On the cohomology of weighted complete intersections

By

LOUIS FUNAR

The weighted projective space $P(a_0, a_1, ..., a_n)$ is defined as the quotient of CP^n by the following action of $G = \mathbb{Z}/a_0\mathbb{Z} \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/a_n\mathbb{Z}$:

$$(k_0, k_1, \ldots, k_n)(z_0, z_1, \ldots, z_n) = (\zeta_{a_0}^{k_0} z_0, \zeta_{a_1}^{k_1} z_1, \ldots, \zeta_{a_n}^{k_n} z_n),$$

where $\zeta_l = \exp(2 \pi i/l)$.

It is known that the integral homology groups of $P(a_0, a_1, ..., a_n)$ are torsion free (see [6, 3]) so they are isomorphic to the homology groups of $\mathbb{C}P^n$. An entirely elementary computation was carried out for n=2 in [4].

Let now (V,0) be an isolated singularity of complete intersection in C^{n+k+1} defined by the weighted homogeneous polynomials $f = (f_1, f_2, ..., f_k)$. We suppose that f_i has degree d_i with respect to the weights $w(z_j) = a_j$, j = 0, 1, ..., n+k. There are two spaces naturally associated to the singularity (V,0), namely the link $K = V \cap S^{2(n+k)+1}$ and the quasi-smooth weighted complete intersection Y_{∞} defined by the polynomials f_i in $P(a_0, a_1, ..., a_{n+k})$. Notice that K is a smooth compact oriented (2n+1)-dimensional manifold which is (n-1)-connected (see [5]). The middle Betti numbers of K have been computed in terms of the a_i 's and the d_i 's by Dimca ([2]). The aim of this note is to give a brief insight into the cohomology of Y_{∞} . All the cohomology groups considered below have integer coefficients. We say that $(a_0, a_1, ..., a_{n+k+1})$ is m-prime if the greatest common divisor of any m of the a_i 's equals one.

Proposition 1. Suppose that $(a_0, a_1, ..., a_{n+k+1})$ is m-prime. Then the relative cohomology groups vanish:

$$H^{i}(P(a_{0}, a_{1}, ..., a_{n+k}), Y_{\infty}) = 0$$
 for $i \le n - m + 1$.

Proof. Consider $F_i(z) = f_i(z_0^{a_0}, z_1^{a_1}, \dots, z_{n+k}^{a_{n+k}})$ and set Z_{∞} for the complete intersection defined by the polynomials F_i in CP^{n+k} . Remark that the G-action on CP^{n+k} leaves Z_{∞} invariant and we have $Z_{\infty}/G = Y_{\infty}$. Let now $P = \mathbb{Z}/p^{\alpha_0}\mathbb{Z} \oplus \mathbb{Z}/p^{\alpha_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{\alpha_{n+k}}\mathbb{Z} \subset G$ be a p-subgroup of G. Therefore p^{α_i} divides a_i for all $i = 0, 1, \ldots, n+k$. Then the P-invariant subsets are

$$(CP^{n+k})^P = \{\alpha_i z_i = 0\},\,$$

and

$$(Z_{\infty})^{P}=Z_{\infty}\cap\{\alpha_{i}z_{i}=0\}.$$

Since Z_{∞} is a complete intersection $(Z_{\infty})^P$ is also a complete intersection, eventually using only part of the original equations F_i . Next the number of non-zero α_i 's cannot exceed (m-1) because $(a_0, a_1, \ldots, a_{n+k})$ is m-prime. Then Lefschetz's theorem for complete intersections implies

$$\pi_i((CP^{n+k})^P,(Z_m)^P)=0$$
 for $i \le n-m+1$.

But this holds for all primes p and all maximal p-subgroups P so from [1] we derive our claim.

Corollary 2. For a prime number p write $a_i = p^{r_i} c_i$ with r_i maximal. Choose a permutation σ of $\{0, 1, 2, ..., n + k\}$ such that

$$r_{\sigma(1)} \ge r_{\sigma(2)} \ge \ldots \ge r_{\sigma(n+k)} \ge r_{\sigma(0)} = 0$$

and set:

$$b_i(p) = \prod_{0 \le j \le i} p^{r_{\sigma(i)}}$$
 and $b_i = \prod_p b_i(p)$.

If $(a_0, a_1, \ldots, a_{n+k})$ is m-prime then the set of numbers

$$R_{ij} = b_i b_j / b_{i+j}$$
 with $0 \le i, j, i+j \le (n-m+1)/2$

is a topological invariant of the isolated singularity (V,0).

Proof. The Z-cohomology algebra of $P(a_0, a_1, \ldots, a_{n+k})$ is determined in [6]: if g_i is the generator of $H^{2i}P(a_0, a_1, \ldots, a_{n+k})$ then $g_i \cup g_j = R_{ij}g_{i+j}$. But in low rank the cohomology algebra of Y_{∞} is induced from that of $P(a_0, a_1, \ldots, a_{n+k})$ (according to Proposition 1) and we are done.

