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The braided Ptolemy–Thompson group is finitely presented

LOUIS FUNAR

CHRISTOPHE KAPOUDJIAN

Pursuing our investigations on the relations between Thompson groups and mapping
class groups, we introduce the group T ] (and its companion T � ) which is an
extension of the Ptolemy–Thompson group T by the braid group B1 on infinitely
many strands. We prove that T ] is a finitely presented group by constructing a
complex on which it acts cocompactly with finitely presented stabilizers, and derive
from it an explicit presentation. The groups T ] and T � are in the same relation with
respect to each other as the braid groups BnC1 and Bn , for infinitely many strands
n . We show that both groups embed as groups of homeomorphisms of the circle and
their word problem is solvable.

20F36, 57M07; 20F38, 20F05, 57N05

Introduction

The first relationships between Thompson’s groups and braid groups were brought
to light in the article [25] by P Greenberg and V Sergiescu, which is devoted to the
construction and the homological study of extensions of Thompson’s groups F and T

by the stable braid group B1 . More recently, several works have contributed to the
development of this subject, dealing with connections between Thompson’s groups and
mapping class groups of surfaces, including braid groups. Among them are two papers
by the authors [22] and the second author and Sergiescu [28], which have brought out
the notion of asymptotic mapping class group. The group T ] introduced in the present
article is an asymptotic mapping class group as well.

In order to give a flavor of what an asymptotic mapping class group can be, let us briefly
recall what [28] and [22] were about. One of the aims of [28] was to give a topological
construction for the group AT , defined in [25] as an extension of Thompson’s group
T by B1 , and to exploit it in order to extend the Burau representation to AT . At
the same time, the article [22] was introducing B , a universal mapping class group
in genus zero, algebraically described as an extension of Thompson’s group V , and
topologically defined as a mapping class group of a sphere minus a Cantor set. Both
articles [28] and [22] share a common problem, which is the following. Elements of
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Thompson’s groups are not tree automorphisms, but are induced by piecewise tree
automorphisms [28]. Therefore, a natural question is to find a way of lifting those
elements to automorphisms of an appropriate structure. The answer proposed by [28]
and [22] is to lift them to mapping classes of homeomorphisms of particular surfaces.
Indeed, both groups AT and B are mapping class groups of infinite surfaces which are
thickenings of suitable regular trees; the surfaces are endowed with an extra structure
that must be, not globally, but only asymptotically preserved by the mapping classes –
hence the notion of asymptotic mapping class group. This extra structure may consist of
a decomposition of the surface into pairs of pants, hexagons, hexagons with punctures,
and so on.

The surface D] considered for the construction of the asymptotic mapping class group
T ] is the planar thickened binary tree, which is punctured along an infinite discrete
subset of points. The extra structure consists of a decomposition into suitably punctured
hexagons. The asymptotic mapping class group that one obtains this way is an extension
T ] of T by the group of braids B1 on infinitely many strands (corresponding to the
punctures). Therefore, T ] is quite similar to, but simpler than AT .

This new group T ] seems interesting and worthy of deeper study. Compared with
B , the definition of T ] presents new features, for instance, the dependence on the
extra structure is now clearly manifest. We can choose two sets of punctures leading to
homeomorphic surfaces for which the associated groups are not isomorphic. We obtain
that way another group T � , which is a sort of twin brother of T ] . Although T ] and
T � share the same properties, they are different. Our main result is the following:

Theorem 0.1 The groups T ] and T � are nonisomorphic finitely presented groups,
are extensions of the Thompson group T by B1 , and split over the smallest Thompson
group F � T . They are groups of homeomorphisms of the circle with solvable word
problem. Moreover, T � has two generators.

We do not know if we can extend our methods to prove that the group AT of Greenberg–
Sergiescu is finitely presented as well. On the other hand, we claim that the procedure
of [28] applies also to T ] to extend the Burau representation of B1 to T ] .

We should mention that an extension BV of the larger Thompson group V by a pure
braid group on infinitely many strands has been recently considered by M Brin [6;
5] and P Dehornoy [12; 13]. It constitutes the planar counterpart of the group B , in
which the Cantor surface is replaced by a disk minus a Cantor set. As a matter of
fact, we have observed that BV is a subgroup of B [22]. Since BV is called the
braided Thompson group, we hope to avoid any confusion by calling T ] the braided
Ptolemy–Thompson group, insisting on its relation with the Ptolemy–Thompson group
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T (see Penner [35]). The terminology used here for T is expected to stress on its link
with the Penner–Ptolemy groupoid. The group T ] is essentially different from BV

(and B ), being an extension by the whole group of braids, and not only the pure braids.
Moreover, it is known that H1.BV /D 0, while H1.T

]/ is nontrivial (see Proposition
2.9 and Corollary 4.8).

The bulk of the paper is devoted to the proof of this theorem, with an explicit presentation
for T ] . We follow K Brown’s method [7], based on the Bass–Serre theory. It consists
in building a simply connected 2–dimensional complex on which T ] acts cocompactly
with finitely presented stabilizers. The complex is a kind of fibration over a (conveniently
reduced) Hatcher–Thurston complex of the infinite surface. The latter is a quotient of
the Cayley complex of the Ptolemy–Thompson group T .

A similar construction was used in [22] to build up a complex for B , but there, the
problem was rather complicated because of the complexity of the Brown–Stein complex
for V . However, the T ]–complex has a specific ingredient, which makes it quite
different from the B–complex of [22]: the fiber of the fibration over the Hatcher–
Thurston complex is the Cayley complex of the braid group B1 . The trick here is
to use a presentation of B1 which exploits the homogeneity of the tree associated to
the infinite surface. It is precisely provided by a general theorem due to V Sergiescu
[38]. The remaining difficulty consists in dealing with countably many relations of
commutations between the braid generators which occur in this presentation.

The construction of T ] , as a mapping class group of a punctured infinite surface
of infinite type, can be viewed also as an extension of the Dynnikov three pages
representations [15], where the infinite braid group B1 was realized as the commutator
of a finitely presented group. Different versions of this construction are also known
as the braided Houghton groups HBn , introduced in the (unpublished) thesis [11] of
F Degenhardt (see Bux [8]).

The groups T � and T ] generalize the diagram picture groups considered by V Guba
and M Sapir [27] insofar as these are extensions by infinite permutation groups, rather
than braid groups. Diagram groups are known to have very good properties: they are
FP1 and have solvable conjugacy and word problems. We expect similar results for
the braided Ptolemy–Thompson groups. Farley’s construction [18] can be carried on
in this more general setting to show that T ] acts on a CAT(0) cubical complex with
braid groups as stabilizers. However, it seems more difficult in this case to obtain a
subcomplex whose quotient has a finite skeleton in each dimension.

The plan of this paper is as follows. We introduce the groups T ] and T � as asymptot-
ically rigid mapping class groups of infinitely punctured planar surfaces. We describe
specific elements of these groups and prove that T � is generated by two elements and
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that the extension of T is split over the smaller Thompson group F . This permits us
to find the abelianization of T � , to be compared with that of T ] later. We include
an explanation of the close relationship between the groups T ] and T � , which is
similar to how the braid group Bn is related to Bn�1 , for infinite n. One shows
further that both groups act on the circle by homeomorphisms. The groups T ] and T �

have solvable word problem, by a suitable extension of Artin’s solution of the word
problem for braids. Section 3 is devoted to construct a simply connected complex on
which T ] acts with finitely presented stabilizers. In Section 4 we show how a suitable
simply connected subcomplex inherits a cocompact action. Then Brown’s methods
yield an explicit presentation for T ] and we sketch the proof of the necessary changes
for obtaining the finite presentability of T � . Section 5 collects some remarks and
questions.

Acknowledgements The authors are thankful to D Calegari, P Dehornoy, M Rubin,
V Sergiescu, B Wiest and the referees for comments and useful discussions.

1 Infinite planar surfaces and asymptotic mapping class
groups

1.1 Enhanced surfaces of infinite type

The surfaces below will be oriented and all homeomorphisms considered in the sequel
will be orientation-preserving, unless the opposite is explicitly stated. Actions in the
sequel are left actions and the composition of maps is the usual one, namely we start
composing from right to the left.

Definition 1.1 The ribbon tree D is the planar surface obtained by thickening in the
plane the infinite binary tree. We denote by D] (respectively, D� ) the ribbon tree with
infinitely many punctures, one puncture for each vertex (respectively, each edge) of the
tree. A homeomorphism of D] (respectively D� ) is a homeomorphism of D which
permutes the punctures of D] (respectively D� ).

Definition 1.2 A rigid structure on D , D] or D� is a decomposition into hexagons
by means of a family of arcs whose endpoints are on the boundary of D . Each hexagon
contains exactly one puncture in its interior in the case of D] , while each arc passes
through a unique puncture in the case of D� . It is assumed that these arcs are pairwise
nonhomotopic in D , by homotopies keeping the boundary points of the arcs on the
boundary of D . The choice of a rigid structure of reference is called the canonical
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Figure 1: D] and D� and with their canonical rigid structures

rigid structure. The canonical rigid structure of the ribbon tree D is such that each
arc of this rigid structure crosses once and transversely a unique edge of the tree. The
canonical rigid structures on D] and D� are assumed to coincide with the canonical
rigid structure of D when forgetting the punctures. See Figure 1.

Notation 1.1 Let } stand for ] , � or the vacuum. The set of isotopy classes of rigid
structures on D} will be denoted R} . The canonical rigid structure of D} will be
denoted r} .

1.2 Asymptotic mapping class groups

Definition 1.3 (1) Let D} denote D , D] or D� . A planar subsurface of D} is
admissible if it is a connected finite union of hexagons belonging to the canonical rigid
structure r} . The frontier of an admissible surface is the union of the arcs contained in
the boundary. The remaining arcs will be called separating arcs.

(2) Let ' be a homeomorphism of D} . One says that ' is asymptotically rigid if the
following conditions are fulfilled:

� There exists an admissible subsurface †�D} such that '.†/ is also admissible.

� The complement D}�† is a union of n infinite surfaces. Then the restriction
'W D}�†!D}�'.†/ is rigid, meaning that it respects the canonical rigid
structures in the complements of the compact subsurfaces, mapping hexagons
into hexagons. Such a surface † is called a support for ' .

One denotes by T , T ] and T � the group of isotopy classes of asymptotically rigid
homeomorphisms of D , D] and D� , respectively.
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Remark 1.2 There exists a cyclic order on the frontier arcs of an admissible subsurface
induced by the planarity. An asymptotically rigid homeomorphism necessarily preserves
the cyclic order of the frontier for any admissible subsurface.

