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ON SMOOTH MAPS WITH FINITELY MANY
CRITICAL POINTS

DORIN ANDRICA and LOUIS FUNAR

Abstract

The minimum number of critical points of a small codimension smooth map between two manifolds
is computed. Some partial results for the case of higher codimension when the manifolds are spheres
are also given.

1. Introduction

If M,N are manifolds, possibly with boundary, consider maps f : M −→N with
∂M = f−1(∂N) such that f has no critical points on ∂M . Denote by ϕ(M,N) the
minimal number of critical points of such maps. The reader may consult the survey
[3] for an account of various features of this invariant (see also [24]). Most of the
previously known results consist of sufficient conditions on M and N ensuring that
ϕ(M,N) is infinite.

The aim of this paper is to find when non-trivial ϕ(Mm, Nn) can occur if the
dimensions m and n of Mm and Nn, respectively, satisfy m � n � 2. Non-trivial
here means finite and non-zero. Our main result is the following.

Theorem 1.1. Assume that Mm, Nn are compact orientable manifolds and
ϕ(Mm, Nn) is finite, where 0 � m − n � 3 and (m,n) �∈ {(2, 2), (4, 3), (4, 2), (5, 3),
(5, 2), (6, 3), (8, 5)}. If m− n= 3, then we also assume that the Poincaré conjecture
in dimension 3 holds true.

Then ϕ(Mm, Nn) ∈ {0, 1} and ϕ(Mm, Nn) = 1 precisely when the following two
conditions are fulfilled.

(i) Mm is diffeomorphic to the connected sum N̂�Σm, where Σm is an exotic
sphere and N̂ is an m-manifold which fibers over Nn.

(ii) Mm does not fiber over Nn.

Proof. The statement is a consequence of Propositions 3.1, 4.1 and 5.1.

Remark 1.1. (i) The second condition is necessary, in general. There exist
examples of connected sums N̂�Σm which fiber over N , yet they are not
diffeomorphic to N̂ . In fact, the exotic 7-spheres constructed by Milnor in [20]
are pairwise non-diffeomorphic fibrations over S4 with fiber S3.

(ii) However, if the codimension m − n is zero, then we believe that the second
condition is redundant, that is, if Mm is diffeomorphicto N̂�Σm and Mm is not
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diffeomorphic to N̂ , then Mm cannot be a (smooth) covering of N . This claim
holds true when Nn is hyperbolic, for all but finitely many coverings N̂ . In fact,
Farrell and Jones [13] proved that a finite covering N̂ of sufficiently large degree of a
hyperbolic manifold Nn has the property that N̂�Σ admits a Riemannian metric of
negative curvature but it does not have a hyperbolic structure. In particular, N̂�Σ
is not a covering of N and hence ϕ(N̂�Σ, N)= 1. Conversely, if ϕ(Mn, Nn) = 1 and
Nn is hyperbolic, then Mn cannot be hyperbolic. Otherwise Mostow rigidity would
imply that Mn was isometric and hence diffeomorphic to N̂ .

(iii) The theorem holds true for non-compact manifolds M and N if we define ϕ
by restricting ourselves to those smooth maps which are proper.

(iv) In most of the cases excluded in the hypothesis of the theorem, one can find
examples with non-trivial ϕ(Mm, Nn) � 2 (see below).

(v) One expects that, for all (m,n) with m−n � 4, such examples abound. This
is the situation for the local picture. The typical example is a complex projective
manifold X admitting non-trivial morphisms into CP1.

(vi) The case n= 1 was analyzed in [25], where the authors proved that
ϕ(M, [0, 1])= 2, for any non-trivial h-cobordism M .

Most of this paper is devoted to the proof of Theorem 1.1. In the last part we also
compute the values of ϕ(Sm, Sn) in a few cases and look for a more subtle invariant
which would measure how far a manifold is from being a covering of another one.

We will consider henceforth that all manifolds are closed and connected unless
the opposite is stated.

2. Elementary computations for surfaces

Patterson [23] gave necessary and sufficient conditions for the existence of a
covering of a surface with prescribed degree and ramification orders. Specifically,
his result can be stated as follows.

Proposition 2.1. Let X be a Riemann surface of genus g � 1. Let p1, . . . , pk

be distinct points of X and m1, . . . ,mk be strictly positive integers so that

k∑
i=1

(mi − 1)= 0 (mod 2).

Let d be an integer such that d � maxi=1,...,k mi. Then there exists a Riemann
surface Y and a holomorphic covering map f : Y −→X of degree d such that there
exist k points q1, . . . , qk in Y so that f(qj)= pj , and f is ramified to order mj at
qj and is unramified outside the set {q1, . . . , qk}.

Observe that a smooth map f : Y −→X between surfaces has finitely many
critical points if and only if it is a ramified covering. Furthermore, ϕ(Y,X) is the
minimal number of ramification points of a covering Y −→X. Estimations can be
obtained from the previous result. Denote by Σg the oriented surface of genus g.
Denote by [[r]] the smallest integer greater than or equal to r. Our principal result
in this section is the following.
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Proposition 2.2. Let Σ and Σ′ be closed oriented surfaces of Euler
characteristics χ and χ′, respectively.

(i) If χ′ > χ, then ϕ(Σ′,Σ)=∞.
(ii) If χ′ � 0, then ϕ(Σ′, S2) = 3.
(iii) If χ′ � −2, then ϕ(Σ′,Σ1) = 1.
(iv) If 2 + 2χ � χ′ < χ � −2, then ϕ(Σ′,Σ)=∞.
(v) If 0 �| χ |� | χ′ |/2, write |χ′| = a|χ| + b with 0 � b < |χ|; then

ϕ(Σ′,Σ)=
[[

b

a − 1

]]
.

In particular, if G � 2(g − 1)2, then

ϕ(ΣG,Σg) =
{

0 if (G − 1)/(g − 1) ∈ Z+

1 otherwise.

