ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII "AL. I. CUZA" IAŞI Tomul XXXVII, s. I. a. Matematică, 1991, f. 3

HOMOLOGY OF $P(w_0, w_1, w_2)$

BY

LOUIS FUNAR

Let $w = (w_0, \ldots, w_n)$ be a set of positive integers and denote by S the polynominal ring $C[x_0, \ldots, x_n]$ graded by $\deg x_i = w_i$, i = 0, n. Then the projective variety $\operatorname{Proj}(S) = P(w)$ is called the weighted projective space of specified weights. For general w, P(w) is a singular space. Its singularities are quotient ones, whose germs are isomorphic to $(C^n/H, 0)$ where $H \subset \operatorname{GL}(n, C)$ is a small abelian group, and whose corresponding links are generalized lens spaces [2, 3, 4]. It is known that the rational cohomology groups of P(w) and CP^n agree [6] as graded abelian groups.

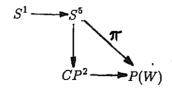
Our main result is that $H_{\star}(P(w))$ is torsion free for n=2. This seems to have some significance when we follow the lines developed in [1] in studying the quasi

-homogeneous singularities. We shall give a cell decomposition for P(w) in same manner as Dold [5] has done for lens spaces. Then an elementary combinatorial computation will answer our question.

We restrict our attention to the case n=2 and remember that an alternative way to describe P(w) is as a quotient of CP^2 under the action of $G=Z/w_0Z \times ... \times Z/w_2Z$

$$(k_0, k_1, k_2)(z_0, z_1, z_2) = (\xi_{w_0}^{k_0}, \xi_{w_1}^{k_1}, \xi_{w_2}^{k_2}),$$

where ξ_j is a primitive root of unity of order j. Now consider the Hopf fibration



and set π for the composition of the canonical projections. Our aim is to give a G - equivariant cell decomposition of $\mathbb{C}P^2$. We shall define a decomposition of S^5 satisfying:

- i) the decomposition is G-equivariant;
- ii) any set of the decomposition is stable with respect to the action of S^1 coming from the Hopf fibration;

iii) it induces a cell decomposition of $\mathbb{C}P^2$, hence any set of the decomposition is topologically $S^1 \times \text{cell.}$

Now, below, P^j consists of sets of dimension j+1. Since the action of S^1 is fixed point free P^{-1} must be void. Otherwise

- (1) $\hat{P}^0 = \{e_j^0, j \in \{0, 1, 2\}\}\$ where $e_j^0 = \{z_i = 0 \text{ for } i \neq j\}$
- (2) $P^1 = \{e_r^1(j), j \in \{0, 1, 2\}, r \in \{0, 1, \dots A 1\}\}$ where $A = \ell \operatorname{cm}(w_0, w_1, w_2)i.e.$ A is the least common multiple of the weights, and $e_r^1(2) = \{ arg z_0 - arg z_1 =$ $2\pi r/A$, $z_2=0$ }, the others being obtained by cyclic permutations
- (3) $P^2 = \{b_{rpq}, c_r(j); r, p, q \in \{0, 1, \dots, A-1\}, r+p+q = 0 \pmod{A}, j \in \{0, 1, 2\}\}$ where $b_{rpq} = \{ \arg z_0 - \arg z_1 = 2\pi r/A, \arg z_1 - \arg z_2 = 2\pi p/A, \arg z_2 - 2\pi$ $\arg z_0 = 2\pi q/A \} \ c_r(2) = \{ \arg z_0 - \arg z_1 \in (2\pi r/A, 2\pi (r+1)/A), z_2 = 0 \},$ and the others are obtained by cyclic permutations
- (4) $P^3 = \{e^3_{rpq}(j), r, p, q \in \{0, 1, \dots, A-1\}, r+p+q+1 = 0 \pmod{A}, j \in A\}$ $\{0, 1, 2, \}\}$, where $\{ \arg z_0 - \arg z_1 = 2\pi r/A, \arg z_1 - \arg z_2 \}$ $\in (2\pi p/A, 2\pi(p+1)/A)$, arg z_2 - arg $z_0 \in (2\pi q/A, 2\pi(q+1)/A)$ and the others are obtained by cyclic permutations
- (5) $P^4 = \{e_{rpq}^4, r, p, q \in \{0, 1, \dots, A-1\}, r+p+q \pmod{A} \in \{-1, -2\}\}$ where $e_{rpq}^4 = \{ \text{ arg } z_0 - \text{ arg } z_1 \in (2\pi r/A, 2\pi(r+1)/A),$ $\arg z_1 - \arg z_2 \in (2\pi p/A, 2\pi(p+1)/A),$

