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Abstract

Let ¢ denote the Euler class on the space Hom(T',, PSL(2,R)) of representations of
the fundamental group I", of the closed surface %, of genus g. Goldman showed that the
connected components of Hom( Iy, PSL(2, R)) are precisely the inverse images e~ (k), for
2—2¢ < k £ 2g -2, and that the components of Euler class 2—2g and 2g — 2 consist of the
injective representations whose image is a discrete subgroup of PSL (2, R). We prove that
non-faithful representations are dense in all the other components. We show that the image
of a discrete representation essentially determines its Euler class. Moreover, we show that
for every genus and possible corresponding Euler class, there exist discrete representations.

1. Introduction

Let 2, be the closed oriented surface of genus g > 2. Let [, denote its fundamental
group, and R, the representation space Hom(T'y, PSL(2, R)). Elements of R, are determ-
ined by the images of the 2g generators of I',, subject to the single relation defining I',. It
follows that R, has a real algebraic structure (see e.g. [3]). Furthermore, being a subset of
(PSL(2, R, itis naturally equipped with a Hausdorff topology.

We can define an invariant ¢ : R, — Z, called the Euler class, as an obstruction class or
as the index of circle bundies associated to representations in R, (see [6, 10, 14]).

In [10], which may be considered to be the starting point of the subject, Goldman showed
that the connected components of R, are exactly the fibers e~ (k), for 2 — 2 kg2 -2
He also proved that e='(2g — 2) and ¢~!(2 — 2g) consist of those injective representations
whose image is a discrete subgroup of PSL(2, R). Milnor and Wood had previously proved
that the inequality |e(p)] < 2g — 2 holds for all p € Ry (see [14, 16]). Goldman [9]
(see also [11]) showed that every connected component ¢! (k) is a smooth manifold of
dimension 6g -3, except for the component ¢~' (0), whose singular points are the elementary
representations.

These connected components have been studied further. The group PSL (2, R) acts on R,
by conjugation, and the quotient of ¢~*(2 — 2g) (respectively ™' (2g — 2)) under this action
is the Teichmiiller space of I, (respectively, the space of marked hyperbolic metrics with
opposite orientation on ).
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Gallo, Kapovich, Marden and Tan [5. 15] showed that all the representations (in every
connected component of R,) satisfy a weaker metric condition. Indeed, every representation
in R, is the holonomy representation of a branched CP'-structure on I, with at most one
branched point in ,. Moreover, Tan showed that for every even k such that |k| < 2g — 4
there is an explicit non-injective representation in ¢~ (&), which is not the holonomy rep-
resentation of any branched hyperbolic structure on . However, this explicit representi-
tion can be deformed into representations which are holonomy representations of branched
hyperbolic structures on Zg. It is still unknown whether the holonomy representations of
branched hyperbolic structures on I, form a dense subset of R,.

In this paper we take a more elementary point of view. We often consider representations
as products of commutators in PSL(2, R), and most of our results involve explicit repres-
entations.

Qur first result is the following:

THEOREM 1-1. For all g > 2 and all k such that |k| < 2g =2, non-faithful representa-
tions form a dense subset of the connected component e (k).

Recently DeBlois and Kent IV [4] proved that the set of faithful representations is also dense.
as the intersection of a countable family of open and dense sets. This was independently an-
nounced by Breuillard, Gelander, Souto and Storm (see [1]). Therefore Theorem 1-1 shows
that the set of non-faithful representations should be thought of as QinR.

We then show that the Euler class of a discrete represeftation is essentially determined
by its image, as an abstract group. If T is a non-cocompact Fuchsian group, set e(I') = 0.
Otherwise, if (g; k;. ..., k) is the signature of the Fuchsian group I" (with all the &;’s finite),
let 4 be the Jeast common multiple of &1, ..., k. (putd =1 if r = 0) and set

(M =d (2g ~—2+Z(1 - }»{1—)) .
i=1 i

We have the following result:

THEOREM 1-2. Let p be a representation {in any R,) whose image is contained in T,
Then e(p) is a multiple of e(T'). Moreover, every nudtiple of e(T) is the Eunler class of some
representation whose image is exactly T'.

In particular, there are no representations of non-zero Euler class taking values in
PSL(2, Z). We deduce the following proposition:

PROPOSITION 1-1. Let k be a fived non-zero integer. There are only finitely many Fuch-
sian groups T such that there exists a representation (of Ty, for some g 2 2) with image
comtained in T and with Enler class k.

Moreover, we have:

PROPOSITION 1-2. Let ¢ = 2 and k € Z be such that k| < 28 -3,k % 0.The
representations whose image is discrete form a nowhere dense closed subset of e (k) in Ry.

In other words, there are few discrete representations of non-zero Euler class. On the other
hand, we have the following:

THEOREM 1-3. For every ¢ = 2 and every k such that |k} € 2g - 2, there exists a
discrete representation of Euler class k in R,.
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Those representations are given explicitly in terms of signatures of Fuchsian groups. In
particular, using Magnus’ results from [13], these representations can be expressed using
only matrices in PSL(2, Z[1]).

Finally, we deduce a characterization of representations of odd Euler class, which en-
ables us to describe all the subgroups of PSL(2, R) that are the image of some discrete
representation of odd Euler class (in some Rg). If T is a cocompact Fuchsian group with
signature (g'; ky, k2, ..., k), let m (") be the maximal power of 2 dividing one of the k;s.
Ifm() =0, setn(l") = 0. Otherwise, let 7(T") be the number of k;’s which are divisible by
27 We have then the following characterization:

PROPOSITION 1-3. A Fuchsian group I' C PSL(2,R) is the image of a representation
(of Ty, for some g 2 2) of odd Euler class ifand only if T is a cocompact Fuchsian group
stch that n(1") is odd.