Proof. The first claim is obvious.
Further, ϕ(Σ′, S2) � 3 because any surface is a covering of the 2-sphere branched

at three points (from [2]). A deeper result is that the same inequality holds in the
holomorphic framework. In fact, Belyi’s theorem states that any Riemann surface
defined over a number field admits a meromorphic function on it with only three
critical points (see, for example, [30]).

On the other hand, assume that f : Σ′ −→S2 is a ramified covering with at most
two critical points. Then f induces a covering map Σ′ − f−1(E)−→S2 −E, where
E is the set of critical values and its cardinality |E| � 2. Therefore one has an
injective homomorphism π1(Σ′−f−1(E))−→π1(S2−E). Now π1(Σ′) is a quotient
of π1(Σ′ − f−1(E)) and π1(S2 −E) is either trivial or infinite cyclic, which implies
that Σ′ = S2.

Next, the unramified coverings of tori are tori; thus any smooth map f : ΣG −→Σ1

with finitely many critical points must be ramified, so that ϕ(ΣG,Σ1) � 1, if G � 2.
On the other hand, by Patterson’s theorem, there exists a covering Σ′ −→Σ1 of
degree d = 2G − 1 of the torus, with a single ramification point of multiplicity
2G − 1. From the Hurwitz formula, it follows that Σ′ has genus G, which shows
that ϕ(ΣG,Σ1) = 1.

Lemma 2.1. ϕ(Σ′,Σ) is the smallest integer k which satisfies[[
χ′ − k

χ − k

]]
� χ′ + k

χ
.

Proof. Suppose that ΣG is a covering of degree d of Σg, ramified at k points
with the multiplicities mi = d − λi, where 0 � λi � d − 2. If one sets λ =

∑
i λi,

then λ satisfies the obvious inequality

λ � k(d − 2).

Further, the Hurwitz formula yields the identity

d(k − χ)= k − χ′ + λ.

Conversely, if there are solutions (k, λ, d) of the two equations above, with k, λ �
0 and d � 1, then one can find integers mi, λi as above and therefore one can
construct (using Patterson’s theorem) a ramified covering Σ′ −→Σ of degree d, with
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k ramification points of multiplicities mi. Therefore, ϕ(Σ′,Σ) is the least integer
k � 0 for which there exists a solution (k, λ, d) ∈ N × N × N+ of the system:

0 � d(k − χ) + χ′ − k =λ � k(d − 2).

That is, for χ � −2, ϕ(Σ′,Σ) is the least k ∈ N for which there exists a positive
integer d satisfying

χ′ − k

χ − k
� d � χ′ + k

χ
,

and this is clearly equivalent to what is claimed in Lemma 2.1.

Assume now that 2 + 2χ � χ′ < χ � −2. If f : Σ′ −→Σ was a ramified covering,
then we would have (χ′ + k)/χ < 2, and Lemma 2.1 would imply that χ′ =χ, which
is a contradiction. Therefore ϕ(Σ′,Σ)=∞ holds.

Finally, assume that χ′/2 � χ � −2. One has to compute the minimal k satisfying[[
aχ − b − k

χ − k

]]
� aχ − b + k

χ
,

or, equivalently, [[
b + (1 − a)k

χ − k

]]
� b − k

χ
.

The smallest k for which the quantity in the square brackets is non-positive is
k = [[b/(a − 1)]], in which case[[

b + (1 − a)k
χ − k

]]
� 0 � b − k

χ
.

For k smaller than this value, one has a strictly positive integer on the left-hand
side, which is therefore at least 1. However, the right-hand side is strictly smaller
than 1; hence the inequality cannot hold. This proves the claim.

3. Equidimensional case n � 3

The situation changes completely in dimensions n � 3. According to [8, II, p. 535],
Hopf was the first to notice that a smooth map Rn −→Rn (n � 3) which has only
an isolated critical point p is actually a local homeomorphism at p. Our result below
is an easy application of this fact. We outline the proof for the sake of completeness.

Proposition 3.1. Assume that Mn and Nn are compact manifolds. If
ϕ(Mn, Nn) is finite and n � 3, then ϕ(Mn, Nn) ∈ {0, 1}. Moreover, ϕ(Mn, Nn) = 1
if and only if Mn is the connected sum of a finite covering N̂n of Nn with an exotic
sphere and Mn is not a covering of Nn.

Proof. There exists a smooth map f : Mn −→Nn which is a local
diffeomorphism on the preimage of the complement of a finite subset of points.
Notice that f is a proper map.

Let p ∈ Mn be a critical point and let q = f(p). Let B ⊂ N be a closed ball
intersecting the set of critical values of f only at q. We suppose moreover that
q is an interior point of B. Denote by U the connected component of f−1(B)
which contains p. As f is proper, its restriction to f−1(B − {q}) is also proper.
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As it is a local diffeomorphism onto B − {q}, it is a covering, which implies that
f : U − f−1(q)−→B − {q} is also a covering. However, f has only finitely many
critical points in U , which shows that f−1(q) is discrete outside this finite set, and
so f−1(q) is countable. This shows that U − f−1(q) is connected. As B − {q} is
simply connected, we see that f : U − f−1(q)−→B −{q} is a diffeomorphism. This
shows that f−1(q) ∩ U = {p}, for otherwise Hn−1(U − f−1(q)) would not be free
cyclic. Thus f : U − {p}−→B − {q} is a diffeomorphism. An alternative way is to
observe that f |U−{p} is a proper submersion because f is injective in a neigborhood
of p (except possibly at p). This implies that f :U − {p}−→B − {q} is a covering
and hence a diffeomorphism since B − {q} is simply connected.

One can then verify easily that the inverse of f |U : U −→B is continuous at q;
hence it is a homeomorphism. In particular, U is homeomorphic to a ball. Since ∂U
is a sphere, the results of Smale (for example [31]) imply that U is diffeomorphic
to the ball for n �= 4.

We obtain that f is a local homeomorphism and hence topologically a covering
map. Thus Mn is homeomorphic to a covering of Nn. Let us show now that one
can modify Mn by taking the connected sum with an exotic sphere in order to get
a smooth covering of Nn.

