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POLYNOMIAL INVARIANTS OF LINKS SATISFYING CUBIC

SKEIN RELATIONS ∗

PAOLO BELLINGERI† AND LOUIS FUNAR‡

Abstract. The aim of this paper is to define two link invariants satisfying cubic skein relations.
In the hierarchy of polynomial invariants determined by explicit skein relations they are the next
level of complexity after Jones, HOMFLY, Kauffman and Kuperberg’s G2 quantum invariants. Our
method consists of the study of Markov traces on a suitable tower of quotients of cubic Hecke algebras
extending Jones approach.

1. Introduction.

1.1. Preliminaries. J.Conway showed that the Alexander polynomial of a knot,
when suitably normalized, satisfies the following skein relation:
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Given a knot diagram, one can always change some of its crossings such that the
modified diagram represents the unknot. Therefore, one can use the skein relation
for a recursive computation of ∇, although this algorithm is rather time consuming,
since it is exponential.

In the mid eighties V.Jones discovered another invariant verifying a different but
quite similar skein relation, namely:
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which was further generalized to a 2-variable invariant by replacing the factor (t1/2−
t−1/2) with a new variable x. The latter one was shown to specialize to both Alexander
and Jones polynomials.

The Kauffman polynomial is another extension of Jones polynomial which satisfies
a skein relation, but this time in the realm of unoriented diagrams. Specifically, the
formulas:

Λ

( )
+ Λ

( )
= z

(
Λ

( )
+ Λ

( ))

Λ

( )
= aΛ ( )

∗Received May 15, 2002; accepted for publication February 11, 2004.
†Institut Fourier, BP 74, Univ.Grenoble I, Mathématiques, 38402 Saint-Martin-d’Hères cedex,
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define a regular isotopy invariant of links which can be renormalized, by using the
writhe of the oriented diagram, in order to become a link invariant. Remark that some
elementary manipulations show that Λ verifies the following cubical skein relation:
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It has been recently proved ([12], and Problem 1.59 [18]) that this relation alone is
not sufficient for a recursive computation of Λ. Whenever the skein relations and the
value of the invariant for the unknot are sufficient to determine its values for all links,
the system of skein relations will be said to be complete. Several results concerning
the incompleteness of higher degree unoriented skein relations and their skein modules
have been obtained by J.Przytycki and his students (see e.g. [12, 28, 29]).

These invariants were generalized to quantum invariants associated to general
Lie algebras, super-algebras and their representations. V.Turaev ([33]) identified the
HOMFLY and Kauffman polynomials with the invariants obtained from the series An

and Bn, Cn, Dn respectively. G.Kuperberg ([19]) defined the G2-quantum invariant
of knots by means of skein relations, by making use of trivalent graphs diagrams and
exploited further these ideas in [20], for spiders of rank 2 Lie algebras. The skein
relations satisfied by the quantum invariants coming from simple Lie algebras were
approached also via weight systems and the Kontsevich integral in [22, 23], for the
classical series, and in [1, 2] for the case of the Lie algebra g2 of G2.

Notice that any link invariant coming from some R-matrix R verifies a skein
relation of the type:

n∑

j=0

aj

〈




j twists

〉
= 0

which can be derived from the polynomial equation satisfied by the R-matrix R.
Let us mention that the skein relations are somewhat related to the representation

theory of the Hopf algebra associated to the R-matrix R. In particular, there are no
other known invariants given by means of a complete family of skein relations, but
those from above. Moreover, one expects that the quantum invariants associated to
other Lie (super) algebras or by cabling the previous ones should satisfy skein relations
of degree at least 4, as already the Kuperberg G2-invariant does.

This makes the search for an explicit set of complete skein relations, in which at
least one relation is cubical, particularly difficult and interesting. This problem was
first considered in [13] and solved in a particular case. The aim of this paper is to
complete the result of [13] by constructing a deformation of the previously constructed
quotients of the cubic Hecke algebras and of the Markov traces supported by these
algebras. We obtain in this way two link invariants, denoted by I(α, β) and I(z, δ),
which are recursively computable and uniquely determined by two skein relations.
Explicit computations show that I(α, β) detects the chirality of the knots with number
crossing at most 10 where HOMFLY, Kauffman and their 2-cablings fail. On the
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other hand, as HOMFLY, Kauffman and their 2-cablings ([24, 27]), it seems that our
invariants do not distinguish between mutant knots. We recall that some mutant
knots can be distinguished by the 3-cablings of the HOMFLY polynomial (see [25]).

Acknowledgements. Part of this work was done during the second author’s
visit to the Tokyo Institute of Technology, whose support and hospitality are gratefully
acknowledged. The authors are thankful to Christian Blanchet, Emmanuel Ferrand,
Thomas Fiedler, Louis Kauffman, Teruaki Kitano, Sofia Lambropoulou, Ivan Marin,
Jean Michel, Hugh R. Morton, Luis Paris and Vlad Sergiescu for useful discussions,
remarks and suggestions.

1.2. The main result. The aim of this paper is to define two link invariants by
means of a complete set of skein relations. More precisely we will prove the following
Theorem (see section 5):

Theorem 1.1. There exist a link invariant I(α, β) which is uniquely determined
by the two skein relations shown in (1) and (2) and its value for the unknot, which is
traditionally 1.
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The invariant takes values in:

Z[α, β, (β2 − 2α)±ε/2, (α2 + 2β)±ε/2]

(H(α, β))

where ε − 1 ∈ {0, 1} is the number of link components modulo 2, and H(α, β) is the
following polynomial:

H(α, β) =8α6 − 8α5β2 + 2α4β4 + 36α4β − 34α3β3 + 17α3 +

8α2β5 + 32α2β2 − 36αβ4 + 38αβ + 8β6 − 17β3 + 8
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Here (Q) denotes the ideal generated by the element Q in the algebra under consider-
ation. The values of the polynomials A,B,C, . . . , P appearing in the skein relations
for I(α, β) are given in the table below:

w = ((α2 + 2β)/(2α− β2))1/2 A = (β2 − α)
B = (α2 − αβ2 − β) C = (α2 − αβ2)
D = (1 + 2αβ + α2β2 − α3) E = (1 + αβ + α2β2 − α3)
F = (1 + 2αβ − β3) G = (αβ3 − 2α− 2α2β)
H = (αβ3 − 2α− 2α2β + β2) I = (α4 − α3β2 − 2α2β − 3α)
L = (2α3β + 3α2 − α2β3 − αβ2) M = (β4 − 2β − 3αβ2 + α2)
N = (1 + 4αβ + 3α2β2 − α3 − αβ4 − β3) O = (1 + 3αβ + 3α2β2 − α3 − αβ4)
P = (3β2 − β5 − 2α− 3α2β + 4αβ3)

Table 1

Furthermore there exists a second link invariant I (z,δ), which is determined by
the skein relations (1) and (2), but with another set of coefficients. Specifically, I (z,δ)

takes values in:

Z[z±ε/2, δ±ε/2]

(P (z, δ))

where ε is as above and P (z, δ) is the following polynomial:

P (z, δ) = z23 + z18δ − 2z16δ2 − z14δ3 − 2z9δ4 + 2z7δ5 + δ6z5 + δ7

The values of the rational functions A,B,C, . . . , P corresponding to the skein relations

of I(z,δ) are obtained as follows: set first w =
(
− z3

δ

)1/2

and substitute further α =

− z7+δ2

z4δ and β = δ−z2

z3 in the other entries of table 1.

1.3. Properties of the invariants. The following summarize the main features
of these invariants (see section 6):

(1) they distinguish all knots with number crossing at most 10 that have the same
HOMFLY polynomial, and thus they are independent from HOMFLY. How-
ever, like HOMFLY and Kauffman polynomials, they seem to not distinguish
among mutants knots. In fact, they do not distinguish between the Kinoshita-
Terasaka knot and the Conway knot, which are the simplest non-equivalent
mutant knots.

(2) I(α, β) = I(−β,−α) for amphicheiral knots, and I(α, β) detects the chirality of
all those knots with number crossing at most 10, whose HOMFLY, Kauffman
polynomials as well as the 2-cabling of HOMFLY fail to detect.

(3) I(α, β) and I(z, δ) have a cubical behaviour.
Let us explain briefly what we meant by cubical behaviour.

Definition 1.1. A Laurent polynomial
∑

j∈Z
cja

j is a (n, k)-polynomial (for
n, k ∈ Z) if cj = 0 for j 6= k (modulo n).

Remark 1.1.

(1) The HOMFLY polynomial V (l,m) can be written as
∑

k∈Z
Rk(l)mk and re-

spectively as
∑

k∈Z
Sk(m)lk, where Rk(l) and Sk(m) are (2, k)-Laurent poly-

nomials fulfilling R2k+1(l) = S2k+1(m) = 0.
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(2) The Kauffman polynomial can be written as
∑

k∈Z
Uk(l)mk and respectively

as
∑

k∈Z
Tk(m)lk, where Uk(l) and Tk(m) are (2, k +1)-Laurent polynomials.

In this respect the HOMFLY and Kauffman polynomials have a quadratic be-
haviour.

Proposition 1.1. I(α, β) and I(z, δ) have a cubical behaviour, i.e. for each link
L there exists some l ∈ {0, 1, 2} so that:

I(α, β)(L) =

∑
k∈Z+

Pk(β)αk

∑
k∈Z+

Qk(β)αk
=

∑
k∈Z+

Mk(α)βk

∑
k∈Z+

Nk(α)βk

where Pk, Qk,Mk, Nk are (3, k + l)-polynomials, and

I(z, δ)(L) =
∑

k∈Z

Hk(δ)zk =
∑

k∈Z

Gk(z)δk

where Hk, Gk are (3, k)-Laurent polynomials.

1.4. Comments. There are three link invariants coming from Markov traces
on cubic Hecke algebras, presently known. First, for each quadratic factor Pi of the
cubic polynomial Q one has a Markov trace which factors through the usual Hecke
algebra H(Pi, n), yielding a re-parameterized HOMFLY invariant. Then there is the
Kauffman polynomial and the invariant I(α,β) (or I(z,δ)) introduced in the present
paper. It would be very interesting to find whether there exists some relationship
between them. The explicit computations below show that the new invariants are
independent on HOMFLY, Kauffman and their 2-cablings.

Further, one expects that our invariants belong to a family of genuine two-
parameter invariants, as expressed in the following:

Conjecture 1.1. There exists a Markov trace on H(Q,n) taking values in an
algebraic extension of Z[α, β], which lifts the Markov trace underlying I(α,β).

In other words, the non-determinacy H(α,β) in I(α,β) can be removed. Notice that

the polynomials H(α,β) and P (z,δ) define irreducible planar algebraic curves which are
not rational. In particular, one cannot express explicitly the invariants as one variable
polynomials.

1.5. Cubic Hecke algebras. The form of the first skein relation (1) explains
the appearance of cubic quotients of braid group algebras C[Bn]. Recall that the
braid group Bn on n strands is given by the presentation:

Bn = 〈b1, . . . , bn−1 | bibj = bjbi, |i− j| > 1 and bibi+1bi = bi+1bibi+1, i < n− 1 〉

Furthermore we define the cubic Hecke algebra by analogy with the usual (i.e.
quadratic) Hecke algebra (see [9]), as follows:

H(Q,n) = C[Bn]/(Q(bj) ; j = 1, . . . , n− 1)

where Q(bj) = b3
j − α b2

j − β bj − 1 is a cubic polynomial, which will be fixed through
out this paper.

Our purpose is to construct Markov traces on the tower of cubic Hecke algebras
since these will eventually lead to link invariants. This method was pioneered by
V.Jones ([16]) and A.Ocneanu, who applied it to the case of usual Hecke algebras
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and obtained the celebrated HOMFLY polynomial. Later on several authors (see
[14, 15, 21, 26]) employed more sophisticated algebraic and combinatorial tools in
searching for Markov traces on other Iwahori-Hecke algebras, for instance those of
type B which are leading to invariants for links in a solid torus.

The cubic Hecke algebras are particular cases of the generic cyclotomic Hecke
algebras, introduced by M.Broué and G.Malle (see [6]) and studied in [7, 8], in con-
nection with braid group representations. Recall the following results concerning the
structure of the cyclotomic Hecke algebras with Q(0) 6= 0 (according to [6, 7, 8, 10]
and [11], p.148-149):

(1) dimC H(Q, 3) = 24 and H(Q, 3) is isomorphic to the group algebra of the bi-
nary tetrahedral group 〈2, 3, 3〉 of order 24, i.e. the linear group SL(2, Z/3Z).

(2) dimC H(Q, 4) = 648 and H(Q, 4) is the group algebra of the finite group G25

from the Shepard-Todd classification (see [32]).
(3) H(Q, 5) is the cyclotomic Hecke algebra of the group G32, whose order is

155520. It is conjectured that this algebra is free of finite dimension which
would imply (by using the Tits deformation theorem) that it is isomorphic to
the group algebra of G32.

