SIMPLE HOMOTOPY TYPE AND OPEN 3-MANIFOLDS

LOUIS FUNAR

The main result of this paper is that a contractible open 3-manifold 1175,

- which has the same simple homotopy type as a geomotrically simply con-
nected simplicial complex P, is simply connected at infinity. This is obtained
as a consequence of the fact that W is simply connected at infinity provided
that it has a geometrically simply connected enlargement. The latter is a
generalization of a theorem of Poénarn [7].
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1. INTRODUCTION

We start with the following definitions:

Definition 1.1.  An enlargement (with strongly connettcd 3-skeleton) of a
smooth k-dimensional mamfold A% is a locally finite s1mphc1al cormplex X which
fits into a commutative (lldg;dm

i

AP o X
idN,  |#
AF

where

1. 1 is a proper PL_ embedding with respect to the (unique) PL structure on
M ""'mmpatible with the DIFF structure; .

 2risa proper PL map;

3. the 3-skeleton ske X of X is st:o%ly connected, i.e. for any two 3-simplices
oand T of X there exists a sequence of 3—51mp]1('es T = 01,00 On =T such that
g; and g4 have a common 2-dimensional face, for all § = 1, 2 .

The simplest cxamples of enlargements are the 1 egulax neighborhoods of em-
beddings in Euclidean spaces. In the sequel, we will consider that all the enlarge-
ments have a strongly connected 3-skeleton unless the contrary is explicitly stated.

Definition 1.2, An open contractible 3-manifold 1% is said to be simply
connected at inﬁnit)_' (s.ci.), and we also write #* (117} = 0, if for any compact set
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K there exists another compact set K with A € Ky € 3, such that any loop
in W* — K, is null-homotopic in W3 — K. L _

Definition 1.3. A locally finite simplicial complex P is said to be weak pe-
ometrically simply connected (w.g.s.c.) if there exists an exhaustion Zy C Z; C
C Z3 C .2y C ... of P by finite sub-complexes with all Z, being connected and
simply connected.

First, we prove the following result.

THEOREM 1.1. Let W be an open contractible 3-manifold, and X" a finite
dimensional enlargement of W3, If X" is weak geometrically stmply connected
(w.g.s.c.), then the manifold W3 is simply connected at infinity (s.c.i.).

Actually, we will prove a stronger statement: under the same hypotheses,
there exists an exhaustion Zy C Z; C Z» C ...Z, C ... of W? by compact connected
and simply connected sub-manifolds Z,,. In dimension 3, this condition implies that
a2 ()=

It is well-known that the simple connectedness at, infinity is invariant under a
proper homctopy, without any dimension restriction. However, our result is purely
3-dimensional, and is not a consequernce of the previous remark, as it may scem at
the first glance. The g.s.c does not imply (in other dimension than 3) the simple
connectivity at infinity. For instance, from “W" x D¥ is w.g.s.c.” we cannot deduce
a priori that “I™™ x D¥ is s.c.i.”, in order to conclude that W also is. Here D* is
the closed k-ball. Morcover, this is not true if the dimension of W is n > 3.

Moreover the condition w.g.s.c. is a consequence of the s.c.i. In [18], p.350
and [19] the (partially known) relation between the (usual) connectivity and the
geometric connectivity is discussed. Further, in [11] it is proved that, if W" is s.c.i.
open, simply connected and its dimension is n > 5, then W is w.g.s.c. The authors
conjectured that the s.c.i. condition is necessary. Observe that this would imply
both theorems presented here.

However, the last conjecture cannot be extended to more general non-compact
manifolds with boundary, like the products W x D¥ with closed k-balls. There exist
manifolds W in every dimension n > 4 (e.g. the Poénaru-Mazur manifolds, see
[5, 3]), such that W x D* is w.g.s.c. for some k, but W x D¥ (and henceforth W)
is not s.c.i., so our result cannot be extended to higher dimensions. Examples of
such W arc the interiors of compact contractible manifolds, whose boundaries have
nontrivial fundamental group. Also, in dimension 4, there is an obstruction (due to
A .Casson) for the geometric simple connectivity (still in the compact case): if the
fundamental group of the boundary has a nontrivial representation in a Lie group,
then the manifold is not w.g.s.c. In particular, the Poénaru-Mazur manifolds are
not. w.g.s.c. '

Remark 1.1. 1. Consider X" = 1'% x D"=3_ D¥ being the closed k-ball, or,
more generally, that X is a proper codimension 0 sub-manifold of 17 x D" =3 which
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engulfs the zero-section (i.e. 1178 x 0 C X" € 11 x D"=3), Then Poénaru’s result
([7]) states that, if X" has no 1-handles, then W3 is simply connected at infinity.
In fact, the condition to have no 1-handles implies that, after triangulating the
manifold and taking a sufficiently fine subdivision, we obtain a w.g.s.c. simplicial
complex (see [7], PL-lemma, p. 441). Thus Corollary 1.5 (see below) can be viewed
as an extension of this result.

If we had worked in a DIFF context,by considering only those enlargements
which are manifolds. then the “w.gs.c.” condition in Definition 1.1 should be
replaced by “without 1-handles”. [We recall what is meant by “to have no I-
handles” for a non-compact manifold with boundary (according to [7, 10]): there
exists a proper smooth function f : X — [0, 00) whose critical points are in int(.X),

 they are non-degenerate and each of them has index different from 1. Further-
more, the 1‘e§triction of f to the boundary 8X has only non-degenerate critical
points: those meaningful (or non-fake) points ¢ € 8X, for which the inclusion
F =00, f(c) — €] C f~(~cc, f(c) + €] is not a homotopy equivalence, must also
have the index different from 1.]

