficult to get control on the genus of F ′ out
of the data φ, F,M . The typical result is the celebrated Dehn lemma ([16]).

Consider now the general case of surfaces � with nonempty boundary, which
is more difficult only at the terminology level. The main difference is that now
� × [0, 1] is a manifold with corners. Then the map ϕ : F → � × [0, 1] is a
proper map between manifolds with corners that respects the horizontal part of the
boundary and it is a product on the vertical boundary.

Lemma 4.2. Let φ : F → M3 be a proper map of a surface with corners into the
connected 3-manifold M3, whose restriction to the boundary ∂φ : ∂F → ∂M3 is
an immersion which respects the horizontal part of the boundary and it is a product
on the vertical boundary. Then there exists an immersion between manifolds with
corners φ′ : F ′ → M3 of a possibly different surface with corners F ′ such that
∂F = ∂F ′ and ∂φ′ = ∂φ if and only if j2(∂φ) = 0.

Proof. The proof from above applies with only minor modifications. In fact the
lines of double points of φ in M3 are disjoint from the vertical boundary ∂V M
because the immersion is proper and its restriction ∂φ is a product on the vertical
boundary. ��

5. Diagonal transformations

Nakamoto and Ota (see [23–25]) considered the problem of moves acting on the
cubications of surfaces but they used a different family of transformations that they
called diagonal transformations. Specifically, these are the diagonal slide R (or
rotation of order three) and the diagonal rotation D (or order two rotation) drawn
below:

D R

Proposition 5.1. The diagonal transformations are products of cubical flips.

Proof. There is an immediate corollary of the main result for surfaces with boundary
since the immersions associated to these cubications of the disk have the same
number of double points and boundary points. However, there exists an elementary
pictorial proof, in which we decompose D into flips as below:
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and further the order three rotation move R:
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��
Nakamoto and Ota proved in [25] that there exists a natural number ng such

that any two cubications of a closed orientable surface of genus g having n ≥ ng

vertices are equivalent by means of diagonal transformations, and moreover this
can be realized among cubications without double edges. In particular, our main
result is a consequence of the theorem of Nakamoto–Ota, in the case of closed
orientable surfaces.

Corollary 5.1. Let C0 and C1 be marked cubications of a closed orientable surface
� that have the same invariants. Then there exists a sequence of flips relating them
with the following properties:

1. Start with a number of moves b1 and b2 such that C0 and C1 have the same
number of vertices, which is larger than ng.

2. Use then diagonal transformations to connect the two cubications as in [25].
Decompose further the diagonal transformations into cubical flips as in the
previous two pictures.
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Thus, provided that the numbers of vertices of Ci are large enough, there exists
a sequence of flips that relating them among cubications having no more than six
extra vertices. In particular, the problem of finding a connecting sequence of flips
is algorithmically solvable.

Remark 5.1. Although the methods of [25] do not work for non-orientable surfaces
or surfaces with boundary, we expect that a result similar to the corollary above
holds true in the general case.

Acknowledgments. We are grateful to the referee for many valuable comments and sugges-
tions leading to a better presentation and the simplification of some proofs.
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