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On discrete solvgroups and Poénaru’s condition

By

Louts FUNAR

Absteact. We prove that a class of discrete cocompact solvgroups do not fulfill
Poénaru's condition P(2) (see [3, 4]}, improving the result of [2]. This corresponds to the
high concavity of balls in the Cayley graphs of such groups.

1. Introduction. The motivation of this note lies in a series of papers of Poénaru {3, 4, 5]
which investigated the simple connectivity at infinity of the universal covering space M of a
closed 3-manifold M whose fundamental group #;(M) is infinite. It is a long standing
conjecture that every such manifold M has the universal covering homeomorphic to IR,
The principal obstruction in proving this conjecture is the existence of open contractible
3-manifolds which are not simply connected at infinity, like Whitehead’s original example
(see [8]). The main result of [4] states that, for those manifolds M whose fundamental groups
satisfy the condition P(2) below, the universal covering is simply connected at infinity (hence
homeomorphic to R? if irreducible).

Definition 1. A finitely generated group G is said to verify Pocnaru’s condition
P{n)(for n = 2)if there exist a system of generators B, and a function f: Z, — IR, fulfilling:
(1) for all constants ¢ > 0 we have:

lim & — ¢f (k) = oo,
Ko

(2) any two elements x, y which are sitting on the sphere of radius & and center 1 of the
Cayley graph I'(G, B} (which is endowed with the natural distance function ) and which are
at distance at most r, can be joined by a path lying inside the ball of radius k of I'(G, B),
whose length is less than f(k).

Remark 2. If G satisfies the condition AC(n) from [2] then it satisfies also the condition
P(n).

If G is an almost convex group (see [1]) then G satifies P(n} for all n, since the almost
convexity corresponds in the above definition to the case when the function f(k) is a
constant depending on a. It is already known ([2]) that solvgroups are not almost convex.

Poénaru’s condition was stated initially in [3, 4] in the case when the function f{k) is &',
for some ¢ > 0. It is simple however to see that his main result (with the same proof) is valid
for any choice of f(k) fulfilling (1).
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Observe that the ball of radius k in the Cayley graph of a group not satisfying P(n) is
highly concave. In fact we could take always f(k) = 2k violating therefore (1) but
not (2).

The purpose of this note is to get a class of groups which do not satisfy P(k), improving the
main result of [2]. We don’t know however if the condition P(k) is independent on the choice
of the system of generators like the almost convexity, the hyperbolicity etc.

We remember first some useful facts concerning the group 8OL (see [6]). As a topological
space SOL is IR, and the group law is given by the following formula:

(a,b,c){x,y,2) = (a+xe b+ ye™°,c +2).
The left invariant metric on this Lie group is given by
ds’ = e**dx? 4 e R dy? + d7?.

A discrete cocompact solvgroup is a discrete subgroup of SOL with compact quotient. The
action of this subgroup on SOL is given by means of the identification of SOL with the
connected component of the identity in the isometry group Isom(SOL) of SOL. i1 is known
that SOL ¢ Isom(SOL) is a normal subgroup of index § and its isotropy group at the origin is
the dihedral group Dy,

The SOL geometry (i.e. modelled on the group SOL) is one of the eight geometries
existing in dimension 3 (see [6, 7). According to Thurston’s geometrization conjeciure each
closed 3-manifold may be split along tori into pieces which have one of the eight possible
homogeneous geometric structures. Tt is natural to ask therefore which are the
corresponding discrete groups which satisfy the condition P(2) and are cocompact subgroups
in one of the eight Lie groups. Hyperbolic groups for instance are almost convex hence they
do satisfy P(2). The only geometry for which the answer is not known is SOL, and this
explains why the source of counterexamples we get is the set of solvgroups.

We remark that every compact 3-dimensional solvmanifold {i.e. a quotient SOL/G by a
discrete cocompact subgroup) has a finite covering (of degree at most 4 from above) which is
a torus fibration over a circle with hyperbolic characteristic map. Therefore this covering will
have the fundamental group presented as follows:

Ga={a,b,t!ab =ba,tar™! = ogMpn tp! = a"’”b“‘”),

where A is a 2-by-2 hyperbolic matrix (ie. it has no eigenvalues of module 1, and its
determinant is 1).
We are able now to state the result of this note:

Theorem 3. 1. A discrete cocompact solvgroup G does not satisfy P(n) for some large n
depending on G and the systent of generators B.