2. In the case where it is not required that = verifies condition (2) in Def-
inition 1.1, we can take X" = 1" x int{D" 3} and complete the diagram above
in an obvious manner. From the results of Mazur [4], for large n, the manifold
W% % int{D"?) has no 1-handles, since its homeomorphism class depends only on
the homotopy type of W3, However, there are many examples where 1% is not
simply connected at infinity, as the Whitehead-type manifolds (see [15]). Thus the
properness is an essential condition for the validity of Theorem 1.1.

3. Theorem 1.1 implies that, whenever 11¥ is not simply connected at infinity,
X" = W3 x D% must have 1-handles. Further, the existence of at least one
1-handle fmplies the existence of an ivnfinite number of such l-handles. Assume
now, that a sequence of 2-handles by, by, ..., by, ... are recurrently attached to X7,
in order to kill all' 1-handles. Since W3 is contractible, we can slide the 2-handles
to have their attaching circles vi,y2,...; 7, ... on W# x 8D"~3 We claim that
the union of these circles cannot bea closed subset of X, Suppose the contrary
holds: then the manifold Y7, obtained by surgery on these circles, would be without
1-handles. Meantime X" embeds in ¥ and the projection X" — W™ extends to
a proper map Y — 1%, Therefore ¥ would be a w.g.s.c. enlargement of W so
that 77 (W™} = 0, which is a contradiction. Thus, the union of these circles must
have a non-void set of accurmulation points, say 2 y.

4. Qur.w.g.s.c. proporty is the same as the property P for a triangulation of
a manifold considered by Poénaru [7].

5. Remark.-that auy manifold (or union of manifolds of dimensions greater
than 3) satisfving the first two conditions from Definition 1.1 is antomatically an
enlargement.



620 Louis Funar 4

6. Qur result is in some sense sharp: with the given method we obtain the
wost general conditions on X ensuring the simple connectivity at infinity for W3,

Concerning the first remark above, we have the following result.

CoROLLARY 1.1. If W3 has « finite dimensional enlargement which is o
non-compact manifeld with boundary and without 1-handles, then W3 is simply
connected at infinity.

The proof is reminiscent of Whitehead's (Smooth) Hauptvermutung (see [16]):
any two triangulations compatible with the same DIFF structure on X have iso-
morphic subdivisions (the PL structure subjacent to the DIFF structure is uniquely
definexl). Then we may use the same proof as for Theorem 1.1. O ‘

Intuitively, the third remark above says that the set of accumulation points
¥ x is the obstruction for 117 to he simply connected at infinity. Moreover, this set
has many similarities with the limit sets arising m the collapsible representations
for open 3-manifolds (sce [9, 10]).

As an application of Theoremn 1.1 we get

CoroLLany 1.2, If w3 (117%) £ 0. then the set 7(Sx) = Sy C W2 s larger
than a tame Cantor subset of 117

Proof. First W4 — By is sl because it has a enlargement without
I-handles. If €' is a tame Cantor set, then we would have a{11%) = 7} (W3 —
— C} (see [9], p. 13, Lemma 1.1}, which leads to a contradiction, and the claim
follows. [ . -

Notice that in [9,10] a regularization theorem is obtained: the limit sets
associated to some collapsible representations of W% x D" are unions of a tame
Cantor set with a codimension 1 stratified proper sub-manifold. A similar result
should hold for ¥y, _

The next result in the paper gives a uniform answer to two questions. On
one hand, there is the guess expressed by Poénaru ({7}, Remark C, p. 432), This
author claimed that it might be possible to have a connection between the simple
homotopy type and #{ in dimension 3. On the other hand, one can ask whether
the result presented in [7] can be naturally gencralized to the infinite dimensional
vase: W¥ x Q must have 1-handles unless 73(W%) = 0, where Q is the Hilbert
cube (see [1]). -

In fact both problems can be reduced to the same one. Let us first- explain
the meaning of without 1-hendles in an infinite dimensional context. Recall that
any locally finite simplicial (or CW) complex 1" has the property that 3" x @ is a
(-manifold ([1], p. 54). Thus. a Q-manifold without 1-handies is a Q-manifold
having a triangulation 37 x Q. where ¥ is a w.g.s.c. simplicial complex. {A tri-
angulation of the (Q-manifold Z is defined as a homeomorphism 1™ x Q0 — Z.
where 1 is a locally finite simplicial complex.) Further. the second question can
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be reformulated ag follows {as was poitited to me by Frank Quhm):_= 12 % Qs
homeomorphic to 1 « 2, where 1 is 5 W.g.5.¢. complex, then e ( If'f'z) =1,

" The simple honiotopy theory was defined and first used by Whitchead [17],
in the context of finite complexes, and then it was generalized hy Siehenmann (13]
for infinite complexes as follows, ' ' Co

Definition 1.4. Two Idéal]y finite simplicial complexes I’ and R have the same
infinite simple hbmotopy type if there exists a finite sequence of inﬁnite!y'nfany
éimult,anmus and disjoint, Whitehead moves, which allow to pass from P to B, For
cach element of the sequence, the (simu]taneous) maoves are all either expansions,
or collapses. R

.Now, the So—(ral!ed stabilization lemma from [1] asserts that the lacally finite
simplicial complexes P and R are (infinite) simply homotapy equivalent if and only
if the Q-manifolds R x Q and P x () are homeomorphic.

Thus the previpys question could be statod differently: i 113 Is simple ho-
motopy equivalent. to » W.g.8.C. simplicial complex P, then 1173 i simply connected
at infinjty.

We can state now the second result, which answoers in the affirmative this
question, '

THEORENM 1.2, The open 3-manifold '3 i simp.ly connected at infinity if
and only if there exists an infinite simple ( proper) homotopy equivalence between
W3 and o locally finite simplicial complez P which is wenk geometrically simply
connected,

Remark 1.2. The main result is valid iy the case when P is a CW-complex,
for an appropriate definition of the simple homotopy equivalence, with essentially
the same proof.

mann’s obstrictions oo and T, vanish (see (13]).

