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CUBULATIONS, IMMERSIONS, MAPPABILITY
AND A PROBLEM OF HABEGGER

BY Louis FUNAR

ABSTRACT. - The aim of this paper (inspired from a problem of Habegger) is to describe the set of cubical
decompositions of compact manifolds mod out by a set of combinatorial moves analogous to the bistellar moves
considered by Pachner, which we call bubble moves. One constructs a surjection from this set onto the the
bordism group of codimension-one immersions in the manifold. The connected sums of manifolds and immersions
induce multiplicative structures which are respected by this surjection. We prove that those cubulations which
map combinatorially into the standard decomposition of R" for large enough n (called mappable), are equivalent.
Finally we classify the cubulations of the 2-sphere. © Elsevier, Paris

RESUME. - Dans cet article on decrit les classes d'equivalence des cubications d'une variete compacte modulo
des mouvements analogues aux mouvements de Pachner. On construit une surjection de F ensemble des classes
d'equivalence dans Ie groupe des bordismes d'immersions de codimension 1 dans la variete. Les sommes connexes
des varietes et des immersions induisent des structures multiplicatives respectees par cette surjection. On prouve
que les cubications qui admettent une application combinatoire dans la cubication standard de R", pour n assez
grand, sont equivalentes. On donne une classification des cubications de la sphere S2. © Elsevier, Paris

1. Introduction and statement of results

1.1. Outline. Stellar moves were first considered by Alexander ([Al]) who proved that
they can relate any two triangulations of a polyhedron. Alexander's moves were refined
to a finite set of local (bistellar) moves which still act transitively on the triangulations
of manifolds, according to Pachner ([PI, P]). Using Pachner's result Turaev and Viro
proved that certain state-sums associated to a triangulation yield topological invariants
of 3-manifolds (see [Tu]). Recall that a bistellar move (in dimension n) excises B and
replaces it with B ' , where B and B' are complementary balls, subcomplexes in the
boundary of the standard (n + 1)-simplex. For a nice exposition of Pachner's result and
various extensions, see [Li].

The Turaev-Viro invariants carry less information than the Reshetikhin-Turaev invariants,
which are defined using Dehn surgery presentations instead of triangulations. In fact the
latter have a strong 4-dimensional flavor, as explained by the theory of shadows developed
by Turaev (see [Tu]). This motivates the study of state-sums based on cubulations, as an
alternative way to get intrinsic invariants possibly containing more information (e.g. the
phase factor). A cubical complex is a complex K consisting of Euclidean cubes, such that
the intersection of two cubes is a finite union of cubes from K, once a cube is in K
all its faces are still in K, and no identifications of faces of the same cube are allowed.
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682 L. FUNAR

A cubulation of a manifold is specified by a cubical complex PL homeomorphic to the
manifold. In order to apply the state-sum machinery to these decompositions we need an
analogue of Pachner's theorem. Specifically, N.Habegger asked (see problem 5.13 from
R.Kirby's list ([Kirby])) the following:

Problem 1. Suppose M and N are PL-homeomorphic cubulated n-manifolds. Are they
related by the following set of moves: excise B and replace it by -B', where B and B' are
complementary balls (union ofn-cubes) in the boundary of the standard {n -h l)-cube?

These moves will be called bubble moves in the sequel. Among them, those for which B
or B' does not contain parallel (when viewed in the n+ 1-cube) faces are called np-bubble
moves. There are n + 1 distinct np-bubble moves b f c , f c = l , 2 , . . . , n + l and their inverses,
where the support B of bk is the union of exactly k cubes. For n = 2 there is one bubble
move which is not a np-bubble (see Figure 1). Set C(M) for the set of cubulations of a
closed manifold M, CBB(M) for the equivalence classes of cubulations mod np-bubble
moves and CB(M) for the equivalence classes of cubulations mod bubble moves. The
answer to Habegger's question, as it states, is negative because the triangle and the square
are not bubble equivalent. In fact, for n = 1 the move &i divides an edge into three edges
and so CB(S1) = CBB(S1) = Z/2Z. Therefore a complete answer would rather consist
of a description of CB(M). Another way is to avoid the difficulties of a direct approach
by looking for a sufficiently large class of cubulations having an intrinsic characterization
and within which the cubulations are equivalent. The aim of this paper is to formulate
some partial solutions along these lines.

For instance, one associates to each cubulation C of M, a codimension-one normal
crossings immersion ^pc in M. In this way one obtains a surjective map from the set

b2

'3 1
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Fig. 1. Bubble moves for n = 1 and n == 2.



CUBULATIONS, IMMERSIONS AND MAPPABILITY 683

of (marked) cubulations mod bubble moves to the bordism set of immersions. The latter
has a homotopical description via the Pontryagin-Thom construction. We conjecture that
this surjection is a bijection. On the other hand let us restrict to cubulations which can
be combinatorially mapped into the standard cubulation of some Euclidean space (called
mappable). One can approximate an ambient isotopy between two cubulations by some
cubical sub-complexes of the standard cubulation. The path of cubical approximations is
locally constant except for a finite number of critical values of the parameter, when a
jump described by a bubble move occurs. As a consequence two mappable cubulations
are bubble equivalent. We prove that the connected sum of cubulations mod bubble
moves is well-defined, and this is compatible with the composition map for immersions.
Finally we consider the case of CB(S2) and show by a direct combinatorial proof that
CB(S2) = Z/2Z.

Acknowledgements: Part of this work was done during the author's visit at University
of Palermo and University of Columbia, whose support and hospitality are gratefully
acknowledged. I'm thankful to E. Babson, J. Birman, C. Blanchet, R. Casali, C. Chan, L.
Guillou, N. Habegger, T. Kashiwabara, A. Marin, D. Matei, S. Matveev, V. Poenaru,
R. Popescu, V. Sergiescu and the referee for helpful discussions, suggestions and
improvements.

1.2. Elementary obstructions. We outline the combinatorial approach in higher
dimensions from [Fun]. For a cubulation x € C(M) of the n-manifold M the component
fi(x) of the /-vector f(x) counts the number of ^-dimensional cubes in x. The orbit of
the /-vector f under bubble moves has the form f + A(n) C Z"^, where A(n) is a
lattice. Therefore we have an induced map CB{M) —^ T^^ / K(n) taking values in a
finite Abelian group.