(4) dimC H(Q,n) =∞ for n ≥ 6.
Thus a direct definition of the trace on H(Q,n) for n ≥ 6 is highly a nontrivial

matter, because it would involve in particular, the explicit solution of the conjugacy
problem in these algebras. In order to circumvent these difficulties one introduces
a tower of smaller quotients Kn(α, β) by adding one more relation to H(Q, 3), as
follows:

b2b
2
1b2 + R0 = 0

where

R0 = A b2
1 b2

2 b2
1 + B b1 b2

2 b2
1 + B b2

1 b2
2 b1 + C b2

1 b2 b2
1 + D b1 b2

2 b1 + E b1 b2 b2
1 +

E b2
1 b2 b1 + F b2

2 b2
1 + F b2

1 b2
2 + G b2 b2

1 + G b2
1 b2 + H b2

2 b1 + H b1 b2
2 +

I b1 b2 b1 + L b2 b1 + L b1 b2 + M b2
1 + M b2

2 + N b1 + O b2 + P

and A,B, . . . , P are the functions from table 1.

Remark 1.2. The main feature of these quotients is the fact that the algebras
Kn(α, β) are finite dimensional for all values of n. Moreover, these algebras do not
collapse for large n, thus yielding an interesting tower of algebras.

Remark 1.3. Let us explain the heuristics behind that choice for the additional
relation. For generic Q the algebra H(Q, 3) is semi-simple and decomposes as C

3 ⊕
M⊕3

2 ⊕M3, where Mm is the algebra of m×m matrices. The quadratic Hecke algebra
Hq(3) = C[B3]/(b

2
i +(1− q)bi− q) arises as a quotient of H(Q, 3) by killing the factor

C ⊕M⊕2
2 ⊕M3. It is known that Jones and HOMFLY polynomials can be derived

from the unique Markov trace on the homogeneous tower ∪∞
n=1Hq(n). In a similar

way, the rank 3 Birman-Wenzl algebra ([5]) - which supports an unique Markov trace
inducing the Kauffman polynomial - is the quotient of H(Q, 3) by the factor C⊕M 2

2 .
In our case we introduced the extra relation above which kills precisely the central
factor C

3 of H(Q, 3).

The geometric interpretation of these relations is now obvious: the first skein
relation (1) is the cubical relation corresponding to taking the quotient H(Q,n) while
the main skein relation (2) defines the smaller quotient algebras Kn(α, β).
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Our main theorem is a consequence of the more technical result below (see sections
2, 3 and 4).

Theorem 1.2. There are precisely four values of (z, z̄) (formal expressions in
α and β) for which there exists a Markov trace T on the tower ∪∞

n=1Kn(α, β) with
parameters (z, z̄) i.e. verifying the following conditions:

(1) T (xy) = T (yx) for all x, y ∈ Kn(α, β) and all n,
(2) T (xbn−1) = zT (x) for all x ∈ Kn(α, β) and all n,
(3) T (xb−1

n−1) = z̄T (x) for all x ∈ Kn(α, β) and all n.

The first pair (z, z̄) is given by:

z =
2α− β2

αβ + 4
, z̄ = −

α2 + 2β

αβ + 4

and the corresponding trace takes values as follows:

Tα, β : ∪∞n=1Kn(α, β)→
Z[α, β, (αβ + 4)−1]

(H(α, β))

The other three solutions are not rational functions on α and β, but nevertheless
one can express α, β and z̄ as rational functions of z and δ, where δ = z2(βz + 1).
Specifically, we have a Markov trace:

T (z, δ) : ∪∞n=1Kn(α, β)→
Z[z±1, δ±1]

(P (z, δ))

where:

β =
δ − z2

z3
, α = −

z7 + δ2

z4δ
and z̄ = −

z4

δ

Remark 1.4. For particular values of (α, β) ∈ C one might find that the indeter-
minacy ideal for the respective Markov traces is smaller than the specialization of the
ideal above. A specific example is the Z/6Z-valued invariant, corresponding to the
values α = β = 0 in [13], which is a specialization of the invariant Iz,δ for z3 = −1 and
δ = z2. We can refine the general Markov trace in order to restrict to a Z/3Z-valued
trace (see section 6), but this refinement does not survive the deformation process.

There is a natural way to convert a Markov trace T into a link invariant, by
setting:

I(x) =

(
1

zz̄

)n−1
2 ( z̄

z

) e(x)
2

T (x)

where x ∈ Bn is a braid representative of the link L and e(x) is the exponent sum of
x.

Therefore we derive two invariants I(α, β) and I(z, δ) from the previous Markov
traces, which satisfy the claimed skein relations.
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1.6. Outline of the proof. We will prove by recurrence on n that a Markov
trace on Kn(α, β) extends to a Markov trace on Kn+1(α, β). Since there is a nice
system of generators for Kn+1(α, β) constructed inductively starting from a generators
system for Kn(α, β), such an extension, whenever it exists, it must be unique. This
is a consequence of the special form of the skein relation (2). However, the most
difficult step is to prove that the canonical combinatorial extension from Kn(α, β)
to Kn+1(α, β) is indeed a well-defined linear functional, which moreover satisfies the
condition of trace commutativity.

The method of proof is greatly inspired by [3]. One defines a graph whose vertices
are linear combinations on elements of the free group in n − 1 letters. The edges
correspond to pairs of elements which differ by exactly one relation, from the set of
relations which present the algebras Kn(α, β).

Some of these edges will be given an orientation. The first problem is whether
each connected component of this graph has a minimal element for this orientation.
We have to understand further whether different descending paths issued from the
same vertex will eventually abut on the same element. Notice that whenever there
is an unique minimal element in each component one is able to derive a basis for the
module Kn(α, β).

In order to achieve the existence of minimal elements in each component one has
to add a number of extra edges to our former graph. These new edges correspond to
other relations satisfied in Kn(α, β).

Let us consider the lexicographic order on the letters generating the free group on
n−1 letters. We want to use the relations in the algebra Kn(α, β) as transformations
which replace a word by a linear combination of smaller ones. Using recursively this
procedure the initial word is simplified until it reaches a normal form, where no more
simplifications are possible.

The simplification procedure is encoded in the oriented paths of the graph: each
relation used as above is an oriented edge of our graph. Specifically, these are given
by the following monomial substitutions:

(C0)(j) : ab3
jb→ α ab2

jb + β abjb + ab (3)

(C1)(j) : abj+1bjbj+1b→ abjbj+1bjb (4)

(C2)(j) : abj+1b
2
jbj+1b→ aSjb (5)

(C12)(j) : abj+1b
2
jb

2
j+1b→ aCjb (6)

(C21)(j) : ab2
j+1b

2
jbj+1b→ aDjb (7)

where Ej+1 = αb2
j+1 + βbj+1 + 1, Sj = bj+1b

2
jbj+1 − R0(j) , Cj = b2

jb
2
j+1bj +

α(bj+1b
2
jbj+1 − bjb

2
j+1bj) + β(bj+1b

2
j − b2

j+1bj) and Dj = bjb
2
j+1b

2
j + α(b2

j+1b
2
jb

2
j+1 −

bjb
2
j+1bj)+β(b2

jbj+1−bjb
2
j+1), j ∈ {0, . . . , n−2}. Here R0(j) is the result of translating

the indices of all letters in R0 by j − 1 units.
Several edges of our graph will remain unoriented. The reason is that the respec-

tive relations are not compatible with the lexicographic order. They correspond to
the following monomial substitutions:
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(Pij) : abibjb→ abjbib, whenever |i− j| > 1 (8)

The transformations (3)-(8) will be called reduction or simplification transformations.
Remark that we introduced some extra relations, namely (5) and (6), which are

not among the relations of the given presentation of Kn(α, β), but which are neverthe-
less satisfied in Kn(α, β). These new relations make the reduction process ambiguous.
The reason for introducing them is to insure the existence of descending paths towards
some minimal elements even in the case when the graph might contain closed oriented
loops.

The next step consists of checking the existence and uniqueness of minimal ele-
ments in this semi-oriented graph by means of so-called Pentagon Lemma (see section
2). One notices that one cannot always find a unique minimal element by using di-
rected paths issued from a fixed vertex. Furthermore we shall enlarge our graph to
a tower of graphs modeling not one particular algebra Kn(α, β) for fixed n, but the
set of linear functionals defined on the whole tower ∪∞

n=2Kn(α, β) and satisfying cer-
tain compatibility conditions, which relate the values taken on Kn(α, β) to those on
Kn+1(α, β). The main feature of the tower is that now one can simplify further the
minimal elements by recurrence on the level n, until one abuts on K0(α, β). Here the
Colored Pentagon Lemma (see section 3) can be applied and the uniqueness of the
minimal elements in the tower of graphs is reduced to finitely many algebraic condi-
tions. We will find actually that the main obstructions lie in K4(α, β), as it might
be inferred from the study of quadratic Hecke algebras. From a different perspec-
tive, we actually proved that a certain linear functional on the tower ∪∞

n=2Kn(α, β)
is well-defined.

Eventually one has to verify whether the linear functional obtained above satisfies
the commutativity conditions for being a Markov trace. One proves that there is only
one obstruction to the commutativity, which lies also in K4(α, β).

Summarizing, there are two types of obstructions to the existence of a Markov
traces:

• CPC obstructions, coming from the Colored Pentagon Condition, and
• commutativity obstructions.

These algebraic obstructions are polynomials with integer coefficients in the variables
α and β, and have been computed by using a computer code and formal calculus.
The output of these computations is a set of explicit polynomials, which belong to
the principal ideal generated by H(α,β). Furthermore, the functional defined above is
indeed a Markov trace, when restricting its values to the quotient by this principal
ideal.

2. Markov traces on Kn(α, β).

2.1. The cubic Hecke algebra H(Q, 3) revisited. The generalized Hecke
algebras H(P, 3) could be considered for polynomials P of higher degree by using the
same definition as in the cubic case. One notices however that dimC H(P, 3) =∞ as
soon as the degree of P is at least 6.

Remark 2.1. The structure of the algebras H(P, n) is well-known in the classical
case (see [9]) when P is quadratic. They are finite dimensional semi-simple algebras
of dimension n!, isomorphic (for generic P ) to the group algebra of the permutation
group on n elements. There is no general theory for higher degree polynomials P , due
to their considerable complexity.
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In the particular case of cubic Q and n = 3 it was shown in [13] the following:

Proposition 2.1. If Q is a cubic polynomial with Q(0) 6= 0 then dimC H(Q, 3) =
24. A convenient base of the vector space H(Q, 3) is:

e1 = 1, e2 = b1, e3 = b2
1, e4 = b2, e5 = b2

2, e6 = b1b2, e7 = b2b1, e8 = b2
1b2, e9 =

b2b
2
1, e10 = b1b

2
2, e11 = b2

2b1, e12 = b2
1b

2
2, e13 = b2

2b
2
1, e14 = b1b2b1, e15 = b2

1b2b1, e16 =
b1b2b

2
1, e17 = b1b

2
2b

2
1, e18 = b2

1b2b
2
1, e19 = b2

1b
2
2b1, e20 = b1b

2
2b1, e21 = b2

1b
2
2b

2
1, e22 =

b2b
2
1b2, e23 = b2b

2
1b2b1 = b1b2b

2
1b2, e24 = b2b

2
1b2b

2
1 = b1b2b

2
1b2b1 = b2

1b2b
2
1b2

Proposition 2.2. H(Q, 3) is a semi-simple algebra which decomposes generically
as C

3 ⊕M⊕3
2 ⊕M3, where Mn is the algebra of n× n matrices. The morphism into

H(Q, 3)→ C
3 is obtained via the abelianization map. Each one of the three projections

H(Q, 3) → M2 factors through the projection H(Q, 3) → H(Pi, 3) = C
2 ⊕M2 onto

the quadratic Hecke algebra H(Pi) defined by one divisor Pi of Q.

Proof. This follows by a direct computation, making use of the following identities
([13]):

bj+1b
2
jbj+1bj = bjbj+1b

2
jbj+1

b2
j+1b

2
jbj+1 = bjb

2
j+1b

2
j + α(bj+1b

2
jbj+1 − bjb

2
j+1bj) + β(b2

jbj+1 − bjb
2
j+1)

bj+1b
2
jb

2
j+1 = b2

jb
2
j+1bj + α(bj+1b

2
jbj+1 − bjb

2
j+1bj) + β(bj+1b

2
j − b2

j+1bj)

2.2. The algebras Kn(α, β). The tower ∪∞k=1P (k) of quotients of ∪∞k=1H(Q, k)
is homogeneous if any identity F (bi, bi+1, . . . , bj) = 0 which holds in P (j +1), remains
valid under the translation of indices i.e. F (bi+k, bi+k+1, . . . , bj+k) = 0, for all k ∈ Z

such that k ≥ 1− i. If one seeks for Markov traces on towers of quotients of C[Bn] it
is convenient to restrict ourselves to the study of homogeneous quotients.

