

Generalized Hadwiger Numbers for Symmetric Ovals

Author(s): Valentin Boju and Louis Funar

Source: Proceedings of the American Mathematical Society, Vol. 119, No. 3 (Nov., 1993), pp.

931-934

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2160534

Accessed: 21/01/2011 07:50

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at <a href="http://www.jstor.org/page/info/about/policies/terms.jsp">http://www.jstor.org/page/info/about/policies/terms.jsp</a>. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

## GENERALIZED HADWIGER NUMBERS FOR SYMMETRIC OVALS

## VALENTIN BOJU AND LOUIS FUNAR

(Communicated by Dale Alspach)

ABSTRACT. Some estimations for the "juxtaposition function"  $h_F$  and an asymptotic formula for the function  $h_F/h_G$ , where F, G are central symmetric convex bodies, are given. Hadwiger and Grünbaum gave for  $h_F(1)$  the bounds  $n^2 + n \le h_F(1) \le 3^n - 1$ . Grünbaum conjectured (and proved for n=2 in Pacific J. Math. 11 (1961), 215-219) that for every even r between these bounds there exists in  $E^n$  an oval F such that  $h_F(1) = r$ . Lower bounds for  $h_F$  could be derived in the same way as in Theorems 1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that is, from solutions to a Tammes-type problem in a Banch space.

For a topological disk  $F \subseteq \mathbb{E}^n$  we shall denote by  $h_F \colon (0,1] \to \mathbb{N}$  the "juxtaposition function" introduced by the first author [2, 3] as follows. Let  $A_{F,\lambda}$  denote the family of all sets, homothetic to F in the ratio  $\lambda$ , which have only boundary points in common with F. Then  $h_F(\lambda)$  is the greatest integer k such that  $A_{F,\lambda}$  contains k sets with pairwise disjoint interiors. In particular,  $h_F(1)$  is just the Hadwiger number of F.

In case of convex F, Hadwiger [11] and Grünbaum [8] gave for  $h_F(1)$  the bounds  $n^2 + n \le h_F(1) \le 3^n - 1$ . Grünbaum [8] conjectured (and proved for n = 2; see also Boltjanski and Gohberg [4]) that for every even r between these bounds there exists in  $\mathbb{E}^n$  an oval F such that  $h_F(1) = r$ .

Unless explicitly stated otherwise, throughout this paper F, G will denote symmetric plane ovals. Any such F determines a norm  $\| \cdot \|_F$  by  $\|x - y\|_F = \|x - y\|/\|o - z\|$ , where  $\| \cdot \|$  is the Euclidean norm, o is the center of F, and F is a point on the boundary  $\partial F$  of F such that  $\partial F$  and  $\partial F$  are parallel. With this norm  $\mathbb{E}^2$  becomes a Banach space, with unit disk isometric to F. Set  $\mathcal{P}(F)$  for the perimeter of  $\partial F$  in its inner norm.

**Theorem 1.** For a symmetric oval F in the plane

(1) 
$$p(F) = 2 \lim_{\lambda \to 0} \lambda h_F(\lambda).$$

*Proof.* Let x, y be points of  $\partial F$ , and let points x', y' be given by  $ox' = (1 + \lambda)ox$  and  $oy' = (1 + \lambda)oy$ . Denote by  $F_x$ ,  $F_y$  those sets in  $A_{F,\lambda}$  which have centers at x' and y', respectively. If  $F_x \cap F_y \neq \emptyset$ , it follows from the

Received by the editors March 17, 1992.

1991 Mathematics Subject Classification. Primary 52A15, 52A35.

symmetry and convexity of F that  $x'y' \subset F_x \cap F_y$ . We put  $x'y' \cap \partial F_x = \{a, b\}$ ,  $x'y' \cap \partial F_y = \{c, d\}$ , and  $z \in \partial F$  such that oz is parallel to x'y'. Then

$$||x'-y'|| \le ||x'-b|| + ||c-y'|| = 2||x'-b|| = 2\lambda ||o-z||,$$

hence

$$||x - y||_F = ||x' - y'||/(1 + \lambda)||o - z|| \le 2\lambda/(1 + \lambda).$$

Reversing the reasoning we obtain

(2) 
$$\operatorname{int} F_x \cap \operatorname{int} F_y = \emptyset$$
 if and only if  $||x - y||_F \le 2\lambda/(1 + \lambda)$ .