2, The Lie group PSL(2, R) and Milnor's algorithm
2:1. The Lie group PSL(2, R)

We recall first some basic resuits on P SL(2, R) and we refer to [12] for a full treatment
of this subject.

The Lie group SL(2, R) is M e GL(2,R)|det M = 1} and PSL(2,R) is the quo-
tient SL(2, R)/{=£1} by its center. Topologically, SL(2, R) and PSL(2, R) are two three-
dimensional solid tori, and the projection map SL(2, R) — PSL (2, R) is a 2-sheeted cover.
We will denote elements of PSL(2, IR) by matrices, as if they were in SL (2, R).

£
IfM = (a (;) € PSLQ2,R), the homography z — (az +b)/(cz +d) is an isometry
c

of the upper half-plane model of the hyperbolic plane H2. This isometry of H? acts on its
boundary §' = R U {00}, still by homography. This defines an injection PSL(2, R) <>
Homeo™ (S'), which we will think of as an inclusion.

On PSL(2, R) only the absolute value of the trace is well-defined. If M e SL (2, R), we
denote Tr(M) = |i1(M )|. Elements of PSL(2, R) then fall into three types, Eil, Par and
Hyp, depending on their traces.

(i) If Tr(M) €[0,2) then M fixes a point in H® and acts as a rotation around it. The
matrix M is conjugate in PSL(2, R) to a matrix of the form (“;;:f} ;2;"09). It follows
that two such elements are conjugate if and only if they have the same (race (in
absolute value). Such matrices are called elliptic,

() UTe(M)=2and M + Iy, then M fixes no point in H? but fixes a unique point in its
boundary. Its orbits in H? are the horospheres defined by that fixed point. The matrix
is conjugate, in PSL(2, R), to a matrix ((; ;). Such elements are called parabolic.
Elements of Par fall into two conjugacy classes (over PSL(2, R)), depending on
the sign of 1.

chu shu

(iii) If Tr(M) € (2, +00) then M is conjugate in PSL(2, R) to ( ) for some

shu chu
# € R, and two such elements are conjugate if and only if they have the same trace.

The action of M on H? fixes two points in the boundary of H*. Those elements are
called hyperbolic.

Each of these three sets contains (together with /,) whole one-parameter groups, which
are determined by the fixed points described above,
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2-2. Milnor's algorithm

Now we describe Milnor’s algorithm for calculating the Euler class of a representation.
We refer to Ghys’ article [6] for a complete and detailed approach to this important way of
computing {or defining) Euler classes.

Topologically, the Lie group PSL(2, R) is a solid toru/s_,\_'@d T {PSLQ2.R)) = 2
Moreaver, for all A € PSL(2,R), taking a lift A € PSL(2,R) is the same as lifting
the homeomorphism A € Homeo™ (S) to a homeomorphism of the universal cover of the
circle. In other words, we have the following short exact sequence:

0 —» 7 —— PSLZR) —> PSLE2R) - L
N N
Homeo™ (R) Homeo (S

In the diagram above, the sign of the generator in 7 is determined by the choice of an
orientation of S'. As in [10], we will denote by z € PSL(2, R) the image of this generator
1el.

Note that, for all A € PSL(2, R), the choice of a lift A e P.S:—IT(_.’ZT R)}welbdeﬁned up
to a certain number of elementary translations z, which are central in PSL(2, R).

The Euler class ¢(p) of a representation p is computed in the following way. Consider the
standard one relator presentation of I'; given by

e = (ai,ag,...,ag,b;,bz...,bg |[ay. byllaa, bl -« - [ag, bel)-

For each generator x in the above presentation of I"y, choose an arbitrary lift p/(\;) €
PSL(2,R). Then e(p) is determined by means of the formula:

[p(an), P -+ - [play), pbg)]l = 2.
Obviously, e(p) does not depend on the choice of the lifts. Indeed, two lifts differ by powers
of z, which disappear in the commutators, because z is central in PSL(2, R).

3. Non-injective representations

In this section we give first an elementary proof of the following proposition, which is a
particular case of Theorem 1-1:

PROPOSITION 3-1. For all k such that \k| € 2g —3, e~ (k) contains an explicit open set
E, in which non-injective representations are dense.

We set E = {p € R |pla1) € Ell, p(by) € Ell} Ne' (k).
In order to prove the Proposition 3.1, we first need some preliminaries. We then state two
lemmas implying the proposition, and finally prove the two lemmas.

3.1. Preliminaries
LEMMA 3-1. Every hyperbolic element in PSL(2, R} is the conwutator of two elliptic
elements.

Proof, Let Ag= (CO_SQ - Sma) and U, = (1 ’). Then Tr([Ag, Us AgU_ D) =2 +
sind cos@ 0 1

(4¢2++*) sin® 0. This trace takes every value from the interval [2, -+oo), and the set [EIl, Ell]

is invariant under conjugation. Thus every hyperbolic element is the commutator of two

elliptic elements.
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Remark 3-1. It M € Hyp U Par, or equivalently, if M & Homeo™ (S') has a fixed point
in §', then there is a canonical lift A<* of M . in Homeo™ (R), which has fixed points in R.