By gluing a disk to U , using an identification h : ∂U −→ ∂B = Sn−1, we obtain
a homotopy sphere (possibly exotic) Σ1 = U

⋃
h Bn. Set M0 = M − int(U), N0 =

N − int(B). Given the diffeomorphisms α : Sn−1 −→ ∂U and β : Sn−1 −→ ∂B, one
can form the manifolds

M(α)= M0

⋃
α : Sn−1 −→ ∂U

Bn, N(β)= N0

⋃
β : Sn−1 −→ ∂B

Bn.

Set h = f |∂U : ∂U −→ ∂B = Sn−1. A map F : M(α)−→N(h ◦ α) is then given by

F (x)=
{

x if x ∈ Dn

f(x) if x ∈ M0.

The map F has the same critical points as f |M0 ; hence it has precisely one critical
point less than f : M −→N .

We choose α =h−1 and we remark that M =M(h−1)�Σ1, where the equality sign
‘= ’ stands for diffeomorphism equivalence. Denote M1 =M(h−1). We obtained
above that f : M = M1�Σ1 −→N decomposes as follows. The restriction of f to M0

extends to M1 without introducing extra critical points, while the restriction to the
homotopy ball corresponding to the holed Σ1 has precisely one critical point.

Thus, iterating this procedure, one finds that there exist possibly exotic spheres
Σi so that f : M =Mk�Σ1�Σ2 . . . �Σk −→N decomposes as follows: the restriction of
f to the k-holed M has no critical points, and it extends to Mk without introducing
any further critical point. Each critical point of f corresponds to a (holed) exotic
Σi. In particular, Mk is a smooth covering of N .

Now the connected sum Σ= Σ1�Σ2 . . . �Σk is also an exotic sphere. Let ∆=
Σ − int(Bn) be the homotopy ball obtained by removing an open ball from Σ. We
claim that there exists a smooth map ∆−→Bn that extends any given diffeomorph-
ism of the boundary and has exactly one critical point. Then one builds up a smooth
map Mk�Σ−→N having precisely one critical point, by putting together the obvi-
ous covering on the 1-holed Mk and ∆−→Bn. This will show that ϕ(M,N) � 1.

The claim follows easily from the following two remarks. First, the homotopy
ball ∆ is diffeomorphic to the standard ball by [31], when n �= 4. Further, any
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diffeomorphism ϕ : Sn−1 −→Sn−1 extends to a smooth homeomorphism with one
critical point Φ : Bn −→Bn, for example

Φ(z)= exp
(
− 1

‖z‖2

)
ϕ

(
z

‖z‖

)
.

For n= 4, we need an extra argument. Each homotopy ball ∆4
i = Σi − int(B4)

is the preimage f−1(B) of a standard ball B. Since f is proper, we can choose
B small enough such that ∆4

i is contained in a standard 4-ball. Therefore ∆4

can be engulfed in S4. Moreover, ∆4 is the closure of one connected component
of the complement of ∂∆4 =S3 in S4. The result of Huebsch and Morse from
[16] states that any diffeomorphism S3 −→S3 has a Schoenflies extension to a
homeomorphism ∆4 −→B4 which is a diffeomorphism everywhere except for one
(critical) point. This proves the claim.

Remark finally that ϕ(Mn, Nn)= 0 if and only if Mn is a covering of Nn.
Therefore if Mn is diffeomorphic to the connected sum N̂n�Σn of a covering N̂n

with an exotic sphere Σn, and if it is not diffeomorphic to a covering of Nn, then
ϕ(Mn, Nn) �= 0. Now drill a small hole in N̂n and glue (differently) an n-disk Bn

(respectively a homotopy 4-ball if n= 4) in order to get N̂n�Σn. The restriction
of the covering N̂n −→Nn to the boundary of the hole extends (by the previous
arguments) to a smooth homeomorphism with one critical point over Σn. Thus
ϕ(Mn, Nn) = 1.

Remark 3.1. (i) We should stress that not all exotic structures on a manifold
can be obtained from a given structure by connected sums with an exotic sphere.
For example, smooth structures on products of spheres (and sphere bundles of
spheres) are well understood (see [11, 12, 17, 28, 29]). All smooth structures
on Sp × Sq are of the form (Sp × Σq)#Σp+q, where Σr denotes a homotopy r-
sphere. If p + 3 � q � p, then it is enough to consider only those manifolds for
which Σq = Sq [17], but otherwise there are examples where the number n(p, q) of
non-diffeomorphic manifolds among them is larger than the number of homotopy
(p + q)-spheres. For example, n(1, 7)= 30, n(3, 10)= 4, n(1, 16)= n(3, 14)= 24. On
the other hand, the connected sum with an exotic sphere does not necessarily
change the diffeomorphism type. For example, Kreck [18] proved that for any
manifold Mm (of dimension m �= 4), there exists an integer r such that either
M�rS

m or M�ST(S(m−1)/2)�rS
m (if m = 1(mod 4)) has a unique smooth structure,

where ST(Sk) denotes the sphere bundle of the tangent bundle of the sphere Sk.
However, results of Farrell and Jones [13] show that any hyperbolic manifold has
finite coverings for which making a connected sum with an exotic sphere will change
the diffeomorphism type.

(ii) Suppose that Mn = N̂n�Σ is not diffeomorphic to N̂n. It would be interesting
to know under which hypotheses one can insure that Mn is not a smooth covering
of Nn.

Corollary 3.1. If the dimension n ∈ {3, 5, 6}, then ϕ(Mn, Nn) is either 0 or
∞.

Proof. In fact, two 3-manifolds which are homeomorphic are diffeomorphic and
in dimensions 5 and 6 there are no exotic spheres.
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Remark 3.2. A careful analysis of open maps between manifolds of the same
dimensions was carried out in [7]. In particular, it was proved that an open map
of finite degree whose branch locus is a locally tame embedded finite complex (for
example if the map is simplicial) has both the branch locus and the critical set of
codimension 2 (see [8, II]) around each point.