1.3 Ptolemy–Thompson group T as a mapping class group

The mapping class group T is isomorphic to the Thompson group which is commonly
denoted T . This fact has been widely developed in [28] and [22]. We consider
the following elements of T , defined as mapping classes of asymptotically rigid
homeomorphisms:
� The support of the element ˇ is the central hexagon on the figure below. Further,
ˇ acts as the counterclockwise rotation of order three which permutes the three
branches of the ribbon tree issued from the hexagon.

2 3

1

0 1

0

4

4 2

3

ˇ

In fact, ˇ is globally rigid.
� The support of ˛ is the union of two adjacent hexagons, one of them being

the support of ˇ . Then ˛ rotates counterclockwise the support of angle �
2

, by
permuting the four branches of the ribbon tree issued from the support.

4 3

2132

1 4

˛

Note that ˛ is not globally rigid, but ˛2 is.

Proposition 1.3 The group T has the following presentation with generators ˛ and
ˇ and relations

˛4
D ˇ3

D 1

Œˇ˛ˇ; ˛2ˇ˛ˇ˛2�D 1

Œˇ˛ˇ; ˛2ˇ2˛2ˇ˛ˇ˛2ˇ˛2�D 1

.ˇ˛/5 D 1:
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Proof This result is due to Lochak and Schneps [30], but there is a typo in their
statement, which is corrected above.

Remark 1.4 If we set ADˇ˛2 , BDˇ2˛ and C Dˇ2 then we obtain the generators
A;B;C of the group T , considered by Cannon, Floyd and Parry [10]. Then the two
commutativity relations above are equivalent to:

ŒAB�1;A�1BA�D 1; ŒAB�1;A�2BA2�D 1

The presentation of T in terms of the generators A;B;C consists of the two relations
above with four more relations to be added:

C 3
D 1; C D BA�1CB; CAD .A�1CB/2; .A�1CB/.A�1BA/D B.A�2CB2/

Remark 1.5 The subgroup of T generated by the elements A and B is the Thompson
group F , as it is obvious from [10]. Moreover, the group F has the presentation

F D hA;B I ŒAB�1;A�1BA�D 1; ŒAB�1;A�2BA2�D 1 i

Consequently, the inclusion F ! T sends A to A and B to B .

2 The braided Ptolemy–Thompson groups T ] and T �

2.1 T ] and T � as extensions of the Thompson group T

We write D (respectively D] and D� ) as an ascending union
S

n Dn , where D0 is
the support of ˇ , and DnC1 is obtained by adding to Dn a new hexagon from the
canonical rigid structure, along each arc of the frontier.

Let the symbol } denote either ] or � . The Artin braid groups BŒD}n � associated to
the punctures on D}n form an inductive system induced by the inclusions D}n �D}

nC1
,

whose limit BŒD}�D limn!1BŒD}n � can be identified with the group of compactly
supported braids on D , where the base points of the strands are the punctures of D} .

Remark 2.1 The group BŒD}� is isomorphic to the stable braid group B1 , where
B1 is the inductive limit coming from the inclusions �i 2Bn 7! �i 2BnC1 , where �i

(1� i � n� 1) denotes a standard Artin generator. This can be proven by observing
first that the embedding of D} into the Euclidean plane P induces an isomorphism of
BŒD}� with the group of isotopy classes of compactly supported homeomorphisms of
the punctured plane. Since the set of punctures is discrete in P , one may construct a
homeomorphism of P which maps the punctures on the points of coordinates .i; 0/,
i 2N� (after a choice of a framing). By conjugation, this homeomorphism induces an
isomorphism between BŒD}� and B1 .
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Proposition 2.2 Let the symbol } denote either ] or � . We have an exact sequence:

1! BŒD}�! T }! T ! 1:

Proof Thompson’s group T is viewed here as the group of isotopy classes of asymp-
totically rigid homeomorphisms of D (without punctures) up to isotopy. Thus, the
epimorphism T } ! T is induced by forgetting the punctures. Now let ' be an
asymptotically rigid homeomorphism of D} whose image in T is trivial. This implies
that outside an admissible subsurface, ' is isotopic to identity. Without changing the
class of ' in T } , we may assume that outside this subsurface, ' is identity. Therefore,
there exists a compactly supported isotopy 't among homeomorphisms of D which
joins ' to identity, whose support is an admissible subsurface. Further the class of the
homeomorphism ' on the punctured support is completely encoded by a braid, and a
picture showing the trajectory of the punctures during the isotopy. Then the class of
' is the image of a braid from a some suitable BŒD}n � into T } . This means that the
kernel above is BŒD}�.

2.2 T � is generated by two elements

Thompson’s groups and their generalizations considered by Higman are generated by
two elements [32]. It is known that mapping class groups of closed surfaces of genus
at least one are also generated by two elements. We will prove here that the same holds
for the group T � .

Specific elements Let us consider the following elements of T ] and T � :

� The support of the element ˇ� of T � (respectively ˇ] of T ] ) is the central
hexagon. Further ˇ� and ˇ] act as the counterclockwise rotation of order three
which permutes cyclically the punctures. One has ˇ�3

D 1 and ˇ]3
D 1. See

Figure 2.

� The support of the element ˛� of T � (respectively ˛] of T ] ) is the union of
two adjacent hexagons, one of them being the support of ˇ� and ˇ] . Then
˛� (respectively ˛] ) rotates counterclockwise the support of angle �

2
, by keep-

ing fixed the central puncture (respectively the two punctures of the adjacent
hexagons). See Figure 3. One has ˛�4

D 1 while ˛]4 D �2 , where � denotes
the braid that permutes the puncture 0 and 3; see Definition 2.1 below.
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Definition 2.1 Let e be a simple arc in D] or D� which connects two punctures. We
associate a braiding �e 2 B1 to e by considering the homeomorphism that moves
clockwise the punctures at the endpoints of the edge e in a small neighborhood of the
edge, in order to interchange their positions. This means that, if  is an arc transverse
to e , then the braiding �e moves  on the left when it approaches e . Such a braiding
will be called positive, while ��1

e is negative. See Figure 4.

Remark 2.3 The subgroup of T generated by ˛2 and ˇ , as well as the subgroup of
T � generated by ˛�2 and ˇ� , are isomorphic to PSL.2;Z/, viewed as the group of
orientation-preserving automorphisms of the binary planar tree of the ribbon surface
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e

�e

Figure 4

D . In the same way, the subgroup of T ] generated by aD ˛]2��1 (which is of order
2) and ˇ] is isomorphic to PSL.2;Z/.

Theorem 2.4 T � is generated by ˛� and ˇ� .

Proof Let us denote by T 0 the subgroup of T � generated by ˛�; ˇ� .

Lemma 2.5 The restriction to T 0 of the projection map T �! T is surjective.

Proof This maps sends ˛� to ˛ and ˇ� to ˇ . According to Proposition 1.3, ˛ and
ˇ generate T , thus the claim.

Let now �W B1 ! T � be the natural inclusion. Since T � is an extension of T by
B1 , it suffices now to show that �.B1/� T 0 . This will be done in two steps. First we
show that a specific braid generator lies in T 0 and next we use the conjugation action
to prove that all braid generators lay within T 0 . The first step proceeds as follows.

Lemma 2.6 The braid generator �Œ04� associated to the edge joining the punctures
numbered 0 and 4 has image

�.�Œ04�/D .ˇ
�˛�/5:

Proof We claim that the action of .ˇ�˛�/5 on the standard rigid structure of the
ribbon tree is the following one:

3

0

2

1 4
0

4

2

1

3

.ˇ�˛�/5
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Figure 5: Proof of �.�Œ04�/D .ˇ
�˛�/5

This follows from the explicit picture calculations in Figure 5. Remark that ˇ�˛� acts
as an order five rotation whose support is the dashed decagon in the picture.
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In particular, the action of .ˇ�˛�/5 can be identified with the action of the mapping
class �Œ04� on rigid structures. Then the action of .ˇ�˛�/5 coincides with the natural
action of �Œ04�2B1 on the arcs in the punctured surface. In meantime the configuration
of arcs coming from a rigid structure (up to isotopy) uniquely determines the element
of B1 , and so �..ˇ�˛�/5/D �Œ04� .

The end of the proof is now as follows. For each hexagon of D� , consider the three arcs
which connect the punctures to each other, and intersect only at the punctures. Let E be
the set of all such arcs associated to D� . The subgroup of T � generated by ˛�2 and ˇ�

acts transitively on E as the group PSL.2;Z/. Therefore, for each e 2 E , there exists a
word w in ˛�2 and ˇ� such that w.eŒ04�/D e . Then w�Œ04�w

�1D �e . Consequently,
each �e belongs to T 0 . Since the group B1 is generated by the braidings �e when e

runs over E , T 0 contains �.B1/.

Remark 2.7 The union of all edges of E is a graph, which is dual to the binary tree
(of D or D] ). It will be called the graph of D� , see Figure 6. A general theorem
due to V Sergiescu [38] implies that B1 is generated by f�e; e 2 Eg. The relations
holding between these generators are made explicit in [38]. This approach was later
generalized by Birman, Ko and Lee [4].

Figure 6: Tree of D] and graph of D�

Proposition 2.8 The exact sequence associated to T � is split over F � T .
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Proof We define the section F ! T � by sending the generators A and B of F

onto ˇ�˛�2 and ˇ�2
˛� , respectively, which are the same words as those defining the

inclusion into T . It is worthy to visualize the actions of the two elements, which by
notation abuse we will keep denoting by A and B :
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Observe that AB�1 acts effectively only on the upper half-plane determined by the
horizontal line through the puncture labeled 0, while A�1BA acts effectively only on
the lower half-plane determined by the same line.

Thus these two mapping classes come from homeomorphisms with disjoint supports
and thus they commute within T � . The same holds for AB�1 and A�2BA2 . In
particular, the relations which define the group F are satisfied by the images of A and
B in T � and thus we obtained a section.

2.3 The abelianization H1.T
�/

Proposition 2.9 The abelianization H1.T
�/ is isomorphic to Z=12Z.

Proof We know that T � fits into an exact sequence:

1! B1! T �! T ! 1

The group B1 is the group of braids associated to the punctures of D� . We will con-
sider the Sergiescu presentation of B1 associated to the graph of D� ; see Remark 2.7.
Hall’s lemma (see Robinson [37]) provides an infinite presentation for T � which puts
together the presentations of T and B1 .