We define Kn(α, β) as the homogeneous quotient H(Q,n)/In, where In is the
two-sided ideal generated by:

bjb
2
j−1bj +(β2−α)b2

j−1b
2
jb

2
j−1 +(α2−αβ2−β)bj−1b

2
jb

2
j−1+ (α2−αβ2−β)b2

j−1b
2
j

bj−1 + (α2 − αβ2)b2
j−1bjb

2
j−1+ (1 + 2αβ + α2β2 − α3)bj−1b

2
jbj−1 + (1 + αβ + α2β2−

α3)bj−1bjb
2
j−1 + (1 + αβ + α2β2−α3)b2

j−1bjbj−1 + (1 + 2αβ− β3)b2
jb

2
j−1+ (1 + 2αβ−

β3)b2
j−1b

2
j +(αβ3−2α−2α2β)bjb

2
j−1+ (αβ3−2α−2α2β)b2

j−1bj+ (αβ3−2α−2α2β +

β2)b2
jbj−1+(αβ3−2α−2α2β+β2)bj−1b

2
j +(α4−α3β2− 2α2β−3α)bj−1bjbj−1+(2α3β+

3α2−α2β3−αβ2)bjbj−1+ (2α3β+3α2− α2β3−αβ2)bj−1bj+(β4−2β−3αβ2+α2)b2
j−1+

(β4−2β−3αβ2 +α2)b2
j+ (1+4αβ +3α2β2−α3−αβ4−β3)bj−1 +(1+3αβ +3α2β2−

α3 − αβ4)bj +3β2 − β5 − 2α− 3α2β + 4αβ3

for j ∈ {1, . . . , n− 1}.

Proposition 2.3. Under the identification H(Q, 3) ∼= C
3 ⊕ M⊕3

2 ⊕ M3, the
quotient K3(α, β) corresponds to M⊕3

2 ⊕M3.

Proof. In fact, it suffices to show that the ideal I3 is a vector space of dimension
3. Let I be the span of R0, R1, R2, where:

R0 = b2b
2
1b2 + (β2 − α) b2

1b
2
2b

2
1+ (α2 − αβ2 − β)b1b

2
2b

2
1 + (α2 − αβ2 − β)b2

1b
2
2b

2
1

+(α2 − αβ2)b2
1b2b

2
1+ (1 + 2αβ + α2β2 − α3)b1b

2
2b1 + (1 + αβ + α2β2 − α3)b1b2b

2
1+
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(1 + αβ + α2β2 − α3)b2
1b2b1 +(1 + 2αβ − β3)b2

2b
2
1 + (1 + 2αβ − β3)b2

1b
2
2+ (αβ3 − 2α−

2α2β)b2b
2
1 +(αβ3 − 2α − 2α2β)b2

1b2 + (αβ3 − 2α − 2α2β + β2)b2
2b1 +(αβ3 − 2α −

2α2β + β2)b1b
2
2+ (α4 − α3β2 − 2α2β − 3α)b1b2b1 + (2α3β + 3α2 − α2β3 − αβ2)b2b1+

(2α3β + 3α2 −α2β3 −αβ2)b1b2+ (β4 − 2β − 3αβ2 + α2)b2
1 + (β4 − 2β − 3αβ2 + α2)b2

2

+(1 + 4αβ + 3α2β2 − α3 − αβ4 − β3)b1 +(1 + 3αβ + 3α2β2 − α3 − αβ4)b2 + 3β2 −
β5 − 2α− 3α2β + 4αβ3

R1 = b1R0 = b1b2b
2
1b2−βb2

1b
2
2b

2
1 +(1+αβ)b1b

2
2b

2
1 +(1+αβ)b2

1b
2
2b

2
1 +(1+αβ)b2

1b2b
2
1

(−α2β − 2α)b1b
2
2b1 + (−α2β − 2α)b1b2b

2
1+ (−α2β − 2α)b2

1b2b1+ (β2 − α)b2
2b

2
1 + (β2 −

α)b2
1b

2
2+ (α2−αβ2)b2b

2
1+ (α2−αβ2)b2

1b2 +(α2−αβ2−β)b2
2b1+ (α2−αβ2−β)b1b

2
2+

(α3β + β + 3α2)b1b2b1 + (1 + αβ + α2β2 − α3)b2b1+ (1 + αβ + α2β2 − α3)b1b2+
(1+2αβ−β3)b2

1 +(1+2αβ−β3)b2
2 +(αβ3−2α−2α2β +β2)b1 +(αβ3−2α−2α2β)b2

+β4 − 2β − 3αβ2 + α2

R2 = b1R1 = b2
1b2b

2
1b2+ b2

1b
2
2b

2
1 − αb1b

2
2b

2
1 − αb2

1b
2
2b

2
1 −αb2

1b2b
2
1+ α2b1b

2
2b1 + (α2 +

β)b1b2b
2
1 +(α2 +β)b2

1b2b1+ (−β)b2
2b

2
1 +(−β)b2

1b
2
2 +(1+αβ)b2b

2
1+ (1+αβ)b2

1b2 +(1+
αβ)b2

2b1+ (1+αβ)b1b
2
2+ (−α3β−αβ+1)b1b2b1+(−α2β−2α)b2b1+ (−α2β−2α)b1b2+

(β2 − α)b2
1 + (β2 − α)b2

2 + (−αβ2 + α2 − β)b1+ (−αβ2 + α2)b2 + 1 + 2αβ − β3

Lemma 2.1. There is an isomorphism of vector spaces I ∼= I3.

Proof. Remark first that the following identities hold true in H(Q, 3):

b1R0 = R0b1 = R1, b1R1 = R1b1 = R2, b1R2 = R2b1 = R0 + βR1 + αR2

Then, by direct computation, we obtain that:

b2R0 = R0b2 = R1, b2R1 = R1b2 = R2, b2R2 = R2b2 = R0 + βR1 + αR2

From these relations we derive that xR0y ∈ I for all x, y ∈ H(Q, 3), and hence I3 ⊂ I.
The other inclusion is immediate.

The proposition is then a consequence of the previous lemma.

2.3. Uniqueness of the Markov trace on the tower ∪∞n=1Kn(α, β). From
now on we will work with the group ring Z [α, β] [Bn] instead of C [Bn].

Definition 2.1. Let z, z̄ ∈ Z(α, β) be rational functions in the variables α and
β, and R a Z [α, β, z, z̄]-module. The linear functional T : ∪∞

n=1Kn(α, β)→ R is said
to be an admissible functional (with parameters z and z̄) on ∪∞

n=1Kn(α, β) if the
following conditions are fulfilled:

T (xbny) = zT (xy) for all x, y ∈ Kn(α, β)

T (xb−1
n y) = z̄T (xy) for all x, y ∈ Kn(α, β)

An admissible functional T is a Markov trace if it satisfies the following trace condi-
tion:

T (ab) = T (ba) for any a, b ∈ Kn(α, β)

Remark 2.2. The tower of quadratic Hecke algebras admits an unique Markov
trace ([16]). Similarly, the tower of Birman-Wenzl algebras ([5]) admits an unique
Markov trace.



486 P. BELLINGERI AND L. FUNAR

Definition 2.2. The admissible functional T is multiplicative if T (xbk
n) =

T (x)T (bk
n) holds for all x ∈ H(Q,n) and k ∈ Z.

Remark 2.3. The Markov trace on the quadratic Hecke algebras is mul-
tiplicative, and hence T (xy) = T (x)T (y) for any x ∈ H(Q,n) and y ∈
〈1, bn, bn+1, . . . , bn+k〉. However, one cannot expect that this property holds true
for Markov traces on arbitrary higher degree Hecke algebras.

Proposition 2.4. The admissible functionals on the tower of cubic Hecke alge-
bras are multiplicative. In particular:

T (ab2
nb) = tT (ab) for all a, b ∈ H(Q,n)

where t = αz + β + z̄.

Proof. One uses the identity b2
n = αbn + β + b−1

n for proving the multiplicativity
for k = 2, and then continue by recurrence for all k.

One can state now the unique extension property of Markov traces.

Proposition 2.5. For fixed (z, t) there exists at most one Markov trace on
Kn(α, β) with parameters (z, t).

Proof. Define recursively the modules Ln as follows:

L2 = H(Q, 2)

L3 = C〈bi
1b

j
2b

k
1 | where i, j, k ∈ {0, 1, 2}〉

Ln+1 = C〈abε
nb | where a, b are elements of the basis of Ln, and ε ∈ {1, 2}〉 ⊕ Ln

Lemma 2.2. The natural projection π : Ln → Kn(α, β) is surjective.

Proof. For n = 2 it is clear. For n = 3 we know that b2b
2
1b2, b1b2b

2
1b2, b2

1b2b
2
1b2 ∈

π(L3), from the exact form of the relations R0, R1, R2, generating the ideal I3. We
shall use a recurrence on n and assume that the claim holds true for n.

Consider now w ∈ Kn+1(α, β) represented by a word in the bi’s having only pos-
itive exponents. We assume that the degree of the word in the variable bn is minimal
among all linear combinations of words (with positive exponents) representing w.

(1) If this degree is less or equal to 1 then there is nothing to prove.
(2) If the degree is 2 then either w = ub2

nv, u, v ∈ Kn(α, β) so using the induc-
tion hypothesis we are done, or else w = ubnzbnv, where u, z, v ∈ Kn(α, β).
Therefore z = xbε

n−1y where x, y ∈ Kn−1(α, β) by the induction hypothesis
and ε ∈ {0, 1, 2}.
(a) If ε = 0 then w can be reduced to uzb2

nv.
(b) If ε = 1 then w = ubnxbn−1ybnv = uxbn−1bnbn−1yv hence the degree of

w can be lowered by one, which contradicts our minimality assumption.
(c) If ε = 2 then w = uxbnb2

n−1bnyv. One derives that:

bnb2
n−1bn ∈ C〈bi

n−1b
j
nbk

n−1, i, j, k ∈ {0, 1, 2}〉

hence we reduced the problem to the case when w is a word of type
u′b2

nv′.
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(3) If the degree of w is at least 3 we will contradict the minimality assumption.
In fact, in this situation w will contain either a sub-word w′ = ba

nubb
n, with

u ∈ Kn(α, β) and a + b ≥ 3, or else a sub-word w′′ = bnubnvbn, with u, v ∈
Kn(α, β).
(a) In the first case using the induction we can write u = xbε

n−1y, with
x, y ∈ Kn−1(α, β).
(i) Furthermore, if ε = 0 then w′ = ba+b

n xy = αba+b−1
n xy+βba+b−2

n xy+
ba+b−3
n xy, and hence the degree of w can be lowered by one.

(ii) If ε = 1 then w′ = ba−1
n xbnbn−1bnybb−1

n = ba−1
n xbn−1bnbn−1ybb−1

n ,
and again its degree can be reduced by one unit.

(iii) If ε = 2 then either a or b is equal 2. Assume that a = 2. We can
therefore write:

w′ = xb2
nb2

n−1bnybb−1
n = xbn−1b

2
nb2

n−1ybb−1
n +

α(bnb2
n−1bn − bn−1b

2
nbn−1)ybb−1

n + β(b2
n−1bn − bn−1b

2
n)ybb−1

n

contradicting again the minimality of the degree of w.
(b) In the second case we can write also u = xbε

n−1y, v = rbδ
n−1s with

x, y, r, s ∈ Kn−1(α, β).
(i) If ε or δ equals 1 then, after some obvious commutations the

word w” contains the sub-word bnbn−1bn which can be replaced
by bn−1bnbn−1 and hence diminishing its degree.

(ii) If ε = δ = 2 then w” = xbnb2
n−1bnyrb2

n−1bns. We use the homogene-
ity to replace bnb2

n−1bn by a sum of elements of type bi
n−1b

j
nbk

n−1.
Each term of the expression of w” which comes from a factor which
has the exponent j < 2, has diminished its degree. The remaining
terms are xbi

n−1b
2
nbk

n−1yrb2
n−1bns, so they contains a sub-word b2

nubn

whose degree we already know that it can be reduced as above. This
proves our claim.

Eventually recall that the Markov traces T on ∪∞n=1H(Q,n) are multiplicative, and
hence they satisfy: T (xbε

ny) = T (bε
n)T (yx). Therefore there is a unique extension of

T from Kn(α, β) to Kn+1(α, β). This ends the proof of our proposition.