4. Local obstructions for higher codimension

Our main result in this section, which is less precise than that for codimension 0, is
a simple consequence of the investigation of local obstructions. In fact, the existence
of analytic maps Rm −→Rn with isolated singularities is rather exceptional in the
context of smooth real maps (see [21]).

Proposition 4.1. If ϕ(Mm, Nn) is finite and m = n + 1 �= 4, or m = n + 2 �= 4
or m = n + 3 �∈ {5, 6, 8} (when one assumes the Poincaré conjecture to be true),
then M is homeomorphic to a fibration of base N . In particular, if m = 3, n= 2,
then ϕ(M3, N2) ∈ {0,∞}, except possibly for M3 a non-trivial homotopy sphere
and N2 =S2.

Proof. One first shows the following lemma.

Lemma 4.1. Assume that ϕ(Mm, Nn) �= 0 is finite for two manifolds Mm and
Nn. Then there exists a polynomial map f : (Rm, 0)−→ (Rn, 0) having an isolated
singularity at the origin.

Proof. The hypothesis implies the existence of a smooth map
f : (Rm, 0)−→ (Rn, 0) with one isolated singularity at the origin. We can
assume that the critical point is not an isolated point of the fiber over 0 (see
Remark 4.4). If the restriction f |Sm −1 is of maximal rank, then the construction
goes as follows. One approximates the restriction f |Sm −1 to the unit sphere, up to
the first derivative, by a polynomial map ψ̃ (of some degree d), and one extends
the latter to all of Rm by ψ(x) = |x|dψ̃(x/|x|). If the approximation is sufficiently
close, then ψ̃ will be of maximal rank around the unit sphere; hence ψ will have an
isolated singularity at the origin. However, some caution is needed when f |Sm −1 is
not of maximal rank. We consider then the restriction f |Bm −Bm

1−δ
to the annulus

bounded by the spheres of radius 1 and 1− δ, respectively. We claim the following.

Lemma 4.2. There exists some δ > 0 and a polynomial map ψ̃ (of some degree
d) such that its extension ψ(x) = |x|dψ̃(x/|x|) approximates f |Bm −Bm

1−δ
sufficiently

closely.

Proof. It suffices to see that f−1(0) ∩ (Bm − Bm
1−δ) has a conical structure.

Remark that the function r(x)= |x|2 has finitely many critical values on f−1(0) ∩
(Bm − Bm

1−δ) since f is smooth and has no critical points in this range. Thus one
can choose δ small enough so that r has no critical points. Then [21, proof of
Theorem 2.10, p. 18] applies in this context. This implies the existence of a good
approximation of conical type.
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In particular, our approximating ψ(x) has no critical points in the given annulus.
However, if x0 �= 0 was a critical point of ψ(x) in the ball, then all points of the
line 0x0 would be critical, since ψ is homogeneous. Therefore ψ has an isolated
singularity at the origin.

Notice that one can choose the approximation so that Sm−1 ∩ψ−1(0) is isotopic
to Sm−1 ∩ f−1(0) and therefore non-empty. In particular, the singularities at the
origin of f and ψ have the same topological type.

Although ψ is not real analytic, each of its components are algebraic because they
can be represented as ψj(x)= Pj(x) + Qj(x)|x|, where Pj(x) (respectively Qj(x))
are polynomials of even (respectively odd) degree. The curve selection lemma [21,
p. 25] can be extended without difficulty to sets defined by equations like the ψj

above. Then [21, proof of Theorem 11.2 (and Lemma 11.3), pp. 97–99] extends to
the case of ψ. In particular, there exists a Milnor fibration associated to ψ (the
complement of the singular fiber ψ−1(0) in the unit sphere Sm−1 fibers over Sn−1).
Alternatively, (Sm−1, Sm−1 ∩ ψ−1(0)) is a Neuwirth–Stallings pair according to
[19] and Sm−1 ∩ ψ−1(0) is non-empty. The main theorem from [19] then provides
a polynomial map with an isolated singularity at the origin, as required.

Milnor (see [21]) called such an isolated singularity trivial when its local Milnor
fiber is diffeomorphic to a disk. Then it was shown in [7, p. 151] that f is trivial
if and only if f is locally topologically equivalent to the projection map Rm −→Rn

whenever the dimension of the fiber is m−n �= 4, 5. We recall that the existence of
polynomials with isolated singularities was (almost) settled in [8, 21].

Proposition 4.2. For 0 � m−n � 2, non-trivial polynomial singularities exist
precisely for (2, 2), (4, 3) and (4, 2).

For m − n � 4, non-trivial examples occur for all (m,n).
For m − n= 3, non-trivial examples occur for (5, 2) and (8, 5). Moreover, if the

3-dimensional Poincaré conjecture is false, then there are non-trivial examples for
all (m,n). Otherwise, all examples are trivial except for (5, 2), (8, 5) and possibly
(6, 3).

We consider now a smooth map f : Mm −→Nn where m,n are as in the
hypothesis. For each critical point p, there are open balls 2Bm(p) and 2Bn(f(p))
for which the restriction f |2Bm (p) : 2Bm(p)−→ 2Bn(f(p)) has an isolated singularity
at p. One identifies 2Bm(p) with the ball of radius 2 in Rm, and let Bm(p) be the
preimage of the concentric unit ball. In the proof of Lemma 4.1, we approximated
f |∂Bm (p) by a polynomial map g with isolated singularities, both maps having
isotopic links and being close to each other. Assume for simplicity that f (and
hence g) is of maximal rank around this (unit) sphere. The general case follows
along the same lines. Then there exists an isotopy ft (t ∈ [0, 1]) between f |∂Bm (p)

and g|∂Bm (p) which is close to identity. In particular, all ft are of maximal rank
around the unit sphere. Let ρ : [0, 4]−→ [0, 1] be a smooth decreasing function with
ρ(x) = 0 if x � 1 and ρ(x) = 1 if x � 1

2 . Let F : 2Bm(p)−→ 2Bn(f(p)) be the map
defined by

F (x)=

{
fρ(|x|2)(x/|x|) if |x| � 1

2

g(x) if |x| � 1
2 .
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If one replaces f2Bm (p) by F , then one obtains a smooth function with an isolated
singularity at p, which must be a topological submersion at p (by Proposition 4.2).
An induction on the number of critical points yields a map F : Mm −→Nn which
is a topological fibration.