The relations satisfied by the generators ˛; ˇ of T have the following lifts in T � :

˛�
4
D ˇ�

3
D 1

Œˇ�˛�ˇ�; ˛�
2
ˇ�˛�ˇ�˛�

2
�D 1

Œˇ�˛�ˇ�; ˛�
2
ˇ�

2
˛�

2
ˇ�˛�ˇ�˛�

2
ˇ�˛�

2
�D 1

.ˇ�˛�/5 D �Œ04�

where �Œ04� is the braid generator considered above (see Lemma 2.6). The first two
relations are obvious. The next two are actually expressing the fact that the defining
relations in F are satisfied by A D ˇ�˛�

2 and B D ˇ�
2
˛� , and thus represent a

restatement of Proposition 2.8. The last relation is that from Lemma 2.6.

All relations involving the braids come from Sergiescu’s relations, while the remaining
relations in T � are conjugacy relations stating that B1 is normal inside T � . Thus the
abelianization H1.T

]/ is generated by the classes of ˛� and ˇ� which are constrained
to be of order 4 and 3, respectively. The claim follows.

The explicit presentation of T ] given in the section 4 will show that H1.T
]/DZ=6Z

and thus T ] and T � are not isomorphic (see Corollary 4.8).
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2.4 T ] versus T �

We will show below that T ] is related to T � in the same way as the braid group Bn

is related to Bn�1 , for infinite n. Roughly speaking, one obtains T � by considering
the mapping classes of T ] associated to those homeomorphisms fixing one specific
puncture of D] , and by viewing them as mapping classes of D] union that puncture.

Specifically, denote by T ]
� the subgroup of T ] formed by those homeomorphism

classes that keep fixed the point q labeled 3 in the picture of D] (see Figure 2), ie the
center of the hexagon adjacent to and located below the support of ˇ] .

Let B1;1 � B1 denote the subgroup of braids that keep fixed the puncture q , and
B1�1 denote the infinite braid on the punctures of D] [ fqg. There is an obvious
projection map B1;1! B1�1 that consists in deleting the strand over q .

Proposition 2.10 We have a commutative diagram with exact lines and columns:

1 1 1

# # #

1 �! F �! B1;1 �! B1�1 �! 1

k # #

1 �! F �! T ]
� �! T � �! 1

# # #

1 �! T �! T �! 1

# #

1 1

where F is a free group, normally generated by �2 D ˛]4 as a subgroup of T ]
� .

Proof We define a homeomorphism ' of D] [ fqg onto D� that extends to rigid
structures, as follows. Suppose that the locations of punctures are the same in both
models D] and D� and just the position of the separating arcs in the rigid structures
change.

Each hexagon Hi of D] contains in its interior the puncture labeled i . Delete the
puncture q and get therefore one hexagon Hq containing no puncture, which we call
the empty hexagon. One joins the hexagon Hi to the empty one by a geodesic (ie
minimal length) path through adjacent hexagons. In particular, consecutive hexagons
in the path have precisely one edge in common and the sequence of common edges
has no repetitions. Then each hexagon Hi (different from the empty one) has one
distinguished separating arc i , namely the first term of the sequence of common edges
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associated to the path. In other terms, i is that separating arc of Hi which is closest
to the empty hexagon.

Let ıi be a simple arc embedded in Hi joining the puncture i to the midpoint of i . A
small enough thickening of ıi [ i in D] is a curvilinear quadrilateral Qi having two
arcs in the boundary of D] and two arcs in the interior of D] . One of the latter is an
arc parallel to i and the other one is what we call �i . Let Ci be an arc in Qi which
is parallel to �i and passes through the puncture i . There is a homeomorphism 'i

of Qi , inducing the identity on its boundary, which maps i onto Ci . Let ' be the
homeomorphism of D which restricts to 'i on each Qi , and is the identity elsewhere.
It may be viewed as a homeomorphism from D][fqg onto D� , which respects the
rigid structures.

Conjugation by ' induces a surjection at the mapping class groups level ˆW T ]
� ! T � .

Specifically, if Œg� 2 T ]
� , where g is a homeomorphism of D] [ fqg and Œg� the

associated mapping class, then ˆ.Œg�/ 2 T � is Œ' ıg ı'�1�.

A standard argument identifies the kernel F of the map ˆ with the fundamental group
�1.D

][fqg; q/ based at q . In particular, F is an infinitely generated free group and
�2 2 F . Since the T ]

� –action on classes of closed loops that encircle a puncture of
D] [ fqg is transitive, we derive that the normal closure of �2 is the fundamental
group �1.D

] [ fqg; q/, hence the whole F , as claimed. The remaining part of the
commutative diagram above follows from this description of F .

The group B1;1 is generated by the braid generators �Œa b� with a; b ¤ 3, and conju-
gates of �2 . Here �Œa b� is the braid generator associated to the edge whose vertices
are labeled a and b and � denotes �Œ0 3� 2 T ] . Thus,

ˆ.�Œa b�/D �Œ'.a/ '.b/�; ˆ.�
2/D 1:

Moreover, by direct inspection we find that

ˆ.˛]/D ˛�; ˆ.�ˇ]��1/D ˇ�:

The close relation between the two groups permits to derive a splitting result similar to
that from Proposition 2.8:

Proposition 2.11 The exact sequence associated to T ] is split over F � T .

Proof Recall from the proof of Proposition 2.8 that F � T � is generated by A D

ˇ�˛�
2 and B D ˇ�

2
˛� . We claim now that the map defined by

�.A/D �ˇ]��1˛]2; �.B/D �ˇ]2��1˛]
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extends to an injective homomorphism �W F ! T ]
� � T ] which is a section for ˆ.

In order to prove it, one can either verify directly by picture computations that the
relations in F are satisfied, or else anticipate the presentation of T ] from Section 4
and observe that

�.AB�1/D ˇ]˛]ˇ]; �.A�1BA/D ˛]2��1ˇ]˛]ˇ]˛]2��1

�.A�2BA2/D ˛]2��1ˇ]2˛]2��1ˇ]˛]ˇ]˛]2��1ˇ]˛]2��1

and thus relations in F correspond to relations (5) and (6) from Theorem 4.7.

Remark 2.12 It seems that the surjection T ]
� ! T � is not split, although it is so over

the subgroups B1�1 and over F .

2.5 T ] is a group of homeomorphisms of S 1

Proposition 2.13 Let the symbol } denote either ] or � . There exists an embedding

T }! HomeoC.S1/

so that T } acts faithfully on the circle.

Proof It is known (see Ghys and Sergiescu [24]) that T can be embedded as the
subgroup of piecewise linear homeomorphisms of S1DR=Z which have dyadic break
points and dyadic derivatives (where defined). This implies that T admits a circular
order. Furthermore, the group B1 , as all finite type braid groups, is left orderable (see
eg Dehornoy, Dynnikov, Rolfsen and Wiest [14, Proposition 9.2.7]). By using the exact
sequence

1! B1! T }! T ! 1

we define a circular order on T } , as follows. Let � W T } ! T the projection and
x;y; z be three elements of T } .

(1) If �.x/; �.y/; �.z/ are distinct then their order in T ] is that of their images in
T .

(2) If �.x/D �.y/¤ �.z/, then x�1y 2B1 which is left orderable. If x�1y > 1

then x;y; z are positively oriented, otherwise it is negatively oriented.

(3) If �.x/D �.y/D �.z/ then x�1y;x�1z 2 B1 . Assume that 1;x�1y;x�1z

are totally ordered using the order in B1 . Then the corresponding x;y; z are
positively oriented in T } .

This yields a circular order on T } and thus there exists an embedding T } ,!

HomeoC.S1/. From [9, Theorem 2.2.15], there is a faithful T }–action on S1 . See
Calegari [9] for more details about circular orders and related questions.
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Any circularly ordered group G has an embedding G!HomeoC.S1/. A construction
due to Ghys and Thurston yields a bounded cocycle e on G which is the pullback of
the Euler cocycle on HomeoC.S1/, and which takes only the values 0 and 1. This
defines an Euler class Œe� 2H 2.G/, which is the Euler class of the circular order. It
is known that Œe�D 0 only if G is left ordered. Moreover, in the case of T } with its
circular ordered defined above, one knows that T } cannot be left ordered since it has
torsion. This proves the following:

Proposition 2.14 The Euler class ŒeT} � 2 H 2.T }/ is a nontrivial bounded class,
whose restriction to B1 is trivial.

Moreover, this Euler class could be also described in cohomological terms. Set eT

for the Euler cocycle on the group T , namely the cocycle inherited from its natural
embedding into HomeoC.S1/.

Proposition 2.15 The class ŒeT} � 2 H 2.T };Q/ is the pull-back ��ŒeT � by the
projection � W T }! T .

Proof According to a result due to Ghys, Jekel, and Thurston we have

Œc�D 2Œe�

where c is the order cocycle defined by Thurston (see Construction 2.3.4 of [9]) and e

is the Euler cocycle of a circularly ordered group. If the group G acts faithfully on
S1 let us choose a point a 2 S1 with trivial stabilizer. Recall that c is defined (as a
homogeneous cocycle) by means of

c.g0 W g1 W g2/D

8<:
1 if .g0.a/;g1.a/;g2.a// is positively oriented
�1 if .g0.a/;g1.a/;g2.a// is negatively oriented
0 if .g0.a/;g1.a/;g2.a// is degenerate:

We claim that ��.ŒcT �/ D ŒcT} �. More generally, if pW G ! H is a monotone
homomorphism with left orderable kernel between circularly orderable groups G and
H then p�ŒcH �D ŒcG �.

In fact, we have
cG �p�cH D @w

where w is the following 1–cocycle (in homogeneous coordinates):

w.g0 W g1/D

8̂̂<̂
:̂

0 if p.g0/¤ p.g1/

1 if p.g0/D p.g1/ and g�1
0

g1 < 1

�1 if p.g0/D p.g1/ and g�1
0

g1 > 1

0 if g0 D g1
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This implies that p�ŒeH �D ŒeG � up to 2–torsion, as claimed.

2.6 Solution of the word problem

Consider a recursive presentation hS jRi of some group G , where S is a generating
set and R the set of relators. A solution to the word problem of the presentation hS jRi
of G consists of an algorithm permitting to decide in a finite amount of steps whether
a given word in the alphabet S represents the trivial element of the group G , or not. It
is known, that, when G has a finite presentation, then all finite presentations of G have
simultaneously solvable or nonsolvable word problems and thus one can speak about
the word problem of G , without making reference to a particular presentation. We
slightly anticipate the results in the next sections showing that T ] and T � are finitely
presented so that the choice of the presentation is irrelevant.