Proposition 1.1. There exist nonzero even numbers a,i(n) G Z+ such that the projection
Z^^A^) —> nr=o Z/a^(n)Z is surjective. The greatest such numbers di{n) verify
an(n) = 2, an^(n)'= 2n, a^(n) = 2, ao(n) = 2, ai(n) = 3 + (-1)71, (n > 2).

See [Fun] for the proof. Let fb be the class of f in nF=o Z/a,(n)Z and /^2) be the
reduced elements modulo (2, 2,2,.. . , 2,2n, 2). Notice that A(n) is not a product lattice in
general. For instance, when n = 3 there is an additional invariant fo + /i G Z/4Z.

A natural problem is to compute the image fb{CB(M)) for given M. Some partial results
for the mod 2 reductions fb^^CB^M)) are known. This is equivalent to characterizing
those /-vectors mod 2 which can be realized by cubulations of the manifold M. There
are constraints for the existence of a simplicial polyhedron with a given /-vector and
fixed topological type. For convex simplicial polytopes one has McMullen's conditions
(see [Mem, Bl, B2, BL, S, Mcm2]). The complete characterization of the /-vectors of
simplicial polytopes (and PL-spheres) was obtained in [S2]. The analogous problem of
the realization of /-vectors by cubical polytopes has also been considered in some recent
papers, for example [BB, BC, He, J] and references therein. The new feature is that,
unlike for the simplicial case, there are parity restrictions on the /-vectors (see [BB]).
The relationship between cubical PL n-spheres and the immersions was described in the
following result of Babson and Chan (see [BC]):

Proposition 1.2. - There exists a cubical n-sphere K with given fi (mod 2) if and
only if there exists a codimension 1 normal crossings immersion (p : M —> Sn such that
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684 L. FUNAR

fi{K) = ̂ (X,(M, (p)) (mod 2), w/i6?r<? \ denotes the Euler characteristics, and Xi{M, y?)
is the set of i-tuple points.

There is a wide literature on immersions, and especially on the function 0n counting the
number of multiple n-points mod 2, which was considered first by Freedman ([F]). Earlier
Banchoff [B] has proved that the number of triple points of a closed surface S immersed
in R3 is ^(5) (mod 2). There is an induced homomorphism On : Bn —> Z/2Z on the
Abelian group Bn of bordism classes of immersions of (n - 1)-manifolds in S72. Now 9n is
surjective (i.e. nontrivial) if and only if /^^(S71) = Z/2Z. From the results concerning
the function 0n obtained in [F, El, E2, E3, H, Kos, KS, L, Cl, C2, C3] we deduce that
the /-vectors of a n-sphere have the following properties (see also [BC]):

1. For n = 2 we have /o = h (mod 2) and A = 0 (mod 2) and thus fb^\CB(S2)) =
fb^\CBB(S2)) = Z/2Z.

2. For n = 3, /o = fi = 0 (mod 2), f^ = ^3 (mod 2). The Boy immersion
j : RP2 —> S3 has a single triple point and so there exists a PL 3-sphere with an
odd number of facets. Therefore fb^\CB(S3)) = fb^\CBB(S3)) = Z/2Z.

3. The characterization of /6^2i(S71) is reduced to a homotopy problem: fb^l^S") =
Z/2Z if and only if
(a) either n is 1,3,4 or 7.
(b) or else n = 2" - 2, with a G Z+, and there exists a framed n-manifold with

Kervaire invariant 1. The latter is known to be true for n = 2,6,14,30,62.
4. If we consider only edge-orientable cubulations (see [He]) then fb^^S^ is known.

The edge-orientability is equivalent to the orientability of the manifold immersed in
S71 and the restriction of the map On to the subgroup of oriented bordism classes was
computed in [F]. In particular fn-i = 0(mod 2) if n / 1,2,4.

1.3. The 2-dimensional case. To a surface cubulation we can associate a set of immersed
circles Ki obtained from the union of arcs joining the opposite sides in each square. The
cubulation is simple if the circles Ki are individually embedded in the respective surface.
Simple is equivalent to mappable for the cubulations of S2 (see below). A cubulation is
called semi-simple if each image circle y(Ki) has an even number of double points, which
form cancelling pairs. Two double points form a cancelling pair if they are connected by
two distinct and disjoint arcs.

Theorem 1.3. The np-bubble moves act transitively on the set of simple cubulations of
S2. The orbit of the standard cubulation is the set of semi-simple cubulations. The map
fb^ = fo (mod 2) is an isomorphism between CB(S2) and Z/2Z.

1.4. Bordisms of immersions. Let us consider the set I(M) (respectively I^^M) in
the orientable case) of bordisms of codimension 1 nc-immersions (i.e. normal crossings)
in the manifold M. Two nc-immersions fi : TV, —> M of the (n - 1)-manifolds Ni are
bordant if there exists a proper nc-immersion / : N —> M x [0,1] of some cobordism N
between A/i and A^, such that the restriction of / to Ni is isotopic to /,. Using general
position arguments one may get rid of the nc-assumption.

A marked cubulation is a cubulation C of the manifold M, endowed with a PL-
homeomorphism |C7| —> M of its subjacent space |(7|, considered up to isotopy. If a
bubble move is performed on (7, then there is a natural marking induced for the bubbled
cubulation. Thus it makes sense to consider the set CB(M) of marked cubulations mod
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bubble moves. We associate to each marked cubulation C a codimension 1 nc-immersion
yc '' Nc —> M (the cubical complex Nc was called the derivative complex in [BC]).
Each cube is divided into 2n equal cubes by n hyperplanes which we call sections. When
gluing together cubes in a cubical complex the sections are glued accordingly. The union
of the hyperplane sections form the image of a codimension 1 nc-immersion. In the
differentiable case one uses a suitable smoothing when gluing the faces. If the cubulation
C is edge-orientable (see [He]), and if M is oriented, then Nc is an oriented manifold.