Proposition 2.6. The admissible functionals on the tower of algebras
∪∞n=1Kn(α, β) satisfy the identities:

T (xuv) = T (u)T (xv) for x, v ∈ H(Q,m) and u ∈ 〈1, bm, bm+1, . . . , bm+k〉

Proof. For k = 0 this is equivalent to the multiplicativity of the admissible
functional. We will use a recurrence on k and assume that the claim holds true for
k. By lemma 2.2 one can reduce the element u in Km+k+1(α, β) to a (non-necessarily
unique) normal form u = u1b

ε
m+ku2, where uj ∈ 〈1, bm, bm+1, . . . , bm+k〉, j ∈ {1, 2}

and ε ∈ {0, 1, 2}. The multiplicativity of the admissible functionals implies that:

T (xuv) = T (bε
m+k)T (xu1u2v)

By the recurrence hypothesis one knows that:

T (xu1u2v) = T (u1u2)T (xv)
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and since:

T (u) = T (bε
m+k)T (u1u2)

one derives our claim.

3. CPC Obstructions.

3.1. The pentagonal condition. The following is an immediate consequence
of lemma 2.2:

Lemma 3.1. There is a surjection of (Kn(α, β),Kn(α, β))-bimodules:

Kn(α, β)⊕Kn(α, β)⊗Kn−1(α,β)Kn(α, β)⊕Kn(α, β)⊗Kn−1(α,β)Kn(α, β) −→ Kn+1(α, β)

given by:

x⊕ y ⊗ z ⊕ u⊗ v → x + ybnz + ub2
nv

Remark 3.1. In particular, the admissible functionals on the tower
∪∞n=1Kn(α, β) are unique up to the choice of T (1) ∈ R.

Now, we want to use the transformations (3)-(7) to simplify the positive words
from Kn(α, β), so that the degree of bn−1 becomes as small as possible. According
to the previous lemma every word in Kn(α, β) can be written as a linear combi-
nation of words of the form xib

εi

n−1yi, with εi ∈ {0, 1, 2} and xi, yi ∈ Kn−1(α, β).
Unfortunately, one needs to use in both directions the transformations Pij from (8):
bibj ↔ bjbi, for |i− j| > 1.

Remark 3.2. The linear combination we obtained above is a kind of normal
form for the word with which we started. It could happen that this normal form
is not unique since we may perform again permutations of type (8) among some
of its letters. However, if any two such normal forms were equivalent under the
transformations (8), then we would obtain an almost canonical description of the
basis of Kn(α, β). This assumption is equivalent to saying that the surjection from
lemma 3.1 is an isomorphism. Unfortunately, this is not the case. However, one can
describe the obstructions to the uniqueness for this almost canonical form, as follows.

We return now to the module of the admissible functionals on the whole tower of
algebras ∪∞n=1Kn(α, β). The conditions satisfied by admissible functionals enable us
to add a new type of simplifications, by means of the following formulas:

abn−1b→ z ab, and respectively ab2
n−1b→ t ab, where a, b ∈ Kn−1(α, β) (9)

This way we can reduce a word from Kn(α, β) to a linear combination of words from
Kn−1(α, β). Assume that we are using repeatedly the transformations (9). Then we
will eventually reduce the initial word to a linear combinations of words in K0(α, β),
thus to an element of R. Remark that this element is actually the value that the ad-
missible functional takes on the initial word. Our main task is to understand whether
the final reduction is independent on the way we chose to make the simplifications.
When this happens to be true then we obtain that the functional which associates
to each element of Kn(α, β) its final reduction is a well-defined admissible functional.
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However, we will encounter below some obstructions to the uniqueness, which fortu-
nately we can treat explicitly.

One formalizes this procedure at follows. Let Γ be a semi-oriented graph. This
means that some of its edges are oriented while the remaining ones are left unoriented.
We write v → w if there is an oriented edge from v to w. A path v1v2 · · · vn in Γ is
called a semi-oriented path if, for each j, one has either vj → vj+1 or else vjvj+1 is
an unoriented edge of Γ. If all edges of the path are unoriented then we say that its
endpoints are (weakly) equivalent.

Definition 3.1. The sequence of vertices [v0, v1, . . . , vn+1] is an open pentagon
configuration in Γ (abbreviated o.p.c.) if v1 → v0, v1v2 · · · vn−1 is an unoriented path
and vn → vn+1.

Definition 3.2. The semi-oriented graph Γ verifies the pentagon condition (ab-
breviated PC) if for any open pentagon configuration [v0, v1, . . . , vn+1] there exist
semi-oriented paths v0x1x2 · · ·xme and vn+1y1y2 · · · ype having the same endpoint.

Given a graph like above one has a binary relation induced as follows: we set
x ≤ y if there exists an semi-oriented path from y to x in Γ. Of course ≤ is not
always a partial order relation. A necessary and sufficient condition for ≤ to be a
partial order is that Γ contains no closed semi-oriented closed loops. One says that x
is minimal if y ≤ x implies that y is weakly equivalent to x.

Lemma 3.2. Suppose that the (PC) holds. If a connected component C of the
graph Γ has a minimal element then this is unique up to weak equivalence.

Proof. Consider two minimal elements x and y which lie in C. Then there exists
some path xx0x1 · · ·xny joining them. Since x is minimal the closest oriented edge - if
it exists - must be in-going; and the same is true for y. If this path is not unoriented,
then the minimality implies that there are at least two oriented edges. Therefore one
can find a sequence of open pentagon configurations lining on the path which joins
x to y. We apply then the (PC) iteratively, whenever we see one such o.p.c., or one
o.p.c. appears at the next stage, as in the figure below:

x y

z u

e

j k

When this process stops, we find two semi-oriented paths xz1z2 · · · zpe and
yu1u2 · · ·use having the same endpoint e. So e ≤ x and e ≤ y. From minimality
both these paths must be unoriented, and thus x and y are weakly equivalent.

Remark 3.3. The existence of minimal elements is not a priori granted, without
additional conditions. If ≤ had been a partial order with descending chain condi-
tion, then the existence of minimal elements would be standard. We will show that
in the present case, of the graph modeling the admissible functionals on the tower
∪∞n=1Kn(α, β), such minimal elements exist, though as ≤ is not a partial order.

3.2. The colored tower of graphs Γ∗
n. Suppose now that we have a family

of semi-oriented graphs Γn as follows. Each graph Γn has a distinguished subset
of vertices V 0

n whose elements are minimal elements in their connected respective
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components. Assume also that each connected component of the Γn admits at least
one minimal element. Further, we suppose that each vertex from V 0

n has exactly one
outgoing edge which joins it to a vertex of Γn−1. We color the edges connecting graphs
Γn and Γn−1 in red. Set Γ∗

n for the union of all Γj , with j ≤ n to which we add all red
edges connecting graphs Γk and Γk+1, for k ≤ n − 1. We can have an intuitive view
of Γ∗

n by looking at the Γn as graphs lying on different floors which are connected by
vertical red edges pointing downwards.

Definition 3.3. The graph Γ∗
n is coherent if any connected component of Γn

has an unique minimal element within Γ∗
n, up to weak equivalence.

Remark 3.4. A minimal element should belong to Γ0.

We state now the colored version of the Pentagon Lemma for this type of graphs.

Definition 3.4. We say that Γn verifies the colored pentagon condition (CPC)
if, for any open pentagon configuration [v0, v1, . . . , vm+1] in Γn, there exist bicolored
semi-oriented paths (in Γ∗

n) from v0 and vm+1 having the same endpoint. In addition,
if xy is an unoriented edge in Γn with x, y ∈ V 0

n then there exist semi-oriented paths
in Γ∗

n starting with red edges and having the same endpoint, as in the figure below:

��������
���� ������
	�	


���� ����
�� ����

����
���� ������

������ ��������

n-1

nΓ

Γ

Γ
0

Lemma 3.3. Suppose that Γ∗
n−1 is coherent and the (CPC) condition is fulfilled.

Then Γ∗
n is coherent.

Proof. The proof is similar to that of Pentagon Lemma.

Now, we are ready to define the sequence of semi-oriented graphs Γn, which
models the admissible functionals on ∪∞n=1Kn(α, β).

Definition 3.5. The vertices of Γn are the elements of the ring algebra
Z[α, β, z, z̄][Fn], where Fn is the free monoid Fn−1 generated by n − 1 letters
{b1, b2, . . . , bn−1}. The vertices of Γ0 are the elements of Z[α, β, z, z̄]. Two vertices
v =

∑
i αi xi and w =

∑
i βi yi, where αi, βi ∈ Z[α, β, z, z̄] and xi, yi ∈ Fn, are

related by an oriented edge if exactly one monomial xi of v is changed by means of
a reduction transformation among the rules (3)-(7). An unoriented edge between v
and w corresponds to a simplification transformation (8) of one monomial xi from the
previous expression of v.

Remark 3.5. The use of (C12) and (C21) is somewhat ambiguous since we can
always use (C2) for a sub-word of the given word. Their role is to break in some sense
the closed oriented loops in Γn, as we shall see below.

Consider now the following sets of words in the bi’s:

W0 = {1}

Wn+1 = Wn ∪Wnbn+1Zn ∪Wnb2
n+1Zn
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where:

Zn = {bi0
n bi1

n−1 · · · b
ip

n−p| where the indices i1, i2, . . . , ip ∈ {1, 2},

and p ∈ {0, 1, . . . , n− 1}}.

Let V 0
n be the set of vertices corresponding to elements of the Z[α, β, z, z̄]-module

generated by Wn. This completes the definition of the tower of graphs Γn. We have
the following result:

Proposition 3.1. Each connected component of Γn has a minimal element in
V 0

n , not necessarily unique.

Proof. We use an induction on n. For n = 0 the claim is obvious. Let now w be
a word in the bi’s having only positive exponents.

(1) If its degree in bn is zero or one, then we apply the induction hypothesis and
we are done.

(2) If the degree in bn is 2 and w contains the sub-word b2
n, then again we are

able to apply the induction hypothesis.
(3) By using (C0) several times one can also suppose that no exponents greater

than 2 occur in w.
(a) If the degree of bn is 2 then w = xbnybnz with x, y, z ∈ Fn−1. The

induction hypothesis applied to y implies that w ≥ xbnabε
n−1bz with

a, b ∈ Fn−1. Then several transforms of type (Pnj) and (Cε) will do the
job.

(b) Consider now that the degree in bn is at least 3. Then w contains a sub-
word which has either the form bα

nxbβ
n with 3 ≤ α + β ≤ 4, or else one

of the type bnxbnybn. The second case reduce to the first one as above.
In the first case assume that x ≥ abε

n−1b for some a, b ∈ Fn−2. Then
several applications of (Pnj) lead us to consider the sub-word bα

nbε
n−1b

β
n.

(i) If ε = 1 we use two times (C1) and we are done.
(ii) Otherwise use either (Cαβ) and then (C1) if α 6= β or else both

(C12) and (C21) and then (C1), if α = β = 2.
This proves that every vertex descends to V 0

n . But these vertices have not outgoing
edges, as can be easily seen. When we use the unoriented edges some new vertices
have to be added. But it is easy to see that these new vertices do not have outgoing
edges either. Since any vertex has a semi-oriented path ending in V 0

n our claim follows.

Remark 3.6. The moves (C12) and (C21) are really necessary for the conclusion
of proposition 3.1 hold true. For instance look at the case α = β = 0. From bj+1b

2
jb

2
j+1

only (C2) can be applied; its reduction is a linear combination containing the factor
b2
j+1b

2
jbj+1. If we continue, then we shall find at each stage one of these two monomials.

Moreover, after making all possible reductions at the second stage, we recover the word
bj+1b

2
jb

2
j+1. Therefore there exist closed oriented loops in the graph. In particular

the connected component of bj+1b
2
jb

2
j+1 has no minimal element, unless we enlarge

the graph by adding the extra edges associated to (C12) and (C21). For general α, β
a similar argument holds and it can be checked by a computer program. If one does
not use (C12) or (C21) then the reduction process for bj+1b

2
jb

2
j+1 yields at the sixth

stage a sum of words generating an oriented loop.

We are able now to define the bicolored graph Γ∗
n(H), where the non-uniqueness

of the reduction process is measured by means of an ideal H ⊂ R.
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Definition 3.6. Consider a minimal vertex of Γn which can therefore be written
as the linear combination: v =

∑
i,k λi,k(xi,kbk

nyi,k), where k ∈ {0, 1, 2}, xi,k, yi,k are
words from Fn−1 and λi,k are scalars. Then we join v by an oriented red edge to the
vertex of Γn−1 which corresponds to the linear combination:

w =
∑

i

λi,0(x(i,0)yi,0)) +
∑

i

zλi,1(xi,1yi,1) +
∑

i

tλi,2(xi,2yi,2)

Finally, the level zero graph Γ0(H) is the graph having the vertices corresponding to
the module R. Two vertices of Γ0(H) are connected by an unoriented edge if the
corresponding elements lie in the same coset of R/H, where H is a given ideal of R.

Remark 3.7. The submodule H is necessary because going on different descend-
ing paths, we might obtain different elements of R.