The aim of this section is to give a semantic solution of the word problem. This is not
a syntactic solution, that is a solution that uses only algorithms manipulating the letters
of the alphabet S .

We extend one of the two solutions presented by Artin [1] for the word problem of the
braid group. Recall briefly how his solution by representations works: one embeds first
the braid group in the automorphism group of a free group and further one decides
whether an automorphism of a finitely generated free group is trivial or not, by looking
at images of the generators and solving the word problem for words in the free group.

A considerable improvement of Artin’s algorithm that uses Dehn’s idea (see Penner
and Harer [36, 1.2]) of encoding laminations (multi-curves) by tuples of integers was
considered by Dynnikov [16] and Malyutin [31]. This turned Artin’s solution into a
fast and efficient algorithm. We refer to Dynnikov [16, page 1106] and Dehornoy et al
[14, Section 8.3] for a thorough discussion of this algorithm and related topics. The
methods in [16; 31; 14] work well in the case of T � , as well.

We refer to our paper [21] for a syntactic solution of the word problem derived from
the fact that T ] is an asynchronously combable group. However, the following one is
considerably simpler.

Proposition 2.16 The groups T ] and T � have solvable word problem.

Proof The proofs for T ] and T � being the same, we only consider the case of T � .
Consider a word w in the free group generated by the letters ˛�; ˇ� , of length jwj D n.
Our aim is to find an algorithm to decide whether the element represented by w in T �

is trivial or not. When this is the case we write w D
T�

1. One denotes by Œw� the
class of the word w , as an element of T � .
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The main idea is that an element of T � is determined by its action on the fundamental
group of a punctured disk whose size is bounded by the size of the element.

Recall that we denoted by D�
0

the support of ˇ� (the central hexagon) and that D�
nC1

is the result of adding a new hexagon along each boundary component of D�n . Thus
D�n consists of 3 � 2n� 2 hexagons and thus having 3 � 2nC1� 3 punctures and 3 � 2n

boundary separating arcs. We will say that the boundary hexagons of D�n – ie those
which do not belong to D�

n�1
– are at distance n from D�

0
. The distance between

hexagons is that between the vertices of the dual tree.

Lemma 2.17 If jwj D n then the support of Œw� is contained in D�n . This means that
there exists an admissible subsurface †�D�n such that Œw�.†/ is also admissible and
Œw�W D��†!D�� Œw�.†/ is rigid. Moreover, Œw�.†/�D�n .

Proof First, we have ˇ�m
.D�n /DD�n and ˛�m

.D�n /�D�
nC1

for any m. Recall that
˛� and ˇ� are of finite order.

The claim holds trivially for nD 1. We use induction on n. Thus, if jwj D n and Œw�
has support † as claimed, then Œˇ�m

w� has support †[ˇ��m
.†/�D�n . Moreover,

Œ˛�
m
w� has support †[ ˛��m

.†/ �D�
nC1

. The same argument works for Œw�.†/.
This completes the induction step.

Remark 2.18 Actually, we proved that the support of Œw� is contained in D�
k

, where
k is bounded from above by the number of distinct factors ˛�m , ˇ�m in the word w .

First solution, of algebraic nature Consider now the associated word w.˛; ˇ/ ob-
tained from w by replacing ˛�; ˇ� by ˛; ˇ , respectively. Then w.˛; ˇ/ is a word
representing the image of Œw� in the group T .

The group T is finitely presented and simple. Therefore, by a well-known result, T

has solvable word problem. Thus there exists an algorithm which decides whether
w.˛; ˇ/D

T
1, as we shall assume from now on. Then Œw�2B1�T ] and Lemma 2.17

implies that Œw� 2 B.D�n /� B1 , where B.D�n / is the braid group of the D�n . Thus it
suffices to decide whether the image of w is trivial in B.D�n /, since Œw� is rigid on
the complement of D�n and thus the identity. Notice however, that w is not given as a
word in the generators of the braid group, but as a word in ˛�; ˇ� .

Fix a base point � in D�n �D� and choose lifts of the mapping classes ˛�; ˇ� which
preserve this base point. Then ˛�; ˇ� induce endomorphisms of free groups

˛�Œ2n�W �1.D
�
2n/! �1.D

�
2n/
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by setting ˛�Œ2n�.Œ �/D 1 if the image of  is not contained within D�
2n

(and similarly
for ˇ�Œ2n�/. Define further wŒ2n�. / D w1Œ2n�.w2Œ2n�.� � � .wnŒ2n�. //:::/. These
endomorphisms are well-defined only up to inner automorphisms of the free group.
Consider now a system of free generators 1; : : : ; N for �1.D

�
n /. It follows from

Lemma 2.17 that the action of Œw�2T � on the j is Œw�.j /DwŒ2n�.j /. In particular,
the element Œw� is trivial if and only if the outer endomorphism wŒ2n� is trivial. Thus
we have to check whether there exists c 2 �1.D

�
n / such that

.wŒ2n�.j //1�j�N D�1.D
�
n /
.cj c�1/1�j�N :

This is equivalent to solving the generalized conjugacy problem in the free group
�1.D

�
n /. Now, the generalized conjugacy problem is algorithmically solvable for such

a group. This holds more generally for biautomatic groups, as it follows immediately
from the solution of the usual conjugacy problem (see Word processing in groups
[17, Theorem 2.57, page 59] and Gersten and Short [23]). This holds true also for
groups satisfying the small cancellation conditions C(6), C.4/�T .4/, C.3/�T .6/

(see Bezverkhniı̆ [3]).

Second (improved) solution, using laminations The main idea is to use the fact that
T � acts as a mapping class group by identifying its action at the level of laminations.

Assume that the punctures are labeled and thus identified with a fixed set P . The
mapping classes ˛� and ˇ� induce then (infinite) permutations �˛ and �ˇ of P .

We consider below the set � consisting of arcs of D� and obtained from the canonical
rigid structure by adding copies of each punctured arc on both sides of it, as in the
figure below:

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

32

0

1 4

Denote by �n and Pn the restriction of � and P to the disk D�n . In particular we have
a natural bijection identification of the set of components of �n and Pn�Pn�Pn�Pn .

We consider now a coordinates system encoding the set C.D�n / of isotopy classes of
simple closed loops on D�n by means of integral vectors. Specifically, for X 2 C.D�n /
one sets

�.X /D .min j \X j/2�n
2 Z�n D .Z4/Pn
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where j j denotes the cardinal,  denotes the arcs of �n and the minimum is taken
over all isotopies keeping the extremities fixed and the intersections transverse.

There is an extension to decorated integral laminations [14, Section 8.4] on D�n , namely
to tuples of disjoint simple closed curves endowed with a labeling, and considered up
to isotopy. If X is a decorated integral lamination consisting of the curves Xi with
multiplicity mi and set of labels i 2 J , then

�.X/D .mi�.Xi//i2J 2

M
i2J

.Z4/Pn :

It is well-known that � is an embedding and its image is constrained to satisfy the
triangle inequalities for the three integers associated to the edges of each hexagon of
�n while their sums are even integers.

Let Fn denote the decorated integral lamination consisting of the set of disjoint simple
loops Fn.j / encircling the punctures labeled j , for j 2 Pn . It is immediate that

�.Fn/D
M

j2Pn

0˚ .1; 1; 0; 0/˚ 0 2
M

j2Pn

.Z4/Pn :

The endomorphism ˇ�n Define further two endomorphisms of Z�n , corresponding
to the actions of ˛� and ˇ� . Recall that ˇ� induces a permutation of P keeping Pn

invariant. It makes sense therefore to define

ˇ�nW Z
�n D .Z4/Pn ! .Z4/Pn D Z�n

ˇ�n

� M
j2Pn

vj

�
D

M
j2Pn

v��1
ˇ

j 2 .Z
4/Pnby setting

where vj 2Z4 are the 4–dimensional vector components of an element in Z�n indexed
by the same j 2 Pn .

The endomorphism ˛�n Further ˛� also induces a permutation of P but Pn is not
anymore �˛ –invariant. Recall that one labeled by 0 the central puncture of the support
for ˛� . Define then

˛�nW Z
�n D .Z4/Pn ! .Z4/Pn D Z�n

by ˛�n

� M
j2Pn

vj

�
D

M
j2Pn

wj 2 .Z
4/Pn ; with vj ; wj 2 Z4
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and wj D

8<:
v��1
˛ .j/ if j 2 Pn�f0g and ��1

˛ .j / 2 Pn

0 if j 2 Pn�f0g and ��1
˛ .j / 62 Pn

�.v0; v1; v2; v3; v4/ if j D 0

where the function � is given below. Each vector component of �.X / is a way to
ascribe an integer to every arc of �n . The component v0 corresponds then to the
integers associated to the four arcs near the puncture 0. Its image w0 will depend
actually on (some of) the integers associated to the nearby punctures, namely on
v1; v2; v3 and v4 . Then we set

�.v0; v1; v2; v3; v4/D .E
0;F 0;G0;H 0/ 2 Z4

where v0D .E;F;G;H /, v1D .�;�;�;A/, v2D .�;�;�;B/, v3D .�;�;�;C / and
v4 D .�;�;�;D/ and

F 0 Dmax.ECC;BCF /�G

E0 Dmax.ECD;ACF /�H

G0 Dmax.ACECC CH;ACBCF CH;BCECGCH;ACBCF CG/

� .ECGCH /

H 0 Dmax.ACC CF CG;C CDCECG;C CDCECH;BCDCF CH /

� .F CGCH /

A more intuitive definition of � is given in the picture below, where we figured out
only those labels (of components of �n ) on which the value of � actually depends:

�

A D

H

E F

G
B C

D C

H 0

E0 F 0

G0
A B

Consider now the word w D w.˛�; ˇ�/ in the free group with generators ˛� and ˇ� .
Denote by w.˛�n;ˇ

�
n/ the result of substitution of the letters above by the letters ˛�n

and ˇ�n . Then w.˛�n;ˇ
�
n/ is an explicit product of endomorphisms of Z�n .

Proposition 2.19 The word wDw.˛�; ˇ�/ of length n represents the trivial element
in T � if and only if

�.Fn/D
M

j2Pn

Projn ıw.˛
�
2n; ˇ

�
2n/.�.Fn.j //
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where ProjnW Z
�2n ! Z�n is the projection annihilating all basis elements from �2n

which are not in �n .