Theorem 1.4. The map C —> (pc induces a surjection I : CB(M) —> Z(M).
Theorem 1.3 says that the map I is injective for M = S2. We conjecture that I

is bijective. In particular CB(M) would depend only on the homotopy type of M
and the functor CB which associates to M the set CB{M) would be (homotopically)
representable. Notice that CB(M) = CB{M)/M(M), where M(M) is the mapping class
group of M, i.e. the group of homeomorphisms of M up to isotopy. Using the classical
Pontryagin-Thom construction (see e.g. [V]) it follows that Z(M) = [M^^^S^RP00],
and Z^M) = [Me, O^S^S1], where Me is the one point compactification, ^ denotes the
loop space, S the reduced suspension and the brackets denote the set of the homotopy
classes of maps. Moreover Z^M) = ^(Mc) is the first cohomotopy group Ti-^Mc). The
cohomotopy groups of spheres can be computed: Z(Sn) = 7r^(RP°°), where 7r^(RP°°)
is the n-th stable homotopy group, and Z+(Sn) = 7r^(S1) = Tr^.p It is known that
Tr^RP00) = 7r|(RP°°) = Z/2Z, 7r| (RP°°) = Z/8Z, and a few values of the stable
stems are tabulated below:

n

<

0

z
1

Z/2

2

Z/2

3

Z/24

4

0

5

0

6

Z/2

7

Z/240

8

Z/2 C Z/2

Let us introduce now the set C(M) of bordisms of cubulations of the manifold M. The
cubulations C\ and Cs are bordant if there exists a cubulation C of M x [0,1] whose
restrictions on the boundaries are the Ci. The identity induces a map CB(M) —> C(M).
The question on the existence of an inverse arrow is similar to Wall's theorem about
the existence of formal deformations between simple homotopy equivalent n-complexes
through (n + l)-complexes (for n ̂  2). Remark that any two cubulations become bordant
when suitably subdivided. Consider some cubulation of the sphere Sr^ which is bubble
equivalent to the standard one. We can view the bubble moves as the result of gluing and
deleting (n + 1)-cubes (after some thickening) to the given cubulation. It follows that any
such cubulation bounds, i.e. it is the boundary of a cubulation of the (n + l)-ball. For
instance a polygon bounds iff it has an even number of edges. For n = 2,3 it might be
true that the boundary of a ball cubulation is bubble equivalent to the standard one, but
the result cannot be extended to n >: 4. This is analogous to the existence of non-shellable
triangulations of the ball for n > 3 (see [Li2]). We define a shuffling to be a sequence
of moves where shellings (i.e. adding iteratively cells, each intersecting the union of the
previous ones along a ball) alternate with inverse shellings. An equivalent statement of
Pachner's theorem is that all triangulations can be shuffled. In the case of cubulations the
first obstruction for shuffling is that the cubulation bounds. However there exist cubulations
which bound but cannot be shuffled for n = 4. Consider for example the connected sum
x^x, where I ( x ) is the generator of the third stable stem. We will prove below that
the connected sum of cubulations makes CB^) a monoid. But x^x bounds and if it
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can be shuffled then x should have order 2. This is impossible because I is a monoid
homomorphism and the bordism group is Z^S4) = Z/24Z.

1.5. Embeddable and mappable cubulations. Cubical complexes, as objects of study
from a topological point of view, were also considered by Novikov ([novikov], p.42)
which asked whether a cubical complex of dimension n embeds in (or can be mapped
to) the n-skeleton of the standard cubic lattice of some dimension N. These are called
embeddable and respectively mappable cubulations. By the standard cubic lattice (or the
standard cubical decomposition) is meant the usual partition of R^ into cubes with vertices
in ZN. Several results were obtained in [DSS1, DSS2, DSS3, DSS, Kara].

Theorem 1.5. The mappable cubulations of a PL manifold M are bubble equivalent.
Let us say that a cubulation is simple if no path in which consecutive points correspond

to edges which are opposite sides of some square of the cubulation, contains two orthogonal
edges from the same cube. The cubulation is standard if any two of its cubes are either
disjoint or have exactly one common face. An immediate observation is that embeddable
cubulations are standard and simple and mappable cubulations are simple. On the other
hand the simplicity is very close to the mappability, at least for manifolds with small
fundamental group. We have for instance the following results of Karalashvili ([Kara]) and
Dolbilin, Shtanko and Shtogrin ([DSS3]):

1. The double (i.e. the result of dividing each fc-dimensional cube in 2k equal cubes)
of a simple cubulation is mappable.

2. A simple cubulation of a manifold M satisfying H^M, Z/2Z) = 0 is mappable.
3. From a simplicial decomposition S one constructs a cubulation C(S) by dividing each

n-simplex into n + 1 cubes. Then the cubical decomposition C(S) is embeddable.
In particular cubulations coming from triangulations are bubble equivalent. Also the simple
cubulations of the sphere are equivalent. Notice that the set of simple (or mappable)
cubulations is not closed to arbitrary bubble moves. In general the simplicity is not
preserved by the move b^.

1.6. Multiplicative structures. The connected sum of the manifolds M and N is denoted
by M^N. When appropriately extended to cubulations ji depends on various choices, but
after passing to bubble equivalence classes these ambiguities disappear.

Theorem 1.6. There exists a map CB(M) x CB(N) —> CB(M^N) induced by the
connected sum of cubulations.

As a consequence jj induces also a composition map CB(M) x CB(N) —> dB{M^N).
On the other hand there is a natural composition map on the sets of bordisms of immersions,
by using the connected sum away from the immersions. We prove that the map I is
functorial:

Theorem 1.7. We have a commutative diagram

CB{M) x CB(N) —> CB(M^N)
I I I I

I(M) x I ( N ) —— J(Mtt7V)
We believe that the monoid CB^S") is actually a group. Notice that Z(M) has a group

structure for any M (induced from the cohomotopy group structure), but we don't know
whether this can be lifted to CB(M).

4s SERIE - TOME 32 - 1999 - N° 5
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2. The proof of theorem 1.4

Let K be the derivative complex (having the connected components Ki) associated to
a cubulation C of the manifold M and let (p : K —> M be the associated immersion.
In order to rule out some pathologies we restrict here to the combinatorial cubulations,
meaning that the star of each vertex (or the link) is a PL ball (respectively a PL sphere)
of the right dimension.

Let us first show that we have an induced map I : CB(M) —> Z(M). Consider the
local picture of a bubble move, viewed in the boundary of the (n + l)-cube. The set of
sections on the boundary are intersections of the hyperplane sections of the {n + l)-cube
with the faces. Let B and B' be the n-balls interchanged by a bubble move. Then the
union of hyperplane sections in the (n + l)-cube yields a bordism between the immersions
(pB and ( R E ' in the (n + l)-ball. Thus immersions associated to equivalent cubulations
are cobordant.

The immersion ip is pseudo-spine if the closures of the connected components of the
complementary M - Im (y?) are balls, and the image of ^ is connected. The immersion is
called admissible if each connected component L of the set Xk(M,(p) of fc-tuple points
is a PL ball and we have cl (L) n Xfc+i(M, (p) ^ 0 (for all k < n - 1, where cl denotes
the closure).

