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Abstract

The main result of this note is that a contractible open 3-manifold W3, which has the same proper homotopy type
as a geometrically simply connected simplicial complex P, is simply connected at infinity. This generalizes a theorem
proved by Poénaru in [7].
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1 Introduction

The startpoint of this paper is the following theorem of V.Poénaru ([7]):

Theorem 1.1 Let W3 be an open contractible 3-manifold such that the product W3 x D™ with the closed
n-ball has no 1-handles. Then W3 is simply connected at infinity.

We recall that an open contractible 3-manifold W3 is simply connected at infinity (s.c.i.), and we write
also (W) = 0), if for any compact set K, there exists another compact set Ko, with K; C Ky C W3,
such that any loop in W3 — K5 is null-homotopic in W3 — K. The definition of a non-compact manifold
with boundary and without 1-handles is given in [7, 10]. The translation in polyhedral language of this
condition is the geometric simple connectivity. A locally finite simplicial complex P is geometrically simply
connected (g.s.c.) if there exists an exhaustion Zy C Zy C Zs C ...Z, C ... of P by finite sub-complexes with
all Z,, being connected and simply connected.

Poénaru in ([7], Remark C, p. 432) claimed that it might be possible to have a connection between
the simple homotopy type and 7$° in dimension 3. The natural conjecture would be that W3 is simple
homotopy equivalent to a g.s.c. simplicial complex P if and only if W3 is simply connected at infinity.
Using Chapman’s stabilization lemma [1] this corresponds to replacing the ball D™ by the Hilbert cube in
the statement of the previous theorem. Our main result establishes a stronger claim without requiring the
homotopy equivalence to be simple:

Theorem 1.2 An open contractible 3-manifold which is proper homotopy equivalent to a locally finite g.s.c.
simplicial complex is s.c.i.



This result was proved using standard 3-dimensional techniques in [2]. Our aim is to give here a proof
along the lines of [7].

Notice that there exist manifolds W™ in every dimension n > 4 (e.g. the Poénaru-Mazur manifolds,
see [5, 3]), such that W x D* is g.s.c. for some k, but W x D¥ (and henceforth W) is not s.c.i., so our
main theorem is a purely 3-dimensional result, which cannot be extended in higher dimensions. Remark
that the properness condition is essential above. In fact, for any Whitehead-type manifold W3 the product
W3 x int(D"3) has no 1-handles ([4]) for large enough n, since its homeomorphism class depends only on
the homotopy type of W?3.

Acknowledgements: I'm indebted to Valentin Poénaru for proposing me this problem, and for the
numerous suggestions and remarks as well as Ross Geoghegan, Frank Quinn and Larry Siebenmann for
helpful conversations and advice.

2 The plan of the proof

Definition 2.1 An enlargement of the 3-manifold M3 is a locally finite simplicial complex X which admits
M3 as a proper strong deformation retract, and whose 3-skeleton ske®>X of X is strongly connected, i.e. any
two 3-simplezes are connected by a chain of 3-simplexes, the consecutive ones having a common face.

We reduce the theorem to the following

Proposition 2.1 Let W3 be an open contractible 3-manifold, and X™ be a finite dimensional enlargement
of W3. If X" is g.s.c. then W? is s.c.i.

Actually, we will prove a stronger statement, that there exists an exhaustion Zy C 741 C Z3 C ...Z, C ... of
W3 by compact connected and simply connected sub-manifolds Z,,. In dimension 3, this condition implies
that m$°(W3) = 0.