2. The cluss of groups of the form G, does not satisfy P(2) with respect to the natural
system of generators {a, b, t}.

3. If G satisfies P(n) for some n > 2 then G satisfies also Plm) forall m = n,
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2. The proof of the theorem. We observe first that the estimations given in [2] suffice
to obtain the first claim with only minor modifications. Also the 3-rd claim follows on
the lines developped in [1] for the k-almost convexity, word by word. We shall give the
detailed proof of the second assertion, which contains also the ingredients for the two
other,

The Cayley graph I'(Ga,B) may be effectively realized in R* as follows: we identily
the subgroup (a,b} (which is isomorphic to Z@F) with the standard lattice in
the horizontal plane {z = 0}. In coordinates the element a'bi corresponds to the vector
of coordinates (i,j.0). Further the cosel t{a, by will be identified with a lattice
in the horizontal plane {z = k}. This is carried as follows: the element *a’d is identified
with the vector of coordinates (x,y, k) where x and y are determined by the equation
in GA

t*a'b = ab’.

We join the vertex t*a’}/ to the vertex *a'*!5/ by an edge labeled @ and by an edge labeled b
to the vertex fa'b/*’.

Then the lattice in {z =k} corresponds under the vertical projection to the lattice
*(Z@Z)* in the plane {z = 0}. We join also the verlex sitting in the slice {z = k+1}
to that vertex directly above it in {z = k} by an edge labeled +. The resulting graph is
the Cayley graph of G, with respect to the generators {a,b,t}. Il @ = talbf corresponds
to the vertex (x,y,k) we say that (x,y,k) are the coordinates of a Set also
|(x,y,k)|= max (| x |,| y |). Observe first that the coordinates may be easily computed in
terms of the matrix A:

()" = ARG ),
where T denotes the transposition of vectors.
Consider the following elements:
sy = gk = Fat bR o= g, B = .
We make the following remarks:
e 1y and p, commute with each other.
o Since t~lay = 1B, the distance between oy and §; in the Cayley graph is d{etr,3,) = 2.
e d{l,a) =4k +ig+i+je+h +1=M, and d(1,pB,) = M.
o Consider the function ¢ : G - Z defined by o{w) = ¥ exponents of { in the word
w =the last coordinate of w.
Then o is well-defined since o(relation) = 0 for all relations in the presentation of Ga.
Also o{a;) = 1, and o{8;) = ~1.
e The coordinates {xy, v, 1) of ¢ are given by
(v y) " = AX (i, o) + ATH (i )
o Any path in the graph between ay and j intersects o H{0).

Consider then a path of length N between ay and f;, and set z = a*b* for the first
point where the path touch o7'(0). From the symmetry of the situation we may suppose
that the length of the path between oy and z is less than N/2. Set £ for the point preceding
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z on the path. Then the arc connecting o and & is contained in the set {o = 1}. Any
move on the path is obtained by left multiplication by one of the generators. Then the
coordinates of a point (e, f, ¥) are changed by a left multiplication move into (¢', f, +) and we
have

(e f 9| 2 1A (ef, )], for fe] 1 fi>>0.

Observe now that the coordinates of £ are necessary (i, #, 1), But £ is obtained from ¢ after
a number of N /2 moves, so we get

r=max(|al,|v]) = |42 (X 1)

We choose now the vectors (fy,fo) and (i|.j;) be good approximations of the two
cigenveciors of A, namely so that

Ak(l'[),jg) o |A |k (.‘(),Ak(ii,j;) = lA |Mk €1,

where ¢q and ¢, are two distinct vectors in the plane. This is possible since A is an hyperbolic
matrix.
Then we derive that for some A > 0 we have

rzilAft

But the distance between two points in the plane {z = 0} may be casily computed and we
obtain

dll,z)=r

Suppose now that the number N = N(k) satisfies the condition (1) stated in the introduction,
so that

lim & — N _ 00

ke e 2
Then for large & we find that each path connecting ¢y to 3, has a point z with the property
that 4(1,z) > M, because | A |> 1. In other words any path connecting a and 3, (which are
at distance 2, and contained in the ball of radius M), whose length is less than N(k) need to
have points ocutside the ball of radius M. This proves that G, does not satisfy P(2), as
claimed. [
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