Observe that any nc-immersion is cobordant to an admissible pseudo-spine immersion.
In fact consider a set of small (bounding) spheres embedded in M, transverse to the
immersion (p. If they are sufficiently small they cut the connected components of the
complementary M - Im {(p) into balls. We add sufficiently many of them so that all
connected components of the strata Xk(M,^p) are divided into balls by the additional
spheres. The immersion (// whose image consists of the union of Im (y?) with the spheres
is cobordant to (p. In fact let us choose some balls in M x [0,1] bounded by the spheres
i n M = M x { l } . The required cobordism is obtained by putting the balls in standard
position with respect to Im((^) x [0,1].

Furthermore we want to associate a cubulation C to the immersion <p such that I{C) = y.
For an admissible pseudo-spine immersion one takes the corresponding cell decomposition
of the manifold, then the dual decomposition is just the cubulation we are looking for.
The pseudo-spine condition implies that the dual decomposition has the structure of a
cubical complex and the admissibility is required for the cubulation comes endowed with
a natural marking | C \—> M.

3. Embeddable and mappable cubulations

3.1. Mappable cubulations are equivalent. The proof of Theorem 1.5 goes as follows:
we show first that embeddable cubulations are equivalent and then that a mappable
cubulation is equivalent to an embeddable one.

For the first step consider N sufficiently large so that both cubulations P and Q embed
into the standard cubulation R^ of the Euclidean space and such that there exists an
ambient isotopy carrying P into Q. The image of P during the isotopy is denoted by Pi.
We define an approximation P^ of the manifold Pi, which is a cubulated sub-manifold of
R^, which is sufficiently close to Pf, and when t varies the family P^ is either locally
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constant or changes around a "critical value" by a bubble move. We realize an arbitrarily
fine approximation by taking the cubical structure be R^[s], based on cubes whose edges
are of length e, for small e. A way to do that is to divide each cube of the lattice into 2N

equal cubes. Then the initial cubulations P and Q are replaced by some iterated doublings,
say 2rnP and 2m0. It remains to prove that 2mP is equivalent to P.

Proposition 3.1. Let P and Q be two cubulations of a PL manifold which are embedded
in the standard cubical lattice R^. Then there exists m arbitrarily large, such that 2mP
and 2m0 are bubble equivalent.

Proposition 3.2. If P is embeddable, then for big enough m the iterated doubling 2mP
is bubble equivalent to P.
Notice that the analogous statement for np-bubble moves is false in general.

Proposition 3.3. Let P be a mappable cubulation. Then P is np-bubble equivalent to
an embeddable cubulation.

3.2. The proof of Proposition 3.1. Consider a cubulation X C R;^], of codimension
at least 1. Let us denote by K[e\ the union of all hyperplanes defining the cubulation
R^l^], which can be written as a disjoint union of the strata A[£]^ consisting of all open
codimension m cubes. Set C for the cube given by the equations {\zj\ < l , j= 1, N}. Let
C be the {N — l)-complex obtained from 9C by adding the hyperplanes [zj = 0}.
Denote by W the star of the origin in C i.e. the union of cells having the form
Wk^ = {zk = O^jZj > OJ^-1 ^ l.Vj}, where ̂  G {-1,1}, Vj.

Definition 3.4. The disk D is a standard model in C if D is properly embedded in C
(and transverse to 9C), D is contained in W and the origin lies in int (J9).

Definition 3.5. Let C be a N-cube of the cubulation R^[£:]. We say that X is standard
with respect to C if the following conditions are fulfilled:

1. X is transversal to A[e] D C.
2. There exists an isotopy supported on int (C) U (A|£]^ D C), if the codimension ofX

is at least 2, and respectively int (C7) U (A[^]^ U A[s]^ D C\ if the codimension is
precisely 1, which transforms X D C in a standard model.

Finally X is standard (or in standard position) with respect to R^^] (or A[e}) if X is
standard w.r.t. all cubes.

Observe first that a plane L transverse to the boundary of C is in standard position
w.r.t. C. In fact using a recurrence argument the intersection of L with any face F C 9C
can be put in standard position by means of an isotopy. The union of standard models for
L H F over the faces is a PL sphere and the cone centered at the origin on it is isotopic
to L D C and hence it is a standard model.

Consider a submanifold X which is standard w.r.t. the lattice A. Then there is an isotopy
transforming X into X^ (A), where X^ (A) intersects each cube along a standard model.
In fact this can be done in each cube that X intersects and the standard models for different
cubes have disjoint interiors. It suffices to check the compatibility of the boundary gluings:
if X cuts two adjacent cubes C and C' then the standard models of X D C and X D C '
can be glued together. First the neighborhood of the common face is determined by the
standard model of X inside the face. Hence we have to prove the uniqueness of the
standard model for X D C H C ' , which follows by a recurrence argument on the dimension.
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Therefore the cubical complex Xst(A) is uniquely determined by X and A, and it will be
called the standard model of X w.r.t. A.

Let us consider the cubulations P and Q of a n-manifold M, embedded in R^. There
exists an isotopy with compact support (p : ItN x [0,1] —> R^, with y?o being the
identity and ^i(P) = Q. For big enough N one can choose the isotopy (p |px[o,i] to be
an embedding. We assume that the cubulations P and Q are embedded in the standard
cubulation given by the affine lattice A = A + ( j , | , . . . , j ) , which has the origin translated
into (|,j,...,|). Notice that a cubulation P C A is automatically in standard position
w.r.t. A. Moreover the intersection of P with each cube of A is a standard model and so
P^A) = P. We obtained a submanifold Y = (^(P x [0,1]) of R^, whose boundary 9Y
is in standard position w.r.t. the lattice A. We claim that for big enough m there exists
an isotopy carrying Y into X, such that 9X and 9Y are isometric and X is in standard
position w.r.t. the lattice Ap"771]. There exists a subdivision A^"771] (for large m), such
that Y becomes standard w.r.t. Ap"771], after a small isotopy which is identity near the
boundary. We translate Y into the lattice whose origin is at (2-m-l,2-m-l, ...,2-m-l).
Then P and Q transform into 2mP and 2m0, and they are in standard position w.r.t.
Ap"771]. The last condition is an open condition, so we can keep Y fixed near the boundary
during the isotopy. Let us denote by Z the tube describing an isotopy between 2mP and
2mQ, which is in standard position w.r.t. Ap""^. There exist topologically trivial tubes Z\
between P and 2mP, and respectively Z^ between Q and 2mQ, which are in a standard
positions w.r.t. A^^]. Then set X = Zi U Z U Z^.