Remark3-2. If A, B € PSL(2,R), A and B are defined only up to a power of the ele-
mentary translation z € Homeo™ (R), but the commutator IE, §] € PSL(2,R) is well-
defined and independent on the choice of lifts, because 7 is central in PSL(2,R).

PROPOSITION 3-2. For all ¢ € {—1,0,1} and for all M € Hyp, there exist A, B «
PSL(2, IR?.)NsLLc'h thgr [A, B] = M®™ . z*, Moreover, if[A, Bl = M then the only possible
values of [A, BI7'M™ are 27U 1 and 7.

Proofs of this important result can be found in {10, 14].
Another well-known result is the following:

PROPOSITION 3-3. If M € Hyp, A, B € Ell and [A, Bl = M then [A, B] = ffem.

Proaof. This ii, a cornqllary of Goldman’s main result in [10]. Indeed, suppose [;f \ §] +
M. Then [A, B = M*™" - 2% with § € {—1, 1}, N()’\;\:LA/I‘l € Hyp, so, by Proposition 3-2,

there exist C, D € PSL(2, R) such that [C, D] = M~1"™" . 2%, Hence [4, BJIC, D] = 2%,
so the formulas

plary = A, pb)) =B, plax) = C, p(by) = D

define a representation p of the fundamental group I'; = (ay, by, aa, b2 |[a1, by1[as, ba]) of
the genus two surface ,, of Euler class 25. Therefore, by [10, coroliary CT this representa-
tion is faithful and discrete, which contradicts the assumption A € Ell.

3-2. Proof of Proposition 3-1
LEMMA 3-2. For all p € E, there exists a path p, € Ry such that py = p and

d
ETr(pr {ap)) =+ 0.

Remark 3-3. We are not concerned with the derivability of the function r — Tr(p,(a,)),
but rather in the fact that it is not locaily constant.

LEMMA 3-3. The set E is not empty.

cosf  —sing

d
JOfF —T
sind cosé ) dt rei(an)
is non-zero, then the angle 6 corresponding to p,(«;) is rational for a dense subset of the

possible values of 7, hence the representation g, satisfies a relation of the kind pela)y' =1,
so that p, is not injective. Thus these two lemmas imply Proposition 3-1,
The two remaining sections consist of proofs of these two lemmas.

3-3. Proof of Lemma 3-2

Let A = p(a;) and B = p(d). Let B(¢) be the one-parameter subgroup of PSL,(R)
containing B. Thatis, B(0) = 1, B(1) = B and forall ¢ R, B(t) commutes with B, Set
A; = AB(t). Then [4,, B] = AB(t)BB(—1)A™'B~! == [A, B]. Thus the formulas

Anelement A € Ell is conjugate to a unique matrix

plar) = An, pilai) = play), fori 22, p(hy) = p(b,), forj = 1
define a representation g, & Hom(T';, PSL(2, R)). Moreover, py = .

1
We claim that %Tr(p, (1)) #+ 0. Up to conjugation — which does not change the value
Iy
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of the traces — we can write A in an adapted basis under the form A = (

() ()

calt)  cqlr)
functions. Set d; = ¢}(0). We compute

cosf ——sinB)
sing cosd )

In the same basis B(t) reads ( ), where ¢;(£), 1 £ j < 4, are suitable real

tr(AB()) = (1 (1) + ca(r)) cos @+ (ca(t) — c3(£)) sinB
and hence

I
%tr(AB([)) — (d + ds) c0s 8 + (dz — ds) sin .

It suffices to show that this derivative is non-zero. Notice that d, + dy = 0,and A € Elf
(which does not contain 1) so sin® = 0. Hence, the claim would follow if we proved that
dy == dy. Assume the contrary, namely that dr = ds. We develop B(r) up to second order
terms:

B() = |+ dit +ar? +0) dat + O(t%)

- dat + O(?) 1 —dit + pr2+0uH)”

Now, det B{t) = 1 —(a+B—d?—dH)t*+O(*) = 1, which implies that @+p > 0. Therefore,
for small enough ¢ = 0 (and thus for all £), B(1) is hyperbolic, which is a contradiction since
we assumed that B € Ell.

3.4. Proof of Lemma 33 !

If k] < 2g — 4, take a represeniation o’ € Ry of Euler class k. Assume that the
standard generators of Ty are denoted by the letiers a;, by, .. a,_;. b, inorder to avoid
confusion with the generators ai, 4z, .- - dys by of Ty. Choose an arbitrary A € Ell. Set p
for the homomorphism defined by the formulas

playy = plb)) = A, play) = p'lal_ ), plb)= o' (b_), fori =2

Then p € E.

If k| = 2g — 3, it suffices to consider the case k = 2g — 3. Then take a representation
p' € R, of Buler class 2g — 2. We can suppose (se€ &.2. [101) that p'([a1, 1)) is hyperbolic,
so by lemma 3.1 there exist A, B € Ell such that [A, B] = p'([ay, by]). The formulas

pla) = A, p(b)) = B and p(a;) = p'(a:), p(bi) = p'(by), for 2<i < ¢
define a representaiion p € Hom(T,, PSL(Z, R)). In order to prove that p € E, we need
to check that e(p) = k. But by maximality qf the Euler class of p’ and Proposition 3-2,
we know that [m3 ;’_(79_5] = p’m,])m . z, and by Proposition 3.3 we know that
LA B = p/lan bn) - Thus e(p) = e(p") — 1 =k, as claimed.

Our proof of Theorem 1.1 uses Theorem 1.3. We postpone the proof of both theorems to
the next section.