Now consider a maximal collection  $\{F_i: i=1,\ldots,k\} \subset A_{F,\lambda}$  of sets with disjoint interiors and the points  $x_i \in \partial F$ ,  $i=1,\ldots,k$ , for which  $F_i = F_{x_i}$ . From (2) it follows that  $||x_i - x_{i+1}||_F \le 2\lambda/(1+\lambda)$  and thus

$$\sum_{1 < i < k} \|x_i - x_{i+1}\|_F \le 2k\lambda(1+\lambda);$$

however,

$$p(k, F) = \sup \left\{ \sum_{1 \le i \le k} ||x_i - x_{i+1}||_F, \ x_i \in \partial F \right\} \le p(F).$$

These inequalities yield

(3) 
$$h_F(\lambda) = k \le (1+\lambda)p(k, F)/2\lambda < (1+\lambda)p(F)/2\lambda.$$

Conversely, let  $P_{\lambda}$  be an inscribed polygon with 2k vertices  $u_1, \ldots, u_{2k}$  such that  $P_{\lambda}$  is symmetric about o and

$$||u_1 - u_2||_F = ||u_2 - u_3||_F = \dots = ||u_{k-2} - u_{k-1}||_F = 2\lambda/(1+\lambda),$$
  
$$2\lambda/(1+\lambda) < ||u_{k-1} - u_k||_F < 4\lambda/(1+\lambda).$$

Then the sets  $F_{u_i}$  have disjoint interiors and

$$4(k+1)\lambda/(1+\lambda) > \sum_{1 \le i \le 2k} \|u_i - u_{i+1}\|_F \ge 4k\lambda/(1+\lambda).$$

Since  $h_F(\lambda) \geq 2k$ , it follows that

(4) 
$$2 + h_F(\lambda) \ge (1 + \lambda) \left( \sum_{1 \le i \le 2k} \|u_i - u_{i+1}\|_F \right) / 2\lambda.$$

If  $p(\lambda)_F$  denotes the perimeter of  $P_{\lambda}$  in the  $\| \|_F$  norm, then (see [1, 11])

(5) 
$$\lim_{\lambda \to 0} p(\lambda)_F = p(F).$$

For symmetric ovals F, G relations (3)–(5) imply

(6) 
$$\lim_{\lambda \to 0} h_F(\lambda)/h_G(\lambda) \ge \lim_{\lambda \to 0} ((-2 + (1+\lambda)p(\lambda)_F)/2\lambda)/((1+\lambda)p(G))/2\lambda$$
$$= p(F)/p(G),$$

and similarly the reverse inequality. Therefore, taking for G a square we obtain the claim which was to be proved.

Denote by [t] the integer part of  $t \in \mathbb{R}$ .

**Theorem 2.** For every symmetric oval F in the plane

(7) 
$$3 + [3/\lambda] \le h_F(\lambda) \le 4(1+\lambda)/\lambda,$$

with equality on the left if and only if  $1/\lambda \in \mathbb{N}$ , and F is an affine-regular hexagon and equality on the right if and only if  $1/\lambda \in \mathbb{N}$  and F is a parallelogram.

*Proof.* A result of Golab [6] and Reshetnyak [14], generalized by Schäffer [15], asserts that  $6 \le p(F) \le 8$ . Hence we have

$$h_F(\lambda) \leq 4(1+\lambda)/\lambda$$
,

and, using the existence of an affine-regular hexagon inscribed in F [13], we obtain  $h_F(2/(1+k)) \ge 6k$ . Since  $h_F(\lambda)$  is a decreasing function of  $\lambda$ , we are done.

If the dimension of F is greater than two, the situation is essentially different. We shall prove (see also [7])

**Theorem 3.** Any symmetric convex body  $F \subset \mathbb{E}^n$  satisfies the inequality

(8) 
$$h_F(\lambda) \le ((1+\lambda)^n - 1)/\lambda^n,$$

with equality if and only if  $1/\lambda \in \mathbb{N}$  and F is a parallelohedral body. Proof. Let  $B_{\lambda} = \bigcup_{H \in A_{F,\lambda}} H$ . We shall prove that

$$(9) B_{\lambda} \subset (1+2\lambda)F.$$

Indeed, let x be a point on the boundary of  $F_v$ ,  $|ox| \cap \partial F = \{a\}$ ,  $|ov| \cap \partial F_v = \{q\}$ , and let vx'' be parallel to qx with  $x'' \in \partial F$ . Then  $\angle qv'x = \angle v'xo + \angle v'ox \ge \angle v'ox$ , which yields  $\angle vox \le \angle vox'' = \angle qv'x$ . Since F is convex, we can take a point b in the nonempty intersection  $|oa| \cap |vx''|$ . Then  $|vx''| \subset F$ ,  $b \in F$ ,  $b \in |ox|$ . Since

$$||o + a||/||o - x|| \ge ||o - b||/||o - x|| \ge ||o - v||/||o - q|| = 1/(1 + 2\lambda)$$

the point x belongs to  $(1+2\lambda)F$ , and (9) is proved.