Observe that one half of the theorem is trivially valid, since 1’3 can be
triangulated and, if T (W*) = 0, then the associated simplicial complex is w.g s.c,
The difficult part is to prove the converse: if we have an infinite simple homotopy
equivalence between a weak geometrically simply connected simplicial complex and
an open 3-manifold, thep the manifold is simply connected at infinity,

. Ackna.mlr:({qemenis. I am indebted to Valentin Poénaru, who had the patience to
introduce me to his theory during my stay at Orsav between 1990-1994, for his
suggestions, remarks and continuous encouragements. [ wish to thank Ross Ge-
oghegan, Frank Quinn and Larry Siebenmany for helpful conversations and advice,
Part of this work has been done during the special semester on low dimensional
topology, when the author was visiting the Concer Emile Borel whose hospitaiitj' is
kindly acknowledged. ' ' '
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2. THE PLAN OF THE PROOF

‘The idea of the proof of Theorem 1.1 emerged from the series of papers
[7, 8, 9, 10]. In this paper we fully exploit the technique introduced there. The
main argurnents are contained in the following three lemmas. In order to make this
paper self-contained, we added an appendix on the &/ @- theor) (developed in {6]).
We will use the following notation: if h: 4 ~3 Bisa map and n € Zy, we will
deuote by M, (k) C A the set of z € 4 for wich card (f~ (f(:c)) > 7. We also write
M?2(h) C 4 x A for the set of pairs (z,4) € A x 4 with 2 7& y and h{x) = R{y).

We have the following Dehn-type result.

LEMMA 2.1, Let X3, M3 be two simply-connected mamfolde K a connected
compact sel, such that X3 is comnpact, connecled with non-void boundary and M3
is closed without boundary. Assume we have o commutative diagram

K & ja(y¥cxd
N LF
AR

where

1. f and g are embeddings;

2. F is 4 sinooth generic immersion.

3. gANAL{F) =

Then [K can be engulfed in a smooth connected and simply connected sub-
manifold Y* of A%,

For the proof see [7], p. 433 439.

LeEMMA 2.2. There exists a triangulation 1y of W3 and o subdivision Ty of
X" such that
L i:ty = 7x is @ simplicial embedding, identifying Ty to a sub-complex
of Tx; '

2. Ty is wy.s.c;

3. there is some subdivision 8 of the 3-dimensional skeleton of Tx and a map
A8 — rw such that A is proper simplicial and non-degenerate, and A o i = id.

This lemma does not use the strong connectivity of the 3-skeleton, but only
the first two conditions from Definition 1.1 Notice that it implies that 8 is a
enlargement of 7y, but only when the natural projection map is replaced by A (so
that all the maps become simplicial}. The proof will be given in the next section.

It follows that 8 is w.g.s.c. from (7], Lemma 5.1: thus, there exists a sequence
of finite simply connected sub-complexes Zo C %L C Zy C ... C 8 cxhausting #.
Set A = Xp, M = A lz;, and also U5 = T(NM), &; = (M), j = 1,2.....00
The equivalence relations & and ¥ were introduced in [6] and all the definitions
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are included in the appendix. Recall that for j < oo we have ® = P jz,. but in
general we only have the inclusion U C 0y | Z - ‘

LEMMA 2.3, The equality @ () = U, (A) holds.

Frotm row on the proof of Theorem 1.1 is standard. For the sake of complete-
ness we outline it below. The conclusion of Proposition B from [7] remains true in
our situation, so that for any &, there exists some numher A (k) > k such that

Uniny 1z, = &y

Fix further a connected compact & C W3 Then tliere is some m for which
A" Zn D K holds, and therefore we can find some (sufficiently iarge) n satisfying
A=)ylamz) c z, (both assertions follow from a compactness argument).

H(z,z:) e Ar 2(A*) and xy €4(K), then necessarily zy € Zn. Furthermore,
we have the diagram of maps

oy . - CaANGar
7’(-[1) C Zn/@n = Zu/lI’N(n) C ‘{N(u)/'pN(u) - W
Since the map AY™ is an immersion and no double point of AV ™ can involve Z
(as a consequence of the relation ¥ Nk |z, = @4, which was previously obtained),
we deduce that
Kndi(ANy =g,

From Lemma 3.1 of [7] we have (Zatmy/ ¥ viny) = 0. Therefore the diagram

- )
K s Zi\"(u)/qj.’\f(n)

f \I J« /\N{n}
H.':i

has all the properties vequired in the Delin-type lemma except that Zy,,) /T N{n}
is a simpliciaf complex. But as already noticed in [7], p. 444, we may replace it
by a smooth regular neighborhood of Znin) ¥ Ny generically immersed in 1479,
Thus the compact & can be engulfed in a simply counected compact sub-inanifold
of U™, Once we know this for any connected compact, il follows automatically
for any compact subset of W3 Therefore 3 i3 simply connected at infinity, as
claimed by the theorem. O

3. THE PROOF OF LEMMA 2.2

By performing a suitable subdivision of the initial triangulations 73 T of X
and 17, we may suppose that 7 - < ™ isa simplicial cmbedding. Furthermove,
we can subdivide again Ty < T < - in order to make 7 T — 1

simplicial. This can be done in a relative context, so that (7. 1d.) < (74,79,

»
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because w lro =id, if - is identified with its image tn 7%. This is a standard

argument (see [12]). Eventually, we obtain the simplicial mappings = : v — T
and i : 7y < v4. Romark that Ty 18 w.g.5.c. by Lemma 5.1 from [7]. It remains
to prove that « can be replaced by another map f which is simplicial and whose
restriction to the 3-skeleton of some subdivision T% is non-degenerate. The image
of the latter is some subdivision 3. < 7)., ' '