4. Representations with discrete image
4.1. Presenting lifts of Fuchsian groups into PSL(2,R)

Our main technical result, which will be used throughout this sequel, is the following:

LEMMA &-1. Let T be the Fuchsian group with signature (g ki, ..., by, 00, ..., 00).
[ES——

1t
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Then the lift I of I'in P S'EEZR) has the following presentation:

:q,z“'qf[,...,zbgz*‘bg'. >

T ={g T M« PRSI , TR ! 3 Tyepr
(“ irs § qf'z,...,qf'z,ql---q,.{m,bl]"-[ag,bg]z"" o

Proof. Take a Poincaré fundamental domain of I" in the hyperbolic ptane H?. According
to Katok’s notations ({12]), we have the following picture in the example case where g=2,
r=4d,k >2fori =1,2 3and ky = 2:

Here g; is the only element of PSL(2, R) sending &/ to &;, and similarly a; (¢f) = @; and
bi(B)) = Bi.

Now consider the identification of P $L (2, B) with the unit tangent bundle SH? of the hy-
perbolic plane H? (see [12, theorem 2-1 -11). Fhen the universal lift P S’L_EE,‘R) of PSL(2,R)
can be viewed as the unit tangent bundle SH? together with an index number, And lifting
elements of PSL(2,R) to SL(2.R) is Just taking the index number modulo 2. Given our
prefered presentation of T, in order to determine a presentation of T we just have to know

how the relations lift. One may lift ¢; to the rotation of positive angle 2 /k;, so that qf

makes one (positive) turn around W,. Hence the relation qf‘ lifts to qf’z" inP m R). We

now have to determine the lift of the long relation g, - - - ¢, la,, o] - - - [ag, be]in F.
For this, we consider two vectors s; and 5] based at each point V; or W;.
The element «; is defined (see [12]) as the only element of PSL(2, R) sending o) to a;;

we choose its lift in PSL(2, R) to be the transformation of SH? sending s4e._4;43 to sgg_‘“. 42

The same element also sends S‘;gmm— +4 10 S4p_4i4s. Similarly, for the lift of b; to PSL(2, R},
take the transformation of SH? sending s";gm‘” +3 10 Sag_girq and Syp_yi42 1O Sf;g%;,- +1- Then
br'(s)) = 52, ail(s)) =s,..., 41{S4g4,) = 51. Now define ©;: SH? ~» SH? by ©;(p, v) =
{p. v-6;). Then ©;(s;) = s{, and ©; is central in PS’EE?TR). Moreover, @41, 0+ 00 =
z, or equivalently, ij{'@l = 27 (by the Gauss-Bonnet formula (see also [12, theorem
4-3-21)). Now, if the element G qela, by [ay, b,] caused, say, n turns in the index
(ie.q1---g-la, b)) [ag, b] = =), then we make # + 1 turns after following the arrows
51582, 8h, ..., s,;‘k, +r»$1 and back to s;. Now we need just compute this index in order to find 1.
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The simplest way to do this is to extend our arrows to a vector field whose only singular
poinis in the surface H?/ T are the central point © in the center of our fundamental domain,
and the point W coming from the V,’s and W;’s. The index of this vector field at the point O
is —(n + 1) (the arrows point towards 0O, hence the minus sign) and, since Z;‘;";"e,- = 2m,

the index at W is 1. Hence, by the classical Poincaré-Hopf index theorem,
—m+D+1= x(E;) =2g—2+r.len=2¢ —24r
This gives the following presentation for T

- —1,,-1 =131
~ 1z ,...,Zbgz b, s
I'=1{qg gry Jho 2| & ' : 8
yeany e g [T k-1 22—y
qll" !"‘9q,l]-" » '"qr[ahbl]"'[a;{!bg]-‘ #

which is obviously equivalent to our statement (replace z~! with z).

Remark 4-1. We could also count this index geometrically. First suppose for simplicity
that ¢ = 0. Then the tail of our vector pointed to the center of the fundamental do-
main exactly once for every rotation, thus r times. And we also turned around this cen-
ter once negatively, so the index isr—1.Thusn =r —2,0r equivale%ﬁe element
g oegelar, ] [ag, by Tifts to q ---q,.[a],b;]---[ag,bg]z""'"2 in PSL(2,R). In the
general case (g > 1) one notes that each of the commutators [a;, b;] gives two positive
turns to OUr arrow.

4.2, The Euler class is determined by the image, for discrete representations

We will present here the proof of Theorem 1.2. Consider a Fuchsian group " with

signature (g; ki, - .. Jkj o0, 00 Hr F [, sete(ly = 0. Otherwise, let d be the least
Mt i
r=!
common multiple of &y, ..., ky (putd = 11ifr = () and set

e() = d(Zg —2+Z(1 - {-))
j=1 {

PROPOSITION 4-1. Let p be a representation of some Ty whose image is contained in T.
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Then e(p) is a multiple of e(T"). Moreover, every mudtiple of e(T") is the Euler class of some
representation whose image is exactly I".

Proof. It follows from Lemma 4-1 that H'! (F) has the following abelian presentation:

-~ g 3 | b
H[(l")=<q1,...,q,-,a;,...,bg,z 4V'ze iz q g2 ”*“‘)

where all generators are supposed to commute with each other, and this is recorded by using
the superscript ab on the right-hand side.