Proof of the Theorem 1.2 assuming Proposition 2.1. If the 3-manifold W3 and X™ are proper homotopy
equivalent then there exists a locally finite simplicial complex Y™ such that both X and M? are proper
strong deformation retracts (e.g. the mapping cylinder of a homotopy equivalence). Possibly replacing Y™
by a product with a closed ball we can assume that its 3-skeleton is strongly connected, hence Y™ is an
enlargement of W3. Assume now that X" is g.s.c. It follows that Y™ is also g.s.c. and the proposition
above implies that W3 is s.c.i. as claimed. O

Proof of Proposition 2.1: The idea comes from the series of papers [7, 8, 9, 10]. The main arguments are
contained in the following three lemmas. In order to make this paper self-contained we added an appendix
on the ®/W-theory (developed in [6]) at the end. We will use the following notation: if h : A — B is a
map and n € Z, we will denote by M,,(h) C A the set of x € A which are such that card(f'(f(z)) > n.
We also write M2(h) C A x A for the set of pairs (z,y) € A x A with z # y and h(z) = h(y).

Lemma 2.1 Let X3, M3 be two simply-connected manifolds, K be a connected compact set, such that
X3 is compact, connected with non-void boundary and M3 is closed without boundary. Assume we have a
commutative diagram
K <& int(X3)c x3
AR LF
M3
fulfilling the conditions:

1. f and g are embeddings.



2. F is a smooth generic immersion.
3. gK N My(F) = 0.

Then fK can be engulfed in a smooth connected and simply connected sub-manifold Y3 of M?3.

For the proof of this Dehn-type lemma see ([7], p.433-439).
The hypothesis gives a proper PL embedding i : M3 — X" and a proper surjection 7 : X" — M?3 such
that mo4 = 1.

Lemma 2.2 There exists a triangulation Ty of W3 and a subdivision Tx of X" such that:
1. i: 1w — 7x 18 a simplicial embedding, identifying Ty to a sub-complex of Tx.
2. Tx 18 g.S.cC.

3. there is some subdivision 0 of the 3-dimensional skeleton of Tx and a map X : 0 — Ty such that X is
proper simplicial and non-degenerate, and X o1 = id.

This lemma does not use the strong connectivity of the 3-skeleton, but only the strong deformation retract
properties. Notice that this lemma implies that 6 is a enlargement of 7y, but only when the natural
projection map is replaced by A (so that all the maps become simplicial). The proof will be given in the
next section.

It follows that 6 is g.s.c. from ([7] Lemma 5.1): thus, there exists a sequence of finite simply connected
sub-complexes Zy C Z; C Z C ... C 6 exhausting . Set A> = A 9, M = A |z, and also W; = U(M),
O; =®(N), j=1,2,...,00. The equivalence relations ® and ¥ were introduced in [6] and all the definitions
are included in the appendix. Recall that for j < oo we have ®; = & ‘Zj, but in general we have only an
inclusion W; C W |z, .

Lemma 2.3 The equality ®oo(N\) = Woo(A) holds.

Proof of Proposition 2.1 assuming the Lemmas. The conclusion of Proposition B from [7] remains true in
our situation, so that for any k, there exists some number N (k) > k fulfilling:

YNy [2,= P-

Fix further a connected compact K C W?3. Then there is some m for which \™Z,, D K holds, and
therefore we can find some (sufficiently large) n satisfying (A®°) "1 (A™Z,,) C Z, (both assertions follow from
a compactness argument).
If (z1,29) € M?(A>®) and z; € i(K) then necessarily 5 € Z,. Furthermore we have the following
diagram of maps:
%

i(K) C Zn [Py = Zn /YN (n) C Znm) /YN w3,

Since the map AN is an immersion and no double point of AN can involve Z, (as a consequence of the
relation W4y |z,= @, which was previously obtained) we derive that

KN My(AN™) = 0.

From Lemma 3.1 of [7] we have m1(Znn)/Vn(n)) = 0. Therefore the diagram below

K 4 Znm) /YN ()
I\ LAN®)



has all the properties required in the Dehn-type lemma except that ZN(n)/\I/N(n) is a simplicial complex.
But as already noticed in ([7] p.444), we can replace it by a smooth regular neighborhood of Zy ;) /¥ n(n),
generically immersed in W?3. Thus the compact K can be engulfed in a simply connected compact sub-
manifold of W?. Once we know this for any connected compact it follows automatically for any compact
subset of W3. Therefore W3 is simply connected at infinity. O

3 The proof of lemma 2.2

By a suitable subdivision of the initial triangulations 79(,7'8[, of X and W we can suppose that both 7 :

7% — Ty and i : 7y, < 7} are simplicial. Remark that 7} is g.s.c. by lemma 5.1. from [7]. It remains to
prove that 7w can be replaced by another map f which is simplicial and whose restriction to the 3-skeleton
of some subdivision 7% is non-degenerate. The image of the latter is some subdivision 73, < 7};,. Denote
ske3T by t and T‘}V by 7, for simplicity.