Therefore we derived a PL cylinder X C A^"771] which interpolates between P and
Q. Notice that the cubical structure of P in A^"771] is that of 2mP in A. In general one
cannot shell the boundary from P to Q. The tube X carries a PL foliation by submanifolds
P^ = ^pt(P), where y? states for the isotopy carried by X. The leaf Pi does not contain
flat directions in the cube U if Pf does not contain any segment parallel to some vector in
9U. Using a small isotopy one can get rid of flat directions in all leaves Pt. Furthermore
there exists some m such that either Pt is standard w.r.t. U D A^"771], or else Pt contains
vertices of the lattice A^"771]. The first alternative would hold if we are allowed to move
slightly Pt, using an arbitrary small isotopy (in order to achieve the transversality). On the
other hand the leaf is not transverse iff it contains vertices from Ap"771], because there
are no flat directions. Further "to be in standard position" is an open condition and so one
can choose the constant m such that for each t either the leaf Pt is in standard position
w.r.t. the cube U D Ap"^, or else Pi contains vertices from U D A^""^. The set of those
exceptional t for which the second alternative holds is finite because each critical leaf
contains at least one vertex from U D A^"771] and the different leaves are disjoint. Observe
that we can change the isotopy Pi such that no exceptional leaf contains more than one

The leaves around a critical value Bubble move supported on c

Fig. 2. The jump of a standard model at a critical value.
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vertex from A^"771], while keeping all the other properties obtained up to now. Moreover,
there is such an m which is convenient for all cubes that X intersects. If one replaces a
leaf Pf by the standard model F^Ap"""]) then we get a family of cubulations embedded
in R^p"771]. This family should be locally constant, until t reaches an exceptional value to
(where the standard model cannot be defined). Set U for the cube of size 2-m+l centered
at the (exceptional) vertex. The intermediary set P^-^to-^-e] rW, for e « 2-m, is a trivial
cobordism properly embedded in U. Using a small isotopy one can change P^ D U into
a union of planes passing through the vertex. If dir is the set of the 2n directions of the
coordinate axes around the vertex lying in X we put dir- = [x e dir; P^-e H x / 0}, ,
dir+ = {x G dir; Pto-\-e l^l x -^- 0}. Each such direction is dual to a face of a cube c in
the dual lattice where the standard models P^A^"^]) live. We have dir- U dir+ = dir,
and dir- n dir+ = 0 since P^ separates the directions which are cut by Pto-e from the
directions cut by Pio+e. Let /_ and /+ be the union of faces of c duals to the directions in
dir- and dir+ respectively. Then /_ and /+ are PL balls because P^-e H U is a ball, as
well as Pfo+e H U. We need only to see that both are non-void. If /- is empty then Pto-e
would be contained in a half cube Uo c U of the lattice Ap'^]. Then P^+e H Uo will
be a cylinder, and thus it cannot be standard, contradicting our hypothesis. Therefore the
standard model P^^Ap-771]) is obtained from P^.^Ap-^]) by means of the bubble
move /_ -^ /+ having the support on c. This proves Proposition 3.1.

3.3. The proof of Proposition 3.2. Actually a stronger statement concerning sub-complexes
of the standard lattice R^ is true. We will ask also the bubble moves which pass from
one cubulation to the other to be embedded in R^. This means that each bubble move
which exchanges the balls B and B' has the property that the cube bounded by B U B '
is contained in the skeleton of R^.

Two isotopic lattice knots (or graphs) in R3 are bubble equivalent, by means of bubble
moves which can be realized on the lattice of R3 and which avoid self-crossings. Consider
now a lattice d-manifold (or complex) M c R^, and a preferred coordinate axis defining
a height function h : R^ —> R. The preimage of the open interval h^^n.n + 1)), for
n G Z is an open PL cylinder because an open n-cell e C /^((n, n + 1)) must be vertical
with respect to h. This means that e = / x (n,n + 1), where / is a (n - l)-cell whose
projection h{f) is a single point. A horizontal cell is one whose image under h is a point.
Therefore we derive the sub-complexes A~^ c /^(n), A^ C /^(n), with A^ ^ A^, i ,
such that A^ U A^ U {horizontal cells} = h^^n) and

cl {h-\(n, n + 1))) n (/T^n) U h-\n + 1)) = A^ U A^ U {vertical cells}.

Let H{n} be the union of interiors of the horizontal cells in /^(n). Then one can
decompose the sets A^ as follows: A^ = (/^(n) - H(n)) U Z^, A^ = (h-1^) -
H{n)) U CZ^ where Z^ n CZ^ = 0, and Zn U CZn = 9(d (ff(n)). Using a recurrence
argument we assume that A^ and 2kA^ are bubble equivalent for some fc, by means of
the sequence of embedded bubble moves X,. Then the same sequences of bubble moves
transforms A^ into 2/i;A^. Since A^i ^ A^, there exist some cone constructions over
the bubble moves J^, which are realized in the {N -\- 1)-dimensional lattice, and relate
A^ x [0,1] to 2kA^ x [0,1], as follows. If the bubble move X, touches only A^ - Z^
then consider the usual cone of JQ, which is also a bubble move in one more dimension.
If the bubble move Xi touches Zn (or CZn, on the other side) then construct an extension
with one more dimension for X,, by using the horizontal flat. The slices A^ x [0,1], and
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/^((n, n+1)) can now be glued back, and we obtain a bubble equivalence between M and
a (2k,2k, ...,2^ 1)-dilatation, meaning that the dilatation acts trivially in the direction of
the chosen axis. The same procedure works for any other coordinate axis. Then the product
of all such dilatations is a homothety of factor a power of 2, hence the claim follows.