We just need to show that the subgroup (z) generated byzin H! (1") is exactly Z/e(IM)Z,

where ¢(T") = d(2g — 2+ 3} ](1 — 1/k)). Now z¥ = 1 in #Y(T) if and only if z¥isa
product of relations q[ . q! "z and g; - - - ¢,z in the abelian group HY(T).
Let us write these relatrons as column vectors in terms of the generators ¢, . . ., g, and z

(in the case / = r):

ky 0 ... 0 1

o 0

O ... 0 L I

I 1 ... 1 2e—-2+4r

Now, suppose that z¥ = 1, i.e. there exists a linear relation

0 &y 0 0
0 0 ks : 1
3 ST N RS L RS I Y :
0 0 : k, 1
N 1 1 1 20 —2+r

with oy, ..., @, B integers. Then, ki + 8 =0, ..., ke, + B = 0. Hence, B is a multiple
of each of the ki’s, i.e. § = nd forsome n € Z. Therefore o; = —ndfk;. Now,

N =a+-- 4o, +B02g—2+7)

P

:;1d(23—2+1'—2kl)—i1c1(2g 2+~Z( ;))

i=1 t

Conversely, we can write z*“7” explicitly as a product of commutators, as it will be done
in the next remark. This defines a representation of Euler class ne(I") having its image
contained in I'. Now, to find a representation whose i image is exactly I", just multiply z"¢™
by [q1, 1]+~ [gr. g e, a1l - - - [By, b,] (as in Remark 4.7). This yields z**(7 as a product
of commutators, thus defining a representation of the group of some surface X, of Euler
class ne(I}.

And in the case / < r, the rth line simply gives § = 0, so that N = 0, which completes
the proof.

Remark 4-2. Given a Fuchsian group I", let G(T", 1) be the minimal genus such that there
exists a representation p € Rgqry of image (contained in) I' and Euler class ne(I"). The
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Milnor—Wood inequality together with explicit formulas give the rough inequalities

e(I)

n +1< G n) < ndg +r".

Indeed, write z"") as a product of G (I', 1) commutators in T then ne(I) < 2G(I". n) — 2,
ie. G(T,n) = ne(IN) /24 1. Concerning the upper bound, one can check by induction on d
that the prqsiuct {q - -‘q,-)q]"“' . »-q,_“" can be written as a product of r¢ commutators.

—ntd

Now in T (q---gregz¥ 2y =1 so (g~ greggr™ g =z and
(qi - qre)" g™ - - g™ can be written as the product of ndg + ™! commutators.
It is quite easy to refine these inequalities; however, we do not have sharp estimates for

G, n).

Remark 4-3. The term 2g —2+ Y "i_,(1—1/k;) is the volume of the Poincaré fundamental
domain of the Fuchsian group I (see e.g. [12]). In particular, it is positive; hence e{l") isa
positive integer if I is a cocompact Fuchsian group.

Remark 4-4. Of course, [ = r if and only if T is non-cocompact. In this case, there is
another reason for every representation taking values in I' to have zero Buler class, If T' is
non-cocompact, then A 2(I") = 0 (since the surface 2/ T is not compact). And we have the
following:

4.3. Restrictions on Fuchsian image groups for fixed Eulér class

PROPOSITION 4-2. Let T be any group injectively mapped in PSL(2,R) such that
H(T") = 0, and let p be a representation with image contained in T Then e(p) = 0.

Proof. The short exact sequence 0 — 7 —» T — I' = 0 is a ceniral extension so the
corresponding spectral extension is exact at its end (see e.g. [2]):

s HA(I) —> H'(Z) — HY(T) — -

Now, H'(Z) = Z and the image of any non zero n € H'(Z), is not zero since HY(I) =0.
In other words, in T no power of z is a product of commutators.

Remark 4-5. However, there exist groups I, embedded in PSL(Z, R), with H Iy #*
0 such that every representation taking values in I’ has Euler class 0. For instance, every
realization of Z2 in PSL(2,R) is in a one-parameter subgroup of PSL(2, R), and hence
every representation taking values in 72 ¢ PSL(2,R) is elementary and thus has Euler
class 0.

On the other hand, many groups are the image of some representation of zero Euler class:

Remark 4-6. For every finitely generated group G C PSL(2,R) with generating system
X1, ..., Xy, the relation [xr,xp] - Txg gl = 1 defines a representation p: I'y —> PSL2.R)
whose image is G, in the following way:

ola) = xi, plhiy = xp forl i< g
In other words, every finitely generated subgroup of P§ L(2,R) is the image of some rep-
resentation of Euler class 0.

Remark 47. Given two representations p € Ry, o € Ry, we have [pay), ptb)].--
[play), plbe)] = 1 and [p(a), p(B] - - [pla)), plby)] = 1 so[plai). p(b)] -+ - Lpla).

w
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p(b;,,)] = 1. This defines naturally a representation in Rg.y. This construction, together
with the preceding remark, shows that there are also many subgroups of PSL(2, R) arising
as the image of representations of non-zero Euler class, even in a fixed R,.

Now we prove Proposition 1-1.

PROPOSITION 4-3. Let k be a fixed non-zero integer. There are only finitely many Fuch-
sian groups T' such that there exists a representation of Uy, for some g = 2, with image
contained in I" and with Euler class k.