Notice that W3 has a non-complete flat Riemannian structure, hence T;V can be realized as an affine
triangulation of W3 because the geodesics are unique.

Since 7 is proper then for any (closed) 3-simplex o C 7, the preimage 7' (o) = U;0; is a finite union of
3-simplexes of t. We choose an arbitrary simplex o at the beginning. Among the preimage simplexes o;’s
there is one, which we denote by i(o), such that the restriction of 7 to i(o) is an isomorphism on the image.
Set V(o) for the union of the set of vertices of all o; which do not appear as vertices of i(0), and order them
arbitrarily V(o) = {v;,7 > 4}. Afterwards we label {v1,...,v4} the vertices of i(c).

Choose some set of points (in a generic position) A%(0) C int(c) C W3 which are in one-to-one corre-
spondence with V (c). We denote the points of A%(c) as {z;,i > 4} and the vertices of o by {z1,...,z4}. We
suppose that the projection of v; is x; for i = 1,2,3,4. Consider now the set A¥(o) of those k-dimensional
simplexes whose vertices are from A%(o), which are realized as affine simplexes in W3, and are related to
the simplexes from 7~ ! (o) in the following way:

Ak (o) = {[mig, T4y, oy i, ] C o3 such that [viy,vi,, ..., v;, ] is a simplex in 7' ()}

Here [yo,y1, ..., yx| denotes the simplex having the vertices y;. Notice that the affine simplex
[Tio, Tiy s -y Ty | is uniquely determined by its vertices in W3, because W? has an affine structure.

We assume now that all simplexes in 7 are sufficiently small to be convex with respect to the affine
structure. Let A} (o) be the closure of A*(0)U{c}U( with respect to the intersection operation: this means
that:

1. once o1 and oy are in A7 (o), their intersection o3 N oy must belong to A7 (o), too.
2. A*(o) U{o} UD is a subset of A} (o).
3. Aj(o) is the smallest collection fulfilling the previous two conditions.

Set also A7, (o) for the closure of A}(o) with respect to the face-boundary operator 9, which is extended
canonically to convex cells. The face-boundary operator associates to a cell ¢ the collection of faces of the
boundary. We refine further the complex A}, (o) to the collection A3(c) with the property that the interiors
of the cells form a partition, as follows: set ¢; for a maximal set of open cells in A}, (), all of them being
contained inside some other cell c. Then remove ¢ and add ¢ — U;¢; as a new cell. It is possible that concave
cells have been introduced this way. Consider now the map f : 7 '(0) — o, which is the extension by
linearity of the map defined on vertices by f(v;) = x; for all i. Set C*(0) = f '(A%(0)). Then C*(0) is a
cellular complex and f is a non-degenerate cellular map.



We wish to pass now to a global picture, from the simplex o to the whole complex 7. We choose an
enumeration of all 3-simplexes of 7, say o1, 09,03, ....,0%, ... with the property that, for each compact K,
there exists some integer m = m(K) such that U™ 0, O K. We built up now, inductively, the global complex
associated to this exhaustion. At the beginning (for 01) we start with the cell decomposition defined above
Aj(o1).

