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GENERALIZED HADWIGER NUMBERS 
FOR SYMMETRIC OVALS 

VALENTIN BOJU AND LOUIS FUNAR 

(Communicated by Dale Alspach) 

ABSTRACT. Some estimations for the "juxtaposition function" hF and an 
asymptotic formula for the function hF/hG, where F, G are central sym- 
metric convex bodies, are given. Hadwiger and Grunbaum gave for hF (1) the 
bounds n2 + n < hF (1) < 3n - 1. Grunbaum conjectured (and proved for 
n = 2 in Pacific J. Math. 11 (1961), 215-219) that for every even r between 
these bounds there exists in En an oval F such that hF (1) = r . Lower bounds 
for hF could be derived in the same way as in Theorems 1 and 2 from a good 
estimate of packing numbers on a Minkowski sphere, that is, from solutions to 
a Tammes-type problem in a Banch space. 

For a topological disk F C En we shall denote by hF: (0, 1] N the 
"juxtaposition function" introduced by the first author [2, 3] as follows. Let 
AF, denote the family of all sets, homothetic to F in the ratio A, which have 
only boundary points in common with F. Then hF (A) is the greatest integer k 
such that AF,1 contains k sets with pairwise disjoint interiors. In particular, 
hF (1) is just the Hadwiger number of F. 

In case of convex F, Hadwiger [ 1] and Griunbaum [8] gave for hF (1) the 
bounds n2 + n < hF(1) < 3n - 1 . Griunbaum [8] conjectured (and proved for 
n = 2; see also Boltjanski and Gohberg [4]) that for every even r between these 
bounds there exists in En an oval F such that hF(1) = r. 

Unless explicitly stated otherwise, throughout this paper F, G will denote 
symmetric plane ovals. Any such F determines a norm I I||F by jIx - YIIF = 

IIx - yjI/jIo - zjj, where l III is the Euclidean norm, o is the center of F, and 
z is a point on the boundary OF of F such that oz and xy are parallel. 
With this norm E2 becomes a Banach space, with unit disk isometric to F. 
Set p(F) for the perimeter of OF in its inner norm. 

Theorem 1. For a symmetric oval F in the plane 

(1)~~~~~~ p(F) = 2 lim AhF (A). 

Proof. Let x, y be points of OF, and let points x', y' be given by ox' = 
(1 + A)ox and oy' = (1 + A)oy. Denote by Fx, Fy those sets in AF,1 which 
have centers at x' and y', respectively. If Fx n Fy :A 0, it follows from the 
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symmetry and convexity of F that x'y' c FxnFy. We put xy'fnlFx = {a, b}, 
x'y' n OFy = {c, d}, and z E OF such that oz is parallel to x'y'. Then 

JJx' - y'll < JJx' - bjl + lic - y'll = 2JJx' - bjl = 2)jjo - zjl, 

hence 
IIX - YIIF = jjX' - Y'j/(l + A)jjo - Zjl < 2A/(1 + A). 

Reversing the reasoning we obtain 

(2) intFx n intFy =z if andonlyif IIX- YIIF< 2j/(1+A). 

Now consider a maximal collection {Fi: i = 1, ..., k} c AF, of sets with 
disjoint interiors and the points xi E OF, i = 1, ... , k, for which Fi = Fx,. 
From (2) it follows that ljxi - Xi+1 lIF < 2A/(1 + A) and thus 

2, liXi - Xi+1 IIF < 2kA( 1 + A); 
l<i<k 

however, 

p(k, F) =sup{ l IiXi-Xi+1IIF, xi E OF} <p(F). 
I <i<k 

These inequalities yield 

(3) hF (A) = k < (I1 + A)p(k 5 F)12A < (I1 + A)p(F)12A . 

Conversely, let PA be an inscribed polygon with 2k vertices ul, ..., 2k such 
that PA is symmetric about o and 

jjui - U211F = ||U2 - U311F =... = IIUk-2 - Uk-1IIF = 2A/(1 + A), 

2A/(1 +)A) < lIUkI - UkIIF < 4A/(1 +,-). 