4. The coherence conditions for Γ∗
n(H).

4.1. General considerations. The purpose of this section is to reduce the
coherence test for Γ∗

n(H) to finitely many algebraic checks.

We test the coherence conditions for each Γ∗
n(H) by recurrence on n. Notice that

for n ∈ {1, 2} there are no non-trivial requirements for H.

The coherence test for Γn (fixed n) amounts to checking that all open pentagon
configurations, which are infinitely many, verify (PC). Moreover the open pentagon
configurations themselves can be organized in a pattern which has the additional
structure of an algebra, in fact a planar algebra. We will not make use directly of this
algebra structure in the sequel. However, it can be inferred from it that it is enough to
verify the (PC) only for those o.p.c. which generate this algebra. A detailed analysis
of these generators reduces then the test problem to an explicit infinite family of
o.p.c. At this point we notice that the (PC) might not hold for all o.p.c. in this
family. Now, one enlarges Γn to the tower of colored graphs Γ∗

n and look for the
weaker (CPC) condition for the last one. Eventually, we show that the (CPC) for
these graphs can be reduced to finitely many checks.

The o.p.c. [w0, w1, . . . , wm+1] is said to be irreducible if none of the vertices
w1, w2, . . . , wm has an outgoing edge (except the obvious one for w1 and wm).

Lemma 4.1.

(1) In order to verify (PC) it suffices to restrict to irreducible configurations.
(2) It suffices to verify (PC) only for words from Fn.
(3) Let [w0, w1, . . . , wm+1] be an o.p.c. and w′

j = AwjB, for j ∈ {0, . . . ,m + 1},
where A,B are two arbitrary words. If (PC) holds for [w0, w1, . . . , wm+1],
then it holds for

[
w′

0, w
′
1, . . . , w

′
m+1

]
.

(4) Suppose that (PC) holds for the two o.p.c. [w0, w1, . . . , wm+1] and
[y0, y1, . . . , yk+1]. Then for all A,B,C the (PC) is valid also for the following
mixed o.p.c.:
[Aw0By1C,Aw1By1C, . . . , AwmBy1C,AwmBy2C, . . . , AwmByk+1C].
More generally, if one keeps fixed the endpoints of the o.p.c., then we can
mix the unoriented edges of each subjacent o.p.c. following an arbitrary
pattern. Specifically, let (is, js) ∈ {0, 1, . . . ,m + 1} × {0, 1, . . . , k + 1}, s ∈
{1, . . . , p} such that: i0 = 0 < i1 ≤ i2 ≤ · · · ≤ ip, jp = k + 1 >
jp−1 ≥ · · · ≥ 0 and is+1 − is + js+1 − js = 1, for all s. Then the o.p.c.[
Awi0Byj0C,Awi1Byj1C, . . . , Awip

Byjp
C
]

fulfills the (PC).
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Proof. 1) First, any o.p.c. can be decomposed into irreducible ones. Further, if
each irreducible component satisfies the (PC) then their composition verifies, too.

2) The reduction transformations acting on different monomials of a linear com-
bination commute with each other.

3) Obvious.

4) The simplification transformations for wm and y1 commute with each other.

From now on we can restrict ourselves to analyze only those o.p.c. [w0, w1, . . . , wm+1]
which are irreducible.

4.2. Resolving the diamonds. We consider first the case when the top line is
trivial i.e. m = 1 and so the pentagon degenerates into a diamond.

Lemma 4.2. If the top line is trivial then the (PC) holds.

Proof. By using lemma 4.1 there are only finitely many words w
on the top line, to check. Furthermore w = abc, where ab, bc ∈
{b3

j+1, bj+1bjbj+1, bj+1b
2
jbj+1, b

2
j+1b

2
jbj+1, bj+1b

2
jb

2
j+1}j∈{1,...,n−2}. The number of

cases to study can be easily reduced, since:

(1) If b is the empty word, then the (PC) holds;
(2) By homogeneity it suffices to consider j = 1;
(3) Let w∗ = wr · · ·w1 denote the reversed word associated to w = w1 · · ·wr. If

the (PC) holds for w, then it also holds for w∗;
(4) Several cases, as b3

j+1bjbj+1, can be easily tested at hand.

The nontrivial situations are those when a (C12)-move (and then a (C2)-move) can
be applied. It suffices therefore to check the case of b2

j+1b
2
jbj+1, since bj+1b

2
jb

2
j+1 is

its reversed and the remaining bε1
j+1b

2
jb

ε2
j+1 (εi ∈ {2, 3}) are consequences of these two.

Then we have the situation depicted in the diagram:

b2S1 ←− b2
2b

2
1b2 −→ C1

where S1, C1 are those from (5-6). If we apply (C12) and (C21) whenever it is possible
on b2S1, then after a long computation we find a common minimal element for b2S1

and C1.

Remark 4.1. We used a computer code in order to obtain the complete oriented
graph associated to the reductions of b2

2b
2
1b2:
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C2

C2

C2

C2

C2
C2

C2

Cij

C2

Cij

C2

b b  b2
2

1
2

2

Common minimal elementC2

Cij

Cij

Cij

Cij
Cij

Cij

Cij

Cij

Cij

C2

C2

Cij

C2

Cij

Cij
Cij

C2 Cij
C2

Cij

C2
Cij

C2

C2 *

* *

*

*

*
*

Its vertices are linear combinations in words in b1 and b2. The edges are labeled by
the corresponding reduction. When there are no sub-words b2

2b
2
1b2 or b2b

2
1b

2
2 in the

factors of a vertex, its reduction is unique; we marked then the respective edges by
an asterix. The label (Cij) stands for the convenient one among (C12) and (C21). As
we already noticed in Remark 3.6, if we apply six times the simplification procedure
without the use of (Cij)’s then we find a closed loop.

4.3. The diagrams associated to o.p.c. We will be concerned henceforth
with the o.p.c. having nontrivial top lines. By Lemma 4.2 we can suppose that w1

and wm have each one exactly one outgoing edge. Moreover, an o.p.c. is determined
by the following data:

(1) The word w = w1. Assume that w has length k.
(2) The sequence w1, . . . , wm, which is encoded in a permutation σ ∈ Sk, with a

specified decomposition into transpositions.
(3) The two reduction transformations which simplify w and respectively wm.

These should also determine uniquely the blocks of letters in w and wm to
which the transformations apply.

Set Tj for the transposition which interchanges the letters on the positions j and
j + 1. Let P (w) denote the set of those permutations which can be realized on the
top line of an o.p.c. having its left upper corner labeled w. Permutations from P (w)
will be called permitted permutations. One can characterize them as follows. Let
ew : {1, 2, . . . , l} −→ {1, 2, . . . , n− 1} denote the evaluation map:

ew(j) = the index of the letter lying on the j-th position in w

Recall that the index of bj is j. Consider σ ∈ P (w). Then the permutation Tjσ is
also permitted if and only if the following inequality holds true:

|eσ(w)(j)− eσ(w)(j + 1)| > 1
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Definition 4.1. Two permitted permutations σ and σ′ from P (w), together
with their specific decomposition into transpositions, are said to be equivalent if the
(PC) holds true or fails for their associated o.p.c., simultaneously.

Lemma 4.3.

(1) Suppose that σ1TjTiσ2 ∈ P (w), |i− j| > 1. Then σ1TiTjσ2 ∈ P (w) and these
two permutations are equivalent.

(2) Suppose that σ1Ti+1TiTi+1σ2 ∈ P (w). Then σ1TiTi+1Tiσ2 ∈ P (w) and these
two permutations are equivalent. The converse is still true.

(3) If σ1TiTiσ2 ∈ P (w) then σ1σ2 is permitted and equivalent to the previous one.

Proof. The existence in the first case is equivalent to |eσ2(w)(j)−eσ2(w)(j+1)| > 1
and |eσ(w)(i) − eσ(w)(i + 1)| > 1, so it is symmetric. In the second case also it is
equivalent to |eσ2(w)(j + ε1) − eσ2(w)(j + ε2)| > 1 for all εj ∈ {0, 1, 2}, so it is again
symmetric. The equivalence is trivial.

Corollary 4.1. Two different decompositions into transpositions of the permu-
tation σ lead to equivalent o.p.c.

We will use a graphical representation for the decomposition of σ into transpo-
sitions, similar to the braid pictures (see picture below). We specify on the top and
bottom lines of the rectangle the values of the respective evaluation maps. Further,
the diagram is made of arcs which connect the points on the top to the points on the
bottom having the same indices; these arcs will be called trajectories, or strands in
the sequel. We denote by e(w) the vector (ew(j))j=1,...,k, which can be seen as a word
in the free group (monoid) on n− 1 letters.

e(  σ (w))

e(w)

This picture will be called a diagram of the respective o.p.c. Notice that the strands
in a diagram inherit a labeling by the common indices of their endpoints. There is
also a natural orientation on them, going from the top to the bottom.

The reduction blocks are sets of consecutive endpoints of strands (from three to
five) in the upper and lower lines of a given diagram, corresponding to the sub-words
on which the simplification transformations acts. We call them accordingly, the top
and the bottom block.

We will draw below the incomplete diagram consisting only of those trajectories
of the six (to ten) elements which enter in the two reduction blocks.

Example 4.1. Suppose for instance that the reductions consist of two transfor-
mations of type (C0). This implies that e(w) = xiiiy and e(σ(w)) = x′jjjy′.

(1) Assume that i = j. Then the trajectories of the i′s can be assumed to be
disjoint since the transposition which invert the letters in the couple ii has
trivial effect when looking at the word w and its transformations. Thus the
possible trajectories of these six strands fit into the four cases, according to
the number of strands connecting the upper and lower blocks, which might
be 0, 1, 2 or 3.

(2) Further, if i 6= j we have again two sub-cases.
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(a) If |i− j| = 1 then the trajectories labeled i must be disjoint from those
labeled j, and hence there is only one obvious combinatorics.

(b) If |i− j| 6= 1 then there are sixteen diagrams up to isotopy (see [13] for
a list).

Remark 4.2. One can describe all configurations of the strands involved in a
pair of reduction transforms (C1)-(C0), (C2)-(C0), (C12)-(C0), (C21)-(C0) (see [13]
for an exhaustive list), similar to that from the example above.

Definition 4.2. A diagram is called interactive if there is at least one strand
connecting the upper and lower blocks.

Lemma 4.4. The (PC) holds true for the o.p.c. associated to non-interactive
diagrams.

Proof. We call the strands which come or arrive to the reduction blocks essential
strands.

(1) If the essential arcs coming from the top block are disjoint from those arriving
in the bottom block then w = xy, σ(w) = xy′, where the first block is
contained in x and the second one in y′. These two reductions commute with
each other.

(2) If there is an essential strand labeled i which intersects some essential strand
of the other block, then it will intersect all of them. In particular bi commutes
with all letters of the reduction block. Moreover, a simple verification shows
that, if bi commutes with all letters of the monomial from the left hand side of
one formula among (3)-(7), then it will commute with the elements from the
right hand side of the same formula. This shows that the commutations de-
picted in the diagram can be realized after the first reduction transformation
(of the upper block). This implies our claim.

Therefore, it remains to understand the interactive configurations.

Lemma 4.5. It suffices to check the (PC) for those interactive configurations
whose essential strands are as following:

i  i  i

i  i  i

i+1 i i+1

i+1 i i+1

i+1 i i+1

i+1 i+1 i+1 i+1 i i+1

i+1 i i+1i+1 i+1 i i+1

i+1 ii+1 i

i  i  i

i  i  ii

ii  i  i

i  i  ii i

i i

(c)(b)(a)

(d) (e) (f)

Remark 4.3. We represented in the picture above each block as a sequence
of three letters, but some of the letters are allowed to have exponent 2, and thus
to represent two letters in a genuine diagram. Moreover, in this situation we require
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that the two strands coming from two consecutive letters labeled by the same index be
parallel, and thus to arrive on two consecutive positions on the bottom line. Therefore,
the couple of 2-strands can be identified with one strand in the picture above.

Proof. There are no restrictions arising from the above identification of two par-
allel strands because their labels are the same. This means that any permutation
involving one of the two strands is also allowable for the second one, as well. Thus,
we can always get such a normal form for the respective interactive configuration.

4.4. Solving the o.p.c. associated to non-interactive diagrams. The (PC)
is verified in the cases (a),(b),(c),(d) and (f) by direct computation of the first step
of their respective simplifications. The only relations needed are the consistency of
relations defining the algebra K3(α, β). We skip the details.