Before proceeding we make a simple remark. which will he freely used in the
sequel: if f 1 0" — 0% is a surjective simplicial map between two simplices of

ks an

dimension # > k, then for some k-face 8% of o', the map f {;: 64 ~— o
isomorphism. _ . _

Another remark is that 3 has a non-complete flat Riemannian structure:
thus 7} can be realized as an affine triangulation of 11" because the geodesics are
unigue. _ o

Denote skeri by £ and 7). by 7. for simplicity. We have given a simplicial
map # @t = 7. but it is possible that some simplices of ¢ he cotlapsed via .
We outline below the method to change = into another map which flatten ¢. but
it does not collapse 3-dimensional simplices. Intuitively, imagine that we have
given a specified floor 7y in a high dimensional building 7y . The 3-dimensional
structure (the union of walls) of the building corresponds to t. We flatten this
structure by a generic compression map onto the specified floor. If this procedure
is carefully carried out, we obtain a new pattition of the floor, in terms of which
the compression map would be a non-degenerate cellular map. In fé,ct, once every
wall is slightly pushed from the vertical, its horizontal projection cannot completely
disappear, and generically it is 3-dimensional.

The main technical point consists in replacing the simplicial complexes by
cellulations in the sense of Siebenmann (14]. Here the term cellulation corresponds
to the term cellulation réguliére of a polyhedron used in'[lcl]. Let us gi\?e first the
definition, according to Siebenmann: SR o

Definition 3.1. A cellulation of a metric space X is give’r{ b'y'a locally finite
covering by compact cells fulfilling the three conditions below., o

1. Each cell has a linear structure induced from the identification (by a
homeomorphism) with the convex hull of a finite set of points in an Euclidean
space. I particular, all cells are convex with respect to this linear structure.

2. The formal interiors of the convex cells form a partition of the space
A (Werecall that the formal intervior of a convex compact subset D of a vector
space is the set of all  with the property that for each line | which pass through
r. the segment 1N D contains » in interior. Next. the formal boundary is the
completnentary of the formal interior. ) : a

3. For any convex coll D, its formal boundary 80 is an union of a finite
number of cells d; and the inclusions d; <+ D are linear.
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The natural transformatrions for collulations corresponding to subdivisions of
triangulations arve the biseetions . By definition a bisection replaces one ccll D by
3ceells Dy, Dy, and D_ . where Dy is linear of codimension 1in D (a hyperplane
section in D) and cuts D into two non-void picces D and D,. The inverse
operation is called a coupling. The closure of the coll Dy is called the support of
the hisection. We write ¥ << 17 if ¥ can be obtained by bisections from V. The
number of bisections is finite, if the underlying spaces are compact, or there may
be an infinity of bisections whose union of supports is without accumulation points,
in the non-compact case. Such an infinite family of bisections will be called proper.

There are two reasons to prefer cellulations and bisections to simplicial com-
plexes and subdivisions.

LEMNA 3.1, Given a celtulation X and o sub-complex Y then any subdivision
of Y (by bisections) induces canonically o subdivision (hy bisections) of X which
does not touch any other cell of X which is not a cell of Y.

LEMAMA 3.2 Let K be o polyhedron (i.e. a metrie space with a morimaol
family of cellulations) and Dy, Dy twe cellulations of K. Then there exists a com-
mon refinement  of both  cellulations using « proper family of bisections:
Dy >> D << Dy,

In the compact case these two fucts ave proved in [14]. The same proof works
as well in the non-compact case, when restricting ourselves to proper family of
bisections.

Now, in the context of cellulations, we can define the W.g.5.c. property anal-
ogous by to the simplicial complexes case. Specifically a cellulation is w.g.s.c, if
it admits an exhaustion by simply connected. connected and finite cellular sub-
complexes.

The next lemma is the natural extension to cellulations of Lemma 5.1 from [7}.

LEMMA 3.3. A cellulation is w. g.s.c. if and only if its 2-dimensional skeleton
s w.g.s.c.. In perticular, if X is w. g.5.c., then the 3-dimensional skeleton skeX
iswg.sc. IfY << X, then ¥ is w.g.s.c. if and only if X is also .g.5.¢..

The proof is obvious. O

We come back now to the proof of Lemtna 2.2 It is known that 7 is proper.
This means that. for any (closed) 3-simplex o ¢ 7, the preimage 7~ (1) = Uso; is a
finite union of 3-simplices of t. We choose an arbitrary simplex o at the beginuing.
Among the preimage simplices o, there is one, which we denote by i(o), such that
the restriction of 7 to i (@) is an isomorphism on the image. Set V(o) for the union
of the set of vertices of all o, which do not appear as vertices of 7{r), and order
them arbitrarily: 17(¢) = {vi,i > 1}, Afterwards we label {1, .. vq} the vertices
of i(a7).
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Step I: Choose some sot of points (in a generic position) 4%(s) C int(a) C W
which are in one-to-one correspondence with 17{(o). We denote the points of A% (7}
as {r;.i >4} and the vertices of & by {r1.....,..4}. We suppose that the projection
of w; is 2; for i = 1.2.3.4. Consider now the set A*(a) of those k-dimensional
simplices whose vertices are from A%(¢), which are realized as affine simplices in
13, and are related to the simplices from 7~ 1{g) as

AMGY = {[wig:Tiy s oon Ti) C 0 5 Uiy, Wiy, -V, ] 18 @ simaplex in o)}

Here [yo,y1, .. yx} denotes the simplex with vertices y;. Notice that the affine
simplex [T, Ti, , ..., £y, ] 18 uniquely determined by its vertices in W, because W
has an affine structure.
Ezample 3.1. Consider 0 = [2). 22,13, 24], 771 (5) = e, va, 3,1, us] and
a projection map = which sends »; into x;, for i = 1,2,3.4. Theu it is casy to see
that '
A%e) = {xs}. for an arbitrary point x5 in the interior of o,

Alo) = {[zi, a5]i = 1, 4],
A¥o) = {[w vy ws) i £ G =1, 4]},
A¥o) = {[eprjapas) i #F Ak =14)

Remark that A7 (o) would be a simplicial complex if some cells hadn't overlapped.