Proof. In other words, we have to show that ¢(I") < & holds true only for finitely many
cocompact Fuchsian groups I'. We will prove that the inequality

. I
0 <d(2g —2+§(1 - A—)) <k
implies that g, r and d are bounded in terms of &. Since o 2 k; for alli < r, every integer
from the signature of I" will take only finitely many values.
First, k; 2 2foralliso 33 (1 — 1/k) 2 r/2,andd > 1sok 2 2g — 2+ r/2, ie.
4g +r £ 2k + 4. Thus r and g are bounded. We claim that d < 424,
(i Ifg 2 1thenk > d(/2). If r = 0 then we have d = I, otherwise £ = d/2 so
d < 42k,
(i) Suppose g = 0.Ifd > 4k, then —2+ 3 ;_ (1 — 1/k) < 1/4s0 =2 — (+/2) < 1/4,
hence r < 4. But =2+ 377 (1 — 1/k;) > 0 (see Remark 4-3) so r > 3. Therefore,
it suffices (o consider the cases » == 3 and 1 = 4.
(@) Ifr =4, then2 — 1/ky — [ /ky — 1 /k5 — 1/ks > 0 and k; = 2. Hence, one of
the &;’s is greater than 3. Therefore, 2 — 1ky — 1/ka — 1/ks — 1/ks = 1/6,
and hence ¢ < 6k.
(b If r == 3, then 1 — 1/k, — 1 /ky — 1/ks > 0. First suppose that ki, ks, k3 > 3.
Then one of the ;s is greater than 4, and hence 1 — V=1 ky—1/ks = 1/12,
so d < 12k, The only remaining case is when one of the ki’s, say ki, equals
2. We then have 0 < d (1/2 — 1/k; — 1/ky) < k. Thus, &, k» = 3. And if ki,
ky 2z 4, the condition 1/2 — 1/k, — 1 /k, > 0 forces one of ki, ka2 to be at least
5,sothat 1/2—1/k; —1/ky 2 1/20 50 d < 20k. Hence, we may suppose that
ky or k; (say, k) equals 3. Now, 0 < d (1/6 — 1/k)) € kand hence d < 42k,

COROLLARY 4-1. No Fuchsian group can be injectively mapped into infinitely many
Fuchsian groups. Moreover, If T can be a sub-Fuchsian group of T then (') divides e(T).

Remark 4-8. However, we can produce chains of inclusions of Fuchsian groups, of arbit-
rary length. For instance, one may check easily that (2¢; ~) < (2071, 2) e (262, 4) s
- (120,

44, Paucity of discrete representations

PROPOSITION 4-4. Let g = 2 and k be such that |k| < 2g~3, k & 0. The representations
of discrete image form a nowhere dense closed subset of et (k) in Ry.

Proof. First, we show that the set of discrete representations is closed in ¢! (k). For this,
we recall Jgrgensen’s lemma (see e.g. [12]). If A, B € PSL(2, R), we set J(A, B) =
[Tr*(A) — 4| + [Tr([A, BT) ~ 2I.
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LEMMA 4.2, If (A, B} is a non-elementary discrete group, then J(A, B) = 1.

Now, let p, be a sequence of discrete representations of Euler class &, which converges
pointwise to a representation p. Then e(p) = k + 0. Therefore, the representation p is not
elementary. Thus, there exist Ty, 72 € p(T,) such that [T}, T>] = 1. Suppose that p is not
discrete. Then there exists a sequence §, & p(Ty), 8, # 1, converging to 1 in PSL(2, R).
Hence, there exists N 2 Osuchthat J (Sy, T1) < land J(Sy, T») < 1. Now, P, converges Lo
p pointwise so there exists ng = Oand s, ¢, 1 € Pu(Fy) such that J (s, 5,) < 1, J(s,12) < 1
and [1, -] % 1 (since these three conditions are open conditions). But this contradicts the

assumption that p,, has discrete image.
Now we show that the closed set of discrete representations of Euler class 4 is nowhere

dense. For this, we show that it is the union of a countable family of closed and nowhere
dense sets. Hence, by Baire’s theorem, its complement is a dense set.

Every discrete representation splits in the following way: I“g—h>1“ — PSL(2,R), where
there are only finitely many groups I" possible. Now, for each Fuchsian group T, the set of
morphisms /1 : I'y — T is countable. And the set of injective representations with discrete
image I' — PSL(2, R) has an algebraic structure, similar to that of R,. When it is pulled
back by a morphism /1 : 'y — T', we obtain an algebraic subset of R, of codimension at
least 1. It follows that for a fixed Ay : I'y — T, the set of representations p which factorize
through /4y is a closed and nowhere dense subset of R,. Now, the union of these sets, over
the countable family of possible " and 71, is the set of discrete representations. As claimed,
it is a countable union of nowhere dense subsets of e™! (k) c Ry.

Remark 4-9. In the set ¢~ '(0), the subset of representations with discrete image is not
closed. Indeed, let #:T, — Z? be a surjective mapping and let ¢ € R be an irra-
tional number. The number ¢ can be approximated by rational numbers ¢, /v,, with
ged(,, ¥,) = 1. Let R{r) be a hyperbolic one-parameter subgroup of PSL(2, K). Define
¢ Z? > PSL(2,R) by ¢,(1,0) = R(1) and ¢,(0, 1) = R{g, /). The representations
¢y ol: 'y = PSL(2, R) are elementary hence their Buler class is 0. Moreover, they are all
discrete. But they converge to a non-discrete representation.

4-5. Existence of discrete representations with prescribed Enler class
Now, we prove Theorem 1-3.

PROPOSITION 4.5, Forall g 2 2and2—2g < k < 2g ~ 2, there exists a representation
p € Ry with discrete image and Euler class k.