 $\arg z_2 - \arg z_0 \in (2\pi q/A, 2\pi (q+1)/A)$. Let now make some notations

$$A/w_i = A_i, i \in \{0, 1, 2\}$$
 $d_i = \ell \operatorname{cm}(A_{i+1}, A_{i+2})$

(cyclic numerotated),

$$d = \ell \text{cm} (a_0, A_1, A_2),$$

 $N = A^3/Bd, B = w_0 w_1 w_2,$

$$P = A^{2}/Bd, B = w_{0}w_{1}w_{2},$$

$$P = A^{2}/w_{0}w_{1}d_{2} + A^{2}/w_{1}w_{2}d_{0} + A^{2}/w_{2}w_{0}d_{1}.$$

We consider the following actions of G on $\mathbf{Z}/A\mathbf{Z}$

- (i) $(k, 1, m)(r) = r + kA_0 1A_1$,
- (ii) $(k, 1, m)(p) = p + 1A_1 mA_2$,
- (iii) $(k, 1, m)(q) = q + mA_2 kA_0$.

The orbits of theses actions are denoted by $(r)_2$, $(p)_1$, $(q)_0$ eventually the indices omitted, if are understood.

Let consider the action of G on $(\mathbf{Z}/A\mathbf{Z})^3$ obtained by summing the preceding

ones i. e. (iv) $(k, 1, m)(r, p, q) = (r + kA_0 - 1A_1, p + 1A_1 - mA_2, q + mA_2 - kA_0)$ whose orbits we denote by (r, p, q). If $S_m = \{(r, p, q); r + p + q = -m \pmod{A}\}$, then S_m are G-invariant. If we denote by K^* the projection under π of P^* we

obtain a cell decomposition of
$$P(w)$$
, namely $K^0 = \{e_i^0, i \in 0, 1, 2\}$, where $e_i^0 = \pi(\tilde{e}_i^0)$;

$$K^{1} = \{e_{(r)_{i}}^{1}(i), i \in \{0, 1, 2\}\}, \text{ where } e_{(r)_{i}}^{1}(i) = \pi(\tilde{e}_{r}(i));$$

$$K^{2} = \{c_{(r)_{0}}(i), b_{(rpq)}, i \in \{0, 1, 2\}, (r, p, q) \in S_{0}\}, \text{ where }$$

$$c_{(r)_{i}}(i) = \pi(c_{r}(i)) \text{ and } b_{(rpq)} = \pi(b_{rpq});$$

$$K^{3} = \{e_{(rpq)}^{3}(i), i \in \{0, 1, 2\}, (r, p, q) \in \}S_{1}\}, \text{ where } e_{(rpq)}^{3}(i) = \pi(e_{rpq}^{3}(i));$$

$$K^{4} = \{e_{(rpq)}^{4}, (r, p, q) \text{ } inS_{1} \cup S_{2}\}, \text{ where } e_{(rpq)}^{4} = \pi(e_{rpq}^{4}).$$