Assume we constructed refinements of 7 (U 0;) and of U}, 0;, and a cellular map f replacing the pro-
jection 7, between the refined cell complexes. We look now for the new vertices which appear in 7 (0, 11).
There are some of the vertices of 7 1(0,41), namely those which are also vertices of 7~ !(U"_,0;), which
have been taken already into account at the previous stages of the construction. In fact the vertex v has
been considered (i.e. at an earlier stage, a value © = f(v) € U"_,0; has been associated to v) at the k"
step, where k is the smallest integer such that v is the vertex of 7! (U¥_;0;). Define therefore V%(o,,,1) be
the set of vertices of 7! (U?i'llm;) which have not been considered before. Choose, as in the first step, a set
of points A°(0,,41) inside the simplex 0,1 so that the vertices of i(0,41) are in one-to-one correspondence
with the vertices of 0,51 and the other points are lying the interior of o, 1. We assume that the vertices in
VO(0pt1) —i(0,41) are in bijection with the interior points. The restriction of f to vertices can be naturally
extended now from 7 ' (U™ 0;) to 7w ! (Ufi'll(f,;), say f(v;) = z;, for all i. Remark that this procedure is
highly non canonical but it is well enough for our purposes.

The global complex Bj, which depends on the enumeration we chose, is therefore given by:

BE = {[ziy, Tiyy -y 23, ; T;; € U;’-‘LIAO(UJ-) such that [v;y,v;,,...,v;,] is a simplex in ¢.}

Here all simplexes in W3 are affine simplexes. Remark we have specified only the first generation vertices
from A°, not from AY. Consider now the closure B} of B} with respect to the intersection and B} be the
closure of B} with respect to the face-boundary operator. An easy remark is that B3 is closed also for the
intersection. We saw before how to refine B3 by adding the complementary of unions of cells (and removing
the cells which contain them), in such a way that the formal interiors form a partition: if z; C y are k-cells
in BY then we want that the complementary cl(y — U;z;) be also an union of cells. In the first step we
considered such maximal families {z;} inside a fixed cell y, added the complementary, as a new cell, and
removed the cell y from our collection. But some of the new cells arising this way, are not convex. Observe
that all of them are polyhedra whose edges are geodesics and the faces are flats in W3. A polyhedron with
geodesic edges, and affine faces in an affine manifold can be partitioned into convex polyhedra, possibly
introducing new vertices, as intersection among flats spanned by the vertices. These can be lifted upside,
and the initial triangulation can be refined to include the new vertices. Eventually the downside cells will be
convex. Thus we can suppose, without loss of generality, that there are no vertices to add and the partition
has convex components.

We obtained another complex, say B3, which is closed to intersection, to the face-boundary operator
and is made of convex cells. Now the map f extends to B3 in the obvious way.

This completes the induction step, and so we obtain a cellular structure of W3, which can further be
refined to a g.s.c. simplicial decomposition B*. Now the map f gets a map f : D* = f~!(B*) — B* which
is simplicial. The pull-back complex D* is a cellular complex, finer than ¢, and we will show that it is a
simplicial complex.

Example 3.1 The vertices we added to our initial triangulations are therefore of 8 generations, as shown
in the picture 1. These corresponds to A°, to AY = AY, and B). An ezample of how f looks like is given
in picture 4: here T is the union of 2 simplexzes of dimension 2, and t is the 2-skeleton of O[vy,va, 23, v5] U
Olva,ve, x3,v6] U Olvg, ve, x3,v5]. There are two new vertices of first generation figured in A* and a new



1 points of the first generation
2 points of the second generation

3 points of the third generation

Figure 1: The vertices
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Figure 2: The general picture

verter x7 when we pass to B*. The preimage cellular complex and the modified map f corresponds to the
cone over the subdivision of the edge [vs, vg).

Lemma 3.1 The map f is non-degenerate and simplicial.