Proof. First, if p is a representation of I, of Euler class £, then p'(¢;) = plbe_i), p'(b;) =
plag—;) defines a representation of Iy, of Euler class —k, by Milnor’s algorithm. Thus we
Jjust need to consider the case &k = 0.

If % is even, set k == 2/. Notice that / + 1 < g, by the Milnor-Wood inequality. Take a
representation in the Teichmiiller component of the surface of genus / + 1. Its Euler class is
2(/+1)—2 = k. Now extend it by identity elements (as in Remark 4-7) to get a representation
of T'y. Tt still has discrete image, and by Milnor’s algorithm its Euler class is 4.

Similarly, for an arbitrary g, it suffices to find a representation of Euler class 2g — 3 in
order to cover the case of odd k. We will extend it to representations of higher genus and the
same Euler class, by using identity elements.

(i) If g is even, say, g = 2g’, consider the Fuchsian group I of sigw (g 2). We
then have the following relations that hold in the lift T of T to PSL(2,R): g°> =z,
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gc = 2*~', where ¢ is the product of the g’ commutators defining the Fuchsian
group I". Now, z is central in PS@TR) 0 cq = z?*'~!, and hence cqlc = %2,
ie ¢ = z%~3 = %3 This relation enables us to write the element z2¢~3 using
2g’ = g commutators in the Fuchsian group I" of signature (g": 2), and this defines
a representation of I'y of Euler class 2g — 3. Its image is a subgroup of I, hence
discrete. Actually, its image is precisely T

(ii) If g is odd, say g ’=_\2—gf’ -+ 1, consider the Fuchsian group I' of signature (g'; 2, 2, 2).
Inits lift T in PSL(2, R) we have the following relations: ¢; =z, ¢ = z, ¢3 = z,
qiq2q3¢ = z%F! where ¢ is once again a product of g’ commutators. Now, z is
central 50 qaq3cg; = 2%+ Thus ¢yg30qzq3¢ = 2%+ and hence

%

T'=45"45 a3 =070 020505 47 cqaqse = [a57, 4571 ((@agn) ™ eqaga)) .

This implies that %'~ is the product of 2¢’+-1 commutators, because the conjugation
by ¢1¢2 enters the product of commutators ¢. Thus we obtain a representation of Iy
of Euler class 4g" — 1 = 2¢ — 3. Moreover, we can check that the image of this
representation is the group I'.

4-6. Non-faithful representations are dense in every non-Teichmiiller component

We will now prove Theorem 1.1, which, for the sake of completeness, we restate here:
PROPOSITION 4-6. For all g 2 2 and all k such that |k| < 2g — 2, non-injective repres-
entations form a dense subset of the connected component ¢ (k).

Proof. Suppose the contrary. Then there exists an open set V C R, consisting only of
injective representations of Euler class & (|k] < 2g — 2). Let py € V. The representation
Po is not discrete, so there exists x & [y such that pp(x) € ElI (see e.g. [12]). And py is
faithful so Tr(pg(x}) € [0, 2) = 2cos @y, with &, irrational (otherwise, po(x) would be of
finite order, which is impossible since ', is torsion-free). Now o > Tr(p(x)) is continuous,
so the angle @ has to be constant on V' in order to keep being irrational. Hence the algebraic
function Tr{(x)} is constant on the open set V of the algebraic set R,. Hence it is constant
on the whole connected component ¢~'(k), since this connected component is contained
within one irreducible component of the algebraic set R, (see [4]).

It follows that for every p € ¢7'(k), p sends x to an elliptic element corresponding
to an irrational angle. In particular, p cannot have a discrete image. But this contradicts
Theorem 1-3.

Remark 4-10. As it was pointed out in [1, 4], injective representations form a dense subset
of R,. Therefore one may understand the set of non-faithful representations in ' (k), for
|k] < 2g — 1 as Q in R. A very comparable result has been recently proved by Glutsyuk in
[7], for the set of representations of free groups into general Lie groups, thereby answering
a question of Ghys.

3. Representations of odd Euler class

The case of odd Euler class is somewhat simpler than the general case. Even though the
following results can be deduced from the latest part, the approach is often more elementary.
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5-1. A cohomological criterion
The commutator map

SL(2,R) x SL(2, B) —» SLZ,R)
A, B+ [A, B]

defines an application

PSL(2,R) x PSL(2, R) —» PSL(2, R)
A, B — [A, B].

Hence, there exists a continuous function &: R, — {—1, 1} such that for all pER,,

Lodan), p(b)] - -[p(ay), p(b)] = e(p).

PROPOSITION 5-1. For all # € Hom(Ty, PSL(2,R)), ¢(p) = (=D svhere e(p) is
the Eunler class of p.

Proof. This follows directly from Milnor’s algorithm: the element - maps to —1 in
SL(2, R).

In particular, this gives a decomposition of R, into two sub-varieties of (SL(2, R))%s.
One of them is defined by the equation [x|, yile- - [xg, ¥¢] = 1 and the other is defined by
e, 3l [xg, ¥eI = —1. These two algebraic varieties ate irreducible. In fact the invariant
&(p) is precisely the second Stiefel--Whitney class wa(p) (see [4, 9, 10]).

COROLLARY 5-1. Let " be subgroup of PSL(2, R) of finite type and let T be its fift to
SL(2,R) containing —1. (Note that this is well defined.) Then the two following assertions
are equivalent:

(i) there exists p € Ry of odd Euler class and whose image is T,
(i) —1is a product of commutators in T, ie —1 maps to the newtral element in H'(T").