Proof It suffices to see that the action of Œw� on the set C.D�n / of isotopy classes of
simple closed curves can be described completely in the coordinates system above by
the formula on the right hand side.

Lemma 2.20 For each isotopy class X 2 C.D�n / and w D w.˛�; ˇ�/ word of length
n we have

�.Œw�X /D Projn ıw.˛
�
2n; ˇ

�
2n/.�.X //

where Œw�X denotes the image of X by the mapping class Œw� 2 T � .

Proof Lemma 2.17 shows that the mapping class Œw� sends a (class of a) curve in
C.D�n / into C.D�

2n
/. Therefore one can discard all components outside �2n . The

formula above holds for w D ˇ� by the very definition of ˇ�n . The action of ˛�

�
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is decomposed into elementary flips:
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A B

CD

E

F

GH

A B

CD

E

F
F 0H

A B

CD

E

F
F 0E0

A B

CD

G0

F
F 0E0

B

A D

C

G0

H 0

F 0E0
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The action of an elementary flip in the coordinates above is well-known [19; 16; 36;
31; 14]:

D

Z
CA

B

D

Z0
CA

B

where Z0 Dmax.ACC;BCD/�Z:

This ends the proof of the lemma.

Further, assume that the equation in Proposition 2.19 holds. Then the permutation
induced by Œw� at the level of punctures of D�

2n
is trivial. By rigidity of the action

outside D�
2n

it follows that the image of w in T is the identity element. This is precisely
the place where the decoration of the integral lamination is useful. In particular, the
element Œw� of T � should belong to the subgroup of braids B.D�n /. However it is
known that the action of a braid is completely determined by the image of a system of
generators for the fundamental group, in particular the image of Fn . The equality of
coordinates shows that the element Œw� acts trivially as automorphism of the fundamental
group of D�n and it represents therefore the identity in T � .

Remark 2.21 The formulas above express the action of T � on the space of decorated
integral laminations and thus on the boundary of the Teichmüller space of D� . Notice
that this is the tropicalization of the formula expressing the action on the Teichmüller
space itself in Penner’s lambda coordinates.

Thus Proposition 2.19 furnishes an efficient algorithm for checking whether a given
word represents the trivial element of T � or not.

Remark 2.22 The complexity of this algorithm is exponential, because the size of
Pn is exponential.

Remark 2.23 The solvability of the word problem is a strong indication that the group
has nice properties from algorithmic viewpoint. Notice however that the lamplighter
group (the wreath product of Z=2Z and Z) is an infinitely presented 2–generator
groups which has solvable word and conjugation problems (see Matthews [33]). Thus
the result above does not imply that T � is finitely presented.
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3 The complex CC.T ]/

The remainder of the article is devoted to the proof that T ] is finitely presented, by
constructing a simply connected cellular complex C.T ]/ on which T ] acts cocompactly.
Each orbit of 2–cells of this complex will thus correspond to a relation in T ] . This
will enable us to provide an explicit presentation for T ] . We first introduce an auxiliary
complex CC.T ]/, whose simple connectivity is not too difficult to prove, but which
is not finite modulo T ] . The complex C.T ]/ will be a subcomplex of CC.T ]/. We
shall finally explain how an analogous construction applies to T � .

3.1 Vertices and edges

The complex CC.T ]/ is a 2–dimensional cellular complex, whose vertices correspond
to the elements of R] (see Notation 1.1). The (unoriented) edges correspond to “moves”
of two types:

(1) Associativity move, or A–move. Let r be a rigid structure, and  an arc of r

which separates two hexagons, say H1 and H2 . Let 1 (respectively 2 ) be the
side of H1 (respectively H2 ) contained in the boundary of D] , and disjoint from
 . Choose two points p1 2 1 and p2 2 2 . Define the simple arc 0 , which
first connects p1 to the puncture of H1 (remaining inside H1 ), next connects
the puncture of H1 to the puncture of H2 , crossing once and transversely the
arc  , and finally connects the puncture of H2 to p2 (remaining inside H2 ).
Define an arc by deforming 0 around the two punctures, in such a way that it
avoids them and separates them. There are exactly two isotopy classes of such
arcs, say  0 and  00 , with free extremities p1 and p2 (see Figure 7).
One says that the rigid structures r0 and r00 , obtained from r by only changing
 into  0 or  00 , respectively, are obtained from r by an A–move on  . A pair
as f;  0g or f;  00g determines an edge of type A of CC.T ]/. Note that there
exist exactly two A–moves on  .

(2) Braiding move, or Br –move. Let r be a rigid structure, and  an arc of r which
separates two hexagons, say H1 and H2 . Let e be a simple arc connecting
q1 to q2 (the punctures of H1 and H2 , respectively), crossing  once and
transversely, and contained in H1[H2 . Such an arc is uniquely defined, up to
isotopy (fixing q1 et q2 ). Let � be the positive braid determined by e , which
permutes q1 and q2 (see Definition 2.1). Let  0 D �. / be the image of  by
� , and  00 D ��1. / (see Figure 8).
One says that the rigid structures r0 and r00 , obtained from r by only changing 
into  0 or  00 , respectively, are obtained from r by a Br –move on  . A pair as
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Figure 7: Definition of the A–move

f;  0g or f;  00g determines an edge of type Br of CC.T ]/. Note that there
exist exactly two Br –moves on  .

Definition 3.1 The tree Tr of a rigid structure r of D] is the planar tree whose vertices
are the punctures of D] and edges are the arcs e as above, for every arc  of r.

Note that Tr] is the tree of D] .

Remark 3.1 (Orientation of the edges of type Br ) Say that an edge  Br
�! 0 is

positively oriented if  0 turns on the left when it approaches the arc e . This means
that the braiding � (on the punctures q1 and q2 ) such that  0D �. /, is positive. From
now on, a positive braiding will always be denoted by a letter without negative exponent,
such as � , �1 , etc., while ��1 , ��1

1
, etc., will refer to negative braidings. On Figure 8,

the edge  Br
�! 0 is positively oriented, while the edge  Br

�! 00 is negatively oriented.

On the contrary, there is no canonical orientation for the edges of type A.

From now on we will keep denoting ˛ and ˇ for ˛] and ˇ] in the pictures below,
when we have to figure out the action of T ] on CC.T ]/.
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Figure 8: Definition of the Br –move

3.2 2–cells

The 2–cells of CC.T ]/ are of the following types:

(1) Cells AADBr . Let r be a rigid structure, and  an arc of r. As we have seen
above, there are two edges of type A, connecting r to r0 and r00 . The vertices r0 and
r00 are connected by an edge of type Br . Thus, one fills in the cycle of three edges
A;A and Br , by a 2–cell, which is said of type AAD Br (see Figure 9).

(2) Cells of commutation of A–moves, A1A2DA2A1 . Let r be a rigid structure, and
H1;H2;H

0
1

and H 0
2

be four distinct hexagons of r, such that H1 and H2 (respectively
H 0

1
and H 0

2
) share a common side  (respectively  0 ). The commutation of the two

A–moves, along  and  0 , respectively, generates a square cycle. The point (to be
elucidated in Proposition 3.7) is that we only need to fill in the squares of two special
types:

� Cells DC1 . H2 and H 0
1

share a common side, see Figure 10.

� Cells DC2 . H2 and H 0
1

are separated by a hexagon H0 ; see Figure 11.
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Figure 9: Cycle AAD Br

(3) Pentagonal cells. Let r be a rigid structure, and H1 , H2 and H3 be three
hexagons of r, such that H1 and H2 are adjacent along a side  , and H3 and H2 are
adjacent along a side ı . There is a cycle of five A–moves, which only involves the
arcs  and ı of r; see Figure 12. It is filled in, producing a 2–cell of pentagonal type.

(4) Cells coming from the presentation of the braid group. Recall that there is a
general theorem of V Sergiescu [38] which can be used to provide a presentation for
B1 with generators the positive braidings along the edges of the tree of D] or the tree
Tr of any rigid structure r. Let r be a rigid structure, and Tr be its tree.

(a) Hexagonal cells. Let e1 and e2 be two edges of Tr , which are incident to a
puncture p . Let �1 and �2 be the braidings along e1 and e2 , respectively. Then
�1�2�1 D �2�1�2 . Let Br1 and Br2 denote the braiding moves, corresponding to �1

and �2 , respectively. In terms of Br –moves, the braid relation becomes

Br2Br1Br2 D Br1Br2Br1;

and one adds a 2–cell to fill in the cycle of those 6 braiding moves.

(b) Octagonal cells. Let e1 , e2 and e3 be the three edges which are incident to
a puncture p . Suppose that their enumeration respects the cyclic counterclockwise
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Figure 10: Cycle of type DC1

orientation of the planar surface around p . Using notation as in a), one has the relation
�1�2�3�1 D �2�3�1�2 D �3�1�2�3 . In terms of Br –moves, this gives

Br3Br2Br1Br3 D Br2Br1Br3Br2 D Br1Br3Br2Br1;

and one adds 2–cells to fill in the corresponding cycles of 8 braidings.

(c) Squares. Let e1 and e2 two disjoint edges. Then �1�2 D �2�1 . In terms of
braiding moves, this gives

Br1Br2 D Br2Br1;

and one adds a 2–cell to fill in this square cycle.

(5) Cells of commutation of A–moves with Br –moves. Let r be a rigid structure.
An A–move along an arc  commutes with a Br –move along an edge e of Tr if 
and e are disjoint. Thus, there is a square cycle of the form

ABr D BrA

which one fills in by a 2–cell.

We note that the minimum level (see Definition 3.2) for such a cell is 5; see Figure 16.
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Figure 11: Cycle of type DC2

Definition 3.2 Let ! be a 2–cell, and r a vertex of the boundary cycle @! . The
vertices of @! differ from r by a finite number of arcs  . The support of ! is the
minimal connected subsurface of D] which is a union of hexagons of r and contains
all the arcs  . The level of the 2–cell ! is the number of arcs of r which belong to
the boundary of the support of ! .

The description of CC.T ]/ is now complete, and the following is obvious:

Proposition 3.2 The complex CC.T ]/ is a T ]–complex.

3.3 Connectivity of CC.T ]/

We first recall a useful lemma of algebraic topology [2, Proposition 6.2]; see also a
variant of it in [20], which we have used already in [22].