Set now

$$F = (F_1, F_2, \dots, F_k),$$

$$\overline{F} = (F_1 - z_{n+k+1}^{d_1}, F_2 - z_{n+k+1}^{d_2}, \dots, F_k - z_{n+k+1}^{d_k}),$$

and

$$\vec{f} = (f_1 - z_{n+k+1}^{d_1}, f_2 - z_{n+k+1}^{d_2}, \dots, f_k - z_{n+k+1}^{d_k}).$$

The link of the singularity defined by \overline{f} will be denoted by \overline{K} . Let Z be the fibre of F over 1 (the global Milnor fibre) and \overline{Z} its projective closure. Observe that Z_{∞} is in fact $\overline{Z} - Z$. In fact $P(a_0, a_1, \ldots, a_{n+k}, 1)$ is the compactification of \mathbb{C}^{n+k+1} whose locus at infinity is precisely $P(a_0, a_1, \ldots, a_{n+k})$. If Y is the global Milnor fibre of f and \overline{Y} is the quasi-smooth weighted intersection in $P(a_0, a_1, \ldots, a_{n+k}, 1)$ associated to \overline{f} then Y may be identified with $\overline{Y} - Y_{\infty}$. Otherwise we can look at the S^1 -action on $(S^{2(n+k)+3}, S^{2(n+k)+1})$ given by

$$\varrho \cdot z = (\varrho^{a_0} z_0, \varrho^{a_1} z_1, \dots, \varrho^{a_{n+k}} z_{n+k}, \varrho z_{n+k+1}).$$

Then $(\overline{K}, K)/S^1 = (\overline{Y}, Y_{\infty})$. Then Y_{∞} is called strongly smooth ([2]) if the S^1 -action on K is semi-free.

Proposition 3. Assume that Y_{∞} is strongly smooth. Then $H_{*}(K)$ is torsion free and the Milnor lattice of f is equivalent to the cup product

the of
$$f$$
 is equivalent to the cup F^{-1} .
 $H^{n+1}(\overline{K},K) \times H^{n+1}(\overline{K},K) \to H^{2n+2}(\overline{K},K) \cong \mathbb{Z}$.

Moreover if k = 1 then this may be expressed also as the cup product

$$k = 1$$
 then this may be expressed also as the step F
 $H^{n+k}(S^{2(n+k)+1}, K) \times H^{n+k}(S^{2(n+k)+1}, K) \to H^{2(n+k)}(S^{2(n+k)+1}, K)$.

Proof. From the Smith-Gysin sequence associated to the S^1 -action on K we derive that $H_*(K)$ is torsion free and:

is torsion free and.

$$H_j(Y_\infty) = H_j(CP^n)$$
 for $j \neq n$, $H_n(Y_\infty) = H_n(K) \oplus H_n(CP^n)$.

Now Y_{∞} is strongly smooth if and only if \overline{Y} is strongly smooth. The long exact sequence of the pair (\overline{K}, K) gives us:

$$K, K$$
) gives us.
 $H^{j}(\overline{K}, K) = 0$ for $k \neq n+1, n+2, 2n+2, 2n+3, H^{2n+2}(\overline{K}, K) = H^{2n+3}(\overline{K}, K) = Z.$

But Y has the homotopy type of a bouquet of (n + 1)-spheres (see [7]) so using the Lefschetz's duality we find:

$$H^{j}(\overline{Y}, Y_{\infty}) = 0$$
 for $j \neq n+1$.

Now from the Smith-Gysin sequence associated to the S^1 -action on (\overline{K}, K) we obtain:

the Smith-Gysin sequence associated to the
$$S$$
 and S are S and S and S are S are claims. As S and S are S are claims.

Using the functoriality of Lefschetz duality the first part of our claim follows. If k equals one then $\overline{K} - K$ is a non-ramified $\mathbb{Z}/d_1\mathbb{Z}$ -covering of $S^{2(n+k)+1} - K$ and the Alexander duality gives the second claim.

References

- [1] G. Bredon, Introduction to compact transformation groups. London-New York San-Francisco
- [2] A. DIMCA, Monodromy and Betti numbers of weighted complete intersections. Topology 24,
- [3] L. Funar, Homology and cohomology of weighted complete intersections. Preprint.
- [4] L. Funar, Homology of $P(w_0, w_1, w_2)$. An Stiint. Univ. "Al. I. Cuza" Iasi, Sect. Ia Mat. (N.S.)
- [5] H. Hamm, Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235-252 (1971).
- [6] T. Kawasaki, Cohomology of twisted projective spaces and lens commplexes. Math. Ann. 206,
- [7] E. LOOIJENGA, Isolated singular points of complete intersections. London Math. Soc. Lect. Notes Ser. 77 (1984).

Eingegangen am 9. 3. 1993

Anschrift des Autors:

Louis Funar Université de Grenoble I Institut Fourier Laboratoire de Mathématiques associe au CNRS B.P. 74 F-38402 Saint-Martin-d'Hères Cedex