Ezample 3.2. We give a 2-dimensional picture. since it is easicr to draw it.
Figure 1 shows A'(0), whexe @ is a 2-simplex and 7' {(0) = ske? A1 (A" being the
standard n-simplex). It is clear that the associated graph of edges is not planar (it
is the complete graph K7), so there are some new intersection points between edges,
like the vertex ag. Using a transversality argument, in a 3-dimensional picture we
can reduce ourselves to the case where the edges in Al () are disjoint, but we may
have new intersection points between the 2-dimensional faces and cdges.

We assume now that all simplices in 7 are sufficienily small to be convex with
respect to the affine structure. Let 47 (e) be the closure of 47(o) U {r} U# with
respect to the intersection operation. This means that

1. once oy and a» are in A}(a), their intersection @y N oy belongs to Aj(o),
{00

A @)U {o} Ul is a subset of Aj(a);

3. Aj(o) is the smallest collection fulfilling the two previous conditions.

Set also A% (@) for the closure of A7(e) with respeet to the face-boundary
operator 0. which is extended canonically to convex cells. (The face-boundary op-
crator associates to a call ¢ the collection of faces of the boundary and it should
be not confused with the algebraie sums arising in the chain complexes.) Roughly
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v
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AT(G)
A%3
a
[ny
* %

Fig. 1 - 47(5).

speaking, this closure ig intended to be the smallest set X of colls having the
property that, ouce a cell is in A, then all the faces of its boundary belong to
X. The complex AT () is closed with respect to intersection and 9. but generally
speaking, it is not a cellulation of ¢ in the sense of Siebenmann. as we defined
above. The reason is that we do not necessarily obtained a partition of ¢. In fact,
we need to refine further this collection of cells to a now collection A3(o) with the
property that the formal interiors of the cells form a partition. This may be done in
a canonical way: set ¢, for a maximal set of open cells (formal interiors) in 4, (r),
all of them being contained ingide some other cell ¢ Then remove ¢ and add ¢—uU;¢;
as a new cell. When this procedure tannot be applied anymore, it means that wo
arrived at a partition of ¢ into smaller celis. However, we introduced this way soine
cells which are no more convex cells,

Consider now the map f: 7~ a) — &, which is the extension by linearity
of the map defined on vortices by f(v,) = x; for all 4. Set C*o) = [~1{43(0)).
Then C*(a) is a cellular complex and f is a non-degenerate cellular map.

Erample 3.3. Typically, f has singularities. Figure 2 shows a folding map f
which maps two triangles, having a common adge. on the plane, In the plane the
two triangles overlap on a smaller triangle which is doubly covered.

Step I1: We pass now to a global picture, from the simplex 7 to the whole com-
plex 7. We choose an cnumeration of al) 3-simplices of 7. SAV &), T2, Ty, e, O,y ...
with the property that, for eacl coupact K, there exists some integer m = in(K')
such that U 6, D K. We huilt p to now. inductively, the global complex asso-

ciated to this exhanstion.
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cTay ‘ \

Fig. 2 - Pulling back A3.

1. At the beginning (for o)) we start with the ceil decomposition Ax(oy)
defined ahove.

2. Assume we constructed refinements of = (Ul o) and of UL, oy, and a
collular map f replacing the projection , between the refined cell complexes. We
look now for the new vertices which appear in @~ H{oa41). There are some of the
vertices of 77 (G4 ). namely those which are also vertices of w7 H{U &), which
have been taken already into account at the previous stages of the construction. In
fact. the vertex v has been considered (this means that, at an carlier stage. a value
&= f{v) € UL, 0, has been associated to v) at the kth step, where % is the smallest
integer such that v is the vertex of 7~ (U, a;). Define therefore V90,41) as the
set of vertices of rl(u;‘_jﬁ o;) which have not been considered before. Choose,
as at the first step; a set of points A%(gn4.) inside the simplex 7,41 5o that the
vertices of i(o,.+1) are in one-to-one correspondence with the vertices of 0,4 and
the other points are lying in the interior of o,41. We assume that the vertices in
190 41) — {ons1) are in bijection with the interior points. The restriction of f
to vertices can be naturally extended now from m (UL, 0y) to Ut o), say
f(u;) = z;, for all 2. Remark that this procedure is highly non canonical but it
is well enough for our purposes. The global complex By, which depends on the
enumeration we chose, is therefore given by

B = {[ryy, 24, oy, 12, € U;}:"ll_ulﬂ(aj)

such that [vg,.vi, . ... vy, 18 a simplex in 7.}

Here all the simplices in 11 are affine. Remark we have specified only the first
generation vertices from A%, not from A3, Consider now the closure By of By with
respect (o the intersection and let B3 be the closure of By with respeet to the face-
boundary operator. An casy remark is that Bj is closed also for the intersection.
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We saw before how to refine B35 by adding the complententary of unions of celly
{and removing the cells which contain them), in such a way that the formal interiors
form a partition: if r, ¢ y are k-cells in B then we want that the c:omple‘mentax:y
l{y — Ujz;) be also an union of colls. In the first step we considered such maximai
families {x;} inside a fixed coll ¥, added the complementary, as a new cell, and
removed the cell y from our collection. But some of the new cells arising this way,
are not convex. Observe that all of them are polyhedra whose edges are geodesics
and the faces arve flatsin 1179, A polyhedron with geodesic edges, and affine faces in
an affine manifold can be partitioned into convex polyhedra, possibly introducing
new vertices, as iutersection among flats spanned by the vertices. These can be
lifted upside, and the initial triangulation can be refined to include the new vertices.
In the last situation, the downside cells are now convex. Thus we may suppose,
without loss of generality, that therc are no vertices to add and the partition has
convex components. We obtained another complex. say B3, which is closed to
intersection, to the face-houndary operator and is made of convex cells. Now the
map f extends to By in the obvious wWay.