Let us check a sub-case of (d), corresponding to the pair of transformations
(Cε)-C(0), where ε ∈ {0, 1, 2}. The monomial to be reduced has the form w =
bi+1b

ε
i bi+1xb2

i+1, which is weakly equivalent in the o.p.c. to w′ = bi+1b
ε
i xb3

i+1. We
write below ∼ for the weak equivalence of words. Notice that all letters of x should
commute with bi+1 because the respective strands will cross each other. Thus we

may suppose that x lies in Fi−1. Therefore: x→ x0b
j1
i−1b

j2
i−2 · · · b

jp

i−p, with x0 ∈ Fi−2.
Again, we can restrict ourselves to the situation when x0 = 1. Consider now the case
ε = 2 because the other cases are trivially verified. Set q = bj2

i−2 · · · b
jp

i−p. We have
then the following reduction transformations:

Sjb
j1
i−1b

2
i+1q ←− w ∼ w′ −→ bi+1b

2
i Ejb

j1
i−1q

where Sj , Ej as above. From the lemmas 4.1 and 4.2 it follows that the (PC) holds
for:

Sjb
2
i+1b

j1
i−1q ←− bi+1b

2
i b

3
i+1b

j1
i−1q −→ bi+1b

2
i Ejb

j1
i−1q

Since Sjb
j1
i−1b

2
i+1q is weakly equivalent to Sjb

2
i+1b

j1
i−1q, we are done.

All remaining cases but (e) follow by similar computations. However, for the
diagrams of type (e) the situation is different. Using the commutation rules as above
one must preserve the term bj1

i−1. So, we have to check the configurations where the
word w is given by:

w = xbα
i+1b

ε
i b

β
i+1b

µ
i−1b

δ
i b

γ
i+1b

j2
i−2 · · · b

jp

i−p, where x ∈ Fi−1

At this point one cannot prove that the (PC) holds for these o.p.c.

Remark 4.4. In fact the (PC) might not hold since the surjection of lemma 3.1
might have a nontrivial kernel in rank n = 3.

Summarizing what we obtained until now, we proved that these are the only
o.p.c. that could possibly not verify (PC). Moreover, we will check whether the
weaker condition (CPC) is valid for these o.p.c. The explicit computation of the
minimal elements will show that these are well-defined only for the graph Γ∗

n(H), for
a suitable ideal H. Let us explain how to find the generators for the ideal H.

Proposition 4.1. The (CPC) is verified in Γ∗
n(H) if and only if it is verified

for the following pairs of elements:

bξ
3 bε

2 bν
1 bµ

3 bδ
2 bγ

3 and bξ
3 bε

2 bµ
3 bν

1 bδ
2 bγ

3 for ξ, ε, µ, ν, δ, γ ∈ {1, 2}
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Proof. The only thing one needs to know is that:

Lemma 4.6. It suffices to consider the words w as above with x = 1 and p = 1.

Proof. The proposition 2.6 shows that any admissible functional T on
∪∞n=1Kn(α, β) satisfies:

T (xuv) = T (u)T (xv) for x, v ∈ H(Q,m) and u ∈ 〈1, bm, bm+1, . . . , bm+k〉

In the same way one shows that in the simplification process the minimal element
in R = Γ0 associated to the word xuv must be the product of the minimal elements
associated to the two words u and xv. This proves the claim.

This shows that the cases left unverified can be reduced to those which we claimed
above.

Thus, the obstructions to the existence of the Markov trace come out from these
couples. In section 5 we study these obstructions and we find the ideal H in R
containing them.

5. The computation of obstructions.

5.1. The algorithm. As we have not yet proved that the trace is well-defined we
have to specify the choices made in the computation of the minimal element associated
to a given word. Moreover, after the verification of the (CPC) and commutativity ob-
structions it will follow a posteriori that all descending paths in Γ∗

n(H) will eventually
lead to the same element.

Here is the algorithm which was used for computing the values of the minimal
element in the particular situation of the proposition 4.1. Moreover, it can be used for
any element of the braid group. Notice that the algorithm for reducing the elements of
Bn uses recurrently the algorithms for the previous stages when simplifying elements
of Bn−1.

• The input is a word w is an element of Bn.
• Step 1: use the cubical relations (3) until we find a linear combination

of words having all exponents within {0, 1, 2}. We identify each word as
an element of Fn−1. Further, one writes each word in the form: w =
x1b

ε1
n−1x2 · · ·xpb

εp

n−1xp+1, where xi ∈ Fn−2.
• Step 2: if some xj , for j ∈ {2, . . . , p} are actually in Fn−2 then bring together

the two letters b
εj

n−1 and b
εj+1

n−1 by moving the latter to the left, using the
permutations (8).

• Step 3: perform the steps 1 and 2 until the output is the same as the output.
• Step 4: if p ≥ 2 then start reducing sub-words, starting from left to the right.

The first sub-word is then bε1
n−1x2b

ε2
n−1. Using the recurrence hypothesis,

reduce x2 to a normal form in Kn−1(α, β), and therefore write x2 = y2b
δ2
n−2z2,

where y2, z2 ∈ Fn−3. Further bring as close as possible the two letters bε1
n−1

and bn−1ε2, by means of permutations (8) and obtain the equivalent sub-word
y2b

ε1
n−1b

δ2
n−2b

ε2
n−1z2.

• Step 5: use the simplification moves C(1), C(12), C(2) or C(21), according
to the values of exponents until we reach an element where the letter bn−1

occurs only once, possibly with exponent 2. Consider the new instance of the
word w by concatenating with the complementary sub-words, left untouched.

• Step 6: keep repeating the transformations from Step 4 until w has a normal
form with p = 1.
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• Step 7: simplify w by using (9) and keep track of the polynomial coefficients.
If n = 2 then stop and send as output the coefficients. Otherwise go to the
step 1.

Remark 5.1. It is important to notice that the normal form for elements in
K3(α, β) is unique, and hence the step 4 lead us to a well-defined element for n = 4.
For n ≥ 5, the (CPC) obstructions being verified it follows that the output will be
independent on the element we chose for the normal form at the step 4.

5.2. The CPC obstructions for n=4. It was pointed out in section 4 that
the coherence of Γ∗

n(H) depends only on the following couples:

bξ
3 bε

2 bν
1 bµ

3 bδ
2 bγ

3 et bξ
3 bε

2 bµ
3 bν

1 bδ
2 bγ

3 ξ, ε, µ, ν, δ, γ = 1 or 2

Furthermore, if a linear functional T is admissible then it should verify T (w) = T (w∗),
where w∗ is the reversal of the word w. One can therefore reduce ourselves to the
study of the following 24 couples:

• (1.i) : b3 b2 Pi b2
2 b3 and b3 b2 P ′

i b2
2 b3

• (2.i) : b3 b2 Pi b2 b2
3 and b3 b2 P ′

i b2 b2
3

• (3.i) : b3 b2
2 Pi b2 b2

3 and b3 b2
2 P ′

i b2 b2
3

• (4.i) : b2
3 b2

2 Pi b2
2 b3 and b2

3 b2
2 P ′

i b2
2 b3

• (5.i) : b2
3 b2 Pi b2

2 b2
3 and b2

3 b2 P ′
i b2

2 b2
3

• (6.i) : b2
3 b2

2 Pi b2 b3 and b2
3 b2

2 P ′
i b2 b3

where P1 = b1 b3, P2 = b2
1 b3, P3 = b1 b2

3, P4 = b2
1 b2

3, P
′
1 = b3 b1, P ′

2 = b3 b2
1, P ′

3 =
b2
3 b1, P ′

4 = b2
3 b2

1.
From now on we denote the difference between the minimal elements associated

to the left hand side and the right hand side by the corresponding label (s, i). For
general α, β the computation based on the algorithm from above is very long and and
we needed to be computer-assisted. For more information about the code, see the
remark 7.2.

One finds 15 different polynomials from these CPC obstructions, and the fol-
lowing identities among them: (5.2) = −α(3.2), (6.2) = α(1.2), (1.4) = −α(1.2).
Thus, we must consider the couples (1, 2), (2, 4), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2),
(4, 3), (4, 4), (5, 3), (5, 4), (6, 4).

However the 4-variables polynomials we found above should be evaluated at spe-
cific values of the parameters (z, z̄), which are compatible with the commutativity
requirements for a Markov trace. We postpone then the calculation of obstructions
until the next section where we find which are the convenient values for the parame-
ters, as functions on (α, β).

5.3. Commutativity obstructions. We are concerned in this section with the
commutativity constraints imposed for an admissible functional to be a Markov trace:

T (ab) = T (ba) for all a, b

Lemma 5.1. An admissible linear functional on K3(α, β) satisfies the trace con-
ditions above if and only if the the values of (z, t) are given either by the type (I)
rational parameters:

z =
−β2 + 2α

αβ + 4
, t =

α2 + 2β

αβ + 4
(10)
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or else by the type (II) parameters:

t =
2αz − 2z2 + β

2 + βz
, where z verifies (αβ + 1)z3 + (α + β2)z2 + 2βz + 1 = 0 (11)

Proof. A trace T defined on K3(α, β) should satisfy the following identities:

T (b2 b2
1 b2) = T (b2

1 b2
2), T (b1 b2 b2

1 b2) = T (b2 b1 b2 b2
1)

These are equivalent to:

T (R0) = T (R1) = 0

Remark that these are also sufficient conditions for an admissible functional be ac-
tually a trace on K3(α, β). Moreover, the equations above can be expressed in the
following algebraic form:

0 = (−β3 + 3αβ + 4)t2 + (3α2 − 7αβ2 − 6β + 2β4)t +

(3β2 − β5 − 2α− 3α2β + 4αβ3) + (2αβ3 + β2 − 6α2β − 10α)zt +

(−3α3 + 7α2β2 + 9αβ + 4− β3 − 2αβ4)z + (3α3β + 7α2 − α2β3 − αβ2 + 2β)z2

0 = (β2 − 2α)t2 + (4 + 5αβ − 2β3)t + (β4 − 2β − 3αβ2 + α2) +

(2β + 5α2 − 2αβ2)zt + (β2 + 2αβ3 − 5α2β − 6α)z + (4 + α2β2 + αβ − 2α3)z2

The solutions of these equations are those claimed above.

Consider now the following polynomials in α and β:

L = 3αβ4 + 5α2β5 − 2αβ + 2α4β − 7α3β3 − 7α2β2 − αβ7 + α3 + (13α3β2 − 10α2β4

+13α2β − 6αβ3 − 2α4 + 3α + 2αβ6)t + (−6α3β − αβ5 − 6α2 + 3αβ2 + 5α2β3)t2

+(−16α4β2 − 5αβ2 − 2α2 + 3α5 + 2αβ5 − 13α3β + 11α3β4 − 2α2β6)z + (−2αβ4

+15α4β + 2α2β5 − 11α3β3 + 15α3 + 6αβ)zt + (−3α− α3β5 + 6α4β3 − 3α3β2 +

2α2β4 − 9α5β − 9α2β − 10α4)z2

M = α− α4 + 6α2β − 2α5β − 2αβ3 + 7α4β3 + 11α3β2 + αβ6 − 7α2β4 − 5α3β5 +

α2β7 + (−21α3β − 2α2β6 + 2αβ2 + 14α2β3 − 13α4β2 − 7α2 + 10α3β4 − 2αβ5 +

2α5)t + (−7α2β2 + 6α4β + 10α3 + αβ4 + α2β5 − 5α3β3)t2 + (−3α6 + 2α3β6 +

5αβ + 11α2β2 + 16α5β2 + 8α3 + 25α4β − 11α4β4 − 4αβ4 − 10α3β3)z + (11α4β3

−14α2β + 10α3β2 − α + 4αβ3 − 15α5β − 27α4 − 2α3β5)zt + (4αβ2 − 4α2β3 +

α4β5 + 19α5 − α3β4 + 4α2 − 3α4β2 + 21α3β − 6α5β3 + 9α6β)z2

N = 12α2β3 + αβ8 − 6α2β6 − 2α2 + 3αβ2 + 11α3β4 − 4β5α− 6α4β2 − 7α3β +

(−21α3β3 + 7αβ4 + 5α3 + 10α4β − 2αβ7 − 2αβ − 17α2β2 + 12α2β5)t + (−4α4

+10α3β2 − 3α + αβ6 + 5α2β − 6α2β4 − 3αβ3)t2 + (3α + 3αβ3 + 2α2β7 +

16α3β2 − 2αβ6 − 7α4 − 13α5β + 5α2β − 13α3β5 + 25α4β3)z + (α2 − 12α3β +

10α5 + 13α3β4 − α2β3 − 2α2β6 + 2αβ5 − 24α4β2 − 5αβ2)zt + (5α3 + 4α3β3 +

14α5β2 + 8α4β + 7α2β2 + α3β6 + 5αβ − 2α2β5 − 6α6 − 7α4β4)z2
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Proposition 5.1. Consider an admissible functional T defined on the whole
tower of algebras ∪∞n=1Kn(α, β). Suppose that T is a trace on K3(α, β). Then T is a
Markov trace on the tower ∪∞n=1Kn(α, β) if the equations:

L = M = N = 0

are satisfied.