Lemma 3.3 Let M and C be two C W –complexes of dimension 2, with oriented
edges, and f WM.1/ ! C.1/ be a cellular map between their 1–skeletons, which is
surjective on 0–cells and 1–cells. Suppose that:
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Figure 12: Pentagonal cycle

(1) C is connected and simply connected;

(2) For each vertex c of C , f �1.c/ is connected and simply connected;

(3) Let c1
e
�!c2 be an oriented edge of C , and let m0

1
e0
�!m0

2
and m00

1
e00
�!m00

2
be two

lifts in M. Then we can find two paths m0
1

p1
�!m00

1
in f �1.c1/ and m0

2

p2
�!m00

2

in f �1.c2/ such that the loop

m0
1

e0
�! m0

2

p1 # # p2

m00
1

e00
�! m00

2

is contractible in M;

(4) For any 2–cell X of C , its boundary @X can be lifted to a contractible loop of
M.

Then M is connected and simply connected.
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Figure 13: Commutation Br1Br2 D Br2Br1 of level 6

Recall that D is the surface D] viewed without its punctures. We will use Lemma 3.3
to study a certain cellular map f W CC.T ]/!HT red.D/:

Definition 3.3 The reduced Hatcher–Thurston complex HT red.D/ is a 2–dimensional
cellular complex whose vertices are the rigid structures of D , whose edges correspond
to A–moves, and whose 2–cells are of three types: DC1 , DC2 , and pentagonal cells.
The definition of the A–move in HT red.D/ is deduced from the definition of the
A–move in CC.T ]/ by forgetting the punctures.

Note that, if  is an arc of a rigid structure of D , there is a unique A–move on  .

Remark 3.4 (1) If †0;1 is the surface without boundary obtained by gluing along
their boundaries two copies of D with opposite orientations, then HT red.D/

is a subcomplex of the reduced Hatcher–Thurston complex HT red.†0;1/ of
the surface †0;1 , as it appears in [22, Definition 5.2]. The argument used in
[22] to prove that HT red.†0;1/ is connected and simply connected actually
reduces to proving that HT red.D/ is connected and simply connected. The
point of that proof (see Proposition 5.5 in [22]) is that there is a surjection of the
Cayley complex of Thompson’s group T , for the presentation with generators
˛ and ˇ , onto the complex HT red.D/. This is essentially used to show that the
square cycles generated by the commutations of any two A–moves are filled in
by 2–cells of types DC1 , DC2 , and by pentagons.
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Figure 14: First commutation Br1Br2 D Br2Br1 of level 7

(2) The complex HT red.D/ is a T –complex, and HT red.D/=T has one vertex,
one edge, and three 2–cells: the two squares DC1 and DC2 , and the pentagon.

The following is obvious:

Proposition 3.5 There is a well defined cellular map

f W CC.T ]/!HT red.D/;

which is induced by forgetting the punctures. The map f is .T ];T /–equivariant.

Definition 3.4 The T ]–type of a 2–cell ! of CC.T ]/ is its image in CC.T ]/=T ] .
The T –type of ! is f .!/ mod T in HT red.D/=T .

Proposition 3.6 There is exactly one T –type of 2–cells DC1 , one T –type of 2–cells
DC2 , and one T –type of pentagonal 2–cells. Each T –type of 2–cell corresponds to
finitely many different T ]–types. In other words, if ! is a 2–cell in HT red.D/, then
the set of 2–cells in CC.T ]/ which are the preimages of ! by f is finite modulo T ] .
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Figure 15: Second commutation Br1Br2 D Br2Br1 of level 7

Proof The first assertion was already mentioned in Remark 3.4 (2). The second is
related to the fact that an edge of type A in HT red.D/ admits two lifts in CC.T ]/

with the same origin (see Figure 9). Therefore, a 2–cell in HT red.D/ bounded by a
cycle of n edges admits at most 2n�1 lifts in CC.T ]/ based at the same origin.

Proposition 3.7 The complex CC.T ]/ is connected and simply connected.

Proof Let us apply Lemma 3.3 to the map f . Condition (1) is fulfilled. The preimage
by f of a vertex r of HT red.D

]/ is isomorphic to the Cayley complex of the group
B1 , for the presentation of Sergiescu associated to the tree Tr of r. Consequently, it
is connected and simply connected, and condition (2) of Lemma 3.3 is fulfilled.

Let us examine condition (3). The edges e0 and e00 are of type A. Since m0
1

(respec-
tively m0

2
) is connected to m00

1
(respectively m00

2
) by a sequence of edges of type Br ,

it suffices to consider the case when p1 is an edge of type Br . But this forces p2

either to be trivial (the loop p1e00e0�1 bounds a 2–cell AADBr ) or to be an edge of
type Br (the loop e0p2e00�1p�1

1
bounds a 2–cell ABr D BrA).

Condition (4) is obviously fulfilled, by definition of CC.T ]/. To conclude, CC.T ]/ is
connected and simply connected.
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4 The reduced complex C.T ]/ and a presentation for T ]

4.1 Simple connectivity of C.T ]/

Definition 4.1 The reduced complex C.T ]/ is the subcomplex of CC.T ]/ which has
the same 1–skeleton as CC.T ]/. The 2–cells are of the following types:

(1) AA D Br (Figure 9), DC1 of Figure 10, DC2 of Figure 11, pentagon of
Figure 12;

(2) ABr DBrA of level 5 of Figure 16, level 6 of Figure 18, and level 7 of Figures
21 and 22;

(3) Br1Br2 D Br2Br1 coming from the commutation of certain braidings with
disjoint supports: cells of level 6 of the T ]–type of Figure 13, and cells of level
7 the T ]–type of Figure 14 and of the T ]–type of Figure 15);

(4) Cells coming from the braid group: Br1Br2Br2 D Br2Br1Br2 (Section 3.2
(4)(a)) and Br3Br2Br1Br3DBr2Br1Br3Br2DBr1Br3Br2Br1 (Section 3.2
(4)(b)).

Geometry & Topology, Volume 12 (2008)



Braided Ptolemy–Thompson group 511

The point is that C.T ]/, contrary to CC.T ]/, contains finitely many T ]–types of cells
ABr DBrA and Br1Br2 DBr2Br1 . It follows that the quotient C.T ]/=T ] is finite.
Moreover:

Proposition 4.1 The complex C.T ]/ is connected and simply connected.

Proof Since CC.T ]/ is connected and has the same 1–skeleton as C.T ]/, the latter
is connected as well. To prove the simple connectivity of C.T ]/ from the simple
connectivity of CC.T ]/, it suffices to check that the cycles bounding the 2–cells which
belong to CC.T ]/ but not to C.T ]/ may be filled in by some combinations of 2–cells
of C.T ]/ only.

Note first that for each of the three T –types (DC1 , DC2 or pentagon), we have
selected a unique T ]–type of lift in C.T ]/ (compare with Proposition 3.6). However:

Lemma 4.2 Let ! be any 2–cell of CC.T ]/ of T –type DC1 , DC2 , or of pentagonal
T –type. Then @! is filled in by 2–cells which belong to C.T ]/, hence is homotopically
trivial in C.T ]/.

Proof Let us introduce the following terminology. Suppose that the boundary of a
2–cell !0 is filled in by some 2–cells ! , !1; : : : ; !n . Then we will say that !0 is
equivalent to ! modulo !1; : : : ; !n .

Let us consider the T ]–types of cells of T –type DC1 . The only T ]–type which
belongs to C.T ]/ is that of Figure 10. Yet, one would obtain another T ]–type by
changing the lift of the horizontal or of the vertical edge (based at the same top left
corner of the square). The symmetry of the square makes it sufficient to restrict to the
horizontal edge case. Thus, another T ]–type is represented in Figure 17: it is the large
cell which is filled in by one cell DC1 (of Figure 10), two cells of type AA D Br ,
and one cell ABr D BrA of level 6 (the small square of Figure 18). The point is that
all of them belong to C.T ]/, so that the boundary of the large cell is homotopically
trivial in C.T ]/.

Note that another T ]–type would be obtained by changing the vertical edge of the
large cell of Figure 17. But we would prove, by the same puzzle game as above, that
its boundary is homotopically trivial in C.T ]/. However, there is a subtlety here: the
piece ABr DBrA of level 6 we would use is not T ]–equivalent to that used above
(ie the small square of Figure 18). This inequivalent piece ABr D BrA is the large
square that is represented in Figure 18. But the same figure shows that the latter is
equivalent to the cell ABr DBrA (belonging to C.T ]/), modulo some cells which all
belong to C.T ]/. Indeed, the large square is filled in by the small piece ABr D BrA,
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Figure 17: Relation between two inequivalent cycles of type DC1

two cells AADBr and one cell Br1Br2DBr2Br1 of level 6. All of them do belong
to C.T ]/.

Let us now consider the T ]–types of cells of T –type DC2 . The only T ]–type
which belongs to C.T ]/ is that of Figure 11. One would obtain different T ]–types
by changing the lift of the horizontal edge (see the large cell of Figure 19) or of the
vertical edge (see the large cell of Figure 20). Using cells of type DC2 of Figure 11,
of type AADBr and of type ABr DBrA of level 7 (of Figure 21 and Figure 22) as
puzzle pieces (which all belong to C.T ]/), one proves that the large cells of Figure 19
and Figure 20 are equivalent to the small ones modulo cells which are in C.T ]/.
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v

Br ˇ˛ˇ˛ˇ�1��1 Brˇ˛ˇ�1� Br

Br

Br

A

ˇ˛

A

ˇ˛ˇ�1˛�1

A

A

Figure 18: Relation between two inequivalent cycles ABr D BrA of level 6

Note that one could obtain other T ]–types of cells of T –type DC2 by changing both
the horizontal and the vertical edges. The pieces ABr D BrA of level 7 we would
need might not be T ]–equivalent to those of Figure 21 and Figure 22, but equivalent
to the latter modulo cells AADBr and Br1Br2 DBr2Br1 of level 7 (Figure 14 and
Figure 15).

Let us finally consider the T ]–types of cells of pentagonal T –type. The only T ]–type
which belongs to C.T ]/ is that of Figure 12. The other ones (see the large pentagonal
cell of Figure 23) are equivalent to it modulo cells of type AA D Br and of type
ABr D BrA of level 5 (of Figure 16), which all belong to C.T ]/.
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Figure 19: Relation between two inequivalent cycles of type DC2
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Figure 20: Relation between two inequivalent cycles of type DC2 , bis

The second lemma to prove is:

Lemma 4.3 Each square cycle of the form A1A2 D A2A1 in the 1–skeleton of
CC.T ]/ or C.T ]/, resulting from by the commutation of two A–moves along disjoint
arcs of a rigid structure, may be filled in by 2–cells of CC.T ]/, of T –type DC1 , DC2 ,
or of pentagonal T –type. Therefore, by Lemma 4.2, it may be filled in by 2–cells
which all belong to C.T ]/, hence is homotopically trivial in C.T ]/.