Proof. 1f there exists a representation £ € R, of odd Euler class whose image is " then
by Proposition 4-1, [ola)), p(b,)}---[p(a_q),p(bg)] = —1 50 —1 is indeed a product of
commutators in the image of p.

Conversely, suppose —1 is a product of commutators in the group I', namely that
Ly, yi]- - [xg, yo] = —1.Letz, ..., z, be a system of generators of I'. Then using the re-
lation [xy, ¥,]--- Leg, vellz1, 201+ [2,, z;] = 1, one defines a representation p of (Zgin).
whose image is exactly I".

COROLLARY 5-2. There are no representations of odd Euler class whose image is in
PSLQ2, 7).

Proof. The element —1 « SL(2,Z) maps to a non-trivial element in the group
HYSL2,2)) ~ Z/12E.
5-2. An explicit example

We can use this characterization to give an explicit example of a discrete representation
of odd Euler class as follows. Let I" be the Fuchsian frian gular group of signature (0; 2, 3,7,
Then I has the following presentation:

I =g, g2, g3 Jfff =1,¢; = Lagj =1,q1g2q5 = 1}-
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Its lift T" then has the following presentation:

~ I =1, hg, = qih, hgs = guh, I = ¢3h,
Fw(ql,qz,qs,hl g1 = qih, hqz = g2h, hgs = ¢ )

43 = WP g = P q] = 0%, grgags = hP

One can replace g2 and g3, respectively, by g/ and g3, 10 get B2 = B3 = 1, and then
replace ¢ by g1/ to get 8 = 1 in this presentation. Now, if we had B =0, this would mean
that ¢; has order 2 in SL({2, R} and thus is equal to | or —1, and hence is 1 in PSL(2, R),
which is not the case. Thus 8 = 1 (mod 2). Finally, we get the following presentation of T

I'= <f1:,qz,q3,h

I =1, g =qih, hg, = Gah, hg; = q3lz.,)
gi=hag =1ql=1qqpqp=1 '

Consider now H'(T). In this SrOUp, q1¢2g5 = 1 50 (1g2g3)" = 1 = ¢Pqdq2 =
Rl = hh™® = hsoh = 1 in H'(T). Equivalently, —1 is a product of com-
mutators in I'. In the same way as in Remark 4-3, we can explicitly write —1 as a product of

commutators, thus defining a representation of some I'yin PSL(2, R).

5-3. Discrete representations of odd Euler class

If I' is a cocompact Fuchsian group with signature (g; &y, ks, ..., k), let #{I) be the
maximal power of 2 dividing one of the &;s. If m() = 0, set a(I") = 0. Otherwise,
let #{I") be the number of k;’s which are divisible by 2", We then have the following
characterization:

PROPOSITION 5-2. A Fuchsian group T C PSL(2, R) is the image of a representation
of Ty, for some g, with odd Euler class, if and only if T Is a cocompact Fuchsian group such
that n(I") is odd.

Proof. This may be deduced directly from Proposition 4.1, but we give a slightly different
proof here. First, by Remark 4-4 (or Proposition 4-1), T" has to be cocompact (otherwise
HXT'y=0and ¢(p) = 0).

Now, let T be a cocompact Fuchsian group, with signature (g; k|, k2. . .., k). This means
that I" has the following presentation:

T‘=(q],qz,...,q,.,a,,,..,bg[qf',...,qf*,ql---q,.[al,bl]---{ag,bg]).

Now using Lemma 4-1 and the fact that #2 = 1 here (we are in SL(2, R) and not in
PSL{(2, R)), we get the following presentation for the lift T* in SL(2, R):

hgh gt L, hb =71, B2, q?’h, - qf’h,)_

~

F:(q;,...,q,.,al,...,bg,h

g

qr---gelay, byl - [ag, by Jh"
It follows that the abelianisation of T* has the following abelian presentation:
H[(F) = {f[]-, N h lh:"-’ (lflh’ o qﬁ',h, g - ‘qrh,—):lbl

Now reorder the ¢;’s so that the powers of 2 dividing £; are decreasing. For 1 <7 < r, let
k; = 2% vy; with v; odd. In particular, i; = m(T) if 1 <7 < n(D).
. . W] N
(i) First suppose that n(I') is odd. Then (g1 q.h")* EE ey VTl S N 1in

HYT,
(ii) Assume now that #2{I") is even. Then we will define a morphism ¢ /' (FI'V‘) - 8 =
{zeC:|z| = 1}).First, let ¢ (h) = -1 Next,ifi 2 2, let ¢(g;} = exp(im /2"). Then

qb(qf’ h) = —exp(imk; /2") = exp{im(l + v;)) = 1. If n(I") = 0 (or equivalently, if
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all the ;s are odd), set @{g;) = —1I. Then one may easily check that qb(qf'h) =1
and ¢ (q,---¢.h") = 1, so our morphism ¢ is well-defined. Otherwise, let ¢(g,) =
exp(—im /2" ((n — 1) + 2"y 4+ Doiens1 2"7Y). Then once again we can check that

qb(qf‘/r) = 1 and that ¢,£f]1 coeq i) = 1, so our morphism is well defined. This
proves that 1 % | in H'(T).

Remark 5-1. As in Remark 4.3, in the case # = [ in HYT), we can define an ex-
plicit representation of odd Euler class, whose image is I'. This is done by writing
(g q:Yqr¢ - g7, with ¢ = 2m()y, ... ., as a product of commutators,
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