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HOMOLOGY OF Plwg, w;,wsy)
BY
LOUIS FUNAR

Let w = (wyp,...,w,) be a set of positive integers and denote by S the poly-
nominal ring Clay,...,2,] graded by deg z; = w;, i = 0,n. Then the projec-
tive variety Proj (S) = P(w) is called the weighted projective space of specified
weights. For general w, P(w) is a singular space. Its singularities are quotient
ones, whose germs are isomorphic to (C*/H, 0) where H C GL (n,C) is a small
abelian group, and whose corresponding links are generalized lens spaces [2,3,4].
It is known that the rational cohomology groups of P{w) and CP”" agree 6] as
graded abelian groups. .

Our main result is that H,, (P(w)) is torsion free for n = 9, This seems to have
some significance when we  folow the lines developed in[1] in studying the quasi

-homogeneous singularities. We shall give a cell decomposition for P(w) in same
manner as Dold [5] has done for lens spaces. Then an elementary tombinatorial
computation will answer our question.

We restrict our attention to the case n = 2 and remember thalan alternative
way to describe P(w) is as a quotient of C'P? under the action of G = ZlwoZ x
vea X Z/ W

(Ko, k1, k2)(20, 21, 22) = (€lo, gh1 gha),

where £; is a primitive root of unity of order j. Now consider the Hopf fibration

Si __"_____’_SS

il

CP?——=P(W)

and set 7 for the composition of the canonical projections. Our aim is to give a
G - equivariant cell decomposition of CP2. We shall define a decomposition of §%
satisfying :
i) the decomposition is G-equivariant;
ii) any set of the decomposition is stable with respect to the action of S! coming
from the Hopf fibration;
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1ii) it induces a cell decomposition of CP?, hence any set of the decomposition is
topologically 8! x cell. o '

Now, below, P/ consists of sets of dimension j + 1. Since the action of St is
fixed point free P~! must be void. Otherwise -

(1) P°={e},j €{0,1,2}} where e = {z; =0 for i # j}

(2) P! ={el(5),7 €10, L,2},7€{0,1,... A~ 1}} where A = fem (wo, wy, we)i.e.
A is the least common multiple of the weights, and e}(2) = { arg z— arg z; =
2mr /4, 23 = 0}, the others being obtained by cyclic permutations

(3) P? = {brpq, e ()09 € {0, 1, A1}, r+p+¢ = 0( mod A),7€{0,1,2}}
where by, = { arg 25 — arg z1 = 2ar/A, arg z; — arg z, = 2rpfA, arg zp —

arg zp = 279/ A} ¢ (2) = { arg 7, - arg z1 € (2mrfA, 2n(r + 1)/A), z3 = 0},
and the others are obtained by cyclic permutations

(4) PP = {e2 (j),r,pq € {01, A~ r+pt+g+1 = 0( mod A),j €

"{0,1,2,}}, where
e, = {argzg -~ argz = 2nrfA, argzy - argzy, €
€ (.21rp/A, 2n(p -+ 1)/4), arg zo — arg zp € (2mq/A, 2n(g + 1)/A)} and the
others are obtained by cyclic permutations

(5) 1:4 ={etpympg€{0,1,..., A= 1} r+p+¢( mod A) € {-1, —2}} where
Crpg ={ a1g 25— arg z; € (27r /A, 27 (r + 1)/A),

' arg 21 — arg z3 € (2mp/ A, 2x(p + 1)/A),
) aIg 23 — arg zp € (2mg/4, 2n(g + 1)/A)}.
. Let now make some notations '

— A/w,- = A,‘,I' é {0, 1,2} d,- = fcm(A;+1,A,‘+2)

{cyclic numerotated), : ‘
d= £em (aﬂa Al ) A2)J

N = As/Bd,B = Wollhy Wy,
P= Az/wuwldz -+ Az/wj_LUgdg -+ Az/waOdL

We consider the following actions of G on Z/AZ
(1) (B, 1,m)(r) = r + kA, — 14, .

() (k, L,m){p) =p+14, - mA,,
(iii) (k,1,m)(¢) = ¢+ mA, — kAg.

The orbits of theses actions are denoted by (r),, (Ph1, (9)o eventually the
indices omitted, if are understood.

Let consider the action of G on (2/AZ)? obtained by summing the preceding
ones i. e,
(v} (k, 1, m)(r,p, q) = (r+kAg ~ 1Ay, p+14) — mAs, g+ mA, — kAp)
whose orbits we denote by (r,p,q). S, = {(rnp,afir+p+q= —m( mod 4)},
then S, are G-invariant. If we denote by K* the projection under 7 of P¥ we
obtain a cell decomposition of P(w), namely

K'={el,ie 0,1,2}, where f = x(&?);
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K' = {e},y.(),1 € {0,1,2}}, where efny. (3) = 7(&:(3)};
K2 = {e(r)0 (9), b(rpey, € {0, 1,2}, (r,p.q) € Sy}, where
(r); (1) = w(cr‘(i)) and b(,.pq) = ‘JT(b,.pg);