Proof: These features were achieved directly by construction. It suffices to understand how D* is obtained
from t, and that D* is indeed a simplicial complex. The new vertices in D° — ¢t come from intersections
points of 2-flats in W. For a generic choice of AO(()'j) the 2-flats are in general position, and there are only
1-dimensional intersections. Since f was made cellular the local model around a singularity of f is a folding.
This means that we have two simplexes o} and o3 in D* having a common 2-face which are projected down
by f onto the union of two 3-simplexes fo? and fo3. The last two have a common face and foi N fol = o
is a simplex with a new vertex o which is the intersection of three singular lines oz;, + = 1,3. The double
point o has two preimages, o; € o7 and we have also the preimages of double lines which are 0ivj, i =1,2
and j = 1,3. We must add to our decomposition the edge ox4, and this yields a decomposition of fo?
into 3 simplexes while fo3 is cut into two tetrahedra. The preimage decomposition is a decomposition into



Figure 3: The local picture around a singularity

tetrahedra of o3 U o3, which is the pull-back of the partition into tetrahedra from downside and it is not
necessary to add any other edges or vertices.

Further f is locally an etale map around a non-singular point. It follows that D* is in fact a simplicial
complex finer than ¢, and f is non-degenerate and simplicial as we wanted. O

Lemma 3.2 The induced map f: X — W? is proper.

Proof: Observe first that all objects U,sc, C*(0), U3¢, A5(0) are locally finite. Therefore the new vertices
of Uj,ofeT Ag((rj) are not accumulating in W3 except at infinity. Since everything takes place in some small

convex region we derive that the edges in U,sc, A3(c) (which are viewed as geodesics in W? ) do not have
accumulating points either. Notice that the geodesics are unique in the flat structure of W3. Since the
simplexes are affine we derive that no k-simplexes (from those whose vertices are in Uj,a‘?ET AY(0;)) have
accumulating points. ‘

It remains to look at the edges introduced at the second step. Assume that in the induction process,
when we pass from the stage n to n + 1 we have to add some new edge. The image by 7 of such an edge
e € B1 is either one edge of 7 or else a vertex of 7. The second case corresponds to the following situation:
we have two vertices v; and vy having the same image x by w. These two may appear either at the same
stage of the enumeration (so that their perturbed images by f will belong to the same simplex), or else in
different places. But then the images are sitting inside two simplexes, say o1 and o9, having the vertex z in
common. The first case leads to the following: the images are sitting in o7 and o9 , such that there exists a
1-dimensional simplex e having one endpoint on 7 and the other one on oy. The other edges in B — BJ
were added inside a convex cell, in order to complete the partition into a partition with smaller convex cells.

We claim now that the new edges cannot be too long: in fact, by the triangle inequality, the length of
a new edge in a compact ball R is at most 3 times the longest (old) edge in that ball. We used compacts
because all the choices we made were local, and the upper bound on the edge length is uniform (in [7] the
initial triangulation is chosen with simplexes which become smaller and smaller when the distance from a
fixed point goes to infinity). This argument shows that the new edges have not accumulating points except
at infinity. For a generic choice of A%(o;) the affine k-simplexes are in general position. Since the edges are
not accumulating somewhere, the k-simplexes are not accumulating either. This proves that f is proper. O



4 The proof of lemma 2.3

We consider now the central object in this section, namely the canonical diagram
6 — 0/¥
AN, L A®
W3
The map A, which we obtained after factorization, is known to be an immersion from the definition of W.

Lemma 4.1 The map A is a simplicial isomorphism between 6/V o and Ty .

Proof: Consider the sub-complex i(7y) C 6. There is an induced map ¢ : i(7yy)/ Vs — 0/ V4 and we have
the following commutative diagram

e

itw)/ Vs ——= 0/Ty "= 1y
T T A
T A
™w

Then we have the following;:
Claim 1: The map a = A® o :i(1)/¥s — T is a simplicial isomorphism.
Proof: In fact the map « is

e surjective since a(i(ti)/ Vo) = A® 0 i(Tyy) = A® 0i(Tw) = T
e simplicial as a composition of simplicial maps.

e an immersion because Wy, (A® 01) C W; this may be rephrased by saying that, once we kill all the
singularities, then a fortiori the singularities lying in i(7y ) are killed.

e injective because the composition a o = id, where § is the vertical map in the diagram going from
Tw to i(Tw)/\I/oo. |
Claim 2: Consider the simplicial complex (or cellulation) 7 which has a strongly connected 3-skeleton.
Assume that we pass from 7 to another complex 7/ by using one of the following transformations:

1. by subdivisions (or respectively, by a proper family of bisections).
2. we replace 7 by ske3T.
3. assume that f is a non-degenerate simplicial map, and 7/ = 7/U(f).