The map π being cellular we can compute how acts on the generators of chain groups

$$\partial e_i^0 = 0,$$

(7)
$$\hat{\partial} e^{1}(r)_{i}(i) = e^{0}_{i-1} - e^{0}_{i+1},$$

(8)
$$\partial c_{(r)_i}(i) = e^1_{(r)_i}(i) - e^1_{(r+1)_i}(i),$$

(9)
$$\partial b_{(rpq)} = e^1_{(r)_2}(2) + e^1_{(p)_0}(0) + e^1_{(q)_1}(1)$$

with the mention that the actions (i-iv) are compatible i.e. if

$$(rpq)=(\tilde{r}\tilde{p}\tilde{q})$$
 then $(r)_2=(\tilde{r})_2, (p)_0=(\tilde{p})_0, (q)_1=(\tilde{q})_1$ so (9)

has sense,

(10)
$$\partial c_{(rpq)}^3(2) = c_{(p)_0}(0) - c_{(q)_1}(1) + b_{(rp+1q)} - b_{(rpq+1)}$$

and the others are obtatined by cyclic permutations,

(11)
$$\partial e_{(rpq)}^4 = e_{(rpq)}^3(1) + e_{(rpq)}^3(2) + e_{(rpq)}^3(0), \text{ if } (rpq) \in S_1$$

(12)
$$\partial e_{(rpq)}^4 = e_{(r+1pq)}^3(2) + e_{(rp+1q)}^3(0) + e_{(rpq+1)}^3(1) \text{ if } (r,p,q) \in S_2.$$

Now let C_j be the group of Z - chains of dimension j determined by the simplicial complex $K = \bigoplus_{j=0}^{3} K^i$. The graded differential complex $C = \bigoplus_{j=0}^{3} C_j$ is isomorphic with the following one

$$0 \to Z^{2N} \xrightarrow{D} Z^{3N} \xrightarrow{A} Z^{N+P} \xrightarrow{B} Z^P \xrightarrow{C} Z^3 \to 0$$

where A, B, C, D are suitable matrices, which acts by left composition and correspond to ∂ in the standard basi of C. Now by general arguments $H_0(P(w), \mathbf{Z}) = \mathbf{Z}$, $\pi_1(P(w)) = 0$ so $H_1(P(w), \mathbf{Z}) = 0$, and $H_4(P(w)) = \mathbf{Z}$. We need only look at H_2 and H_3 . For ∂ $p \times q$ matrix with integer coefficients we denote by $J(m) = \min \{a; a \in \mathbf{Z}^+ \text{ and there exists a } k \times k \text{ submatrix } W$, where $k = \text{rank } m \text{ such that } \det W = a\}$.

Lemma. We have the followings

$$\operatorname{rank} B = P - 2,$$

$$\operatorname{dim}_{Q} \ker (B + f) \otimes_{\mathbf{Z}} \mathbf{Q} = N + 1,$$

$$\operatorname{rank} A = N + 1,$$

$$J(A) = 1,$$

$$\operatorname{rank} D = 2N - 1,$$

$$j(D) = 1,$$

where $f: \mathbb{Z}^{N+P} \to \mathbb{Z}$ is induced by

$$f\left(\sum_{(rpq)}n_{(rpq)}b_{(rpq)} + \sum_{i,(r)_i}v_{(r)_i}, ic_{(r)_i}(i)\right) = \sum_{i,(r)_i}v_{(r)_i}.$$

Observe that if lemma is proved then $\operatorname{im} A \otimes_{\mathbb{Z}} \mathbb{Q} \subset \ker (B+f) \otimes_{\mathbb{Z}} \mathbb{Q}$ and because have the same dimension, these spaces coincide. Also if A_0 is a $N+1\times N+1$ minor of A such that $\det A_0 = J(A) = 1$, then A_0 is \mathbb{Z} -invertible and means of a_0^{-1} we obtain an isomorphism between $\ker (B+f)$ and $\operatorname{im} A$; but f factors to an isomorphism f': $\ker B/\operatorname{im} A \to \mathbb{Z}$, because $\operatorname{rank} (B+f) = \operatorname{rank} B+1$. Thus

$$H_2(P(w), \mathbf{Z}) = \mathbf{Z}$$

and similar calculus shows that

$$H_3(P(w),\mathbf{Z})=0.$$

Hence it follows

Theorem. The weighted projective spaces of dimension 2 have the same integer homology to those of $\mathbb{C}P^2 = P(1,1,1)$.