3.4. The proof of Proposition 3.3. A mappable cubulation is not embeddable for two
reasons: either it is non-standard or else the map to the lattice is not injective. Both
accidents can be resolved using np-bubble moves. The cubulation C is k-standard if its
fc-skeleton is standard, i.e. two cubes of dimensions at most k are either disjoint or else they
have exactly one common face. Assume for the moment that the n-dimensional cubulation
C is (n - 1)-standard. Let / : C —> R^ be a combinatorial map, locally an isometry on
each cube. The singularities of the map / are therefore either foldings or double points.
A double point singularity is when two disjoint cubes x and y have the same image
f(x) = f(y). The codimension of the cubes is called the defect of the double points. If the
defect is positive then x C u U v, y C u' U v\ where u and v (respectively u' and v ' ) are
top dimensional cubes having a common face. A folding corresponds to a pair of cubes
having a common face and the same image under /. In order to get rid of double points
of positive defect one performs a 61 followed by a &2-move on u and v respectively, in an
additional dimension. If the defect of the double point is zero then we can settle using a
cubical Whitney trick, as follows. Consider C' be obtained by a &i-move on y. Perform
a 6i-move on f(y) in an additional dimension. Then D' = &i(/(G)) embeds into R^,
since the interiors of the new cubes do not intersect the cubes of f(C). There exists an
extension f ' : C ' —> D' of / \c-{y} sending b^(y) onto &i(/(^/)), which is combinatorial
and has less singularities than /. Iterate this procedure until an embeddable cubulation is
obtained. In order to solve a folding of two cubes one uses a fci-move over one folding
cube, and on its image. The folding is replaced then by a double point singularity.

It remains to see how we can use np-bubble moves in order to assume the (n — 1)-
standardness. Using (n - 1)-dimensional np-bubble moves bi(n - 1) one can transform
sken~l(M) into a standard complex. It suffices to observe that the action of the n-
dimensional np-bubble move bi(n) in one more dimension agrees with that of bi{n - 1)
on the (n - 1)-skeleton. This completes the proof of the Theorem 1.5.

Corollary 3.6. The simple cubulations of a manifold M satisfying H^Af^Z^Z) = 0
are bubble equivalent.

3.5. np-bubble equivalence and mappability. We want to find out whether a cubulation
which is bubble equivalent to a mappable one is mappable itself. In general the answer is
negative, and we have to restrict to np-bubble moves. The set of embeddable cubulations
is not stable under np-bubbles either. In fact an embeddable cubulation may become non-
standard, after performing some b^ moves. We will show that this is the only accident
which can happen. More precisely, we say that M and N are standard np-bubble equivalent
if there exists a chain of np-bubble moves joining M and N among standard cubulations.
Also the simplicity is preserved by all np-bubble moves but ^ hence the mappability
cannot be np-bubble invariant. Two cubulations are simply np-bubble equivalent if they
are np-bubble equivalent among simple cubulations. Let M be a mappable cubulation and
X C M be the support of a 62-move. The move is rigid with respect to M if there is
a combinatorial map / : M —> R^ for which f(X) is the union of two orthogonal
n-cubes. Otherwise, either f(X) consists of a single cube (/ is a folding) or f(X) is the
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union of two cubes lying in the same n-plane (/ is flexible). The following result is a
coarse converse of the Theorem 1.5:

Proposition 3.7.
1. Let M be mappable and N be a cubulation which is np-bubble equivalent to M using

only rigid b^-moves. Then N is mappable.
2. If M is embeddable then b^(M) is mappable.
3. If M is embeddable and N is standard np-bubble equivalent to M then N is

embeddable.
4. The class of mappable cubulations is closed to simple np-bubble equivalences.

Proof. Let / : M —> R^ be a combinatorial map into the standard cubulation and
D^ c M be the support of a bk move (i.e. the union of fc-cubes). Since f is non-degenerate
on each cube either / is an embedding on D^ or else / is a folding and k = 2. Also
/ is always an embedding on the support D^ of b^1. If the move is rigid (for k = 2)
or / is an embedding on the support then there exists a cube C C R^1, such that
C D R^ = f{Dk). In fact there is an unique embedding of D^ (k / 2) and respectively
D~^ into R^4'1, up to isometry. The map / extends then to a map / over bk(M) using
the cube C. This completes the proof of the first part of the Proposition.

Let us introduce some notations and definitions from [DSS], for the sake of completeness.
Two edges e and e' of a cubic complex Q are said to be equivalent if there exists a sequence
of edges joining them, in which any two successive edges e^e^+i are opposite sides of
some square in Q. An edge equivalence class is called simple if all the edges in it belonging
to a single cube in Q are parallel. An equivalence class is called orientable if all the edges
in it can be oriented such that whenever two equivalent edges are parallel to each other,
their orientations are parallel. We consider a partition F of the edge equivalence classes
into certain families of classes Fi,...,F^v such that each class has a fixed orientation
and two perpendicular edges are members of equivalence classes that belong to different
families. Let 7 = (ei, 62,..., e^) be an oriented edge path in the cubulation Q. Let sgn (e,)
be +1 if the direction of travel of 7 on the edge ei coincides with the orientation of e,, and
-1 otherwise. Consider then the following formal sum, taking values in the free Z-module
generated by the symbols Fj:

k
D^) = ̂ sgn(e,)F(e,) G Z < F^F^...,FN >

i=l

where F(e) is the family to which the edge e belongs. We can state now (see [DSS],
p. 305-306):

Proposition 3.8. 1. A simple cubulation Q maps into the skeleton ofH^, where N is
the affine dimension of the image, if and only if there exist orientations of the equivalence
classes and a partition F of these classes into N families such that for any closed edge
path 7 in Q, we have Dp^) = 0.

2. A simple and standard cubulation Q embeds into the skeleton ofR.^, where N is the
affine dimension of the image, if and only if there exist orientations of the equivalence
classes and a partition F of these classes into N families such that, for an edge path
7 in Q, we have Dp(^) = 0 if and only if the path 7 is closed.
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We are now ready to prove the second part:

Proof. According to Proposition 3.8 the cubulation M (which is mappable, hence simple)
admits a partition F of the equivalence classes of edges such that the development map
Dp vanishes on all closed curves. The orientations of the edge equivalence classes of M
naturally induce orientations for b^(M). Further any loop in b^M) can be deformed to a
loop in M, and hence b^(M) is mappable from the previous criterion, provided that b'z(M)
is simple. Simplicity is not preserved by b^, in general, but we asked the cubulation to be
an embeddable. If b^(M) is not simple, then the support of the &2-move should consist
of two twin cells. This means that we have two cells e and e' which have a common
face /, and the two layers parallel to / containing e and e' coincide. But the layers of an
embeddable cubulation cannot be self-tangent (see [DSS3]), hence b^{M) is simple. D

The third and fourth statements in Proposition 3.7 follow in the same way.
Remark that the collection of non-trivial homotopy classes of immersions ^p(Ki) (of

the connected components Ki of the derivative complex K) is invariant to np-bubble
moves. In particular CBB(M) is infinite if the manifold M has non-trivial topology. If we
consider two homothetic cubulations X and XX, then in general they cannot be np-bubble
equivalent, because any non-trivial homotopy class appears A times more in the latter.
Thus the np-bubble equivalence may be interesting only for PL-spheres. We believe that
any two simple cubulations of the sphere are np-bubble equivalent, as it happens for S2.