Proof Let  denote the square cycle A1A2DA2A1 in CC.T ]/ or C.T ]/. In [22], it
is proved that the square f . / in HT red.D/ may be filled in by 2–cells (DC1 , DC2

and pentagons). Let us enumerate them by !1; : : : !n in such a way that !i and !iC1

(for i D 1; : : : ; n� 1) are adjacent along an edge, as well as !n and !1 . Following
this enumeration, one may lift each !i to a 2–cell �!i of CC.T ]/, in such a way that
the n lifts fill in the cycle  .
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Figure 21: First cycle BrADABr of level 7

v

A

ˇ˛

ˇaˇaˇ�1˛�1

A

Braˇ�1aˇ�1��1 Br ˇaˇ�1aˇ�1�

Figure 22: Second cycle BrADABr of level 7
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A Br

A

A

A

A

A

A

A

Br

p

q

r

Figure 23: Relation between two inequivalent pentagonal cycles

The third and last lemma is:

Lemma 4.4 The square cycles Br1Br2 DBr2Br1 and ABr DBrA, bounding the
2–cells of CC.T ]/ which are not in C.T ]/, are filled in by some of 2–cells belonging
to C.T ]/. Hence they are homotopically trivial in C.T ]/.

Proof The key point is that a Br –move may be seen as the composite of two A–
moves (AADBr ), so that each relation of commutation involving Br –moves reduces
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to relations involving A–moves. Figure 24 shows how the square cycles Br1Br2 D

Br2Br1 are filled in by 4 squares A1A2 DA2A1 and four triangles AADBr . Since
each square A1A2 D A2A1 is filled in by cells belonging to C.T ]/ by Lemma 4.3,
this proves our claim. Similarly, Figure 25 shows how the square cycles ABr D BrA

are filled in by 2 cells of type AAD Br and 2 squares A1A2 DA2A1 .

Since the complement of C.T ]/ in CC.T ]/ is a union of cells Br1Br2 D Br2Br1

and ABr DBrA, the last Lemma implies that the inclusion C.T ]/� CC.T ]/ induces
an isomorphism at the �1 level. This ends the proof of Proposition 4.1.

A A

A

A

A

A A

A

A

A

A A

Br

Br

Br

Br

Figure 24: A cycle Br1Br2 DBr2Br1 is filled in by cells of types A1A2 D

A2A1 and AAD Br
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A

A A

A

A A

A

Br Br

Figure 25: A cycle ABr DBrA is filled in by cells of types A1A2 DA2A1

and AAD Br

Theorem 4.5 The group T ] is finitely presented.

Proof The group T ] acts cocompactly on the simply connected complex C.T ]/.
The stabilizers of the vertices are all isomorphic to PSL.2;Z/. Indeed, since all
vertices are equivalent modulo T ] , it suffices to consider the case of the canonical
rigid structure v D r] . Clearly, the stabilizer of r] is also the group of orientation-
preserving automorphisms of the tree of D] . It is isomorphic to PSL.2;Z/ (see also
Remark 2.3).

We claim that the stabilizers of the edges are isomorphic to Z=2Z. Indeed, there are
two distinct classes of edges (modulo T ] ), which may be represented by two edges
e1 and e2 , based at the same origin v . The edge e1 corresponds to an A–move on
an arc of reference  , while e2 corresponds to a Br –move on the same arc  . We
may assume that the mapping class ˛] 2 T ] of Section 2.2 has been chosen such that
the terminal vertex of e1 is ˛].v/. Recall that it is a rigid rotation of order 4 outside
H1[H2 , but it fixes q1 and q2 inside H1[H2 ; see Figure 26.

We denote by � 2B1 � T ] the positive braiding on the arc  . It permutes q1 and q2

and is such that �.v/ is the terminal vertex of e2 ; see Figure 26.
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v

1

2 3

4
q1

q2

A
e1

Br
e2

˛].1/ ˛].2/

˛].3/˛].4/
q1

q2

�.v/

�.q1/

�.q2/

Figure 26: Edges e1 and e2 and generators ˛] and �

One first checks that there is no element of T ] that reverses the orientation of the edges
e1 or e2 . Thus, the stabilizers T ]

e1
of e1 and T ]

e2
of e2 are subgroups of the stabilizer

of v . In fact, T ]
e1
D T ]

e2
, generated by the element a 2 PSL.2;Z/ of order 2, which

is rigid rotation of angle � that interchanges the hexagons H1 and H2 and preserves
the arc  (reversing its orientation). We shall see below that aD ��1˛]2 D ˛]2��1

(beware that ˛]2 is not of order 2!).

Since the stabilizers of the vertices are finitely presented and the stabilizers of the edges
are finitely generated, Theorem 1 of [7] asserts that T ] is finitely presented.

Remark 4.6 The stabilizer T ]
v of v admits the following presentation:

T ]
v D ha; ˇ

]
j a2
D ˇ]3

D 1i Š PSL.2;Z/:

4.2 A presentation for T ]

4.2.1 Statement of the theorem

Theorem 4.7 The group T ] admits a finite presentation, with three generators ˛] , ˇ]

and � , and the following relations:
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(1) ˛]� D �˛]

(2) ˛]4 D �2

(3) ˇ]3
D 1

(4) .ˇ]˛]/5 D �ˇ]�ˇ]�1�

Setting aD ˛]2��1 :

(5) Œˇ]˛]ˇ]; aˇ]˛]ˇ]a�D 1 (level 5)

(6) Œˇ]˛]ˇ]; aˇ]2aˇ]˛]ˇ]aˇ]a�D 1

Consistency relations:

(7) Œ�; ˇ]˛]ˇ]�D 1 (level 5)

(8) Œ�; ˇ]˛]ˇ]aˇ]�1�D 1 (level 6)

(9) Œ�; ˇ]aˇ]�1aˇ]˛]ˇ]aˇ]aˇ]�1�D 1 (level 7)

(10) Œ�; ˇ]aˇ]aˇ]˛]ˇ]aˇ]aˇ]�D 1 (level 7)

Commutations of braidings:

(11) Œ�; ˇ]aˇ]�1�.ˇ]aˇ]�1/�1�D 1 (level 6)

(12) Œ�; ˇ]aˇ]aˇ]�1�.ˇ]aˇ]aˇ]�1/�1�D 1 (level 7)

(13) Œ�; ˇ]aˇ]aˇ]�.ˇ]aˇ]aˇ]/�1�D 1 (level 7)

Setting �1 D � , �2 D ˇ
]�ˇ]�1 and �3 D ˇ

]�1�ˇ] :

(14) �1�2�1 D �2�1�2 (fundamental relation of the braid group)

(15) �1�2�3�1 D �2�3�1�2 D �3�1�2�3 (Sergiescu’s relations)

Corollary 4.8 We have H1.T
]/D Z=6Z. In particular, the groups T ] and T � are

not isomorphic.

Proof H1.T
]/ is generated by the commuting Œ˛]�, Œˇ]� and Œ� �, subject to the

relations 4Œ˛]� D 2Œ� �, 3Œˇ]� D 0 and 5Œ˛]�C 5Œˇ]� D 3Œ� �. They are equivalent to
Œ˛]�D�Œ� �, Œˇ]�D�2Œ� � and 6Œ� �D 0, hence the claim.

4.2.2 Generators We follow the method described by K Brown in [7], derived from
the Bass–Serre theory.

Recall that the quotient C.T ]/=T ] possesses a unique vertex, represented by v , and
two edges, represented by e1 and e2 (see the proof of Lemma 3.3).

The stabilizers of e1 and e2 are of order 2, generated by a. For better clarity, we write
T ]

e1
D ha1; a2

1
D 1i and T ]

e2
D ha2; a2

2
D 1i, respectively.
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4.2.3 Relations Theorem 1 of [7] states that T ] is generated by the stabilizer T ]
v

and by the elements ge1
D ˛] and ge2

D � , subject to the following relations:

� Presentation (i). For each e 2 fe1; e2g, g�1
e ie.h/ge D ce.h/ for all h 2 T ]

e ,
where ie is the inclusion T ]

e ,! T ]
v and ceW T

]
e ! T ]

v is the conjugation
morphism h 7! g�1

e hge .
Explicitly, g�1

e1
ie1
.h/ge1

D ce1
.h/ with ge1

D ˛] and hD a1 2 T ]
e1

provides
the relation ˛]�1a˛] D ˛]�1a1˛

] , where the right hand side is computed in
T ]
v , in which it is equal to a. Hence the relation

(�) ˛]�1a˛] D a:

As for g�1
e2

ie2
.h/ge2

D ce2
.h/ with ge2

D � and hD a2 2 T ]
e2

, it provides the
relation ��1a� D ��1a2� , where the right hand side is computed in T ]

v , in
which it is equal to a. Hence the relation

(��) ��1a� D a:

� Presentation (ii). r� D 1 for each 2–cell � 2 C.T ]/, where r� is a word in the
generators of T ]

v , ˛] and � , associated with the 2–cell � in the way described
in [7]. We recall it for the convenience of the reader:

Each edge of the complex starting at v has one of the following forms:

(1) v �! .h˛]˙1/.v/, h 2 T ]
v

(2) v �! .h�˙1/.v/, h 2 T ]
v

To such an edge e we associate an element  2T ] such that e ends at  .v/:  Dh˛]˙1

in case (a),  D h�˙1 in case (b).

Let � be one of the 2–cells of the complex C.T ]/. One chooses an orientation and a
cyclic labeling of the boundary edges, such that the labeled 1 edge E1 starts from the
vertex v .

Let 1 be associated to E1 as above. It ends at 1.v/, so the second edge is of the
form 1.E2/ for some edge E2 starting at v . Let 2 be associated to E2 . The second
edge ends at 12.v/. If n is the length of the cycle bounding � , one obtains this way
a sequence 1; : : : ; n such that 1 � � � n.v/D v .

Note that for each of the cycles, we have indicated the corresponding i above the
i –th edge.
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Let  be the element of the stabilizer T ]
v which is equal to 1 � � � n when each element

i is viewed in T ] . Then the relation associated to � is

1 � � � n D 

where the left hand side is viewed as a word in ˛] , � , a, ˇ] , and their inverses.