Remark 4.1. Notice that there exist real smooth maps f which do not have a
Milnor fibration at an isolated singularity. For such f , it is not clear when one should
call the singularity trivial. In particular, in this situation we do not know whether
f itself must be a topological submersion. Therefore it is necessary to replace f by
another map (locally algebraic), in order to be able to apply Proposition 4.2.

Remark 4.2. Therefore, within the range 0 � m − n � 3, with the exception
of (2, 2), (4, 3), (4, 2), (5, 2), (8, 5) and (6, 3), the non-triviality of ϕ is related to the
exotic structures on fibrations.

One expects that in the case when non-trivial singularities can occur, such
examples abound.

Example 4.1. In the remaining cases we have the following.
(1) (m,n) ∈ {(4, 3), (8, 5)}. We will prove below that ϕ(S4, S3)= ϕ(S8, S5) = 2.
(2) (m,n) = (4, 2). Non-trivial examples come from Lefschetz fibrations X over

a Riemann surface F . For instance X is an elliptic K3 surface and F is CP1.
(3) (m,n) = (2k, 2). More generally, one can consider complex projective k-

manifolds admitting morphisms onto an algebraic curve.

Further, one notices that these local obstructions are far from being complete. In
fact, the maps Rm −→Rn arising as restrictions of smooth maps between compact
manifolds are quite particular. For instance, if one takes M = Sm, then one can
obtain by restriction a map Rm −→Rn which is proper and has only finitely many
isolated singularities. However, adding extra conditions can further restrict the
range of dimensions.

Proposition 4.3. There are no proper smooth functions f : (Rm, 0)−→ (Rn, 0)
with one isolated singularity at the origin if m � 2n − 3.

Proof. There is a direct proof similar to that of Proposition 6.1. Instead, let us
show that the hypothesis implies that ϕ(Sm, Sn) � 2 and so Proposition 6.1 yields
the result.

Let jk : Sk −→Rk denote the stereographic projection from the north pole ∞.
There exists an increasing unbounded real function ρ such that |f(x)| � λ(|x|) for
all x ∈ Rm, because f is proper.

We claim that there exists a real function ρ such that ρ(|x|)f(x) extends to a
smooth function F : Sm −→Sn. Specifically, we want the function Fρ : Sm −→Sn

defined by

Fρ(x) =
{

j−1
n (ρ(|jm(x)|)f(jm(x))) if x ∈ Sm − {∞}
∞ otherwise
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to be smooth at ∞. This is easy to achieve by taking ρ(x) > exp(|x|)λ−1(|x|) for
large |x|. Now the critical points of Fρ consist of the two poles, and the claim is
proved.

Remark 4.3. Notice that proper maps such as the above for m = 2n − 2 exist
only for n ∈ {2, 3, 5, 9} (see below).

Remark 4.4. A special case is when the critical point p is an isolated point in
the fiber f−1(f(p)). This situation was settled in [8, 34], where it was shown that
the dimensions (m, k) should be (2, 2), (4, 3), (8, 5) or (16, 9), and the map is locally
the cone over the respective Hopf fibration.

5. The global structure for topological submersions

Roughly speaking, the results of the previous section state that maps of
low codimension with only finitely many critical points should be topological
submersions.

Proposition 5.1. Assume that there exists a topological submersion
f : Mm −→Nn with finitely many critical points, and m > n � 2. Then ϕ(M,N) ∈
{0, 1} and ϕ(M,N) = 1 precisely when M is diffeomorphic to the connected sum of
a fibration N̂ (over N) with an exotic sphere, and M is not a fibration over N .

Proof. The first step is to split off one critical point by localizing it within an
exotic sphere. Let M0 be the manifold obtained after excising an embedded ball
from M .

Lemma 5.1. There exists an exotic sphere Σ1 and a map f1 : M1 −→N such
that the following hold.

(i) M0 is a submanifold of both M and M1. The complements M1 −M0 and
M − M0 are balls and M =M1�Σ1.

(ii) f1 agrees with f on M0 ⊂ M1 and has no other critical points on the ball
M1 −M0.

(iii) f has precisely one critical point in M −M0.

Proof. Let p be a critical point of f , q = f(p), and δ be a small disk around q.
We replace f by a map which is locally polynomial around the critical point p, as
in the previous section. We show first that the following lemma holds.

Lemma 5.2. There exists a neighborhood Zp of p such that the following
conditions are fulfilled.

(i) Zp is diffeomorphic to Dn × Dm−n (for m �= 4).
(ii) ∂Zp = ∂hZ ∪ ∂vZp, where the restrictions f : ∂vZp −→Dn and

f : ∂hZ −→ ∂Dn are trivial fibrations, and ∂hZ ∩ ∂vZp =Sn−1 × Sm−n−1.

Proof. Let Bm(p) be a sufficiently small ball around p, and δ be such that
δ ⊂ f(Bm(p)). We claim that Zp = Bm(p) ∩ f−1(δ) has the required properties.
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One chooses a small ball containing p, Bm
0 (p) ⊂ Zp. Then one uses the argument

from [21, pp. 97–98], and derives that q is a regular value of the map

f : Zp − int(Bm
0 (p))−→ δ.

Therefore the latter is a fibration, and hence a trivial fibration. In particular, the
manifold with corners ∂Zp has a collar whose outer boundary is a smooth sphere.
Further, the manifold with boundary Zp is homeomorphic to Dn × Dm−n and the
boundary ∂Zp is collared as above. The outer sphere bounds a smooth disk (by
Smale) and so Zp is diffeomorphic to Dn × Dm−n.