This cortpletes the induction step, and so we obtain a collulation of 1179, But
this cellulation can further be refined to a simplicial decomposition 3*. According
to Fact 2 stated above, Ty and B* have a common refinement. obtained by bisec-
tions. This proves that BT is again w.g.s.c. by Lemma 3.1. Now the map f gets a
map f: D* = f~Y{B*) — B* which is simplicial. The pull-back complex D* is a
cellular complex, finer than ¢, and we will show that it is a simplicial complex.

1 points of the first generation
2 points of the second generation
3 points of the third generation

Fig. 3 - The vertices.

Erample 3.4, The vertices we added to our initial triangulations are therefore
of 3 generations, as shown in the Figure.3, These corresponds to 4% to 49 = 49,
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and BY. Anexample of how f looks like is given in Figure 4: here 7 is the union of 2
simplices of dimension 2, and ¢ is the 2-skeleton of Ofvy, va. x5, v5]UDLs, ta, 23, 1)U
U Jfus, va. 5, 5], There are two new vertices of first generation figured in A* and
a new vertex ry when we pass to B*. The preimage cellular complex and the
modified map f corresponds to the cone over the subdivision of the edge [v5. vg)-

7 6
5 3
! 3
2
f
4 4 4
1 3 1 3 1 3
2 2 2
A* B*

Fig. 4 - The general pictare,

“Lemaia 3.4 The map f is non-degenerate and simpliciol.

Proof. These features were achieved directly by construction. It suffices to
understand how D* is obtained from ¢, and that D* is indeed a simplicial complex.
The new vertices in D? — #° come from intersections points of 2-fAats in 1. For a
generic choice of 4%(a;) the 2-flats are in general position, and there are only 1-
dimensional intersections. Since f was made cellular, the local model around a sin-
gularity of fis exactly the folding from Figure 5 (the 3-dimensional analog of Figure

Fig. 3 The local picture around a singularity,
B B A
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2).. Let's explain it: we have two simplices a¥ and 73 in D* having a common
2-face, which are projected down by J onto the union of two 3-simplices fol and
fai. The last two have a common face and fo} 1 fod = ¢ is » sitplex with a
new vertex which appears o which is the intersection of three singular lines or;,
t = 1,3. The double point o has two preimages, o, & o} and we have also the
preimages of double lines which are Oy, T = 1,2 and J = 1,3 We must add
to our decomposition the edge oxy, and this yields a decomposition of fod into 3
simplices while fad is cut into t.'wo'totrahedra.. The preimage decomposition is a
decomposition into tetrahedra of of U o3, which is the pull-back of the partition
mto tetrahedra from downside and it is not necessary to add any other edges or
vertices.

Further, f is locally an étale map around a non-singular point. It follows
that D* is in fact a simplicial complex finer than ¢, and f is non-degenerate and
simplicial, as we wanted. O

Lemna 3.5, The induced map £ X — W2 is proper.

Proof. Qhserve first that all objects Usser C* (o), Uyser 43(0) are locally
finite. Therefore the new vertices of UJ-‘U;JE,_ A%o;) are not accumulating in 173
except at infinity. Since everything takes place in some small convex region we
deduce that the edges in [, ¢r 43{7) (which are viewed as geodesics in 1179) do
not have accurnulating points either. Notice that the geadesics are unique in the
Hat strueture of 1173, Since the simplices are affine we deduce that no k-simplex
(from those whose vertices are in Uj_ﬂ;;Er A3, has accumnulating poings.

It remains to lock at the edges introduced at the second step. Assume that
in the induction process, when we pass from the stage n to 7 + 1 woe have to acd
sowe new edge. The image by 7 of such an edge ¢ € Bl is either one edge of 7 or
a vertex of 7. The second case corresponds to the following situation: we have two
vertices v and having the same image 2 by 7. These two may appear eithey
at the same stage of the enumcration (so thal their perturbed images by f will
belong to the same simplex), or in different, places. But then the Images are sitting
inside two simplices, say o, and a2 having the vertex z in common. The first case
leads to the following situation: the images are sitting in o, and o2 . such that
there exists a 1-dimensional sitnplex ¢ having. one endpoint on oy and the other
one on ou. The other edges in B - Bl were added inside a convex cell, in order
to complete the partition into a partition with smaller convex colls,

We claim that the new edges cannot be too tong: in fact, by the triangle
irequality, the length of 4 new edge in a compact ball R is at most 3 times the
longest.(old) edge in that bajl, We used compacts hecause all the choices we made
werelocal, and the upper hownd on the edge length is uniform (i [7] the initial
triangulation is chosen with simplices which become smaller and smaller whey the
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distanee from a fixed point goes to infinity}. This argument shows that the new
edges do not have accumulating points, except at infinity, For a generic choice
of A"(a;), the affine A-simplices are in general position. Since the edges are not
accumulating somewhere, the k-simplices are not accumunlating either. This proves
that f is proper. O

4. THE PROOF OF LEMMA 2.3

We consider now the central object in this section, namely the canonical

diagram
g ey B
AN, LA®
1

The map A<, which we obtained after factorization, is known to be an immersion
by the definition of ¥,

LEMMA 4.1, The map A% is a stmplicial isemorphism betwmeen 8]0 and
e . .