K® = {ef,0)(i),i € {0,1,2},(r, p,q) €}S1}, where €rpa) (£) = (€20 (D);
4
rpg/
The map 7 being cellular we can compute how acts on the generators of chain
groups :

K* = {efopqy, (,5,0) inSy U S3)}, where epe) = (e

(6) 0] =0,

(7) Oct(r)i(i) = ef_; — ey,

(8) - e(ry; (1) = ef,y, () — elrs-13, (),
()  Bere) = e, (D) + ey, (0) + ey, (1)

with the mention that the actions (i — iv) are compatible i.e. if

(rpa) = (759) then (r)2 = (M2, (p)o = (B)o, (a)1 = (D1 5o (9)

has sense,

(10) 66%‘?9)(2) = C(p)o(0) = (g, (1) + birpt1g) — birpg1)
and the others are obtatined by cyclic permutations, ‘

(11) ae?f??) = e?rpq)(i) + e:(anmr)@) + e?,.”)(O), if (rpg) € 5

(12) ae?rpq) = e?r-l-lpq)(?) + e?rp-i-l o{0) + e(arpg-i-l)(l) if (r,p,9) € Ss. ‘

Now let C; be the group of Z - chains of dimension j determined by the simpli-
cial complex K = %K i. The graded differential complex C = %Cj is isomorphic
with the following one

0_)22N223N_{}+2N+P£Z'P_C_}23m*0

where A, B,C, D are suitable matrices, which acts by left composition and corre-
spond to § in the standard basi of C. Now by general arguments Ho(P(w),Z) =
Z ,m(P(w)) = 0so Hy(P(w),Z) = 0, and Hy(P(w)<Z. We need only look at
Hz and H3. For 3 p x q matrix with integer coefficients we denote by J (m) =
min {a;a € Z* and there exists a k x & submatrix W, where ¥ = rank m such
that det W = a}.
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. Lemma. We have the followings
rank B=P -2,

dikaer(B-{“f)@zQ“-—'N-i-l,

rank A=N+1,
J(A)=1,

rank D= 2N~ 1,
(D) =1,

where f: ZN+F s 7 is induced by

f (Z (rpg)B(rpq) + Z v(,-),.,ig(,-)'.(i))_ = E Yryi-

(rPQ) ’ll(r)i '.J(r)l'

Observe that if lemma is proved then im A ® QC ker(B+f)®, Q and
because have the same dimension, these spaces coiticide. Alsoif Agisa N -fl xN+1
minor of A such that det Ag = J(A) = 1, then A is Z-invertible and means of
Gy ! we obtain an isomorphism between ker (B + f) and im A; but f factors to
an isomorphism f': ker B/ im A — Z, because rank (B4 f) = rank B-+1. Thus

Hy(P(w),Z)=Z

and similar calculus showsthat -
H3(P(w),Z) = 0.

Hence it follows

Theorem. The weighted projective spaces of dimension 2 have the same in-
teger homology to those of CP? = P(1,1,1).

Now the proof of the lemma is a consequence of the combinatorial description
of the matrices 4, B, D. So we have

T, -7 0
| = 0 T
A= 0 Ts ~Ts

In-Q1 In-Q2 IN—-Q3
where T} is the §{Z/AZ)/G(i) x N matrix whose entries are

; _ J 1, if there exists p, g, s with (p); = (r); and (pgs) = (uvw)
(_r)"("w) T 10, elsewhere,
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and T3, T3 are deduced by analogy from this, Iy is the N x N matrix and Q1,Q2, Q3
are circulant matrices corresponding to the permutations of 1,2,..., N induced by

(7 +1pg) <5 (rp+ 19), (rp + 19) 2+ (rpg + 1), (rpg + 1) <5 (r + 1pg),

which can be written as (Qy)yy = Ou,qi(v). From arithmetic considerations
order (¢;) = & and by bordering the minor Iy — @2 by one stratum is obtained a
N 41 x N +1 matrix with unit determinant so rank A > N + 1. Looking to B is

easy to see that
i Kh 00
B= Tz 0 K2 0
T3 0 0 K;
where K is a §(Z/AZ)/G(i) square matrix

1 -1 0 00 0 0

0 1 -1 0 o0 0 0
Ki={ 0 0 1 -1 0 00
1 0 0 00 .01

and similarly for K3, K3. Then rank B = P — 2.and because Hy(P(w), Q)= Q we
have im A®z Q C ker (B+ f)®z Q so rank A=N+1and J(A) = 1.

Also D as the form
In —-R;
D= Iy —-Ry

I —R3

where R;, Ry, R3 are the square matrices corresponding to the following permuta-
tions of 1,2,..., N

52/G 3 (rpg) 25 (r - 1pg) € 81 /G

and the analoug ones. We have order (ti) = N and then the 2N — 1 x 2N — 1
principal minor of D is of determinant 1. Because Hy(P(w),Q)=0s0 im D ®;
Q C ker A®z Q then J(D) = 1 which finishes the proof of the lemma.

Remark. Using other methods the author has proved that in fact theorem
holds in any dimension. This will be explained in a further paper.
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