Now the proof goes on as in codimension 0. We excise Zp and glue it back by
another diffeomorphism so that the restriction of f extends over the new ball,
without introducing any new critical points. The gluing diffeomorphism respects
the corner manifold structure.

An inductive argument shows that if ϕ(M,N) is finite, then the connected sum
M�Σ with an exotic sphere is diffeomorphic to a fibration over N .

We want to prove now that one can find another map M −→N having precisely
one critical point. We first have to put all critical points together inside a standard
neighborhood.

Lemma 5.3. If m > n � 2, then the critical points of f are contained in some
cylinder Zm ⊂ M which is diffeomorphic to Dn×Dm−n (respectively homeomorphic
when m = 4, by a homeomorphism which is a diffeomorphism on the boundary)
such that the fibers of f are either transversal to the boundary (actually to the
part Dn × ∂Dm−n) or contained in ∂Dn × Dm−n.

Proof. Pick up a regular point x0 in M . Let U be the set of regular points which
can be joined to x0 by an arc γ everywhere transversal to the fibers of f (which
will be called transversal in the sequel).

We first show that U is open. In a small neighborhood V of x ∈ U , the fibers
can be linearized (by means of a diffeomorphism) and identified to parallel (m−n)-
planes. Let y ∈ V . If x and y are not in the same fiber, then the line joining them
is a transversal arc. Otherwise, use a helicoidal arc spinning around the line, which
can be constructed since the fibers have codimension at least 2.

At the same time, U is closed in the complement of the critical set. In fact,
the previous arguments show that two regular points which are sufficiently closed
to each other can be joined by a transversal arc with prescribed initial velocity
(provided that this tangent vector is also transversal to the fiber). Thus if yi

converge to a regular point y and yi ∈ U , then y can be joined to x0 by first
joining x0 to yi and then yi to y (for large enough i) with some prescribed initial
velocity, in order to insure the smoothness of the arc. This proves that U is the set
of all regular points.

Further, we consider the cylinders Zpi
given by Lemma 5.2. Let fi ⊂ ∂Zpi

be some
fibers in the boundary. The points qi ∈ fi can be joined by everywhere transversal
arcs. Since this is an open condition, one can find disjoint tubes Ti,i+1 joining
neighborhoods of the fibers fi in ∂Zpi

, and fi+1 in ∂Zpi+1 , and one builds up in
this way a cylinder Z containing all critical points.
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Lemma 5.4. There exists a smooth map g : Z −→Dn having one critical point
such that g|∂Z = f |∂Z .

Proof. We know that each restriction f : Zi −→Dn is topologically a trivial
fibration whose restriction to a collar of the boundary sphere ∂Dn is trivial, as a
smooth fibration. We claim that f : Z −→Dn enjoys the same property. This follows
from the fact that the restrictions f : Ti,i+1 −→Dn are also trivial fiber bundles.

The restriction f |∂v Z : ∂vZ −→Dn is a trivial fibration over the ball. Thus there
exists a diffeomorphism ∂vf : ∂vZ −→Dn × ∂Dm−n, which commutes with the
trivial projection π : Dn × Dm−n −→Dn, namely π ◦ ∂vf = f |∂v Z .

Since f |∂h Z : ∂vZ −→ ∂Dn is a trivial fibration, there exists a diffeo-
morphism ∂hf : ∂vZ −→ ∂Dn × Dm−n commuting with π. Moreover, these
two diffeomorphisms can be chosen to agree on their common intersection,
∂hf |∂h Z∩∂v Z = ∂vf |∂h Z∩∂v Z .

We obtain therefore a diffeomorphism ∂f of manifolds with corners
∂f : ∂Z −→ ∂Dm, defined by

∂f(x) =
{

∂hf(x) if x ∈ ∂hZ
∂vf(x) if x ∈ ∂vZ.

Assume now that there exists a smooth homeomorphism Φ : Z −→Dn × Dm−n

having precisely one critical point, which extends ∂f , that is, such that the following
diagram commutes.

∂Z
∂f−→ ∂(Dn × Dm−n)� �

Z
Φ−→ Dn × Dm−n

We therefore set g(x)= π(Φ(x)). It is immediate that g has at most one critical point
and g is an extension of f∂Z . Our claim is then a consequence of the following.

Lemma 5.5. Any diffeomorphism of the sphere Sm, with the structure of a
manifold with corners ∂(Dn × Dm−n), extends to a smooth homeomorphism of
Dn × Dm−n with at most one critical point.

Proof. Instead of searching for a direct proof, remark that the trivializations
leading to ∂f extend over a collar of ∂(Dn ×Dm−n). This collar is still a manifold
with corners, but it contains a smoothly embedded sphere. We then use the standard
result (see [16]) to extend further the diffeomorphism from the smooth sphere to
the ball.

Now Lemma 5.4 follows.

6. Maps between spheres

For spheres, the situation is somewhat simpler than in general, because we can
use the global obstructions of topological nature. Our main result settles the case
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when the codimension is smaller than the dimension of the base. Specifically, we
can state the following proposition.

Proposition 6.1. (i) The values of m > n > 1 for which ϕ(Sm, Sn) = 0 are
exactly those arising in the Hopf fibrations, that is, n ∈ {2, 4, 8} and m = 2n − 1.

(ii) One has ϕ(S4, S3)= ϕ(S8, S5)= ϕ(S16, S9) = 2.
(iii) If m � 2n − 3, then ϕ(Sm, Sn)=∞.
(iv) If ϕ(S2n−2, Sn) is finite, then n ∈ {2, 3, 5, 9}.

Proof. (i) Notice first that the existence of the Hopf fibrations S3 −→
S2, S7 −→S4, S15 −→S8 shows that ϕ(S3, S2)= ϕ(S7, S4)= ϕ(S15, S8) = 0. The
converse is already known (see [7, Lemma 1; 33, Lemma 2.7]). We will give a
slightly different proof below, on elementary grounds.