Proof. Consider the sub-complex i(my) C 6. There is an induced map
ti{m) /¥ — 8%« and we have the commutative diagram

=

’i(?“u')/‘l’éc —l} 9/‘1’3(; — T
1 T
(i} — g
1 A
™

To complete the proof we need the next three lemmas. -

LemmMa 4.2, The map o = A* a¢ @ i(mw) /W — Tw is a simplicial
isomorphisnit. :

Proof. In fact the map a is

o surjective since a(i(tw ) /W) = N 0 é(ty) = A% o i{ry) = 1",

o simplicial as a composition of simplicial maps, -

o an immersion because ¥, (A™ 0d) C U,.: this may be rephrased by saying
that, once we kill all the singularities, then a fortiori the singularities lying in i(ru )
are killed, ’ ' ' '

e injective because the composition «e o 4 =id. where 4 is the vertical map in
the diagram going from miy- to i(ry) /Ty, O

Lesnn 4.3, Counsider the simplicial complex (or cellulation) v which has o
strongly connected 3-skeleton. Assume that we pass from 7 to enother comples 7'
by using one of the following transformations:
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L by subdivisions (or respectively, by a proper Samily of biseclions);

2. we repluce T by skodr, '

3. assume that f is o non-degenernte simplicial map, and v’ = /U (f).
Then v has o strongly connected 3-skeleton, too.

Proof. Obvious. {J

LEMMA 4.4, The map o - iy ) /W —s 8/ ¥ is surjective.

Proof. Assume the contrary holds. Then, for some 3-simplex o C 8/¥,, we
will have int(e}NIm{:) = @. But we know that 8 is strongly connected, hence g/
is strongly connected. so that any twe 3-simplices can he Jjoined hy a continuous
chain of 3-simplices. This follows from the previous claim. Notice that this is the
only place where the third condition in the definition of the enlargement is used. It
tollows that there exists some o with int{e) NIm(:) = ¢ # o NIm(). But we have
seen above that A% {; o K}/ %) = my-. 5o that any point z € do M Iin(e) would
be singular for A%, But this is a contradiction because A% is an immersion, [

Now, 1 is obviously injective hence X% is injective so that it i an isomorphism.
This ends the proof of Lemma 41. 0

The final argument is by now standard (see {7]). We have two bijections
/¢ S 7 {by definition, the quotient by &, is the image} and 8/%. 5 .
But we also have an inclusion among the two relations, which induces a map
0/ 5 6/ hence &, = V..

5. THE PROOF OF THEOREM 1.2

The simple homotopy type was introduced by Whitehead (17] and represents
a refinement of the usuaj homotopy theory for finite complexes. Basically, two
finite simplicial complexes have the same simple homotopy type if, when they
are embedded in an Euclidean space of sufficiently high dimension, their regular
neighborhoods are PL-homeomorphic. Another way to get the simple homotopy is
via Whitehead moves: wo say that ¥ is obtained from the sub-complex X by an
elementary expansion if nt(¥ — X) is onc simplex whose closure intersects X along
a disk which can be a face, or a connected union of several faces. We denote this by
X AY. The inverse operation, from ¥ to X, is denoted ¥ N X and is called an
elementary collapse. Now, by definition, X and ¥ have the same simple homotopy
type if there exists a sequence of elementary moves X = Y X, X =Y, such
that for each § we have cither X A X or XN Y ’

The obstruction for two homotopy equivalent complexes to be simply homo-
topy equivalent was formnulated by Afilnor in algebraic terms, via the Whiitehead
group associated to the fundamental group. This notion was extended by Siebern-
mana [13] to locally fnite complexes. as follows: an clementary collapse of the
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locally finite complexes ¥ onto X is a set of an infinite number of disjoint col-
lapses. This means that we have pairwise disjoint éuh-(‘omplexes {Z;} of ¥ such
that ¥ = X U;Zl Ziyand each Z; N, Z, 1N X is a finite sequence of elementary col-
lapses. The inverse move is called an expansion. Now, two locally finite complexes
have the same infinite simple homotopy type if there cxists a fnite sequence of
elementary collapses and expansions which transforms one simphcial complex into
the other. Observe that the infinite simple homotopy equivalence is finer than the
proper homotopy equivalence. The abstructions that fwo proper homotopy equiva-
lent complexes be infinite simple homotopy equivalent are algebraic, too, and were
described in [13].
Theorem 1.2 is a consequence of the following two lemmas.

Lumna 5.1 If Xy and Xy are simplicial compleres which are simple homo-
topy equivalent {if there are finite, then in the nsual sense, if not we use Sieben-
mann’s infinite proper simple homotopy equivalence), then there exists o finite di-
mensional complex Y such that Y N, X, fori=1,2.

Moreover, if X\ is a manifold, then Y may be chosen to be an enlargement
Of ,-Yl. . .

LEMMA .2, [f Y N X and X is wg.s.c., then Y is a w. g.5.¢

Proof of Theorem 1.2. In fact if 173 is (infinite proper) simply Lhomotopy
equivalent to a locally finite simplicial complex P and P is w.p.s.0., then there is
an enlargement of 1173 which collapses on . By the second lemma this enlargerent,
is a w.g.s.c. and, by Theorem 1.1, 11 is simply connected at infinity. O

Proof of Lemma 5.1. The first part of this lemma (for finite complexes)
was alrcady formulated as Proposition 5.5 in [4], p. 31. Not only Y is finite
dimensional, but its dimension is a priori bounded by wax{dim X; + 1, dim X, N+
+ 1. A stronger result of Cohen [2] states that ¥ can be taken as the product
Xy x BY forn > dim X; > 3, and n > 7, for 2-dimensional complexes.