Proof. We will prove that the commutativity constraints are verified by induction
on n. The claim is true for n = 3, and now we suppose that it holds for all algebras
Km(α, β), for m ≤ n. In order to prove the claim for Kn+1(α, β) it suffices to consider
b ∈ {b1, . . . , bn} and a belonging to some system of generators of Kn+1(α, β), as a
module. In particular we will choose the set of generators Wn from section 3.2.

For b = bi, i < n the claim is obvious. It remains to check whenever T (abn) =
T (bna) holds true. There are three cases to consider:

i) a ∈ Kn(α, β);
ii) a = xbny, with x, y ∈ Kn(α, β);
iii) a = xb2

ny, with x, y ∈ Kn(α, β).
which will be discussed in combination with the following six sub-cases:

(1) x ∈ Kn−1(α, β), and y ∈ Kn−1(α, β),
(2) x ∈ Kn−1(α, β), and y = ubn−1v, u, v ∈ Kn−1(α, β),
(3) x ∈ Kn−1(α, β), and y = ub2

n−1v, u, v ∈ Kn−1(α, β),
(4) x = rbn−1s, r, s ∈ Kn−1(α, β), y = ubn−1v, u, v ∈ Kn−1(α, β),
(5) x = rbn−1s, r, s ∈ Kn−1(α, β), y = ub2

n−1v, u, v ∈ Kn−1(α, β),
(6) x = rb2

n−1s, r, s ∈ Kn−1(α, β), y = ub2
n−1v, u, v ∈ Kn−1(α, β).

The cases (*,i), (1,ii) and (1,iii) are trivially verified by an immediate calculation.
Furthermore one obtains:

(2,ii) T (bnxbnubn−1v) = tzT (xuv) = T (xbnubn−1vbn)
(2,iii) T (bnxb2

nubn−1v) = (αt + βz + 1)T (xubn−1v) = (αt + βz + 1)zT (xuv)
= T (xubn−1bnb2

n−1v) = T (xb2
nubn−1vbn).

(2,iii) T (bnxb2
nubn−1v) = (αt + βz + 1)T (xubn−1v) = (αt + βz + 1)zT (xuv)

= T (xubn−1bnb2
n−1v) = T (xb2

nubn−1vbn).

(3,ii) T (bnxbnub2
n−1v) = t2T (xuv) = T (b2

nb2
n−1)T (xuv) = T (bnb2

n−1bn)T (xuv)
= T (xubnb2

n−1bnv) = T (xbnub2
n−1vbn)

(3,iii) T (bnxb2
nub2

n−1v) = (αt + βz + 1)T (xub2
n−1v) = (αt + βz + 1)tT (xuv)

= T (xuv)T (b2
nb2

n−1bn) = T (xb2
nub2

n−1vbn)
For the remaining cases, we need also to know more precisely the form of su. Specif-
ically, let us write su = pbε

n−2q with p, q ∈ Kn−2(α, β) and ε ∈ {0, 1, 2}. We can
show by a direct computation that the equalities hold also for (4,ii), (4,iii), (6,ii) and
(6,iii). Moreover, using Maple we have found that in the cases (5, ii) and (5, iii),
for su = pb2

n−2q, there are two additional identities, which are not consequences of
those in the previous lemma. The difference T (ab) − T (ba) is expressed as a linear
combination with polynomial coefficients in T (rpb2

n−2qv), T (rpbn−2qv) and T (rpqv).
For arbitrary elements r, p, q, v as above the three traces above seem to be unrelated.
A sufficient condition for the commutativity to hold is that the coefficients in front of
these terms vanish. We derive therefore the following obstructions:

(5,ii) LT (rpb2
n−2qv) + MT (rpbn−2qv) + NT (rpqv) = 0

(5,iii) −α(LT (rpb2
n−2qv) + MT (rpbn−2qv) + NT (rpqv)) = 0

Furthermore the vanishing of L,M and N insures the commutativity of the admissible
functional.
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Remark 5.2. It seems that the conditions stated in the proposition 5.1 are
also necessary for the existence of a Markov trace extension. Nevertheless, the ideal
defined by all obstructions could not be made strictly smaller, even if we could get
rid of the equations L = M = N = 0, because of the (CPC) obstructions.

6. The existence of Markov traces.

6.1. Statements.

Theorem 6.1. There exists an unique Markov trace:

T(α, β) : ∪∞n=1Kn(α, β)→
Z[α, β, (4 + αβ)−1]

(H(α, β))

with type (I) parameters: z = (2α − β2)/(αβ + 4) and z̄ = −(α2 + 2β)/(αβ + 4),
where:

H(α ,β) =8α6 − 8α5β2 + 2α4β4 + 36α4β − 34α3β3 + 17α3 + 8α2β5 + 32α2β2 − 36αβ4

+38αβ + 8β6 − 17β3 + 8.

It is more convenient now to put δ = z2(βz+1), so that the obstructions associated
to the type (II) parameters become Laurent polynomials in z and δ.

Theorem 6.2. Set α = −(z7+δ2)/(z4δ), β = (δ−z2)/z3 and z̄ = −z2/(βz+1) =
−z4/δ. There exists an unique Markov trace with parameters (z, z̄):

T (z, δ) : ∪∞n=1Kn(α, β)→
Z[z±1, δ±1]

(P (z, δ))

where P (z, δ) = z23 + z18δ − 2z16δ2 − z14δ3 − 2z9δ4 + 2z7δ5 + δ6z5 + δ7.

6.2. Proof of Theorem 6.1. Notice that the parameters z, t have to satisfy the
conditions:

T (R0) = T (R1) = 0

because the Markov trace vanishes on the ideal I3 of relations defining K3(α, β). In
particular (z, t) are either of type (I) or type (II) parameters from (10)-(11).

For (z, t) as in (10) we derive that z̄ = −t. Set u := 1/(αβ + 4), z0 := 2α − β2

and t0 := α2 + 2β =: −z̄0.

6.2.1. The commutativity obstructions. The equations L = M = N = 0
are equivalent to:

• u2βH(α, β) = 0
• −u2(αβ + 2)H(α, β) = 0
• u2(α− β2)H(α, β) = 0

6.2.2. CPC obstructions.

• (1.2): −u3α(α− β2)H(α ,β)W
• (2.4): u3(α− β2)(α2 + β)H(α ,β)W
• (3.2): u3(−α2β2 + 2 + αβ + α3)H(α, β)W
• (3.3): u3(αβ + 2)H(α,β)W
• (3.4): u3αβ(α− β2)H(α, β)W
• (4.1): −u3(α− β2)(α2 + β)H(α, β)W
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• (4.2): u3α(α3 + 2 + 2αβ − α2β2 − β3)H(α, β)W
• (4.3): u3α(α3 − α2β2 − 2− β3)H(α, β)W
• (4.4): trivial
• (5.3): −u3(β2 + 2α + 2α2β)H(α, β)W
• (5.4): u3α(−α3β2 − β2 − α2β + α4)H(α, β)W
• (6.4): −u3α(β + 2α2)(α− β2)H(α, β)W

where W = (α + 2− β)(α2 − 2α + 4 + αβ + 2β + β2) = α3 + 8− β3 + 6αβ.
Consequently, the simplification algorithm defines an admissible functional T(α,β)

on the tower of algebras ∪∞n=1Kn(α, β) with values in Z[α, β, (4+αβ)−1]
(H(α, β)

), because the

(CPC) obstructions vanish. Moreover T(α,β) is a trace on K3(α, β) since the parame-
ters verify (10) and it is a Markov trace on the whole tower because the commutativity
obstruction vanish, too.

6.3. Proof of Theorem 6.2. Consider now the situation of type (II) parame-
ters. We will express all obstructions as rational functions on z and β.

6.3.1. The commutativity obstructions. The equations L = M = N = 0
are equivalent to:

• −ZB1/(z
7(zβ + 1)4) = 0

• −ZB2/(z
9(zβ + 1)5) = 0

• ZB3/(z
7(zβ + 1)5) = 0

6.3.2. The CPC obstructions.

• (1.2): −ZB4B5B6/(z
13(zβ + 1)8)

• (2.4): −ZB4B6B7/(z
15(zβ + 1)9)

• (3.2): ZB4B8/(z
15(zβ + 1)9)

• (3.3): −ZB4B9/(z
11(zβ + 1)7)

• (3.4): ZB4B5B6β/(z13(zβ + 1)8)
• (4.1): ZB4B6B7/(z

15(zβ + 1)9)
• (4.2): ZB4B5B10/(z

17(zβ + 1)10)
• (4.3): ZB4B5B11/(z

17(zβ + 1)10)
• (4.4): trivial
• (5.3): −ZB4B12/(z

13(zβ + 1)8)
• (5.4): −ZB4B5B13/(z

19(zβ + 1)11)
• (6.4): −ZB4B5B6B14/(z

17(zβ + 1)10)
where Z,B1, . . . , B14 are the following polynomials in z, β:

(1) Z = 1+7zβ+21z2β2+z3+35z3β3+35z4β4+21z5β5+7z6β6+z7β7+z9β6+
8z8β5 + 23z7β4 + 32z6β3 + 23z5β2 + 8z4β − 2z6 + z9 − z9β3 − 5z8β2 − 6z7β

(2) B1 = 3z3 + z4β + 1 + zβ
(3) B2 = 5z3 + 10z4β + 6z5β2 + z6β3 + 4z6 + 2z7β + 1 + 3zβ + 3z2β2 + z3β3

(4) B3 = β + 2zβ2 + 4z3β + 5z4β2 + z5β3 + z2β3 − 2z5

(5) B4 = (zβ + z2β + 1 + z − z2)(zβ + 1 + 2z3)(z4β2 − z3β2 + z2β2 + 1 + 2zβ −
z − 2z2β + 2z2 + 3z3β + z3 + z4β + z4)

(6) B5 = 1 + z3 + z2β2 + 2zβ
(7) B6 = z3β3 + 1 + 2zβ + 2z2β2 + z3

(8) B7 = 1 + 4zβ + 6z2β2 + 2z3 + 4z3β3 + z4β4 + z6β3 + 4z5β2 + 5z4β + z6)
(9) B8 = z2β3 + β + 2zβ2 − 2z2 − z3β

(10) B9 = 1 + 6zβ + 16z2β2 + 3z3 + 25z3β3 + 25z4β4 + 16z5β5 + 6z6β6 + z7β7 +
3z8β5 + 13z7β4 + 24z6β3 + 24z5β2 + 13z4β + z7β + z6 + z9

(11) B10 = 1 + 6zβ + 16z2β2 + 3z3 + 25z3β3 + 25z4β4 + 16z5β5 + 6z6β6 + z7β7 +
z9β6+7z8β5+20z7β4+31z6β3+28z5β2+14z4β+z6+z9+z9β3+2z8β2+2z7β
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(12) B11 = 6zβ +16z2β2 +3z3 +10z8β2 +5z8β5 +z7β7 +z9β6 +12z7β +12z7β4 +
19z6β3 +20z5β2 +12z4β +6z6β6 +3z9β3 +5z6 + z9 +1+25z3β3 +25z4β4 +
16z5β5

(13) B12 = 2β + 4z5β3 − 2z5 + 2z4β5 + 8zβ2 + 12z2β3 − 2z2 + 8z3β4 + 3z4β2 −
2z3β + z6β4

(14) B13 = 1+8zβ+29z2β2+63z3β3+80z6β3+29z7β7+13z9β6+17z9β3+91z4β4+
57z5β2+23z4β+4z3+6z6+4z9+91z5β5+63z6β6+39z8β5+70z7β4+30z8β2+
22z7β+z12 +z9β9−z12β6 +z10β4 +2z10β7 +8z8β8−3z11β5 +3z11β2 +7z10β

(15) B14 = 2 + 8zβ + 12z2β2 + 4z3 + 8z3β3 + 2z4β4 + z6β3 + 6z5β2 + 9z4β + 2z6

Now the proof follows as above, after noticing that Z(z, β) = P (z, δ)(z, δ).

6.3.3. Corollaries. Corollary 6.1. There exist unique Markov traces:

T : ∪∞n=1Kn(0, 2λ)→
Z[λ]

(8λ6 − 17λ3 + 1)

with parameters z = −λ2, t = λ and z̄ = −λ, and respectively:

T : ∪∞n=1Kn(−2λ, 0)→
Z[λ]

(8λ6 − 17λ3 + 1)

with parameters z = −λ, t = λ2 and z̄ = −λ2.

We have a similar situation for the other three solutions. In fact for α = 0, we
derive z = −(t− β)2, where t satisfies (t3 − 4βt2 + 5β2t + 1− 2β3) = 0. In particular
z̄3 − βz̄2 + 1 = 0 because z̄ = t− β.