If  $\{F_i, i=1,\ldots,k\}\subset A_{F,\lambda}$  have disjoint interiors, then

$$\bigcup_{1\leq i\leq k}F_i\subset B_\lambda\subset (1+2\lambda)F;$$

therefore,

$$\operatorname{vol}(F) + \operatorname{vol}(F_1) + \dots + \operatorname{vol}(F_k) \le (1 + 2\lambda)^n \operatorname{vol}(F)$$

where vol(F) denotes the volume of F. This gives the desired estimation on  $h_F(\lambda)$ . The equality case is treated in [7].

Lower bounds for  $h_F(\lambda)$  could be derived in the same way as in Theorems 1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that is, from solutions to a Tammes-type problem in a Banach space.

Grünbaum asked what happens to relation (1) in case F is not centrally symmetric. We recall that for an arbitrary oval F and  $z \in \text{int } F$  a norm (nonsymmetric, in general) is defined by the Minkowski functional

$$||x||_{F,z} = \inf\{\lambda > 0 : x - z \in \lambda(F - z)\}.$$

Using the (possibly nonsymmetric) distance derived from this norm it is possible to define arc-length for oriented arcs. For an oriented closed curve C let the length of C in the metric derived from  $\| \|_{F,z}$  be denoted by  $p_{F,z}(C)$ . The intrinsic perimeter (self-circumference [6, 10]) of F is  $P(F) = \inf\{p_{F,z}(\partial F): z \in \inf F\}$ . Then it follows that

$$g(F) = \lim_{\lambda \to 0} \lambda h_F(\lambda) / P(F)$$

is a measure of symmetry (see [8]). By the same method as used above, it is possible to show that  $g(F) \leq \frac{1}{2}$ , with equality if F is centrally symmetric. If F is a triangle then  $g(F) = \frac{1}{3}$ , and we conjecture that  $g(F) \geq \frac{1}{3}$  for any oval F.

## ACKNOWLEDGMENT

We wish to thank Professor Branko Grünbaum for valuable suggestions, comments about this paper, and references.

## REFERENCES

- 1. W. Blaschke, Kreis und Kugel, Veit, Berlin, 1916.
- 2. V. Boju, Fonctions de juxtaposition, Invariants, Proc. XIII Conf. Geom. Topology, Univ. Cluj-Napoca, 1982, pp. 36-37.
- 3. \_\_\_\_, Courbures riemanniennes généralisées, Int. Conf. Geom. and Appl., Bulg. Acad. Sci., Sofia, 1986, pp. 47-48.
- V. Boltjanski and L. Gohberg, Results and problems in combinatorial geometry, Mir, Moscow, 1965; English transl., Cambridge Univ. Press, 1985.
- 5. L. Danzer, B. Grünbaum, and V. Klee, *Helly's theorem and its relatives*, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, RI, 1963, pp. 101-180.
- S. Golab, Quelques problemes métriques de la géometrie de Minkowski, Trav. Acad. Mines Cracov. 6 (1932). (Polish and French)
- 7. H. Groemer, Abschatzungen fur die Anzahl der konvexen Korper, die einen konvexen Korper beruhren, Monatsh. Math. 65 (1961), 74–81.
- 8. B. Grünbaum, On a conjecture of H. Hadwiger, Pacific J. Math. 11 (1961), 215-219.
- 9. \_\_\_\_, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, RI, 1963, pp. 233-270.
- 10. \_\_\_\_, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55-57.
- 11. H. Hadwiger, Uber Treffanzahlen bei translationsgleichen Eikorpern, Archiv. Math 8 (1957), 212-213.
- 12. D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Raume, Math. Z. 61 (1954), 235-244.
- 13. K. Leichtweiss, Konvexe Mengen, VEB Deutsch. Verlag Wissenschaften, Berlin, 1980.
- 14. Y. G. Reshetnyak, An extremal problem from the theory of convex curves, Uspehi Math. Nauk 8 (1953), 125-126.
- 15. J. Schäffer, Inner girth of spheres, Math. Ann. 184 (1970), 169-171.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, A. I. CUZA NO. 13, CRAIOVA 1100, ROMANIA

Institute of Mathematics, P.O. BOX 1-700, 70700 Bucharest, Romania

Current address, L. Funar: Université de Paris-Sud, Mathématiques, Bat. 425, 91405, Orsay Cedex, France

E-mail address, L. Funar: funar@matups.matups.fr