Using the Serre exact sequence for an (n− 1)-connected basis, one finds that the
homology of the fiber F (of the fibration f : Sm −→Sn) agrees with that of Sn−1

up to dimension n − 1, and a subsequent application of the same sequence shows
that F is a homology (n − 1)-sphere. Therefore m = 2n − 1. In particular, we infer
that the transgression map τ∗ : Hn−1(F )−→Hn(Sn) is an isomorphism.

Let iF : F −→S2n−1 and jF : S2n−1 −→ (S2n−1, F ) denote the inclusion maps.
Denote by C∗(X) the cochain complex of the space X.

Lemma 6.1. The composition of maps

Cn−1(S2n−1)
i∗F−→ Cn−1(F ) τ∗

−→ Cn(S2n)
f∗

−→ Cn(S2n−1)

is the boundary operator d : Cn−1(S2n−1) −→ Cn(S2n−1).

Proof. The transgression map τ∗ can be identified (see for example [36, pp.
648–651]) with the composition

Hn−1(F ) ∂∗
−→ Hn(S2n−1, F )

f∗−1

−→ Hn(Sn),

where ∂∗ is the boundary homomorphism in the long exact sequence of the pair
(S2n−1, F ). One then sees that

Cn(S2n−1, F )
f∗−1

−→ Cn(Sn)
f∗

−→ Cn(S2n−1)

agrees with j∗F . Further, the composition of maps from the statement of the lemma
is equivalent to

Cn−1(S2n−1)
i∗F−→ Cn−1(F ) ∂∗

−→ Cn(S2n−1, F )
j∗
F−→ Cn(S2n−1),

which acts as the boundary operator d, as claimed.

Let u be an (n−1)-form on S2n−1 such that i∗F u is a generator for Hn−1(F, Z) ⊂
Hn−1(F, R). Then

〈i∗F u, [F ]〉=
∫
F

u = 1.

Since τ∗ is an isomorphism, it follows that τ∗i∗F u = v, where v is the generator of
Hn(Sn, Z). Thus v is the volume form on Sn, normalized so that

∫
Sn v = 1.
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Let us recall the definition of the Hopf invariant H(f). Consider any (n−1)-form
w on S2n−1 satisfying f∗v = dw. Then

H(f)=
∫
S2n−1

w ∧ dw =
∫
x∈Sn

(∫
f−1(x)

w

)
v.

According to the lemma, one has f∗v = du. However, it is clear that the function

x−→
∫
f−1(x)

w

is constant (more generally it is locally constant on the set of regular values for an
arbitrary f), and this constant in our case is

∫
F

u = 1. Therefore H(f)= 1 and the
Adams theorem (see [1]) implies the claim.

Remark 6.1. The above result holds true if one relaxes the assumptions by
asking f to be only a Serre fibration. One replaces in the proof the integral in the
definition of the Hopf invariant by the intersection of chains (see for example [36,
pp. 509–510]).

(ii) We will show now that by suspending the Hopf fibrations, we obtain examples
of pairs with non-trivial ϕ. In fact, choose a Hopf map f : S2n−1 −→Sn, and extend
it to B2n −→Bn+1 by taking the cone and smoothing it at the origin. Then glue
together two copies of B2n along the boundary. One gets a smooth map having two
critical points. The previous result implies that

1 � ϕ(S4, S3), ϕ(S8, S5), ϕ(S16, S9) � 2.

Let us introduce some more notations: set p1, . . . , pr for the critical points of
the map f : Sm −→Sn under consideration if there are only finitely many. Let
Fei

= f−1(f(pi)) denote the singular fibers, let Fe =
⋃r

i = 1 Fei
stand for their union,

and let F stand for the generic fiber which is a closed oriented (m − n)-manifold.

Lemma 6.2. Each component of Fe is either a smooth (m−n)-manifold around
each point which is not in the critical set {p1, . . . , pr}, or else an isolated pi.

Proof. In fact, f is a submersion at all points but pi.

Lemma 6.3. If m < 2n − 1, then ϕ(Sm, Sn) � 2.

Proof. Assume that there is a map f : Sm −→Sn with precisely one critical
point p. Then f : Sm − Fe −→Bn is a fibration, so that Sm − Fe = Bn × F .

One rules out the case when the exceptional fiber is one point by observing that
Hm−n(F ) is not trivial. Using an (n − 1)-cycle linking once a component of Fei

,
one can show that Hn−1(Sm −Fe) is non-trivial. Since n− 1 > m−n, the equality
above is impossible, and the claim is proved.

Now the equalities from the statement follow.

Remark 6.2. This might be used to construct other examples with finite ϕ in
the respective dimensions. For instance, one finds that ϕ(Σ8, S5)= ϕ(Σ16,Σ9) = 2,
where Σn denotes an exotic n-sphere.
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(iii) Assume that there is a smooth map f : Sm −→Sn with r critical points. We
suppose, for simplicity, that the critical values qi are distinct. One uses the Serre
exact sequence for the fibration Sm − Fe −→Sn − {q1, . . . , qr}, and one derives

Hi(F )= Hi(Sm − Fe) if i � n − 3.

Further, Hm−i(Fe) = 0 for i � n − 1, because Fe has dimension at most (m − n).
Then Alexander’s duality, H̃i−1(Sm − Fe)= H̃m−i(Fe) and the previous equality
imply that Hi(F )= 0, for all i � n− 3. This is impossible, because the fiber F is a
compact (m − n)-manifold and m − n � n − 3.

(iv) As above, the Serre exact sequence shows that F is an (n − 2)-homology
sphere. Further, the generalized Gysin sequence yields

H̃2n−3−j(Fe)= H̃j(S2n−2 − Fe)=

Zr if j = 2n − 3
Zr−2 if j =n − 1
0 otherwise.

Notice that Hn−2(Fe) (or equivalently Hn−1(S2n−2 − Fe)) cannot be of rank r − 2
unless some (more precisely two such) exceptional fiber in Fe consists of one point.
In fact, if we have q connected components of Fe of dimension (n − 2), then the
rank of Hn−2(Fe) is at least q.