In the non-compact case we have to notice that in the family of deforma-
tions (elementary collapsings or dilations), which allow to pass from N to Xy,
everything is proper: only a finite number of deformations touch a gwen compact,
and its transformations. Therefore we can change the order of the expanusions and
contractions, at cach finite stage. This implics that we can use first only dilations
{an infinity of them) and further we realize all the collapsings.

A transfinite recurrence provides us with a simplicial complex ¥ which is
the result of all expansions in the sequence which transforms X, into X5, The
main property of this complex ¥ is that it must be properly obtained from Xi.
_ This means that, as in thv previous case, a fixed compact of X is touched by
ouly a finite number of expansion cells, Let Z; = Z(XY,) be the first Hoor added,
Le. the union of X with all those cells whose closure touch A. Consider next
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Zy = Z(Z)). and so on. The properness is equivalent to the fact that, for anv

compact K C X, there are ouly a finite number of floors which can be reached: -

for some fixed 1 = n{H) we have 2 (A ¢ Zatreys for all j. Here K was supposed
to be a sub-complex of X1, and the tower Z_ is built ap in the obvieys marner,
This follows directly from the definition of the infinite proper sitnple homotopy.

. Therefore we obtain a simplicial complex ¥ such that 1N, X;. Since Y can
be obtained by an infinite number of expansions from X, then X ig automatically
PL embedded in . On the other hand consider the inverse (projection) map
induced by the collapsing. Since every compact K sces only a finite mimber of
floors Z;, the projection map is proper.

It remains to deal with the third property of the enlargement. First, we
remark that " x D"\, x|, x pn N A\ Then ¥ x D" has a specific cellulation:
one replace each cell D* of 37 by D¥ x D" which is identified to D*+# Of course,
we have no more a simplicial complex. Moreover, thig cellulation has a, refinement
as a simplicial complex, by dividing each prism D¥* x pn (both cells are simplices)
nto simplices. Each collapsing (coming from a cell ¢) at the ¥ level is realized Dby a
sequence of collapsings corresponding to the set of simplices in which ¢ x D0 splits.
A simple argument shows now that ¥ x D" has a strongly connected 3-skeleton
if n > 3. So we can choose Y x D* to be the wanted enlargement. Remark also
that the result of [2] extends o the non-compact case. and 1 ean he chiosen as a
product of X'y witle a ball of sufficiently high dimension. O S

Remark that the third condition from Definition 1.1 says that the enlargement
is no far {rom being a manifold. The trick used above was suggested by the fact
that the product of a lacally finite complex with the Hilbert cube is an_infinite
dimensional manifold (see [1)). _ .

Proof of Lemma 5.2. Let e; denotes the composition of the firgt '.i'(!il(atiuns
from the infinjte Family which constriucts 1 beginning from 1. Let R be an
exhaustion by connected and simple connected compact sub-complexes of X. Then

ei{ K3} is an exhaustion of V' by connected and simple connected sub-complexes.

which shows that 1 is w.g.sc. O

6. APPENDIX: THE &/J-THEORY

For the sake of tompleteness we recall here somo of the basic tools of this
paper, which were originally introduced and used by Poénaru [6. 7).

Let f: P — A% he n non-degencrate simplicial map between the locally
finite simplicial complex P and the 3-manifold Af. The equivalence relation defined
by fis@(f)cPxp given by

(r.y) € B(f)iff frr = fy.

It is clear that P{B{f} is just the image fP,
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The other relation, ¥(f) is introduced in ordet to seo whether it is possible to
exhaust all singularitios of £P by folding maps, and it is also cailed the cquivalence
relation which is commanded by the singularities of f. A folding map corresponds
to the following situation: if r a1, and ¥ € ¢ are two points of P lying on the
simplices oy of same dimension, if Jo = fy and fo; = fo, then we first wish to
identify fo, to fou. When we pass to such a (uotient, (by a folding) the induced
map remains simplicial.

The cquivalence relation V(f) C ®(f) is complotely characterized by the
following two properties.

o If f denotes the induced map P/U(f) — A7, then fis an immersion, i.e.,
it. has no singularities. {The point z is said to be singular for f if the restriction of
S to the star of z is not immersive. Alternatively, there exist two distinct simplices
7, and ¢y such that z € o) Ny and floy) = flo))

 There is no equivalence relation R ¢ ®(f), smaller than ¥(f) having the
tirst property, i.e., W(f) is the smallest equivalence relation compatible with f
which kills all the singularitics.

Furthermore, the projection map 7 : P — P/¥(f) induces a surjection
on fundamental groups =, TUP) — 7 (P/U(f)). In particular, if P is simply
connected, then P/U(f) is simply connected, too. Remark that also the strong
connectivity of the 3-skeletou is preserved when passing from P to P/O(f).

Roughly speaking, the construction of P/U(f) is given by considering the
quotients, obtainged recurrently, by all foldings commanded by the singular points
of f. In this way all singularities will disappear, one after another, and no new
others are created, Specifically, let z be a smgular point and o; two simplices
('.ontainixig 2, having the same dimension and the same image by f. Consider the
quotient P’ of P, obtained by identifying o, to .. The map f induces a simplicial
notn-degenerate map f' : P — AfE If f' is not an immersion, then it has a
singular point, say 2’ € P!, and therefore some simplices of, as above. We next
consider the quotient P of P! commanded by the singular point 2', and so on. If
P is a finite simplicial complex, then this process stops when we get an immersion
F L PO — AF3. The quotient P™) in this case is P/¥(f). If P is not finite,
then we need a transfinite recurrence to construct the analogous immersion.
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