Following this process for the 2–cells of the complex C.T ]/, one obtains:

(1) Cell AADBr (Figure 9). The corresponding relation is ˛]��1˛]Da. Equiva-
lently, �D˛]a�1˛] . Since by (�), ˛] and a commute, one obtains �D˛]2a�1 ,
hence ˛] and � commute (Relation 1). Since aD��1˛]2 , a may be eliminated,
and the relation a2 D 1 is now equivalent to ˛]4 D �2 (Relation 2).

(2) (a) Cell DC1 (Figure 10). The corresponding relation is

Œˇ]˛]ˇ]; aˇ]˛]ˇ]a�D 1 .Relation 5/:

(b) Cell DC2 (Figure 11). The corresponding relation is

Œˇ]˛]ˇ]; aˇ]2aˇ]˛]ˇ]aˇ]a�D 1 .Relation 6/:

(c) Pentagonal cell (Figure 12). It gives first the relation

˛]�1ˇ]�1˛]�1ˇ]�1˛]�1�ˇ]�1˛]�1�ˇ]�1˛] D ˇ]a:

Taking the inverse of this relation, one obtains

˛]�1ˇ]��1˛]ˇ]��1˛]ˇ]˛]ˇ]˛] D aˇ]�1:

Replacing a by a D ˛]�2� , one obtains ˛]ˇ]��1˛]ˇ]��1.˛]ˇ]/3 D

� . Equivalently, ��1˛]ˇ]��1.˛]ˇ]/4 D .˛]ˇ]/�1�˛]ˇ] . Since ˛] and
� commute, the right hand side is equal to ˇ]�1�ˇ] . Hence the rela-
tion ��1˛]ˇ]��1.˛]ˇ]/�1.˛]ˇ]/5 D ˇ]�1�ˇ] . This is equivalent to
.ˇ]˛]/5D ˇ]�ˇ]�1˛]�1�ˇ]�1�ˇ]˛] . Using once again the commutation
between � and ˛] , one obtains .ˇ]˛]/5Dˇ]�ˇ]�1�˛]�1ˇ]�1�ˇ]˛] . But
we shall see below that � and ˇ]˛]ˇ] commute (see Cell ABr D BrA of
level 5), so that ˛]�1ˇ]�1�ˇ]˛]Dˇ]�ˇ]�1 . Finally, the relation becomes

.ˇ]˛]/5 D ˇ]�ˇ]�1�ˇ]�ˇ]�1:

Modulo the braid relation (see below Cells coming from the presentation of
the braid group), this is Relation 4.

(3) (a) Cell ABr D BrA of level 5 (Figure 16). Œ�; ˇ]˛]ˇ]�D 1 (Relation 7)
(b) Cell ABr DBrA of level 6 (Figure 18). Œ�; ˇ]˛]ˇ]aˇ]�1�D1 (Relation 8)
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(c) First cell ABr D BrA of level 7 (Figure 21).

Œ�; ˇ]aˇ]�1aˇ]˛]ˇ]aˇ]aˇ]�1�D 1 .Relation 9/

(d) Second cell ABr D BrA of level 7 (Figure 22).

Œ�; ˇ]aˇ]aˇ]˛]ˇ]aˇ]aˇ]�D 1 .Relation 10/

(4) (a) Cell Br1Br2 D Br2Br1 of level 6 (Figure 13).

Œ�; ˇ]aˇ]�1�.ˇ]aˇ]�1/�1�D 1 .Relation 11 /

(b) First cell Br1Br2 D Br2Br1 of level 7 (Figure 14).

Œ�; ˇ]aˇ]aˇ]�1�.ˇ]aˇ]aˇ]�1/�1�D 1 .Relation 12/

(c) Second cell Br1Br2 D Br2Br1 of level 7 (Figure 15).

Œ�; ˇ]aˇ]aˇ]�.ˇ]aˇ]aˇ]/�1�D 1 .Relation 13/

(5) Cells coming from the presentation of the braid group. They obviously give
Relation 14 and Relation 15.

4.3 T � is finitely presented

The groups T ] and T � , though both alike, are not isomorphic. However, there is a
proof for the assertion that T � is finitely presented which mimics that for T ] . One
introduces T �–complexes CC.T �/ and C.T �/, whose vertices are the asymptotically
rigid structures of D� , and the edges are of two types, corresponding to moves A and
Br .

� If r is an asymptotically rigid structure and  is an arc of r, the A–move on
 keeps unchanged all the arcs of r except  , and replaces  by  0 which is
transverse to  and passes through the same puncture as  (see Figure 27). Note
that there is a unique A–move on  .

� If r is an asymptotically rigid structure and p and q are two punctures of D�

on two different sides of a hexagon H of r, there is a simple arc e inside H

which connects p to q . Let �e be the braiding along e . The move Br changes
r by the natural action of �e on r (see Figure 27).

The complex CC.T �/ has the same types of 2–cells as CC.T ]/, except that the cell
AADBr of CC.T ]/ does not exist, and the pentagonal cell is replaced by a hexagonal
cell, expressing that a certain sequence of five A–moves produces the effect of a
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Figure 27: The two types of edges in C.T �/

Br –move; see Figure 28. As can be guessed, the relation which will be associated to
this cell is .ˇ�˛�/5 D �Œ04� ; see Lemma 2.6.

The Cayley complex of B1 , for the Sergiescu presentation associated to the graph
of D� (see Remark 2.7), provides 2–cells of C.T �/ which involve only Br –moves.
Among them are cells of commutation Br1Br2 DBr2Br1 , which provide countably
many T �–types of cells (that is, countably many cells in the quotient C.T �/=T �/. On
the other hand, the cells of the Cayley complex coming from the other types of relations
(that is, the noncommuting types) provide only finitely many cells in C.T �/=T �/. This
is due to the regularity of the graph from which the presentation of B1 is derived.
Therefore, just like C.T ]/=T ] , the quotient C.T �/=T � is made of countably many
2–cells Br1Br2 D Br2Br1 and ABr D BrA, plus finitely many other 2–cells.

Fortunately, the key role played by the 2–cell AADBr in the proof of Theorem 4.5,
especially in Lemma 4.4, is now played by the 2–cell A5 D Br : one eliminates
almost all the T �–types of 2–cells ABr DBrA and Br1Br2DBr2Br1 using cycles
A1A2 DA2A1 (the analogue of Lemma 4.3 is true) and Br DA5 . This enables us to
obtain a reduced complex C.T �/ which is finite modulo T � and simply connected.
These arguments constitute a sketch of the proof of the following theorem:

Theorem 4.9 The braided Ptolemy–Thompson group T � is finitely presented and
admits a presentation with 2 generators.
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Figure 28: Relation A5 D Br

5 Comments and open questions

Actions by homeomorphisms on S1 D Calegari [9] proved that punctured mapping
class groups have a faithful action by homeomorphisms on S1 . Specifically, let S

be a surface (possibly of infinite type) with a base point p . Let Mod.S;p/ be the
group HomeoC.S;p/=HomeoC

0
.S;p/. Here HomeoC.S;p/ denotes the group of

orientation-preserving homeomorphisms of S to itself which takes p to itself, and
HomeoC

0
.S;p/ denotes the connected subgroup containing the identity map. Then

ModS;p is circularly orderable. Notice that this punctured mapping class groups fits
into an exact sequence

1! �1.S/!Mod.S;p/!Mod.S/! 1

where Mod.S/ is the usual mapping class group of S .

In particular, there are extensions by free groups of the universal mapping class groups
B in genus zero, which embed in HomeoC.S1/, being circularly orderable. It seems,
however, that B does not act faithfully on the circle.

Smoothing the action It is presently unknown whether the group T ] admits an
embedding into some group of piecewise linear homeomorphisms PL�.S

1/ with
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break points and derivatives of the form �n , where n 2 Z. We conjecture that there
is no embedding T ]! Diff2

C.S
1/ into the group of diffeomorphisms of S1 of class

C2 . Specifically, any homomorphism T ]! Diff2
C.S

1/ should factor through a finite
extension of T .

Automatic groups Thompson groups are known to be asynchronous automatic groups
[26], but it is still unknown whether they are (synchronously) automatic. V Guba proved
that the Dehn function of F is quadratic, as is the case for all automatic groups. We
conjecture that T ] is automatic. Notice that braid groups and more generally mapping
class groups are known to be automatic [17; 34]. In particular, this would immediately
imply that T ] is finitely presented and has solvable word problem. We expect that the
conjugacy problem is solvable too, though it is presently unknown whether this holds
true for all automatic groups. Moreover, automatic groups are combable [17, page 84]
and hence they are FP1 and thus F1 , ie they have a classifying space with finitely
many cells in each dimension [17, page 220]. Eventually, the Dehn function of T ]

should be quadratic. If T ] is biautomatic then it would provide an example of such a
group having a free abelian subgroup of infinite rank.

Outer automorphisms groups It was first established by Dyer and Grossman that
Out.Bn/ D Z=2Z, for n � 4, and Ivanov and further McCarthy extended this to
mapping class groups. However, their result does not extend, as stated, to infinite braid
groups. In fact there exists an embedding

T ! Out.B1/

induced by the action of T ] by conjugacy on its normal subgroup B1 . In particular,
Out.B1/ seems to be a quite rich group.

On the other hand M Brin [6] proved that group Out.T / D Z=2Z. It would be
interesting to know whether Out.T ]/D Z=2Z holds.

Remarks 5.1 (1) Any diagram group (see Guba and Sapir [27]) can be embedded
into B1 (by a result of Wiest [39]) and thus into T ] . However, T ] is not
a diagram group since it has torsion. Moreover, T ] and the Brin–Dehornoy
braided Thompson group BV are the typical examples of some more general
braided diagram groups. The work of Farley on diagram groups extends to
braided diagrams and pictures [18]. In particular, each one of these groups acts
properly cellularly on a CAT .0/–complex, which is not locally finite. The
stabilizers of cells are isomorphic to braid groups (on finitely many strands).
One might expect these braided diagram groups to be finitely presented and even
FP1 .
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(2) The group T ] has not the Kazhdan property since T has not.

(3) If � is a lattice in a simple Lie group of and the Q–rank of � is at least 2 then
any homomorphism �! T ] should be trivial, since any C0 –action of such a �
on S1 is trivial, by a result of D Witte [40].

(4) There exist however homomorphisms from arithmetic groups of rank one into
T ] . In fact, Kontsevich and Soibelman recently constructed in [29] faithful
homomorphisms from an arithmetic subgroup of SO.1; 18/ into the braid groups.

(5) The group T ] is nonamenable and hence of exponential growth.
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