Then 7' has strongly connected 3-skeleton, too.

Proof: Obvious.O

Claim 3: The map ¢ : i(mw)/¥Poo — 0/ is surjective.

Proof: Assume the contrary holds. Then, for some 3-simplex o C 0/U, we will have int(o)NIm(.) = (. But
we know that 6 is strongly connected henceforth /W, is strongly connected, so that any two 3-simplexes
can be joined by a continuous chain of 3-simplexes. This follows from the previous claim. Notice that this
is the only place where the third condition in the definition of the enlargement is used. It follows that there
exists some o with int(o) N Im(1) = 0 # o N Im(:). But we have seen above that A (10 (1) /¥ ) = Ty,
so that any point z € do N I'm(1) would be singular for A\>. But this is a contradiction because A is an
immersion. O



Now ¢ is obviously injective hence A is injective so that it is an isomorphism. This ends the proof of the
lemma 4.1. O

The final argument is by now standard (see [7]): We have two bijections 6/®,, — 7y (from the definition
the quotient by ®, is the image) and 6/¥ = . But we have also an inclusion among the two relations
which induces a map /¥, = 0/®, hence o, = Voo, O

5 Appendix: the &/U-theory

For the sake of completeness we recall here some of the basic tools of this paper, which were originally
introduced and used by Poénaru in [6, 7].

Let f : P — M? be a non-degenerate simplicial map between the locally finite simplicial complex P
and the 3-manifold M. The equivalence relation defined by f is ®(f) C P x P given by

(z,y) € @(f) iff fz = fy.

It is clear that P/®(f) is just the image fP.

The other relation, W(f) is introduced in order to see whether it is possible to exhaust all singularities of
fP by folding maps, and it is also called the equivalence relation which is commanded by the singularities
of f. A folding map corresponds to the following situation: if z € o1, and y € o9 are two points of P lying
on the simplexes o; of same dimension, if fr = fy and fo; = foo then we wish to identify firstly foq to
foa. When we pass to such a quotient (by a folding) the induced map remains simplicial.

The equivalence relation W(f) C ®(f) is completely characterized by the following two properties:

e If f denotes the induced map P/¥(f) — M? then, f is an immersion (i.e. it has no singularities).
The point z is singular for f if the restriction of f to the star of z is not immersive. Alternatively,
there exist two distinct simplexes oy and oy such that z € o1 N oy and f(o1) = f(02).

e There is no R C ®(f), equivalence relation, smaller than ¥(f) having the first property. Thus, U(f)
is the smallest equivalence relation compatible with f which kills all the singularities.

Furthermore the projection map 7 : P — P/WU(f) induces a surjection on fundamental groups 7, :
m(P) — m(P/¥(f)). In particular if P is simply connected then P/U(f) is simply connected too.
Remark that also the strongly connectivity of the 3-skeleton is preserved when passing from P to P/U(f).

Roughly speaking, the construction of P/¥(f) is given by considering the quotients, obtained recurrently,
by all foldings commanded by the singular points of f. In this way all singularities will disappear, one after
the other, and no new others are created. Specifically, let z be a singular point and o; two simplexes
containing z, having the same dimension and the same image by f. Consider the quotient P’ of P, obtained
by identifying oy to o9. The map f induces a simplicial non-degenerate map f': P’ — M?3. If f' is not an
immersion it has a singular point, say 2’ € P’, and therefore some simplexes o}, as above. We consider next
the quotient P” of P’ commanded by the singular point 2z’ and so on. If P is a finite simplicial complex this
process stops when we get an immersion f(™ : P — M3 The quotient P(™ is in this case P/U(f). If
P is not finite, we need a transfinite recurrence to construct the analogous immersion.
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