Fig. 3. The developing map.

4. Multiplicative structures

4.1. The composition of cubulations. Assume the manifolds we consider in the sequel
are connected. We wish to prove that the connected sum of cubulations induces a monoid
structure on CB^). We believe that CBB^) inherits also a monoid structure. Consider
the cubulations C G C(M) and D e C(N) of the manifolds M and N, and choose two
cells e C C, e' C D. A cell is always a top dimensional cube in this section. Let t
be a length I > 3 cubical cylinder made up from e x [0,Z] by removing the interiors
of e x {0} and e x {/}. We define therefore the map "connected sum of cubulations"
c^e'^t : C(M) x C(N) —> C(M^N), by

Ce,e',t{C,D) = C - int (e)Qe^aex{0}C9t ^9e'^Qe'x{l}cQt D - Hit (e').

with the obvious identifications of the boundaries.
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We make some remarks before we proceed to prove the Theorem 1.6. In the course of
the proof, we will freely use the fact that the tube t can be changed into another tube
while it remains mappable. The gluing of the tube t requires some self-identification of the
boundary Ot. We fix an arbitrary identification 9e x {0} —> 9t. Then the other boundary
of the tube can be glued to D - mi (e') in 2n ways corresponding to the elements of the
symmetry group Dn of the n-cube. The relative twist tw e Dn measures the difference
between two gluings on e1. Notice that there is no canonical choice in gluing e1. All tubes of
length I > 3 are bubble equivalent rel boundary so that their length has not to be specified.
Then the connected sum cubulation depends on the choice of e, e' and of the relative twist.

Proof. One can assume that C and D are standard cubulations.'We want to define a
developing map S : {paths in D} —> {cells in C}. The map S depends on the particular
data e^e^t^tw we choose. A path in D is a sequence of cells starting at e7, consecutive
cells having a common face. It suffices to define the map S for the trivial path, and then
to use a recurrence on the length of the path. If the path is trivial, consisting of the cell
e', we define S(e/) = e. Further choose a cell // having a common face u' with e ' . Let u
be the face of e which is opposite to u' using the tube t. Then the face / neighbouring e
and intersecting it along u is by definition S(^\ where 7 is the path (e',/').

Let t' be a tube isometric to t which is glued on C and D along / and /' respectively,
such that cl (t U t' — t D t1) is a cylinder on the union of two neighbouring cells. Here
t n t ' = e n e' x [0,1} is the common face of the tubes. This condition determines uniquely
the gluing twist tw' of t ' . Let Y denotes the cubulation obtained by gluing cl (tUt' - tFU')
to C and jD, along e U e' and / U /' respectively. Then Y is obtained from Ce^,t(C,D)
by a sequence of &2-moves (along the tube t ' ) and a final &3-move. The same procedure
transforms cjj/^((7,P) into V, hence Ce,e'^t{C,D) and Cfj^t'(C,D) are equivalent.
Using a recurrence one proves that Ce,e',t{C,D) and cs^^m)^(C,D) are equivalent for
any path 7, where t^ is a tube isometric to t whose gluing twist is that induced by 7.

Set 0(e) = [f such that Ce^,t(C, D) is equivalent to Cej/^(G, D) for a suitable twist}.
We have to prove that, possibly using bubble moves on the initial cubulations, we have
0(e) = C. For any loop 7 based at e one knows that S'(7) e 0(e). Consider a loop 7 of
length m and assume that the last segment of the curve 7 \[m-mo,m}, for m > me > 3 is
straight. A curve is straight if it consists of a sequence of cells e^, each cell e^ having a
common face fi with the preceding cell e^_i, so that the faces fi and /^+i are opposite
faces in e,. Then a straight curve 7 |[m-mo,m] defines a strip E consisting of the cells of
the maximal straight extension of 7 |[m-mo,m]. Set // = 5(7). The image of the strip S
under the developing map is also a strip S7 C C. When a basepoint cell e and a preferred
direction are fixed, a discrete flow is defined on the strip S. The action of k G Z on the
cell v is the cell (k,v) which is k steps forward in the given direction, starting from v.
Notice that there is also a flow defined on the other strip S'.

We claim that (2Z,/') C 0(e) (after using bubble moves). Let u = 7(r),
r e [m - mo, m], be a cell of E C D, located between e and 7(m - mo). One performs
a &i-move on u and set 7' for the natural extension of 7 to D' = b-^(D). We can express
S'(7') in terms of the flow on the strip E' as (2, //) because 7' is also straight and its
length was increased by 2. Thus (2Z+,/') c 0(e) holds, but the strip is finite hence the
Z-action has cyclic orbits, implying that (2Z,/') = (2Z+,/') c 0(e). A bicoloring of
C associates a color c(e) e {0,1} to each cell e such that adjacent cells have different
colors. For any two cells / and // there exists a system of strips allowing to pass from
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/ to /' using only the action of 2Z on these strips, except for the case when C admits
bicolorings and c(f) ^ ^(/Q. However any bicolored cubulation can be transformed into
one having no bicolorings using one &i-move. This shows that 0(e) = C.

Recall that given a path 7 between e and / one associates a twist for the corresponding
tube over /. Set two for the twist over / associated to a straight path 7 = {e,f,g). Let
us perform a &i-move over /. The curve 7 has several lifts 7^ (not necessarily straight)
relating e and g through the cells of &i(J) - /. It is simple to check that the set of twists
over / induced by these paths is all of Dntwo. Therefore the connected sum does not
depend on the choice of the twist. This proves the Theorem 1.6. D