Then the sets Fu, have disjoint interiors and 

4(k + )A1(1 +A) > E ||Ui -Ui+1JJF >4k1(1 + A) - 
1<i<2k 

Since hF (A) > 2k, it follows that 

(4) 2 +hF(A) > (1 +A) ( l|Ui-Ui+l|lF) /2A. 
1 <i<2k 

If P(A)F denotes the perimeter of PA in the 11 JIF norm, then (see [1, 11]) 

(5) limp(A)F = p(F). 

For symmetric ovals F, G relations (3)-(5) imply 

lim hF (A) /hG(A) > lim( (-2 + (1 + A)P (A)F) /2) /((I + A)p (G)) /2) 

= p(F)/p(G), 

and similarly the reverse inequality. Therefore, taking for G a square we obtain 
the claim which was to be proved. 

Denote by [t] the integer part of t E IR. 
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Theorem 2. For every symmetric oval F in the plane 

(7) 3 + [3/A] < hF(A) < 4(1 + A)/A, 

with equality on the left if and only if 1/ E N, and F is an affine-regular 
hexagon and equality on the right if and only if 1/ e N and F is a parallelo- 
gram. 
Proof. A result of Golab [6] and Reshetnyak [14], generalized by Schaffer [15], 
asserts that 6 < p(F) < 8. Hence we have 

hF(A) < 4(1 +?A)/I, 

and, using the existence of an affine-regular hexagon inscribed in F [13], we 
obtain hF(2/(1 + k)) > 6k . Since hF(A) is a decreasing function of i, we are 
done. 

If the dimension of F is greater than two, the situation is essentially different. 
We shall prove (see also [7]) 

Theorem 3. Any symmetric convex body F C En satifies the inequality 

(8) hF(A) < ((1 + ))nf_ -ln 

with equality if and only if 1/ E N and F is a parallelohedral body. 

Proof. Let B; = U HEAF A H. We shall prove that 

(9) Bj, c (I + 2A)F. 

Indeed, let x be a point on the boundary of Fv, loxl n aF = {a}l, lovj n 
aFv = {q}, and let vx" be parallel to qx with x" E aF. Then Gqv'x = 
Zv'xo + -v'ox > Zv'ox, which yields Zvox < Gvox" = Zqv'x. Since F is 
convex, we can take a point b in the nonempty intersection loal n Ivx"ll. Then 
jvx"l c F, b e F, b e joxj. Since 

lo + alu/llo - xjl > ljo - bil/llo - xjl > lo - v'lll/o - qll = 1/(1 + 2k), 

the point x belongs to (1 + 2A)F, and (9) is proved. 

If {Fi, i = 1, ..., k} C AF,, have disjoint interiors, then 

U F, C Bz c (1 + 2))F; 
1<i<k 

therefore, 
vol(F) + vol(FI) + - - * + vol(Fk) < (1 + 2)f vol(F) 

where vol(F) denotes the volume of F. This gives the desired estimation on 
hF(A). The equality case is treated in [7]. 

Lower bounds for hF(L) could be derived in the same way as in Theorems 
1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that 
is, from solutions to a Tammes-type problem in a Banach space. 

Grunbaum asked what happens to relation (1) in case F is not centrally 
symmetric. We recall that for an arbitrary oval F and z E int F a norm 
(nonsymmetric, in general) is defined by the Minkowski functional 



934 VALENTIN BOJU AND LOUIS FUNAR 

Using the (possibly nonsymmetric) distance derived from this norm it is possible 
to define arc-length for oriented arcs. For an oriented closed curve C let the 
length of C in the metric derived from 11 IIF , be denoted by PF,Z(C). The 
intrinsic perimeter (self-circumference [6, 10]) of F is P(F) = inf{pF, , (OF) 
z E int F}. Then it follows that 

g(F) = limAhF ()/P(F) ~A-4o 
is a measure of symmetry (see [8]). By the same method as used above, it is 
possible to show that g(F) < 2, with equality if F is centrally symmetric. If 
F is a triangle then g(F) -, and we conjecture that g(F) for any oval 
F. 
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