Furthermore, such a critical point p is isolated in f−1(f(p)). Then [33,
Proposition 3.1] yields the claim.

Remark 6.3. Notice that Fm−n is (n−3)-connected. In particular, if m � 3n−6
(n � 5), then F is homeomorphic to Sm−n. In fact, one can obtain Sm from the
complement Sm− int(N(Fe)) of a neighborhood of the exceptional fibers by adding
cells of dimension at least n, with one (n + i)-cell for each i-cell of Fe. Therefore
πj(Sm− int(N(Fe)))= 0= πj(Sm) = 0, for j � n−2. The base space of the fibration
f |Sm −int(N(Fe)) is Sn with small open neighborhoods of the critical values deleted;
thus it is homotopy equivalent to a bouquet of Sn−1 (at least one critical value).
The long exact sequence in homotopy shows then that the fiber is (n−3)-connected.

Remark 6.4. (i) If there exists a non-trivial proper smooth F : (Rm, 0)−→
(Rn, 0) having only one isolated singularity at the origin, then ϕ(Sm, Sn) � 2 (see
the proof of Proposition 4.3), and this condition seems to be quite restrictive, in
view of Proposition 6.1.

(ii) The explicit computation of ϕ(Sm, Sn) for general m,n seems to be difficult.
Further steps towards the answer would be to prove that ϕ(S2n−1, Sn) is finite only
if n ∈ {1, 2, 4, 8}, and that ϕ(Sm, Sn)=∞ if n � 5 and 2n − 1 < m � 3n − 6.

7. Remarks concerning a substitute for ϕ in dimension 3

One saw that ϕ(Mn, Nn) is less interesting if n � 3. One would like to have an
invariant of the pair (Mn, Nn) measuring how far Mn is from being an unramified
covering of Nn. First one has to know whether there is a branched covering
Mn −→Nn, and next if the branch locus could be empty.

Remark 7.1. A classical theorem of Alexander [2] states that any n-manifold
is a branched covering of the sphere Sn. Moreover, one can assume that the
ramification locus is the (n − 2)-skeleton of the standard n-simplex.
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Remark 7.2. There exists an obvious obstruction to the existence of a ramified
covering Mn −→Nn, namely the existence of a map of non-zero degree Mn −→Nn.
In particular, a necessary condition is ‖M‖ � ‖N‖, where ‖M‖ denotes the
simplicial volume of M (see [15, 22]). However, this condition is far from being
sufficient. Take M with finite fundamental group and N with infinite amenable
fundamental group (for instance of polynomial growth); then ‖M‖ = ‖N‖ = 0,
while it is elementary that there does not exist a non-zero degree map M −→N .

A possible candidate for replacing ϕ in dimension 3 is the ratio of simplicial
volumes mod Z, namely

v(M,N) =
‖M‖
‖N‖ (mod Z) ∈ [0, 1),

which is defined when N has non-zero simplicial volume. Notice that (for closed
manifolds M) the simplicial volume ‖M‖ depends only on the fundamental group
π1(M) of M . In particular, it vanishes for simply connected manifolds, making it
less useful in dimensions at least 4.

Remark 7.3. If Mn covers Nn, then v(M,N) = 0 (see [15]). The converse holds
true for surfaces of genus at least 2, from the Hurwitz formula.

The norm ratio has been extensively studied for hyperbolic manifolds in
dimension 3, where it coincides with the volume ratio, in connection with
commensurability problems (see, for example, [33]). In particular, the values
v(M3, N3) accumulate on 1 since the set of volumes of closed hyperbolic 3-manifolds
has an accumulation point. The simplicial volume is zero for a Haken 3-manifold
if and only if the manifold is a graph manifold (from [32]), and conjecturally
the simplicial volume is the sum of (the hyperbolic) volumes of the hyperbolic
components of the manifold.

However, it seems that this invariant is not appropriate in dimensions higher
than 3 (even if one restricts to aspherical manifolds). Here are two arguments in
favour of this claim.

Proposition 7.1. Let us suppose that Mn is a ramified covering of Nn over
the complex Kn−2. Assume that both the branch locus Kn−2 and its preimage
in Mn can be engulfed in a simply connected codimension 1 submanifold. Then
v(Mn, Nn) = 0.

Assume that there is a map f : Mn −→Nn such that the kernel ker(f∗ : π1(M)−→
π1(N)) is an amenable group. Then v(Mn, Nn) = 0.

Proof. One uses the fact that for any simply connected codimension 1
submanifold An−1 ⊂ Mn, one has ‖M‖ = ‖M −A‖ (see [15, p. 10, 3.5]). The
second part follows from [27, Remark 3.5], which states that ‖M‖ = deg(f)‖N‖,
where deg(f) stands for the degree of f .

Remark 7.4. (i) For all n � 4, Sambusetti [27] constructed examples of
manifolds Mn and Nn that satisfy the second condition (and hence v vanishes),
but which are not fibrations.
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(ii) It seems that there are no such examples in dimension 3. At least for Haken
hyperbolic N3, any M3 dominating N3 with amenable kernel must be a covering,
according to [27, Remark 3.5] and the rigidity result of Soma and Thurston (see
[32]).

Remark 7.5. One could replace the simplicial volume by any other volume, as
defined by Reznikov [26]. For instance, the ˜SL(2, R)-volume is defined for Seifert
fibered 3-manifolds, and it behaves multiplicatively under finite coverings (compare
with [35]). In particular, one can define an appropiate v(M,N) for graph manifolds
using this volume. Other topological invariants which behave multiplicatively under
finite coverings are the l2-Betti numbers.

Remark 7.6. If there is a branched covering f : Mn −→Nn, then the branch
locus is of codimension 2. This yields a heuristical explanation for the almost
triviality of ϕ(Mn, Nn) in high dimensions. A possible extension of ϕ would have
to take into account the minimal complexity of the branch locus, (for example its
Betti number) over all branched coverings. For a given N , this complexity must be
bounded from above, as does happen in the case when N is a sphere by Alexander’s
theorem. However, it seems that such invariants are not easily computable.
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