4.2. The compatibility with the bordism composition The composition law for
immersions is the disjoint union of immersions inside the connected sum of manifolds,
where the latter is made away from the immersions. The immersion associated to the
connected sum of cubulations is obtained from the initial immersions by some surgery
which involves only local data. We will prove that this surgery can be also realized by
a local relative cobordism of the associated immersions. Consider the manifolds M and
N with their respective cubulations X and V. The connected sum cubulation X^Y is
obtained by removing the cells e from X and / from Y. One uses &i-moves on e and /
in order to reduce the cubulated piping tube to a boundary identification 9e == 9f. The
bordism classes of (px and (py are preserved under these transformations. We consider that
the connected sum of manifolds is done by means of a piping tube which is close to the
images Im((^e) and Im((^). Both Im((^e) and Im((^) have as local models the set of
coordinate hyperplanes around the origin in R71. The surgery which changes I(X^Y) into
I(X)^I(Y) excises Im((^e) and Im((^) and replaces them by a cylinder with the same
boundary. One can realize the surgery on the piping tube, after pushing the local models
through it. A small isotopy moves them outside of a longitude and then the configurations
embed in the ball obtained from the tube by cutting it along the longitude. It suffices
therefore to show that the surgery can be realized by a cobordism in the ball which is a
product on the boundary. For n = 2 the different slices of the cobordism are given in the
Figure 4. Assume that the local models living in a ball have the corresponding hyperplane
sections parallel to each other. Let us consider two parallel hyperplane sections u and u'
of the respective local models Im (^pe) and Im ((^/). Then one constructs the neighborhood
of ^PX^Y around the piping tube by removing the interiors of u and u' and gluing back the
cylinder of boundary 9u U 9u1'. This transformation can be realized also by a cobordism of
immersions since it is represented by the local picture around a critical point of index 1,
where the images of the immersions are the non-critical levels before and respectively
after passing through the critical value. The local picture can be made transversal with
respect to the other coordinate hyperplanes of the immersions which were left untouched.
One composes the cobordisms associated to all n pairs of parallel hyperplane sections.
The restrictions on the boundary of these cobordism are products and so we can glue
the composition with the trivial cobordism outside the local pictures. Thus we derived a
cobordism between ^px^Y and ^xtt^y-

Notice that, in general, the map CBB{M) x CBB{N) —> CBB(M^N) should depend
on the length of the tube t. The case when M and N are spheres could be different however.
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local models
^\

the connected sum of immersions

critical level

the immersion associated to
the connected sum of cubulations

Fig. 4. A relative cobordism for n = 2.

5. Cubulations of surfaces

5.1. The simple cubulations of S2. Observe first that the set CBB(S2) is infinite. In fact
the number of components with odd self-intersections of the associated immersion is an
invariant, because the only move creating new components is 61, and each new created
component is an embedded circle. Set ns ((7) for the sum over the various connected
components Ki of the number of self-intersections.

The similarity with the Reidemeister moves in the plane suggests that CBB(S2) is the
set of framed circles in the plane. Unlike the case of Reidemeister moves, the image of the
immersion remains connected, so its components cannot be separated using bubble moves.
On the other hand the move b^ can create/annihilate a pair of self-intersections. It is not
clear that the singularities can always be paired such that suitable np-bubble moves destroy
all pairs of singularities and so each transformed circle has ns(^)(mod 2) G {0,1}
singularities. If this is true it will remain to prove that all configurations of circles among
which there are exactly m singular circles are np-bubble equivalent. This would establish
an isomorphism between CBB(S2) and Z+. We are able to prove this statement for the
case m == 0 (and m = I):

Proposition 5.1. The simple cubulations of S2 are rip-bubble equivalent.

Proof. Call a disk bounded by two disjoint arcs a biangle. A biangle is tight if no
other arc intersects its interior. Observe that using np-bubble moves one can transform
all minimal biangles into tight biangles. We use isotopies of the boundary of the biangle
(&2-moves) reducing the number of squares contained in the disk and &3-moves.

The possible configurations of tight biangles can be rather complicated, even if the
cubulation is simple. Let us show that the tight triangles can travel along the edges
(sliding). This means that a regular homotopy moving a tight biangle along the arcs can
be realized by np-bubble moves. The proof of this claim is contained in the picture below.
We marked in a little rectangle the area on which the bubble move acts:
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w^. i; IH)

^
Set X for the union of two transversal arcs. An arc which intersects three times one

branch of X and then the other arc can be simplified by a composition of bubble moves
which we call a S move:

Now it is easy to obtain that the set of semi-simple cubulations mod np-bubble moves
is equal to the set of simple cubulations mod np-bubble moves. In fact any tight biangle
coming from the same component can be transformed into tight biangles on different
components:

y\-^
Assume that the cubulation is simple. The union of the circles Ki for i > 2, divides

the sphere into polygonal faces, each of them having at least two vertices. We claim that,
either there are no biangles involving an arc from K^ or else K\ is a small circle contained
in the union of two faces which intersects minimally (i.e. twice) the common edge. Indeed,
suppose that there exists a minimal tight biangle. Consider the face which is adjacent to
the biangle and not containing it. If K^ does not satisfy the claim then we can simplify
the biangle using slidings and S-moves, as it is shown below:

^
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Thus K]_ can be transformed into a circle which does not support any biangle. Further
use of the moves 63 and 63 allows us to isotope K^ into the union of two faces as
claimed. One continues the simplification procedure with the other components Ki and the
Proposition 5.1 follows. Q

A similar proof works when the circle K^ is allowed to have one self-crossing. Now
K^ is transformed into a figure-eight contained in the union of two faces which intersects
minimally their common edge and forms one biangle.

5.2. The cubulation group CB(S2). In order to prove that CB(S2) = Z/2Z one has to get
rid of those self-intersections which are not cancelling pairs. The following figures describe
the simplifications obtained with the additional move 63^1 for two adjacent self-intersections:

Further, if the two self-intersections are separated by additional arcs then use b^ -moves
and slide across these arcs. It follows that any dual graph can be transformed using bubble
moves into one satisfying ns(^) G {0,1}, for each component Ki.

The next step is to show that two components "can be added". Let K^ and K^ be two
components having non-void intersection. There exists an equivalent configuration in which
ATl and K^ are replaced by the circle K^ +^2 verifying ns (^1+^2) = ns (A"i) +ns (A^),
the other K^ (i > 3) are left unchanged and the additional components have ns = 0. It
suffices to do that in the case when ns (ATi) = ns (A^) = 1. Then the kinks can be added
and transformed in consecutive self-intersections which have already been solved.

bubble

Thus, if one adds those components which are not embedded, we obtain a planar graph
whose components are embedded, except possibly for one which has ns (C) e {0,1}. We
have therefore ns(<7) = /o (mod 2). If /o = 0(mod 2) then the result of the previous
section shows that all these configurations are np-bubble equivalent. If /o = 1 (mod 2)
it means that C is a figure-eight in the plane. The remark after the proof of Proposition
5.1 completes the proof of the Theorem 1.3.
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