Now the proof of the lemma is a consequence of the combinatorial description of the matrices A, B, D. So we have

$$A = \begin{bmatrix} T_2 & -T_2 & 0 \\ T_1 & 0 & T_1 \\ 0 & T_3 & -T_3 \\ I_N - Q_1 & I_N - Q_2 & I_N - Q_3 \end{bmatrix}$$

where T_1 is the $\sharp(\mathbf{Z}/A\mathbf{Z})/G(i)\times N$ matrix whose entries are

$$t_{(r)_2,(uvw)} = \begin{cases} 1, & \text{if there exists } p,q,s \text{ with } (p)_2 = (r)_2 \text{ and } (pqs) = (uvw) \\ 0, & \text{elsewhere,} \end{cases}$$

and T_2, T_3 are deduced by analogy from this, I_N is the $N \times N$ matrix and Q_1, Q_2, Q_3 are circulant matrices corresponding to the permutations of $1, 2, \ldots, N$ induced by

$$(r+1pq) \xrightarrow{q_1} (rp+1q), (rp+1q) \xrightarrow{q_2} (rpq+1), (rpq+1) \xrightarrow{q_3} (r+1pq),$$

which can be written as $(Q_1)_{uv} = \partial_{u,q_i}(v)$. From arithmetic considerations order $(q_i) = N$ and by bordering the minor $I_N - Q_2$ by one stratum is obtained a $N+1 \times N+1$ matrix with unit determinant so rank $A \ge N+1$. Looking to B is easy to see that

$$B = \begin{bmatrix} T_1 & K_1 & 0 & 0 \\ T_2 & 0 & K_2 & 0 \\ T_3 & 0 & 0 & K_3 \end{bmatrix}$$

where K_1 is a $\sharp(\mathbf{Z}/A\mathbf{Z})/G(i)$ square matrix

$$K_1 = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots \\ -1 & 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

and similarly for K_2 , K_3 . Then rank B = P - 2 and because $H_2(P(w), \mathbf{Q}) = \mathbf{Q}$ we have im $A \otimes_{\mathbf{Z}} \mathbf{Q} \subset \ker(B+f) \otimes_{\mathbf{Z}} \mathbf{Q}$ so rank A = N+1 and J(A) = 1.

Also D as the form

$$D = \begin{bmatrix} I_N & -R_1 \\ I_N & -R_2 \\ I_N & -R_3 \end{bmatrix}$$

where R_1, R_2, R_3 are the square matrices corresponding to the following permutations of $1, 2, \ldots, N$

$$S_2/G \ni (rpq) \xrightarrow{t_1} (r-1pq) \in S_1/G$$

and the analoug ones. We have order $(t_i) = N$ and then the $2N - 1 \times 2N - 1$ principal minor of D is of determinant 1. Because $H_3(P(w), \mathbf{Q}) = 0$ so im $D \otimes_{\mathbf{Z}} \mathbf{Q} \subset \ker A \otimes_{\mathbf{Z}} \mathbf{Q}$ then J(D) = 1 which finishes the proof of the lemma.

Remark. Using other methods the author has proved that in fact theorem holds in any dimension. This will be explained in a further paper.

Acknowledgements. I am indebted to A. Dimca for proposing this problem and to S. Papadima and P. Ionescu for valuable suggestions. Many thanks to my mother Maria for typing this work.

REFERENCES

- Brieskorn, E Die Monodromie der Isolierten Singularitäten von Hyperflachen. Manuscr. Math. 2, 103-61 (1970).
- 2. Dimca, A. On analytic abelian coverings. Math. Ann.279, 501-515 (1988).
- Dimca, A. On the Milnor fibrations of weighted homogeneous polynomials, Preprint INCREST, 1989.
- 4. Dimca, A. On the homology and cohomology of complete intersections with isolated singularities. Compositio Math. 58, 321-339 (1986).
- Dold, A. Lectures on Algebraic Topology. Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- Dolgachev, I. Weighted Projective Varities in Group Actions and Vector Fields. Lectures Notes. Math. no. 956, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Received 3.IV.1990 Revised 18.VI.1990 University of Bucharest Department of Mathematics str. Academiei 14, 70109 Bucharest, România