Corollary 6.2. There exist unique Markov traces:

T : ∪∞n=1Kn

(
0,

λ3 + 1

λ2

)
→

Z[λ±1]

(λ9 − 2λ6 + λ3 + 1)

with parameters z = −λ2, z̄ = λ and t =
2λ3 + 1

λ2
, and respectively:

T : ∪∞n=1Kn

(
−

λ3 + 1

λ2
, 0

)
→

Z[λ±1]

(λ9 − 2λ6 + λ3 + 1)

with parameters z = λ, z̄ = −λ2 and t = −
2λ3 + 1

λ2
.

7. The invariants.

7.1. The definition of I(α, β) . As in section 5.2 we set z = (2α−β2)/(αβ +4),
t = (α2 + 2β)/(αβ + 4), u := 1/(αβ + 4), z0 := 2α − β2 and t0 := α2 + 2β =: −z̄0

(notice that in this case z̄ = −t).

Definition 7.1. Let L be an oriented link. We set therefore:

I(α, β)(L) =

(
1

zz̄

)n−1
2 ( z̄

z

) e(x)
2

T(α, β)(x) ∈
Z[α, β, z

±ε/2
0 , z̄

±ε/2
0 ]

(H(α, β))

where x ∈ Bn is any braid whose closure is isotopic to L. Here ε− 1 is the number of
components of L modulo 2.
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Lemma 7.1. I(α, β) is well-defined.

Proof. Since b−1
j = b2

j − αbj − β, we can suppose that x is a positive braid.
All the elements in Γ0(H) associated to x are polynomials in the variables z, t of
degree at most n− 1. The substitutions z = uz0 and t = ut0 imply that, if T(α, β)(x)
and T(α, β)(x)′ are representatives of the trace of x, then T(α, β)(x)′ − T(α, β)(x) =
un−1G(α, β)H(α, β), where G(α, β) is a polynomial in α, β. It follows that:

I(α, β)(L) =

(
1

z0z̄0

)n−1
2
(

z̄0

z0

) e(x)
2

T̃(α, β)(x)

where we put:

T̃(α, β)(x) = u−n+1T(α, β)(x) ∈
Z[α, β]

(H(α, β))

7.2. The cubical behaviour.

Proposition 7.1. For any link K there exists some l ∈ {0, 1, 2} such that:

I(α, β)(K) =

∑
k∈Z+

Pk(β)αk

∑
k∈Z+

Qk(β)αk
=

∑
k∈Z+

Mk(α)βk

∑
k∈Z+

Nk(α)βk

where Pk, Qk,Mk, Nk are (3, k + l)-polynomials.

Proof. We will show that Mk, Nk are (3, k + l)-polynomials. The other case is
analogous. Suppose first that x ∈ B+

n , where B+
n is the set of positive braids and

n is such that x /∈ B+
n−1. Then e(x) = |x| where |x| denotes the length of x. In

the process of computing the value of the trace on the word x we make two types
of reductions: either one uses the relations from Kn(α, β), or else one replaces ablb
by zab (respectively ab2

l b by tab). In the first alternative the word y is replaced by∑
s(
∑

k∈Z+
Dk,s(α)βk)ys, where the ys are words from Bn, the coefficients Dk,s(α)

are (3, k + e(x) − ls)-polynomials, and ls = |ys|. In the second case the word w is
replaced by zw′ + tw” where |w′| = |w| − 1 and |w”| = |w| − 2. When we substitute
for z and t their values as functions on α and β one finds that:

T(α, β)(x) =
∑

k∈Z+

uskVk(α)βk

where 0 ≤ sk ≤ n− 1 and Vk(α) are (3, k + e(x))-polynomials. In particular:

T̃(α, β)(x) =
∑

k∈Z+

usk−n+1Vk(α)βk

Now usk−n+1 =
∑

k∈Z+
Yk(α)βk where Yk(α) are (3, k)-polynomials. Thus, it follows

that:

T̃(α, β)(x) =
∑

k∈Z+

Lk(α)βk

where Lk(α) are (3, k + e(x))-polynomials.
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Now, remark that the same reasoning holds true for non necessarily positive
x ∈ Bn, by getting rid of the negative exponents in x by making use of the cubic
relation. The only difference is that one has to take into account the normalization
factor in front of the trace. The claim follows.

Corollary 7.1. I(α, 0)(K) =
∑

i∈Z+
a3iα

3i and, respectively, I(0, β)(K) =∑
i∈Z+

b3iβ
3i, where a3i, b3i ∈ Z[ 12 ].

7.3. Chirality and a few other properties of I(α, β) .

Lemma 7.2. Set x† ∈ Bn for the word obtained from x by replacing each term
bε
j by the corresponding b−ε

j . Then the following identity T(α, β)(x) = T(−β,−α)(x
†)

holds true. In particular, if the link K is amphicheiral then the identity I(α, β)(K) =
I(−β,−α)(K) is fulfilled.

Proof. Let Q(bj)
† (respectively R†

0) denote the image of Q(bj) (and respectively
R0) after the substitutions α→ −β, β → −α and bl → b−1

l for l = 1, . . . , n− 1. It is
easy to check that Q(bj)

† = b−3
j Q(bj) = 0. By some more involved computations we

verified that R†
0 = R1 = 0. Since H(α, β) = H(−β,−α) the claim follows.

The following properties have been checked by direct calculation (see the table from
the appendix).

(1) I(α, β) is independent from HOMFLY and in particular it distinguishes among
knots that have the same HOMFLY polynomial. The knots 5.1 and 10.132
have the same HOMFLY polynomial but different I(α, 0) and I(0, β) invariants.
This holds true for the three other couples of prime knots with number cross-
ing ≤ 10 that HOMFLY fails to distinguish, i.e. (8.8, 10.129), (8.16,10.156),
and (10.25, 10.56).

(2) I(α, β) detects the chirality of those knots with crossing number at most 10,
where HOMFLY fails i.e. the knots 9.42, 10.48, 10.71, 10.91, 10.104 and
10.125.

(3) The Kauffman polynomial does not detect the chirality of 9.42 and 10.71 (see
[30]). Therefore I(α, β) is independent from the Kauffman polynomial.

(4) The 2-cabling of HOMFLY does not detect the chirality of 10.71 (this result
was communicated to us by H. R. Morton). Therefore I(α, β) is independent
from the 2-cabling of HOMFLY. We notice that the 2-cabling of Jones poly-
nomial can be deduced from Dubrovnic polynomial ([34]), which is a variant
of Kauffman polynomial ([17]).

(5) I(α, β) does not distinguish between the Conway knot (C) and the Kinoshita-
Terasaka knot (KT ), which form a pair of mutant knots.

7.4. The definition of I(z, δ).

Definition 7.2. For each oriented link L we define:

I(z, δ)(L) =

(
1

zz̄

)n−1
2 ( z̄

z

) e(x)
2

T (z, δ)(x) ∈
Z[z±ε/2, δ±ε/2]

(P (z, δ))

where x ∈ Bn is any braid whose closure is isotopic to L and α, β, t, z̄ as in Theorem
6.2. Here ε− 1 is the number of components modulo 2, ε ∈ {1, 2}.

Remark 7.1. This invariant does not detect the amphichirality of knots. Also
I(z, δ) does not distinguish the Conway knot from the Kinoshita-Terasaka knot.
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Proposition 7.2. The invaraint I (z,δ) can be expressed as follows:

I(z, δ)(K) =
∑

k∈Z

Hk(δ)zk =
∑

k∈Z

Gk(z)δk

where Hk, Gk are (3, k)-Laurent polynomials.

Proof. The proof is analogous to the proof of Proposition 7.1.

Remark 7.2. For evaluating obstructions and traces of braids we used a Delphi

code. The input is a word, or a linear combination of words, and we restricted to
words representing 5-braids for memory reasons. One transforms first the word to a
sum of positive words, by using the cubic relations. Furthermore the transformations
C(j) and C(ij) are used in order to reduce the shape of the word as much as possible.
When it gets stalked, one allows permutations of the letters. The final result is the
value of the trace on the braid element. The program is available at:
http://www-fourier.ujf-grenoble.fr/∼bellinge.html.

8. Appendix. The values of the polynomials for I(α, 0)(K) and I(0, β)(K) are
displayed below for all knots with no more than 8 crossings. The second column is
a braid representative for the knot. The bold entries in the table are the coefficients
of α0 and, respectively β0. The other entries are the non zero coefficients of α3k and
β3k respectively, for k ∈ Z. For example,

Iα(6.2) = [−5−
19

4
α3 −

1

2
α6], Iβ(6.2) = [−16β−3 + 19− 2β3]

The entry “A” in the last column means that the knot is amphicheiral.
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3.1 b3
1 -1 − 1/4 −8 2

4.1 b1b
−1
2 b1b

−1
2 8 10 1 −8 10 − 1 A

5.1 b5
1 0 7/8 1/8 −24 4

5.2 b2
1b

2
2b

−1
1 b2 2 17/8 1/4 −8 2

6.1 b−1
1 b2b

−1
1 b3b

−1
2 b3b2 −8 -16 − 10 − 1 1

6.2 b−1
1 b2b

−1
1 b3

2 -5 − 19/4 − 1/2 −16 19 − 2

6.3 b−1
1 b2

2b
−2
1 b2 -3 − 1/2 -3 1/2 A

7.1 b7
1 0 − 5/8 − 9/16 − 1/16 −56 8

7.2 b−1
1 b3

3b2b
2
1b

−1
3 b2 -3 − 11/2 − 21/8 − 1/4 −64 − 64 -6

7.3 b2
1b2b

−1
1 b4

2 -1 − 7/4 − 19/16 − 1/8 −64 48 -4

7.4 b2
1b2b

2
3b

−1
1 b2b

−1
3 b2 0 − 17/8 − 9/4 − 1/4 −64 + 128 -78 8

7.5 b4
1b2b

−1
1 b2

2 0 − 9/8 − 9/8 − 1/8 −24 4

7.6 b1b
−1
2 b−2

1 b3b
3
2b3 -4 − 37/8 − 1/2 −24 20 − 2

7.7 b1b
−1
3 b2b

−1
3 b2b

−1
1 b2b

−1
3 b2 −8 -20 − 21/2 − 1 -19 37/2 − 2

8.1 b−1
1 b2b3b

−1
2 b−1

1 b2
4b3b2b

−1
4 16 43 37 12 1 −64 144 -88 9

8.2 b−1
1 b5

2b
−1
1 b2 4 59/8 23/8 1/4 −24 36 − 4

8.3 b−2
1 b−1

2 b1b
2
4b3b

−1
4 b−1

2 b3 −8 -8 − 1 8 -8 1 A

8.4 b3
1b3b

−1
2 b−2

3 b1b
−1
2 8 8 3/4 8 -24 19 − 2

8.5 b3
1b

−1
2 b3

1b
−1
2 1 3 19/8 1/4 −24 36 − 4

8.6 b−1
1 b2b

−1
1 b−1

3 b3
2b

2
3 5 21/2 21/4 1/2 1

8.7 b4
1b

−2
2 b1b

−1
2 3 9/4 1/4 16 -25 3

8.8 b−1
1 b2b

2
1b

−1
3 b2

2b
−2
3 3 17/4 1/2 16 -21 5/2

8.9 b−1
1 b2b

−3
1 b3

2 -7 − 9 − 1 -7 9 − 1 A

8.10 b−1
1 b2

2b
−2
1 b3

2 1 2 1/4 8 -8 1

8.11 b−1
1 b2

2b
−1
3 b2b

2
3b

−1
1 b2 8 21 147/8 6 1/2 −64 136 -79 8

8.12 b1b
−1
2 b3b

−1
4 b3b

−1
4 b2b1b

−1
3 b−1

2 24 44 21 2 −24 44 − 21 2 A

8.13 b2
1b2b

−1
3 b2b

−1
1 b−2

3 b2 8 12 21/4 − 1/2 8 -28 39/2 − 2

8.14 b2
1b

2
2b

−1
1 b−1

3 b2b
−1
3 b2 6 85/8 21/4 1/2 −8 18 − 2

8.15 b2
1b

−1
2 b1b

2
3b

2
2b3 0 − 17/8 − 9/4 − 1/4 64 − 32 4

8.16 b2
1b

−1
2 b2

1b
−1
2 b1b

−1
2 -3 3/2 1/4 -7 1

8.17 b−1
1 b2b

−1
1 b2

2b
−2
1 b2 -11 − 19/2 − 1 -11 19/2 − 1 A

8.18 b1b
−1
2 b1b

−1
2 b1b

−1
2 b1b

−1
2 −8 -16 − 10 − 1 8 -16 10 − 1 A

8.19 b1b2b1b2b1b
2
2b1 0 3/8 1/16 64 − 64 1

8.20 b3
1b2b

−3
1 b2 5 9/2 1/2 −8 0

8.21 b1b
−2
2 b2

1b
3
2 1 − 1 − 1/8 8 0
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