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A Note on the Bonnet-Myers Theorem

V. Boju and L. Funar

Abstract The aim of this note is to derive a compactness result for complete manifolds whose
Ricci curvature is bounded from below. The classical result, usually stated as Bonnet- Myers
theorem, provides an estimation of the diameter of a ma.mfold whose Ricci curvature is greater
than a st.nctly positive constant. Weaker assumptions that the Ricci curvature function tends
slowly to zero (when the distance from a fixed point goes to infinity) were already considered
in (2, 3]. We shall improve here their results.
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We will be concerned with the following analytic

Problem. Given a function a : [r, +00) — (0, +00) we consider positive solutions
y = y(r) of the differential equation

yll+ay=0

satisfying y(ro) = 0. Obviously, y has to be concave. We have to determine the functions
a = a(r) for which y has a further zero r; > ro which may be bounded from above.

It is clear that there is such a bound in case a is a positive constant, but this bound
tends to infinity as a(r) — 0. The above problem seems to be interesting for functions a
satisfying lim,_.+°° a(r)=0.1t turns out that the right asymptotic is a(r) ~ cr=2, with
critical value ¢ = . In fact, for ¢ = % +v? one gets the solution y(r) = r} sinv( log )
and hence there 1s a second zero. In this paper we show that in fact the constant v?
may be replaced by a function which tends as weakly as an iterated logarithm to zero,
which enters in our definition of some function Ax, = Ag,u(r).

Let us first make some notations. For each natural number k we set
Logo(r) =r

Li(r) =log...logr
k
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whenever is defined, and

S 1 | L .
Ars(r) = 3 (1 TLeE T T L L0 Lea ()

1+4v
A E T A e Lk(r)z) '

For a Riemannian manifold M, we denote by Ric,(Y) the Ricci curvature in the direc-
tion Y € T (M), for a point £ € M and T.(M) being the tangent space to M in z. The
space M is said to have an almost positive asymptotic Ricci curvature (abbreviated to
be an AP-Riemannian space) if there exist k,v,rg > 0 and p € M such that

Ric(Y) 2 (n — 1) A o(n)IY® (1)

holds for all z € M whose distance from a fixed point p is r = diét(p,r) > ro and for
all vectors Y € T, (M) Also | - | stands for the norm in the tangent space induced by
the metric, and n is the dimension of M.

Qur result can be stated now as follows.

Theorem 1. A complete AP-Riemannian manifold is compact, and its diameter

d(M) is bounded by

d(M) < ex—1 (Lk-l (exp % ma-x{ro,Ek(O)}))

where eg(z) = 2 and em41(2) = expen(z) for m > 0.

Notice that the case k = 0 is discussed in [2] and the case k = 1 is covered by [3].
Also, Dekster and Kupka [3] proved that the constant 1 is sharp, i.e. for any function
A= A(r) using in the place of A . so that Theorem 1 holds we must have

hm A(r)r? > L and lim (A(r)r2 - %) (logr)? > 1.

r-++00 4 r—+oco

So our result identifies the higher order terms which might be added in spite to preserve
the boundedness of the manifold. We think that the function Ay , is sharp.

Proof of Theorem 1. We write the Jacobi equation associated to the sectional
curvature function A; ,, namely

y" + Aru(rly = 0. (2)
We claim that this equation admits the basic solutions
Uy = &4(r) cosvLi(r) and Uy = ®x(r)sinvLli(r)

whéré :
®i(r) = T%Ll(r)% Lk_l(r)%.'
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For k = 11t is easy to see that ;"5 cos(vlogr) and r7 sin(v logr) are solutions for equation
(2). By recurrence we prove first that the following relations are fulfilled (for k =1 they
are simply to check): ‘ -

, ¥+ Ako® =0 and 2@ Ly + ¥ Ly = 0.
In fact we have .

Pry1 =9, L} and Liy1 =log Ly,

hence
| 284y, Ly, + Brark Ly, = (28,L4+ &, L) L7 = 0. -

On the other hand o
LS 2 e —Aro+ (L)’ Lyt = Akt

Pitr
holds and the two relations stated above are proved.
Furthermore we verify that ‘

Wy = &% cos(vLi) — v(2®) L + ®xL}) sin(vLy) — v2®, L' cos(vLy).
The two relations stated above and the obvious identity
R =Lo'LTt - LY
complete the broof of our claim for Wy (the case of ¥, is similar).
Both ¥y and ¥, are defined on the interval [ex(0), +o0). Set r; = max{rg, ex(0)}.
Therefore, for each A > ¢4(0) the linear combination
Yi,oa(r) = —sin(vLi(A)) Yo(r) + cos(vLi(X)) ¥, (r) (3)
is a solution for equation (2), which satisfies also Yi 4,a(A) = 0. Also, we may write
Yi,ua(r) = sin(v(La(r) — Li(A)) ®x(r) Li(r)

so that Yk ,,a is positive on the interval (X, B())) where B(A) = ek, (Lie-1(A)exp (X))
and vanishes again in B()). This is a consequence of the straightforward formula

Le(B(N) - Le(A) = =

A standard argument (see, for instance, [1]) proves that the diameter of the manifold
M is less than f(r;). Since M is complete from the Hopf-Rinow theorem it follows that
M 1s in fact compact and this ends the proof of the theorem B

Remark 2. The form of the function Aj v 1s in some sense sharp. In fact, forv =10
the analog result is false: We may choose on M = R™ — K, with K being a sufficiently
large compact, the metric with radial symmetry dr + Py(r)df (in polar coordinates)
where df is the metric form on the standard sphere S*~! and

k -4

Pi(r)=r (Z L;(r)_z) :
i=1

Then a straightforward computation shows that Ric.(Y) = A o(r)|Y)? for all points z

outside the compact K and all tangent vectors Y.
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